WO2017179283A1 - Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device - Google Patents

Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device Download PDF

Info

Publication number
WO2017179283A1
WO2017179283A1 PCT/JP2017/005266 JP2017005266W WO2017179283A1 WO 2017179283 A1 WO2017179283 A1 WO 2017179283A1 JP 2017005266 W JP2017005266 W JP 2017005266W WO 2017179283 A1 WO2017179283 A1 WO 2017179283A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
glass plate
absorbing glass
plate according
infrared absorbing
Prior art date
Application number
PCT/JP2017/005266
Other languages
French (fr)
Japanese (ja)
Inventor
宏亮 中堀
武志 乾
辰夫 笹井
敦史 東郷
Original Assignee
日本電気硝子株式会社
ニューマンパワーサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016153687A external-priority patent/JP6811053B2/en
Application filed by 日本電気硝子株式会社, ニューマンパワーサービス株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201780004742.3A priority Critical patent/CN108367966B/en
Priority to KR1020187014209A priority patent/KR102657651B1/en
Publication of WO2017179283A1 publication Critical patent/WO2017179283A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an infrared absorbing glass plate, a method for producing the same, and a solid-state imaging device device using the infrared absorbing glass plate.
  • solid-state imaging devices such as CCD and CMOS are used. Since these solid-state imaging device devices have a wide range of light receiving sensitivity, it is necessary to remove light in the infrared region in order to match human visual perception.
  • an infrared-absorbing glass plate made of a fluorophosphate-based glass is disclosed as a near-infrared cut filter for removing light in the infrared region.
  • the thickness of the glass plate is reduced by physical polishing using a double-side polishing machine.
  • An object of the present invention is to provide an infrared-absorbing glass plate, a method for producing the infrared-absorbing glass plate, and a solid-state image sensor device that can reduce the size of the solid-state image sensor device.
  • An infrared-absorbing glass plate according to the present invention is an infrared-absorbing glass plate having first and second main surfaces facing each other and a side surface connecting the first and second main surfaces, and phosphoric acid It is made of salt-based glass, has a thickness of 0.2 mm or less, and has no microcracks on the side surface.
  • the phosphate glass is, by mass%, P 2 O 5 25 to 60%, Al 2 O 3 2 to 19%, RO (where R is Mg, Including at least one selected from Ca, Sr and Ba) 5 to 45%, ZnO 0 to 13%, K 2 O 8 to 20%, Na 2 O 0 to 12%, and CuO 0.3 to 20% And substantially free of fluorine.
  • the infrared-absorbing glass plate according to the present invention preferably has no polishing traces on the first and second main surfaces.
  • Infrared absorbing glass plate according to the present invention preferably, the area of the first main surface, 100 mm 2 or more and 25000 mm 2 or less.
  • Infrared absorbing glass plate according to the present invention preferably, the area of the first main surface, 1000 mm 2 or more and 25000 mm 2 or less.
  • the infrared-absorbing glass plate according to the present invention preferably has a three-point bending strength of 35 N / mm 2 or more at a fulcrum distance of 2.5 mm.
  • the area of the first main surface is preferably 1 mm 2 or more and less than 1000 mm 2 .
  • the infrared absorbing glass plate according to the present invention is preferably used for a solid-state image sensor device.
  • an optical film is preferably provided on at least one of the first main surface and the second main surface.
  • the optical film is preferably a dielectric multilayer film.
  • An array of infrared absorbing glass plates according to the present invention includes a support and a plurality of infrared absorbing glass plates of the present invention arranged in a matrix on the support.
  • the method for producing an infrared-absorbing glass plate according to the present invention is a method for producing an infrared-absorbing glass plate configured according to the present invention, and is a method for physically polishing a plate-shaped glass base material composed of phosphate glass. And an etching step of etching the physically ground glass base material by immersing it in an alkaline detergent.
  • the thickness of the glass base material is set to 0.23 mm or more and 0.3 mm or less by the physical polishing.
  • the physically polished glass base material is etched by being immersed in an alkaline detergent having a pH of 7.1 or higher.
  • the alkaline detergent preferably contains an alkali salt of aminopolycarboxylic acid.
  • the method for producing an infrared-absorbing glass plate provided with the optical film includes the step of forming the optical film on at least one of the first main surface and the second main surface of the glass base material after etching. Is further provided.
  • the method for producing an array of infrared-absorbing glass plates of the present invention includes a step of producing the etched glass base material by the method of the present invention, and a step of placing the glass base material on the support. A step of dicing the glass base material on the support and dividing it into the plurality of infrared absorbing glass plates arranged in a matrix; and immersing the infrared absorbing glass plate on the support in the alkaline detergent An etching process for etching.
  • the support is preferably a UV tape whose adhesive strength is reduced by ultraviolet irradiation.
  • the solid-state imaging device device includes an infrared absorbing glass plate configured according to the present invention.
  • an infrared ray absorbing glass plate that makes it possible to reduce the size of a solid-state imaging device device.
  • FIG. 1 is a schematic perspective view showing an infrared-absorbing glass plate according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a modification of the infrared-absorbing glass plate according to one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a solid-state imaging device device using an infrared absorbing glass plate according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention.
  • FIG. 5 is a schematic plan view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention.
  • FIG. 6 is a schematic plan view showing an array of infrared absorbing glass plates according to another embodiment of the present invention.
  • FIG. 1 is a schematic perspective view showing an infrared-absorbing glass plate according to an embodiment of the present invention. As shown in FIG. 1, the infrared absorption glass plate 1 has a rectangular planar shape. The corners of the infrared absorbing glass plate 1 may be chamfered.
  • the infrared absorbing glass plate 1 has first and second main surfaces 1a and 1b and a side surface 1c.
  • the first and second main surfaces 1a and 1b are opposed to each other.
  • the first and second main surfaces 1a and 1b are both optical surfaces.
  • the side surface 1c connects the first and second main surfaces 1a and 1b.
  • the infrared absorbing glass plate 1 is composed of a phosphate glass containing CuO. Therefore, the infrared ray absorbing glass plate 1 is excellent in the infrared ray absorbing function.
  • the thickness of the infrared absorbing glass plate 1 is 0.2 mm or less. Preferably, it is 0.19 mm or less, More preferably, it is 0.15 mm or less. Since the infrared-absorbing glass plate 1 is as thin as 0.2 mm or less, the solid-state image sensor device can be downsized when used in a solid-state image sensor device. In addition, when the thickness is too thin, when the infrared absorbing glass plate 1 is lifted in the transporting process, cracks are likely to occur. Therefore, the thickness is preferably 0.05 mm or more, and is 0.08 mm or more. It is more preferable.
  • the infrared absorbing glass plate 1 is excellent in the infrared absorbing function and can reduce the size of the solid-state imaging device, and therefore can be suitably used for the solid-state imaging device.
  • phosphate glass is low in strength and easily breaks when it is thinned.
  • the thickness is 0.2 mm. Even if it is below, it is hard to produce a crack.
  • a microcrack is a crack having a length of 1 ⁇ m to 15 ⁇ m.
  • a microcrack may become a starting point of a crack when the infrared ray absorbing glass plate 1 is bent.
  • the infrared absorbing glass plate 1 can be made more difficult to crack. The presence or absence of microcracks can be confirmed with an optical microscope.
  • the side surface 1c not only the side surface 1c but also the first and second main surfaces 1a and 1b have microcracks, which may be the starting point of cracking. Therefore, it is more preferable that the microcracks are not present on the first and second main surfaces 1a and 1b in addition to the side surface 1c, from the viewpoint of making the infrared-absorbing glass plate 1 more difficult to crack.
  • the first and second main surfaces 1a and 1b of the infrared absorbing glass plate 1 have no polishing traces at the time of manufacture.
  • the infrared-absorbing glass plate 1 can be made more difficult to crack.
  • the polishing mark can be confirmed with an atomic force microscope.
  • 3-point bending strength at point distance 2.5mm infrared absorbing glass plate 1 is preferably 35N / mm 2 or more, more preferably 50 N / mm 2 or more.
  • the upper limit of the three-point bending strength of the infrared absorbing glass plate 1 is not particularly limited, but is about 450 N / mm 2 due to the properties of the material.
  • the infrared absorbing glass plate 1 is made of phosphate glass. It is preferable that the phosphate glass does not substantially contain F (fluorine). Note that “substantially does not contain” means that 0.1% or less of fluorine may be contained by mass%.
  • a phosphate glass for example, by mass%, P 2 O 5 25-60%, Al 2 O 3 2-19%, RO (where R is selected from Mg, Ca, Sr and Ba) 5 to 45%, ZnO 0 to 13%, K 2 O 8 to 20%, Na 2 O 0 to 12%, and CuO 0.3 to 20%, and substantially containing fluorine Not glass can be used.
  • P 2 O 5 is a component that forms a glass skeleton.
  • the content of P 2 O 5 is% by mass, preferably 25 to 60%, more preferably 30 to 55%, still more preferably 40 to 50%.
  • the content of P 2 O 5 is too small, the vitrification becomes unstable.
  • the content of P 2 O 5 is too large, the weather resistance may easily decrease.
  • Al 2 O 3 is a component that further improves the weather resistance.
  • the content of Al 2 O 3 is mass%, preferably 2 to 19%, more preferably 2 to 15%, still more preferably 2.8 to 14.5%, particularly preferably 3 .5 to 14.0%. If the content of Al 2 O 3 is too small, the weather resistance may not be sufficient. On the other hand, when the content of Al 2 O 3 is too large, there are cases where the melting property decreases melting temperature increases. Note that when the melting temperature rises, Cu ions are reduced and easily shift from Cu 2+ to Cu + , so that it may be difficult to obtain desired optical characteristics. Specifically, the light transmittance in the near ultraviolet to visible range may be reduced, or the infrared absorption characteristics may be easily lowered.
  • RO (where R is at least one selected from Mg, Ca, Sr, and Ba) is a component that improves the weather resistance and improves the meltability.
  • the RO content is mass%, preferably 5 to 45%, more preferably 7 to 40%, and still more preferably 10 to 35%.
  • a weather resistance and a meltability may not be enough.
  • crystallization resulting from RO component may become easy to precipitate.
  • the preferable range of content of each component of RO is as follows.
  • MgO is a component that improves weather resistance.
  • the content of MgO is mass%, preferably 0 to 15%, more preferably 0 to 7%. When there is too much content of MgO, stability of glass may fall easily.
  • CaO is a component that improves the weather resistance in the same manner as MgO.
  • the content of CaO is% by mass, preferably 0 to 15%, more preferably 0 to 7%. When there is too much content of CaO, stability of glass may fall easily.
  • SrO is a component that improves the weather resistance in the same manner as MgO.
  • the content of SrO is mass%, preferably 0 to 12%, more preferably 0 to 5%. When there is too much content of SrO, stability of glass may fall easily.
  • BaO is a component that stabilizes the glass and improves the weather resistance.
  • the content of BaO is mass%, preferably 1 to 30%, more preferably 2 to 27%, and further preferably 3 to 25%.
  • glass may not fully be stabilized or a weather resistance may not fully be improved.
  • crystallization resulting from BaO may become easy to precipitate during shaping
  • ZnO is a component that improves the stability and weather resistance of glass.
  • the content of ZnO is mass%, preferably 0 to 13%, more preferably 0 to 12%, and still more preferably 0 to 10%.
  • a meltability will fall and a melting temperature will become high, and it may become difficult to obtain a desired optical characteristic as a result.
  • the stability of the glass may be reduced, and crystals derived from the ZnO component may easily precipitate.
  • RO and ZnO has an effect to improve the stability of the glass, particularly when a small P 2 O 5, is easy to enjoy the effect.
  • the ratio of the content of P 2 O 5 with respect to RO is preferably 1.0 to 1.9, and more preferably 1.2 to 1.8.
  • the ratio (P 2 O 5 / RO) is too small, the liquidus temperature becomes high and devitrification due to RO may be easily precipitated.
  • P 2 O 5 / RO is too large, the weather resistance may be easily lowered.
  • K 2 O is a component that lowers the melting temperature.
  • the content of K 2 O is mass%, preferably 8 to 20%, more preferably 12.5 to 19.5%. If the content of K 2 O is too small, the melting temperature becomes high, and it may be difficult to obtain desired optical characteristics. On the other hand, when the content of K 2 O is too large, it K 2 O resulting crystals are likely to deposit during molding, there are cases where vitrification becomes unstable.
  • Na 2 O is also a component that lowers the melting temperature in the same manner as K 2 O.
  • the content of Na 2 O is preferably 0-12%, more preferably 0-7%. When the content of Na 2 O is too large, it may vitrification tends to be unstable.
  • CuO is a component for absorbing near infrared rays.
  • the content of CuO is mass%, preferably 0.3 to 20%, more preferably 0.3 to 15%, and still more preferably 0.4 to 13.
  • a desired near-infrared absorption characteristic may not be acquired.
  • the CuO content is too large, the light transmittance in the ultraviolet to visible range may be likely to decrease. Moreover, vitrification may become unstable.
  • the content of CuO is preferably adjusted as appropriate according to the plate thickness.
  • B 2 O 3 , Nb 2 O 5 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , CeO 2, Sb 2 O 3, etc. are not damaged in the effects of the present invention. You may make it contain. Specifically, the content of these components is, respectively,% by mass, preferably 0 to 3%, more preferably 0 to 2%.
  • the light transmittance at a wavelength of 400 nm is preferably 78% or more, more preferably 80% or more, and the light transmittance at a wavelength of 500 nm is preferably 83% or more, more preferably 85% or more.
  • the light transmittance at a wavelength of 700 nm is preferably 12% or less, more preferably 9% or less, and the light transmittance at a wavelength of 800 nm is preferably 5% or less, more preferably 3% or less.
  • the liquid phase temperature can be lowered by having the above composition.
  • the liquidus temperature is preferably 770 ° C. or lower, more preferably 750 ° C. or lower. If the liquidus temperature is too high, devitrification may easily occur during molding.
  • FIG. 2 is a schematic cross-sectional view showing a modification of the infrared-absorbing glass plate according to one embodiment of the present invention.
  • an antireflection film 2 is provided on the first main surface 1 a of the infrared absorbing glass plate 1.
  • An infrared reflecting film 3 is provided on the second main surface 1 b of the infrared absorbing glass plate 1.
  • the antireflection film 2 is a film having a function of reducing the reflectance.
  • the antireflection film 2 may be a film having a lower reflectance when the antireflection film 2 is provided than when the antireflection film 2 is not provided. Not necessarily. However, in the present invention, the antireflection film 2 may not be provided.
  • the antireflection film 2 can be constituted by, for example, a dielectric multilayer film in which a low refractive index film having a relatively low refractive index and a high refractive index film having a relatively high refractive index are alternately stacked.
  • the number of laminated multilayer dielectric films is not particularly limited, but is usually about 3 to 5 layers.
  • the antireflection film 2 may be composed of a low refractive index film having a refractive index lower than that of the infrared absorbing glass plate 1.
  • the infrared reflecting film 3 is a film having a function of reflecting infrared rays.
  • Infrared reflection film 3, for example, can be composed of SiO 2, Nb 2 O 5 or TiO 2 or the like.
  • the solid-state image sensor device can be downsized when used in a solid-state image sensor device.
  • the infrared absorbing glass plate of the present invention can be produced, for example, as follows.
  • a plate-shaped glass base material made of phosphate glass is prepared.
  • the glass base material can be manufactured by melting a raw material powder batch of phosphate glass prepared to have a desired composition and forming it into a plate shape.
  • phosphate glass for example, glass having the above-described composition can be used.
  • the melting temperature is preferably 900 to 1200 ° C, and more preferably 900 to 1000 ° C. If the melting temperature is too low, it may be difficult to obtain a homogeneous glass. On the other hand, if the melting temperature is too high, Cu ions may be reduced and may easily shift from Cu 2+ to Cu + , and it may be difficult to obtain desired optical characteristics.
  • molding methods such as a casting method, a rollout method, a down draw method, or a redraw method, can be used.
  • the plate-shaped glass base material prepared as described above is polished by physical polishing (polishing step).
  • the thickness of the glass base material is preferably set to 0.23 mm or more and 0.3 mm or less by physical polishing. If the thickness of the glass base material is too thin by physical polishing, the glass base material may be broken. Moreover, when the thickness of the glass base material is too thick, the thickness of the glass plate may not be sufficiently reduced in the etching process described later.
  • polishing step for example, glass that has been physically polished by lapping to a thickness of 0.3 mm by lapping and then polishing to a thickness of 0.23 mm to 0.3 mm by optical polishing.
  • a base material can be obtained.
  • the physically polished glass base material is etched by being immersed in an alkaline detergent in an upright state (etching process).
  • etching process the infrared ray absorbing glass plate of the present invention having a thickness of 0.2 mm or less can be obtained.
  • an infrared-absorbing glass plate having a thickness of 0.2 mm or less which has been difficult to obtain in the past, can be easily produced.
  • the reason for this can be explained as follows.
  • the carrier may be cracked. Moreover, even when the thickness of the glass plate could be reduced, the glass plate was cracked when taken out from the carrier. Moreover, even when a glass plate having a large area was produced, cracks occurred during cutting.
  • the thickness is 0.2 mm. It was found that a glass plate which is as follows and hardly cracks can be obtained. The reason for this is considered as follows.
  • Phosphate glass has lower alkali resistance than other glasses such as fluorophosphate. Therefore, in the etching process using an alkaline detergent, the polishing traces and microcracks of the glass base material are melted, and the polishing traces and microcracks do not exist on the first and second main surfaces and side surfaces of the obtained infrared absorption glass plate. It is considered a thing. Since the starting point of cracking of the infrared-absorbing glass plate is eliminated by eliminating polishing marks and microcracks, it is considered that the strength of the infrared-absorbing glass plate is increased and it is difficult to crack even if the thickness is thin.
  • alkaline detergents such as alkali components, such as Na and K
  • surfactants such as a triethanolamine, benzyl alcohol, or glycol, water, alcohol, etc.
  • alkaline detergents such as alkali components, such as Na and K
  • surfactants such as a triethanolamine, benzyl alcohol, or glycol, water, alcohol, etc.
  • an alkali salt of a chelating agent such as aminopolycarboxylic acid is preferably contained.
  • the alkali salt of aminopolycarboxylic acid include sodium salts and potassium salts such as diethylenetriaminepentaacetic acid, ethylenediaminetetraacetic acid, triethylenetetraaminehexaacetic acid, and nitrilotriacetic acid.
  • diethylenetriaminepentaacetic acid pentasodium diethylenetriaminepentaacetic acid pentasodium, ethylenediaminetetraacetic acid tetrasodium, triethylenetetraaminehexaacetic acid hexasodium, and nitrilotriacetic acid trisodium are preferably used, and diethylenetriaminepentaacetic acid pentasodium is particularly preferably used.
  • the immersion temperature in the alkaline detergent is not particularly limited, but can be, for example, 20 ° C. to 40 ° C.
  • the immersion time in the alkaline detergent is not particularly limited, but can be, for example, 1 hour to 3 hours. It is desirable that the physically polished glass base material is immersed in an alkaline detergent for 1 to 3 hours in a vertically standing state, and then turned upside down and immersed for the same time. In that case, an infrared-absorbing glass plate with a more uniform thickness distribution can be obtained.
  • the pH of the alkaline detergent is preferably 7.1 or higher, more preferably 8.0 or higher.
  • the area of the 1st and 2nd main surface can be enlarged.
  • the area of the first main surface 100 mm 2 or more, it is possible to 25000 mm 2 or less.
  • the infrared-absorbing glass plate having a large area of the first and second main surfaces cracks are unlikely to occur, so that the first and second main surfaces can be cut into a desired size. In this case, the infrared absorbing glass plate can be manufactured more efficiently.
  • FIG. 3 is a schematic cross-sectional view showing a solid-state imaging device device using an infrared absorbing glass plate according to an embodiment of the present invention.
  • the solid-state image sensor device 10 includes an infrared absorption glass plate 1, a solid-state image sensor 11, a package 12, and an adhesive layer 13.
  • Package 12 is made of ceramic.
  • a solid-state image sensor 11 is housed inside the package 12.
  • An infrared absorbing glass plate 1 is provided in the opening of the package 12.
  • the package 12 and the infrared absorbing glass plate 1 are joined by an adhesive layer 13.
  • the adhesive layer 13 can be composed of an appropriate ultraviolet curable resin or a thermosetting resin.
  • the infrared absorption glass plate 1 is provided on the light incident side of the solid-state image sensor 11. Can be incident. Further, as described above, since the infrared absorption glass plate 1 constituting the solid-state image sensor device 10 is as thin as 0.2 mm or less, the solid-state image sensor device 10 is downsized.
  • Example 1 By mass%, P 2 O 5 46% , Al 2 O 3 7%, MgO 3%, CaO 4%, BaO 20%, K 2 O 16%, and phosphoric acid was prepared so as CuO 4% of the composition
  • the salt-based glass raw material powder batch was melted at a temperature of 850 to 1300 ° C. and formed into a plate shape by a roll-out method to obtain a plate-like glass base material.
  • the obtained glass base material is cut into a size of 125.1 mm square using a dicer, and the cut glass base material is placed on the hole of the carrier set on the lower surface plate of the double-side polishing machine, and on top of that.
  • the glass base material was further polished with CeO 2 to make the thickness of the glass base material 0.25 mm.
  • the polished glass base material is immersed in an alkaline detergent having a composition of 37% by mass, 37% of Na, 20% of triethanolamine, and 43% of water at a temperature of 30 ° C. for 120 minutes.
  • An infrared-absorbing glass plate having a size of 125.0 mm square and a thickness of 0.15 mm was obtained.
  • the above alkaline detergent contains pentasodium diethylenetriaminepentaacetic acid as a Na component.
  • the obtained infrared absorbing glass plate (30 sheets) was measured for three-point bending strength at a fulcrum distance of 2.5 mm, and it was 35 to 350 N / mm 2 , although the thickness was as thin as 0.15 mm. It had high strength.
  • Comparative Example 1 Instead of the raw material powder batch of phosphate glass, by mass%, Al 2 O 3 10%, AlF 3 10%, MgF 2 6%, CaF 2 15%, SrF 2 24%, SrF 2 18%, BaO Infrared absorbing glass in the same manner as in Example 1, except that a raw powder batch of fluorophosphate glass prepared to have a composition of 3%, LiF 9%, Li 2 O 1%, and CuO 4% was used. I got a plate.
  • the obtained infrared-absorbing glass plate (30 sheets) was measured for a three-point bending strength at a fulcrum distance of 2.5 mm, which was 30 to 60 N / mm 2 .
  • FIG. 4 is a schematic cross-sectional view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention.
  • FIG. 5 is a schematic plan view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention.
  • Infrared absorbing glass plates used for smartphone cameras and the like are generally small in size. Therefore, it is possible to manufacture a large size infrared absorbing glass plate and then divide it by dicing or the like to manufacture an array of small size infrared absorbing glass plates, and take out and use the small size infrared absorbing glass plate from the array. Good.
  • a method for manufacturing an array of infrared absorbing glass plates will be described.
  • a large-size infrared-absorbing glass plate 21 cleaned with an alkali is prepared.
  • optical films 22 and 23 such as an antireflection film and an infrared reflection film are provided as necessary.
  • the optical films 22 and 23 are composed of dielectric multilayer films.
  • the infrared absorbing glass plate 21 provided with the optical films 22 and 23 is bonded onto the support 30.
  • the support 30 for example, a UV tape whose adhesive strength is reduced by ultraviolet irradiation can be used.
  • the infrared absorbing glass plate 21 on the support 30 is cut with a dicing saw or the like, and divided into a plurality of infrared absorbing glass plates arranged in a matrix.
  • the plurality of infrared absorbing glass plates bonded to the support 30 are immersed in the alkaline detergent together with the support 30 to etch the side surfaces of the infrared absorbing glass plate.
  • the microcrack etc. which arose on the side surface by dicing can be removed.
  • it can be set as the infrared rays absorption glass plate which a crack does not produce easily.
  • an array of infrared absorbing glass plates according to another embodiment of the present invention can be manufactured.
  • FIG. 6 is a schematic plan view showing an array of infrared absorbing glass plates according to another embodiment of the present invention.
  • the array 40 of infrared absorbing glass plates of the present embodiment includes a support 30 and a plurality of infrared absorbing glass plates 31 arranged on the support 30 in a matrix.
  • the support 30 is composed of a UV tape, the infrared absorbing glass plate 31 can be easily detached from the support 30 by reducing the adhesive strength by irradiating ultraviolet rays.
  • the infrared absorbing glass plate 21 is cut by dicing, but it may be cut by laser irradiation instead of cutting by dicing. In the case of cutting by laser irradiation, since a microcrack or the like hardly occurs on the cut surface, a subsequent etching step may be omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is an infrared absorbing glass sheet that allows a solid state imaging element device to be reduced in size. The infrared absorbing glass sheet 1 has first and second main surfaces 1a, 1b that oppose each other, and a side surface 1c that connects the first and second main surfaces 1a, 1b. The infrared absorbing glass sheet 1 comprises a phosphate-based glass, has a thickness of 0.2 mm or less, and has no microcracks on the side surface 1c.

Description

赤外線吸収ガラス板及びその製造方法、並びに固体撮像素子デバイスInfrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device
 本発明は、赤外線吸収ガラス板及びその製造方法、並びに該赤外線吸収ガラス板を用いた固体撮像素子デバイスに関するものである。 The present invention relates to an infrared absorbing glass plate, a method for producing the same, and a solid-state imaging device device using the infrared absorbing glass plate.
 デジタルカメラ等においては、CCDやCMOS等の固体撮像デバイスが用いられている。これらの固体撮像素子デバイスは、広範囲の受光感度を有しているので、人間の視感に合わせるため、赤外域の光を除去する必要がある。下記の特許文献1では、赤外域の光を除去するための近赤外線カットフィルタとして、フツリン酸塩系ガラスからなる赤外線吸収ガラス板が開示されている。特許文献1では、両面研磨機を用いた物理研磨などによりガラス板の厚みが薄くされている。 In digital cameras and the like, solid-state imaging devices such as CCD and CMOS are used. Since these solid-state imaging device devices have a wide range of light receiving sensitivity, it is necessary to remove light in the infrared region in order to match human visual perception. In the following Patent Document 1, an infrared-absorbing glass plate made of a fluorophosphate-based glass is disclosed as a near-infrared cut filter for removing light in the infrared region. In Patent Document 1, the thickness of the glass plate is reduced by physical polishing using a double-side polishing machine.
特開2010-168262号公報JP 2010-168262 A
 近年、固体撮像素子デバイスにおいては、より一層の小型化が求められている。そのため、固体撮像素子デバイスを構成する赤外線吸収ガラス板においてもより一層の薄型化が求められている。しかしながら、特許文献1のように物理研磨により薄くする方法では、ガラス板の厚みを薄くしすぎると、ガラス板に割れが生じる場合があった。そのため、ガラス板を十分に薄くすることができず、固体撮像素子デバイスを十分に小型化することができない場合があった。 In recent years, there has been a demand for further downsizing of solid-state imaging device devices. For this reason, there is a demand for further reduction in the thickness of the infrared absorbing glass plate constituting the solid-state imaging device. However, in the method of thinning by physical polishing as in Patent Document 1, if the thickness of the glass plate is too thin, the glass plate may be cracked. For this reason, the glass plate cannot be made sufficiently thin, and the solid-state imaging device device may not be sufficiently miniaturized.
 本発明の目的は、固体撮像素子デバイスの小型化を図ることを可能とする、赤外線吸収ガラス板及び該赤外線吸収ガラス板の製造方法、並びに固体撮像素子デバイスを提供することにある。 An object of the present invention is to provide an infrared-absorbing glass plate, a method for producing the infrared-absorbing glass plate, and a solid-state image sensor device that can reduce the size of the solid-state image sensor device.
 本発明に係る赤外線吸収ガラス板は、互いに対向している第1及び第2の主面と、前記第1及び第2の主面を結ぶ側面とを有する赤外線吸収ガラス板であって、リン酸塩系ガラスにより構成されており、厚みが0.2mm以下であり、前記側面に、マイクロクラックが存在していないことを特徴としている。 An infrared-absorbing glass plate according to the present invention is an infrared-absorbing glass plate having first and second main surfaces facing each other and a side surface connecting the first and second main surfaces, and phosphoric acid It is made of salt-based glass, has a thickness of 0.2 mm or less, and has no microcracks on the side surface.
 本発明に係る赤外線吸収ガラス板は、好ましくは、前記リン酸塩系ガラスが、質量%で、P 25~60%、Al 2~19%、RO(ただしRはMg、Ca、Sr及びBaから選択される少なくとも1種) 5~45%、ZnO 0~13%、KO 8~20%、NaO 0~12%、及びCuO 0.3~20%を含み、かつフッ素を実質的に含んでいない。 In the infrared-absorbing glass plate according to the present invention, preferably, the phosphate glass is, by mass%, P 2 O 5 25 to 60%, Al 2 O 3 2 to 19%, RO (where R is Mg, Including at least one selected from Ca, Sr and Ba) 5 to 45%, ZnO 0 to 13%, K 2 O 8 to 20%, Na 2 O 0 to 12%, and CuO 0.3 to 20% And substantially free of fluorine.
 本発明に係る赤外線吸収ガラス板は、好ましくは、前記第1及び第2の主面に、研磨跡が存在していない。 The infrared-absorbing glass plate according to the present invention preferably has no polishing traces on the first and second main surfaces.
 本発明に係る赤外線吸収ガラス板は、好ましくは、前記第1の主面の面積が、100mm以上、25000mm以下である。 Infrared absorbing glass plate according to the present invention, preferably, the area of the first main surface, 100 mm 2 or more and 25000 mm 2 or less.
 本発明に係る赤外線吸収ガラス板は、好ましくは、前記第1の主面の面積が、1000mm以上、25000mm以下である。 Infrared absorbing glass plate according to the present invention, preferably, the area of the first main surface, 1000 mm 2 or more and 25000 mm 2 or less.
 本発明に係る赤外線吸収ガラス板は、好ましくは、支点間距離2.5mmにおける3点曲げ強度が、35N/mm以上である。 The infrared-absorbing glass plate according to the present invention preferably has a three-point bending strength of 35 N / mm 2 or more at a fulcrum distance of 2.5 mm.
 本発明に係る赤外線吸収ガラス板は、好ましくは、前記第1の主面の面積が、1mm以上、1000mm未満である。 In the infrared-absorbing glass plate according to the present invention, the area of the first main surface is preferably 1 mm 2 or more and less than 1000 mm 2 .
 本発明に係る赤外線吸収ガラス板は、好ましくは、固体撮像素子デバイスに用いられる。 The infrared absorbing glass plate according to the present invention is preferably used for a solid-state image sensor device.
 本発明に係る赤外線吸収ガラス板は、好ましくは、前記第1の主面及び前記第2の主面の少なくとも一方の上に光学膜が設けられている。 In the infrared-absorbing glass plate according to the present invention, an optical film is preferably provided on at least one of the first main surface and the second main surface.
 前記光学膜は、好ましくは、誘電体多層膜である。 The optical film is preferably a dielectric multilayer film.
 本発明に係る赤外線吸収ガラス板のアレイは、支持体と、前記支持体上にマトリクス状に配置された上記本発明の複数の赤外線吸収ガラス板とを備える。 An array of infrared absorbing glass plates according to the present invention includes a support and a plurality of infrared absorbing glass plates of the present invention arranged in a matrix on the support.
 本発明に係る赤外線吸収ガラス板の製造方法は、本発明に従って構成される赤外線吸収ガラス板の製造方法であって、リン酸塩系ガラスにより構成されている板状のガラス母材を、物理研磨する研磨工程と、前記物理研磨されたガラス母材を、アルカリ洗剤に浸漬することによりエッチングするエッチング工程とを備える。 The method for producing an infrared-absorbing glass plate according to the present invention is a method for producing an infrared-absorbing glass plate configured according to the present invention, and is a method for physically polishing a plate-shaped glass base material composed of phosphate glass. And an etching step of etching the physically ground glass base material by immersing it in an alkaline detergent.
 本発明に係る赤外線吸収ガラス板の製造方法は、好ましくは、前記研磨工程において、前記物理研磨により、前記ガラス母材の厚みを、0.23mm以上、0.3mm以下にする。 In the method for producing an infrared-absorbing glass plate according to the present invention, preferably, in the polishing step, the thickness of the glass base material is set to 0.23 mm or more and 0.3 mm or less by the physical polishing.
 本発明に係る赤外線吸収ガラス板の製造方法は、好ましくは、前記エッチング工程において、前記物理研磨されたガラス母材を、pHが7.1以上であるアルカリ洗剤に浸漬することによりエッチングする。 In the method for producing an infrared-absorbing glass plate according to the present invention, preferably, in the etching step, the physically polished glass base material is etched by being immersed in an alkaline detergent having a pH of 7.1 or higher.
 前記アルカリ洗剤は、アミノポリカルボン酸のアルカリ塩を含むことが好ましい。 The alkaline detergent preferably contains an alkali salt of aminopolycarboxylic acid.
 前記光学膜が設けられた赤外線吸収ガラス板の製造方法は、エッチング後の前記ガラス母材の前記第1の主面及び前記第2の主面の少なくとも一方の上に前記光学膜を形成する工程をさらに備える。 The method for producing an infrared-absorbing glass plate provided with the optical film includes the step of forming the optical film on at least one of the first main surface and the second main surface of the glass base material after etching. Is further provided.
 上記本発明の赤外線吸収ガラス板のアレイの製造方法は、エッチングされた前記ガラス母材を上記本発明の方法で作製する工程と、前記ガラス母材を前記支持体の上に載置する工程と、前記支持体上の前記ガラス母材をダイシングし、マトリクス状に配置された前記複数の赤外線吸収ガラス板に分割する工程と、前記支持体上の前記赤外線吸収ガラス板を、前記アルカリ洗剤に浸漬することによりエッチングするエッチング工程とを備える。 The method for producing an array of infrared-absorbing glass plates of the present invention includes a step of producing the etched glass base material by the method of the present invention, and a step of placing the glass base material on the support. A step of dicing the glass base material on the support and dividing it into the plurality of infrared absorbing glass plates arranged in a matrix; and immersing the infrared absorbing glass plate on the support in the alkaline detergent An etching process for etching.
 前記支持体は、紫外線照射により接着強度が低下するUVテープであることが好ましい。 The support is preferably a UV tape whose adhesive strength is reduced by ultraviolet irradiation.
 本発明に係る固体撮像素子デバイスは、本発明に従って構成される赤外線吸収ガラス板を備える。 The solid-state imaging device device according to the present invention includes an infrared absorbing glass plate configured according to the present invention.
 本発明によれば、固体撮像素子デバイスの小型化を図ることを可能とする、赤外線吸収ガラス板を提供することができる。 According to the present invention, it is possible to provide an infrared ray absorbing glass plate that makes it possible to reduce the size of a solid-state imaging device device.
図1は、本発明の一実施形態に係る赤外線吸収ガラス板を示す模式的斜視図である。FIG. 1 is a schematic perspective view showing an infrared-absorbing glass plate according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る赤外線吸収ガラス板の変形例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a modification of the infrared-absorbing glass plate according to one embodiment of the present invention. 図3は、本発明の一実施形態に係る赤外線吸収ガラス板を用いた固体撮像素子デバイスを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a solid-state imaging device device using an infrared absorbing glass plate according to an embodiment of the present invention. 図4は、本発明の他の実施形態に係る赤外線吸収ガラス板のアレイの製造工程を説明するための模式的断面図である。FIG. 4 is a schematic cross-sectional view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention. 図5は、本発明の他の実施形態に係る赤外線吸収ガラス板のアレイの製造工程を説明するための模式的平面図である。FIG. 5 is a schematic plan view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention. 図6は、本発明の他の実施形態に係る赤外線吸収ガラス板のアレイを示す模式的平面図である。FIG. 6 is a schematic plan view showing an array of infrared absorbing glass plates according to another embodiment of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
 (赤外線吸収ガラス板)
 図1は、本発明の一実施形態に係る赤外線吸収ガラス板を示す模式的斜視図である。図1に示すように、赤外線吸収ガラス板1は、平面形状が矩形である。赤外線吸収ガラス板1の角部は、面取りされていてもよい。
(Infrared absorbing glass plate)
FIG. 1 is a schematic perspective view showing an infrared-absorbing glass plate according to an embodiment of the present invention. As shown in FIG. 1, the infrared absorption glass plate 1 has a rectangular planar shape. The corners of the infrared absorbing glass plate 1 may be chamfered.
 赤外線吸収ガラス板1は、第1及び第2の主面1a,1bと、側面1cとを有する。第1及び第2の主面1a,1bは、互いに対向している。赤外線吸収ガラス板1において、第1及び第2の主面1a,1bは、いずれも光学面である。側面1cは、第1及び第2の主面1a,1bを結んでいる。 The infrared absorbing glass plate 1 has first and second main surfaces 1a and 1b and a side surface 1c. The first and second main surfaces 1a and 1b are opposed to each other. In the infrared absorbing glass plate 1, the first and second main surfaces 1a and 1b are both optical surfaces. The side surface 1c connects the first and second main surfaces 1a and 1b.
 赤外線吸収ガラス板1は、CuOを含有するリン酸塩系ガラスにより構成されている。そのため、赤外線吸収ガラス板1は、赤外線吸収機能に優れている。 The infrared absorbing glass plate 1 is composed of a phosphate glass containing CuO. Therefore, the infrared ray absorbing glass plate 1 is excellent in the infrared ray absorbing function.
 赤外線吸収ガラス板1の厚みは、0.2mm以下である。好ましくは、0.19mm以下であり、より好ましくは0.15mm以下である。赤外線吸収ガラス板1は、厚みが0.2mm以下と薄いので、固体撮像素子デバイスに用いたときに、固体撮像素子デバイスの小型化を図ることができる。なお、厚みが薄すぎると、搬送工程で赤外線吸収ガラス板1を持ち上げる際に、割れが生じやすくなる場合があるため、厚みは、0.05mm以上であることが好ましく、0.08mm以上であることがより好ましい。 The thickness of the infrared absorbing glass plate 1 is 0.2 mm or less. Preferably, it is 0.19 mm or less, More preferably, it is 0.15 mm or less. Since the infrared-absorbing glass plate 1 is as thin as 0.2 mm or less, the solid-state image sensor device can be downsized when used in a solid-state image sensor device. In addition, when the thickness is too thin, when the infrared absorbing glass plate 1 is lifted in the transporting process, cracks are likely to occur. Therefore, the thickness is preferably 0.05 mm or more, and is 0.08 mm or more. It is more preferable.
 このように、赤外線吸収ガラス板1は、赤外線吸収機能に優れ、かつ固体撮像素子デバイスの小型化を図ることができるので、固体撮像素子デバイスに好適に用いることができる。 As described above, the infrared absorbing glass plate 1 is excellent in the infrared absorbing function and can reduce the size of the solid-state imaging device, and therefore can be suitably used for the solid-state imaging device.
 一般的に、リン酸塩系ガラスは、強度が低く、薄くすると割れやすくなるが、本発明においては、赤外線吸収ガラス板1の側面1cにマイクロクラックが存在していないため、厚みを0.2mm以下にしても割れが生じにくい。マイクロクラックとは、長さが1μm~15μmのクラックのことをいう。マイクロクラックは、赤外線吸収ガラス板1を曲げたときに割れの起点となることがある。特に、側面1cにマイクロクラックが存在する場合、割れの起点となりやすい。そのため、側面1cにマイクロクラックが存在していない場合、赤外線吸収ガラス板1の割れをより一層生じ難くすることができる。なお、マイクロクラックの有無は、光学顕微鏡により確認することができる。 In general, phosphate glass is low in strength and easily breaks when it is thinned. However, in the present invention, since there is no microcrack on the side surface 1c of the infrared-absorbing glass plate 1, the thickness is 0.2 mm. Even if it is below, it is hard to produce a crack. A microcrack is a crack having a length of 1 μm to 15 μm. A microcrack may become a starting point of a crack when the infrared ray absorbing glass plate 1 is bent. In particular, when a microcrack exists on the side surface 1c, it tends to be a starting point of the crack. Therefore, when there is no microcrack on the side surface 1c, the infrared absorbing glass plate 1 can be made more difficult to crack. The presence or absence of microcracks can be confirmed with an optical microscope.
 また、側面1cだけでなく、第1及び第2の主面1a,1bにマイクロクラックが存在している場合も割れの起点となることがある。従って、赤外線吸収ガラス板1の割れをさらに一層生じ難くする観点から、側面1cに加えて、第1及び第2の主面1a,1bにおいても、マイクロクラックが存在していないことがより好ましい。 Further, not only the side surface 1c but also the first and second main surfaces 1a and 1b have microcracks, which may be the starting point of cracking. Therefore, it is more preferable that the microcracks are not present on the first and second main surfaces 1a and 1b in addition to the side surface 1c, from the viewpoint of making the infrared-absorbing glass plate 1 more difficult to crack.
 また、赤外線吸収ガラス板1の第1及び第2の主面1a,1bには、製造時における研磨跡が存在していないことが好ましい。その場合、赤外線吸収ガラス板1の割れをより一層生じ難くすることができる。赤外線吸収ガラス板1の割れをさらに一層生じ難くする観点から、第1及び第2の主面1a,1bに加えて、側面1cにおいても研磨跡が存在していないことがより好ましい。なお、研磨跡は、原子間力顕微鏡により確認することができる。 Further, it is preferable that the first and second main surfaces 1a and 1b of the infrared absorbing glass plate 1 have no polishing traces at the time of manufacture. In that case, the infrared-absorbing glass plate 1 can be made more difficult to crack. From the viewpoint of making it more difficult for the infrared-absorbing glass plate 1 to be cracked, it is more preferable that there is no polishing trace on the side surface 1c in addition to the first and second main surfaces 1a and 1b. The polishing mark can be confirmed with an atomic force microscope.
 赤外線吸収ガラス板1の支点間距離2.5mmにおける3点曲げ強度は、好ましくは35N/mm以上であり、より好ましくは50N/mm以上である。3点曲げ強度が上記下限以上である場合、赤外線吸収ガラス板1の割れをより一層生じ難くすることができる。なお、赤外線吸収ガラス板1の3点曲げ強度の上限は、特に制限されないが、材料の性質上450N/mm程度である。 3-point bending strength at point distance 2.5mm infrared absorbing glass plate 1 is preferably 35N / mm 2 or more, more preferably 50 N / mm 2 or more. When the three-point bending strength is equal to or more than the above lower limit, the infrared absorbing glass plate 1 can be made more difficult to crack. The upper limit of the three-point bending strength of the infrared absorbing glass plate 1 is not particularly limited, but is about 450 N / mm 2 due to the properties of the material.
 以下、赤外線吸収ガラス板1を構成する材料についてより詳細に説明する。 Hereinafter, the material constituting the infrared absorbing glass plate 1 will be described in more detail.
 材料の詳細;
 赤外線吸収ガラス板1は、リン酸塩系ガラスにより構成されている。上記リン酸塩系ガラスは、F(フッ素)を実質的に含んでいないことが好ましい。なお、「実質的に含んでいない」とは、質量%で0.1%以下のフッ素を含んでいてもよいことを意味している。
Material details;
The infrared absorbing glass plate 1 is made of phosphate glass. It is preferable that the phosphate glass does not substantially contain F (fluorine). Note that “substantially does not contain” means that 0.1% or less of fluorine may be contained by mass%.
 このようなリン酸塩系ガラスとしては、例えば、質量%で、P 25~60%、Al 2~19%、RO(ただしRはMg、Ca、Sr及びBaから選択される少なくとも1種) 5~45%、ZnO 0~13%、KO 8~20%、NaO 0~12%、及びCuO 0.3~20%を含有し、フッ素を実質的に含んでいない、ガラスを用いることができる。 As such a phosphate glass, for example, by mass%, P 2 O 5 25-60%, Al 2 O 3 2-19%, RO (where R is selected from Mg, Ca, Sr and Ba) 5 to 45%, ZnO 0 to 13%, K 2 O 8 to 20%, Na 2 O 0 to 12%, and CuO 0.3 to 20%, and substantially containing fluorine Not glass can be used.
 Pは、ガラス骨格を形成する成分である。Pの含有量は、質量%で、好ましくは25~60%であり、より好ましくは30~55%であり、さらに好ましくは40~50%である。Pの含有量が少なすぎると、ガラス化が不安定になる場合がある。一方、Pの含有量が多すぎると、耐候性が低下しやすくなることがある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is% by mass, preferably 25 to 60%, more preferably 30 to 55%, still more preferably 40 to 50%. When the content of P 2 O 5 is too small, the vitrification becomes unstable. On the other hand, when the content of P 2 O 5 is too large, the weather resistance may easily decrease.
 Alは、耐候性をより一層向上させる成分である。Alの含有量は、質量%で、好ましくは2~19%であり、より好ましくは2~15%であり、さらに好ましくは2.8~14.5%であり、特に好ましくは3.5~14.0%である。Alの含有量が少なすぎると、耐候性が十分でないことがある。一方、Alの含有量が多すぎると、溶融性が低下して溶融温度が上昇する場合がある。なお、溶融温度が上昇すると、Cuイオンが還元されてCu2+からCuにシフトしやすくなるため、所望の光学特性が得られにくくなる場合がある。具体的には、近紫外~可視域における光透過率が低下したり、赤外線吸収特性が低下し易くなったりすることがある。 Al 2 O 3 is a component that further improves the weather resistance. The content of Al 2 O 3 is mass%, preferably 2 to 19%, more preferably 2 to 15%, still more preferably 2.8 to 14.5%, particularly preferably 3 .5 to 14.0%. If the content of Al 2 O 3 is too small, the weather resistance may not be sufficient. On the other hand, when the content of Al 2 O 3 is too large, there are cases where the melting property decreases melting temperature increases. Note that when the melting temperature rises, Cu ions are reduced and easily shift from Cu 2+ to Cu + , so that it may be difficult to obtain desired optical characteristics. Specifically, the light transmittance in the near ultraviolet to visible range may be reduced, or the infrared absorption characteristics may be easily lowered.
 RO(ただしRは、Mg、Ca、Sr及びBaから選択される少なくとも1種)は、耐候性を改善するとともに、溶融性を向上させる成分である。ROの含有量は、質量%で、好ましくは5~45%であり、より好ましくは7~40%であり、さらに好ましくは10~35%である。ROの含有量が少なすぎると、耐候性及び溶融性が十分でない場合がある。一方、ROの含有量が多すぎると、ガラスの安定性が低下し易く、RO成分起因の結晶が析出しやすくなることがある。 RO (where R is at least one selected from Mg, Ca, Sr, and Ba) is a component that improves the weather resistance and improves the meltability. The RO content is mass%, preferably 5 to 45%, more preferably 7 to 40%, and still more preferably 10 to 35%. When there is too little content of RO, a weather resistance and a meltability may not be enough. On the other hand, when there is too much content of RO, the stability of glass will fall easily and the crystal | crystallization resulting from RO component may become easy to precipitate.
 なお、ROの各成分の含有量の好ましい範囲は以下の通りである。 In addition, the preferable range of content of each component of RO is as follows.
 MgOは、耐候性を改善させる成分である。MgOの含有量は、質量%で、好ましくは0~15%であり、より好ましくは0~7%である。MgOの含有量が多すぎると、ガラスの安定性が低下しやすくなることがある。 MgO is a component that improves weather resistance. The content of MgO is mass%, preferably 0 to 15%, more preferably 0 to 7%. When there is too much content of MgO, stability of glass may fall easily.
 CaOは、MgOと同様に耐候性を改善させる成分である。CaOの含有量は、質量%で、好ましくは0~15%であり、より好ましくは0~7%である。CaOの含有量が多すぎると、ガラスの安定性が低下しやすくなることがある。 CaO is a component that improves the weather resistance in the same manner as MgO. The content of CaO is% by mass, preferably 0 to 15%, more preferably 0 to 7%. When there is too much content of CaO, stability of glass may fall easily.
 SrOは、MgOと同様に耐候性を改善させる成分である。SrOの含有量は、質量%で、好ましくは0~12%であり、より好ましくは0~5%である。SrOの含有量が多すぎると、ガラスの安定性が低下しやすくなることがある。 SrO is a component that improves the weather resistance in the same manner as MgO. The content of SrO is mass%, preferably 0 to 12%, more preferably 0 to 5%. When there is too much content of SrO, stability of glass may fall easily.
 BaOは、ガラスを安定化するとともに、耐候性を向上させる成分である。BaOの含有量は、質量%で、好ましくは1~30%であり、より好ましくは2~27%であり、さらに好ましくは3~25%である。BaOの含有量が少なすぎると、十分にガラスを安定化できなかったり、十分に耐候性を向上できなかったりする場合がある。一方、BaOの含有量が多すぎると、成形中にBaO起因の結晶が析出しやすくなることがある。 BaO is a component that stabilizes the glass and improves the weather resistance. The content of BaO is mass%, preferably 1 to 30%, more preferably 2 to 27%, and further preferably 3 to 25%. When there is too little content of BaO, glass may not fully be stabilized or a weather resistance may not fully be improved. On the other hand, when there is too much content of BaO, the crystal | crystallization resulting from BaO may become easy to precipitate during shaping | molding.
 ZnOは、ガラスの安定性及び耐候性を改善させる成分である。ZnOの含有量は、質量%で、好ましくは0~13%であり、より好ましくは0~12%であり、さらに好ましくは0~10%である。ZnOの含有量が多すぎると、溶融性が低下して溶融温度が高くなり、結果として所望の光学特性が得られにくくなることがある。また、ガラスの安定性が低下し、ZnO成分起因の結晶が析出しやすくなる場合がある。 ZnO is a component that improves the stability and weather resistance of glass. The content of ZnO is mass%, preferably 0 to 13%, more preferably 0 to 12%, and still more preferably 0 to 10%. When there is too much content of ZnO, a meltability will fall and a melting temperature will become high, and it may become difficult to obtain a desired optical characteristic as a result. In addition, the stability of the glass may be reduced, and crystals derived from the ZnO component may easily precipitate.
 以上の通り、RO及びZnOはガラスの安定化を改善する効果があり、特にPが少ない場合に、その効果を享受しやすい。 As described above, RO and ZnO has an effect to improve the stability of the glass, particularly when a small P 2 O 5, is easy to enjoy the effect.
 なお、ROに対するPの含有量の比(P/RO)は、好ましくは1.0~1.9であり、より好ましくは1.2~1.8である。比(P/RO)が小さすぎると、液相温度が高くなってRO起因の失透が析出しやすくなる場合がある。一方、P/ROが大きすぎると、耐候性が低下しやすくなる場合がある。 The ratio of the content of P 2 O 5 with respect to RO (P 2 O 5 / RO) is preferably 1.0 to 1.9, and more preferably 1.2 to 1.8. When the ratio (P 2 O 5 / RO) is too small, the liquidus temperature becomes high and devitrification due to RO may be easily precipitated. On the other hand, if P 2 O 5 / RO is too large, the weather resistance may be easily lowered.
 KOは溶融温度を低下させる成分である。KOの含有量は、質量%で、好ましくは8~20%であり、より好ましくは12.5~19.5%である。KOの含有量が少なすぎると、溶融温度が高くなって所望の光学特性が得られにくくなることがある。一方、KOの含有量が多すぎると、KO起因の結晶が成形中に析出しやすくなり、ガラス化が不安定になる場合がある。 K 2 O is a component that lowers the melting temperature. The content of K 2 O is mass%, preferably 8 to 20%, more preferably 12.5 to 19.5%. If the content of K 2 O is too small, the melting temperature becomes high, and it may be difficult to obtain desired optical characteristics. On the other hand, when the content of K 2 O is too large, it K 2 O resulting crystals are likely to deposit during molding, there are cases where vitrification becomes unstable.
 NaOも、KOと同様に溶融温度を低下させる成分である。NaOの含有量は、好ましくは0~12%であり、より好ましくは0~7%である。NaOの含有量が多すぎると、ガラス化が不安定になることがある。 Na 2 O is also a component that lowers the melting temperature in the same manner as K 2 O. The content of Na 2 O is preferably 0-12%, more preferably 0-7%. When the content of Na 2 O is too large, it may vitrification tends to be unstable.
 CuOは、近赤外線を吸収するための成分である。CuOの含有量は、質量%で、好ましくは0.3~20%であり、より好ましくは0.3~15%であり、さらに好ましくは0.4~13である。CuOの含有量が少なすぎると、所望の近赤外線吸収特性が得られない場合がある。一方、CuOの含有量が多すぎると、紫外~可視域の光透過率が低下しやすくなることがある。また、ガラス化が不安定になる場合がある。なお、所望の光学特性を得るためCuOの含有量は、板厚によって適宜調整することが好ましい。 CuO is a component for absorbing near infrared rays. The content of CuO is mass%, preferably 0.3 to 20%, more preferably 0.3 to 15%, and still more preferably 0.4 to 13. When there is too little content of CuO, a desired near-infrared absorption characteristic may not be acquired. On the other hand, if the CuO content is too large, the light transmittance in the ultraviolet to visible range may be likely to decrease. Moreover, vitrification may become unstable. In order to obtain desired optical characteristics, the content of CuO is preferably adjusted as appropriate according to the plate thickness.
 また、上記成分以外にも、B、Nb、Y、La、Ta、CeO又はSb等を本発明の効果を損なわない範囲で含有させてもよい。具体的には、これらの成分の含有量は、それぞれ、質量%で、好ましくは0~3%であり、より好ましくは0~2%である。 In addition to the above components, B 2 O 3 , Nb 2 O 5 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , CeO 2, Sb 2 O 3, etc. are not damaged in the effects of the present invention. You may make it contain. Specifically, the content of these components is, respectively,% by mass, preferably 0 to 3%, more preferably 0 to 2%.
 上記組成を有することにより、可視域におけるより一層高い光透過率と赤外域におけるより一層優れた光吸収特性の両者を達成することが可能となる。具体的には、波長400nmにおける光透過率は、好ましくは78%以上、より好ましくは80%以上であり、波長500nmにおける光透過率は、好ましくは83%以上、より好ましくは85%以上である。一方、波長700nmにおける光透過率は、好ましくは12%以下、より好ましくは9%以下であり、波長800nmにおける光透過率は、好ましくは5%以下、より好ましくは3%以下である。 By having the above composition, it is possible to achieve both higher light transmittance in the visible range and much better light absorption characteristics in the infrared range. Specifically, the light transmittance at a wavelength of 400 nm is preferably 78% or more, more preferably 80% or more, and the light transmittance at a wavelength of 500 nm is preferably 83% or more, more preferably 85% or more. . On the other hand, the light transmittance at a wavelength of 700 nm is preferably 12% or less, more preferably 9% or less, and the light transmittance at a wavelength of 800 nm is preferably 5% or less, more preferably 3% or less.
 また、上記組成を有することにより、液相温度を低くすることが可能となる。具体的に、液相温度は、好ましくは770℃以下、より好ましくは750℃以下である。液相温度が高すぎると、成形時に失透しやすくなる場合がある。 In addition, the liquid phase temperature can be lowered by having the above composition. Specifically, the liquidus temperature is preferably 770 ° C. or lower, more preferably 750 ° C. or lower. If the liquidus temperature is too high, devitrification may easily occur during molding.
 変形例;
 図2は、本発明の一実施形態に係る赤外線吸収ガラス板の変形例を示す模式的断面図である。
Modified example;
FIG. 2 is a schematic cross-sectional view showing a modification of the infrared-absorbing glass plate according to one embodiment of the present invention.
 図2に示すように変形例においては、赤外線吸収ガラス板1の第1の主面1a上に、反射防止膜2が設けられている。また、赤外線吸収ガラス板1の第2の主面1b上に、赤外線反射膜3が設けられている。 As shown in FIG. 2, in the modification, an antireflection film 2 is provided on the first main surface 1 a of the infrared absorbing glass plate 1. An infrared reflecting film 3 is provided on the second main surface 1 b of the infrared absorbing glass plate 1.
 反射防止膜2は、反射率を低減する機能を有する膜である。反射防止膜2は、反射防止膜2を設けないときよりも、反射防止膜2を設けたときの方が反射率が低くなる膜であればよく、反射率がゼロになる膜である必要は必ずしもない。もっとも、本発明において、反射防止膜2は設けなくともよい。 The antireflection film 2 is a film having a function of reducing the reflectance. The antireflection film 2 may be a film having a lower reflectance when the antireflection film 2 is provided than when the antireflection film 2 is not provided. Not necessarily. However, in the present invention, the antireflection film 2 may not be provided.
 反射防止膜2は、例えば、相対的に屈折率が低い低屈折率膜と、相対的に屈折率が高い高屈折率膜とが交互に積層された誘電体多層膜により構成することができる。上記誘電体多層膜の積層数は、特に限定されないが、通常、3~5層程度である。なお、反射防止膜2は、赤外線吸収ガラス板1よりも屈折率が低い低屈折率膜により構成されていてもよい。 The antireflection film 2 can be constituted by, for example, a dielectric multilayer film in which a low refractive index film having a relatively low refractive index and a high refractive index film having a relatively high refractive index are alternately stacked. The number of laminated multilayer dielectric films is not particularly limited, but is usually about 3 to 5 layers. The antireflection film 2 may be composed of a low refractive index film having a refractive index lower than that of the infrared absorbing glass plate 1.
 赤外線反射膜3は、赤外線を反射させる機能を有する膜である。赤外線反射膜3は、例えば、SiO、Nb又はTiO等により構成することができる。 The infrared reflecting film 3 is a film having a function of reflecting infrared rays. Infrared reflection film 3, for example, can be composed of SiO 2, Nb 2 O 5 or TiO 2 or the like.
 本変形例においても、赤外線吸収ガラス板1の厚みが薄いので、固体撮像素子デバイスに用いたときに、固体撮像素子デバイスの小型化を図ることができる。 Also in this modification, since the infrared-absorbing glass plate 1 is thin, the solid-state image sensor device can be downsized when used in a solid-state image sensor device.
 以下、赤外線吸収ガラス板1などの本発明の赤外線吸収ガラス板の製造方法について説明する。 Hereinafter, a method for producing the infrared-absorbing glass plate of the present invention such as the infrared-absorbing glass plate 1 will be described.
 (赤外線吸収ガラス板の製造方法)
 本発明の赤外線吸収ガラス板は、例えば、以下のようにして製造することができる。
(Infrared absorbing glass plate manufacturing method)
The infrared absorbing glass plate of the present invention can be produced, for example, as follows.
 まず、リン酸塩系ガラスにより構成されている板状のガラス母材を用意する。 First, a plate-shaped glass base material made of phosphate glass is prepared.
 ガラス母材は、所望の組成となるように調製したリン酸塩系ガラスの原料粉末バッチを溶融させ、板状に成形することにより製造することができる。リン酸塩系ガラスは、例えば上述した組成のガラスを用いることができる。 The glass base material can be manufactured by melting a raw material powder batch of phosphate glass prepared to have a desired composition and forming it into a plate shape. As the phosphate glass, for example, glass having the above-described composition can be used.
 溶融温度は、900~1200℃であることが好ましく、900~1000℃であることがより好ましい。溶融温度が低すぎると、均質なガラスが得られにくい場合がある。一方、溶融温度が高すぎると、Cuイオンが還元されてCu2+からCuにシフトしやすくなることがあり、所望の光学特性が得られにくくなる場合がある。 The melting temperature is preferably 900 to 1200 ° C, and more preferably 900 to 1000 ° C. If the melting temperature is too low, it may be difficult to obtain a homogeneous glass. On the other hand, if the melting temperature is too high, Cu ions may be reduced and may easily shift from Cu 2+ to Cu + , and it may be difficult to obtain desired optical characteristics.
 なお、成形方法としては、特に限定されないが、例えば、鋳込み法、ロールアウト法、ダウンドロー法、又はリドロー法等の成形方法を用いることができる。 In addition, it does not specifically limit as a shaping | molding method, For example, shaping | molding methods, such as a casting method, a rollout method, a down draw method, or a redraw method, can be used.
 続いて、上記のようにして用意した板状のガラス母材を物理研磨により研磨する(研磨工程)。研磨工程においては、物理研磨により、ガラス母材の厚みを0.23mm以上、0.3mm以下にすることが好ましい。ガラス母材の厚みを物理研磨により薄くしすぎると、ガラス母材が割れることがある。また、ガラス母材の厚みが厚すぎると、後述するエッチング工程において十分にガラス板の厚みを薄くできないことがある。 Subsequently, the plate-shaped glass base material prepared as described above is polished by physical polishing (polishing step). In the polishing step, the thickness of the glass base material is preferably set to 0.23 mm or more and 0.3 mm or less by physical polishing. If the thickness of the glass base material is too thin by physical polishing, the glass base material may be broken. Moreover, when the thickness of the glass base material is too thick, the thickness of the glass plate may not be sufficiently reduced in the etching process described later.
 研磨工程においては、例えば、ラップ研磨により0.3mmの厚みまでガラス母材を研磨し、続いて、光学研磨により、0.23mm以上、0.3mmの厚みまで研磨することにより物理研磨されたガラス母材を得ることができる。 In the polishing step, for example, glass that has been physically polished by lapping to a thickness of 0.3 mm by lapping and then polishing to a thickness of 0.23 mm to 0.3 mm by optical polishing. A base material can be obtained.
 次に、物理研磨されたガラス母材を、垂直に立てた状態でアルカリ洗剤に浸漬することによりエッチングする(エッチング工程)。それによって、厚みが0.2mm以下である本発明の赤外線吸収ガラス板を得ることができる。 Next, the physically polished glass base material is etched by being immersed in an alkaline detergent in an upright state (etching process). Thereby, the infrared ray absorbing glass plate of the present invention having a thickness of 0.2 mm or less can be obtained.
 このように本発明に係る赤外線吸収ガラス板の製造方法では、従来得ることが困難であった、厚みが0.2mm以下の赤外線吸収ガラス板を容易に製造することができる。この理由については以下のように説明することができる。 Thus, with the method for producing an infrared-absorbing glass plate according to the present invention, an infrared-absorbing glass plate having a thickness of 0.2 mm or less, which has been difficult to obtain in the past, can be easily produced. The reason for this can be explained as follows.
 物理研磨により赤外線吸収ガラス板の厚みを薄くする従来の方法においては、0.2mm以下までガラス板の厚みを薄くする目的で、キャリアの厚みを薄くすると、キャリアに割れが生じることがあった。また、ガラス板の厚みを薄くできた場合においても、キャリアから取り出す際にガラス板に割れが生じていた。また、面積の大きなガラス板を作製しても、切断の際、割れが生じていた。 In the conventional method of reducing the thickness of the infrared-absorbing glass plate by physical polishing, if the thickness of the carrier is reduced for the purpose of reducing the thickness of the glass plate to 0.2 mm or less, the carrier may be cracked. Moreover, even when the thickness of the glass plate could be reduced, the glass plate was cracked when taken out from the carrier. Moreover, even when a glass plate having a large area was produced, cracks occurred during cutting.
 これに対して、本願発明の発明者等は、上記のように物理研磨されることによりある程度厚みを薄くしたリン酸塩系のガラス母材を、アルカリ洗剤に浸漬させると、厚みが0.2mm以下であり、かつ割れが生じ難いガラス板が得られることを見出した。この理由については、以下のように考えられる。 On the other hand, when the inventors of the present invention immerse a phosphate-based glass base material that has been thinned to some extent by physical polishing as described above, the thickness is 0.2 mm. It was found that a glass plate which is as follows and hardly cracks can be obtained. The reason for this is considered as follows.
 リン酸塩系のガラスは、フツリン酸塩系のような他のガラスと比べて、耐アルカリ性が低い。そのため、アルカリ洗剤によるエッチング工程において、ガラス母材の研磨跡やマイクロクラックが溶かされ、得られた赤外線吸収ガラス板の第1及び第2の主面や側面において研磨跡やマイクロクラックが存在しなくなるものと考えられる。研磨跡やマイクロクラックがなくなることで赤外線吸収ガラス板の割れの起点がなくなるので、赤外線吸収ガラス板の強度が高められ、厚みが薄くても割れ難くなるものと考えられる。 Phosphate glass has lower alkali resistance than other glasses such as fluorophosphate. Therefore, in the etching process using an alkaline detergent, the polishing traces and microcracks of the glass base material are melted, and the polishing traces and microcracks do not exist on the first and second main surfaces and side surfaces of the obtained infrared absorption glass plate. It is considered a thing. Since the starting point of cracking of the infrared-absorbing glass plate is eliminated by eliminating polishing marks and microcracks, it is considered that the strength of the infrared-absorbing glass plate is increased and it is difficult to crack even if the thickness is thin.
 アルカリ洗剤としては、特に限定されないが、例えば、Na、Kなどのアルカリ成分や、トリエタノールアミン、ベンジルアルコール又はグリコール等の界面活性剤や、水又はアルコール等を含有するアルカリ洗剤を用いることができる。 Although it does not specifically limit as an alkaline detergent, For example, alkaline detergents, such as alkali components, such as Na and K, surfactants, such as a triethanolamine, benzyl alcohol, or glycol, water, alcohol, etc. can be used. .
 アルカリ洗剤に含まれるアルカリ成分として、アミノポリカルボン酸などのキレート剤のアルカリ塩が含まれることが好ましい。アミノポリカルボン酸のアルカリ塩としては、ジエチレントリアミン五酢酸、エチレンジアミン四酢酸、トリエチレンテトラアミン六酢酸、ニトリロ三酢酸などのナトリウム塩及びカリウム塩が挙げられる。これらの中でも、ジエチレントリアミン五酢酸五ナトリウム、エチレンジアミン四酢酸四ナトリウム、トリエチレンテトラアミン六酢酸六ナトリウム、ニトリロ三酢酸三ナトリウムが好ましく用いられ、特にジエチレントリアミン五酢酸五ナトリウムが好ましく用いられる。 As the alkali component contained in the alkaline detergent, an alkali salt of a chelating agent such as aminopolycarboxylic acid is preferably contained. Examples of the alkali salt of aminopolycarboxylic acid include sodium salts and potassium salts such as diethylenetriaminepentaacetic acid, ethylenediaminetetraacetic acid, triethylenetetraaminehexaacetic acid, and nitrilotriacetic acid. Among these, diethylenetriaminepentaacetic acid pentasodium, ethylenediaminetetraacetic acid tetrasodium, triethylenetetraaminehexaacetic acid hexasodium, and nitrilotriacetic acid trisodium are preferably used, and diethylenetriaminepentaacetic acid pentasodium is particularly preferably used.
 アルカリ洗剤中における浸漬温度は、特に限定されないが、例えば、20℃~40℃とすることができる。 The immersion temperature in the alkaline detergent is not particularly limited, but can be, for example, 20 ° C. to 40 ° C.
 アルカリ洗剤中における浸漬時間は、特に限定されないが、例えば、1時間~3時間とすることができる。なお、物理研磨されたガラス母材は、垂直に立てた状態で1時間~3時間アルカリ洗剤に浸漬させた後に、上下ひっくり返して同時間浸漬させることが望ましい。その場合、より一層厚み分布が均一な赤外線吸収ガラス板を得ることできる。 The immersion time in the alkaline detergent is not particularly limited, but can be, for example, 1 hour to 3 hours. It is desirable that the physically polished glass base material is immersed in an alkaline detergent for 1 to 3 hours in a vertically standing state, and then turned upside down and immersed for the same time. In that case, an infrared-absorbing glass plate with a more uniform thickness distribution can be obtained.
 マイクロクラックをより一層存在させ難くし、得られる赤外線吸収ガラス板の割れをより一層生じ難くさせる観点から、上記アルカリ洗剤のpHは、好ましくは7.1以上、より好ましくは8.0以上である。 From the viewpoint of making the microcracks more difficult to exist and making the resulting infrared-absorbing glass plate more difficult to crack, the pH of the alkaline detergent is preferably 7.1 or higher, more preferably 8.0 or higher. .
 また、得られた赤外線吸収ガラス板では、割れが生じ難いので、第1及び第2の主面の面積を大きくすることができる。例えば、第1の主面の面積は、100mm以上、25000mm以下とすることができる。第1の主面の面積のより好ましい範囲は、400mm以上、25000mm以下、より好ましくは1000mm以上、25000mm以下、さらに好ましくは2500mm以上、25000mm以下、特に好ましくは5000mm以上、25000mm以下である。第1及び第2の主面の面積が大きい赤外線吸収ガラス板においても、割れが生じ難いので、所望の大きさに切断して用いることができる。この場合、より一層効率良く赤外線吸収ガラス板を製造することができる。 Moreover, in the obtained infrared absorption glass plate, since it is hard to produce a crack, the area of the 1st and 2nd main surface can be enlarged. For example, the area of the first main surface, 100 mm 2 or more, it is possible to 25000 mm 2 or less. A more preferable range of the area of the first main surface, 400 mm 2 or more, 25000 mm 2 or less, more preferably 1000 mm 2 or more, 25000 mm 2 or less, more preferably 2500 mm 2 or more, 25000 mm 2 or less, particularly preferably 5000 mm 2 or more, 25000 mm 2 or less. Even in the infrared-absorbing glass plate having a large area of the first and second main surfaces, cracks are unlikely to occur, so that the first and second main surfaces can be cut into a desired size. In this case, the infrared absorbing glass plate can be manufactured more efficiently.
 (固体撮像素子デバイス)
 図3は、本発明の一実施形態に係る赤外線吸収ガラス板を用いた固体撮像素子デバイスを示す模式的断面図である。図3に示すように、固体撮像素子デバイス10は、赤外線吸収ガラス板1、固体撮像素子11、パッケージ12及び接着剤層13を備える。
(Solid-state imaging device)
FIG. 3 is a schematic cross-sectional view showing a solid-state imaging device device using an infrared absorbing glass plate according to an embodiment of the present invention. As shown in FIG. 3, the solid-state image sensor device 10 includes an infrared absorption glass plate 1, a solid-state image sensor 11, a package 12, and an adhesive layer 13.
 パッケージ12は、セラミックにより構成されている。パッケージ12の内部に、固体撮像素子11が収納されている。また、パッケージ12の開口部には、赤外線吸収ガラス板1が設けられている。なお、パッケージ12と、赤外線吸収ガラス板1とは接着剤層13により接合されている。接着剤層13は、適宜の紫外線硬化型樹脂や、熱硬化性樹脂により構成することができる。 Package 12 is made of ceramic. A solid-state image sensor 11 is housed inside the package 12. An infrared absorbing glass plate 1 is provided in the opening of the package 12. The package 12 and the infrared absorbing glass plate 1 are joined by an adhesive layer 13. The adhesive layer 13 can be composed of an appropriate ultraviolet curable resin or a thermosetting resin.
 本実施形態に係る固体撮像素子デバイス10では、固体撮像素子11の光入射側に、赤外線吸収ガラス板1が設けられているので、赤外域の光を十分に吸収して固体撮像素子11に光を入射させることができる。また、上述したように固体撮像素子デバイス10を構成している赤外線吸収ガラス板1は、厚みが0.2mm以下と薄いので、固体撮像素子デバイス10は小型化されている。 In the solid-state image sensor device 10 according to the present embodiment, the infrared absorption glass plate 1 is provided on the light incident side of the solid-state image sensor 11. Can be incident. Further, as described above, since the infrared absorption glass plate 1 constituting the solid-state image sensor device 10 is as thin as 0.2 mm or less, the solid-state image sensor device 10 is downsized.
 以下、本発明の具体的な実施例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be clarified by giving specific examples of the present invention. In addition, this invention is not limited to a following example.
 (実施例1)
 質量%で、P 46%、Al 7%、MgO 3%、CaO 4%、BaO 20%、KO 16%、及びCuO 4%の組成となるように調製したリン酸塩系ガラスの原料粉末バッチを、温度850~1300℃で溶融し、ロールアウト法により板状に成形し、板状のガラス母材を得た。
Example 1
By mass%, P 2 O 5 46% , Al 2 O 3 7%, MgO 3%, CaO 4%, BaO 20%, K 2 O 16%, and phosphoric acid was prepared so as CuO 4% of the composition The salt-based glass raw material powder batch was melted at a temperature of 850 to 1300 ° C. and formed into a plate shape by a roll-out method to obtain a plate-like glass base material.
 得られたガラス母材を、ダイサーを用いて125.1mm角の大きさに切断し、切断したガラス母材を、両面研磨機の下定盤にセットされたキャリアの孔部に載せ、その上に上定盤を降ろして圧力をかけ、上定盤、下定盤及びキャリアを回転させつつ、Alを含む研磨液を流しながら両面を研磨し、ガラス母材の厚みを0.30mmとした。続いて、CeOによりガラス母材をさらに研磨し、ガラス母材の厚みを0.25mmとした。 The obtained glass base material is cut into a size of 125.1 mm square using a dicer, and the cut glass base material is placed on the hole of the carrier set on the lower surface plate of the double-side polishing machine, and on top of that. Lowering the upper platen, applying pressure, rotating both the upper platen, the lower platen and the carrier, polishing both surfaces while flowing a polishing solution containing Al 2 O 3 , and setting the thickness of the glass base material to 0.30 mm . Subsequently, the glass base material was further polished with CeO 2 to make the thickness of the glass base material 0.25 mm.
 次に、研磨されたガラス母材を、質量%で、Naの成分が37%、トリエタノールアミンが20%、及び水が43%の組成を有するアルカリ洗剤に、温度30℃で、120分間浸漬させ、125.0mm角の大きさで厚み0.15mmの赤外線吸収ガラス板を得た。 Next, the polished glass base material is immersed in an alkaline detergent having a composition of 37% by mass, 37% of Na, 20% of triethanolamine, and 43% of water at a temperature of 30 ° C. for 120 minutes. An infrared-absorbing glass plate having a size of 125.0 mm square and a thickness of 0.15 mm was obtained.
 上記アルカリ洗剤には、Naの成分として、ジエチレントリアミン五酢酸五ナトリウムが含まれている。 The above alkaline detergent contains pentasodium diethylenetriaminepentaacetic acid as a Na component.
 得られた赤外線吸収ガラス板(30枚)について、両端部を把持して水平に持ち上げたところ、割れが発生することはなく、また、側面を光学顕微鏡で観察したところ、マイクロクラックは存在しないものであった。 About the obtained infrared ray absorbing glass plate (30 sheets), when both ends were held and lifted horizontally, no cracking occurred, and when the side surface was observed with an optical microscope, there were no microcracks. Met.
 また、得られた赤外線吸収ガラス板(30枚)について、支点間距離2.5mmにおける3点曲げ強度を測定したところ、35~350N/mmであり、厚みが0.15mmと薄いにもかかわらず、高い強度を有していた。 The obtained infrared absorbing glass plate (30 sheets) was measured for three-point bending strength at a fulcrum distance of 2.5 mm, and it was 35 to 350 N / mm 2 , although the thickness was as thin as 0.15 mm. It had high strength.
 (比較例1)
 リン酸塩系ガラスの原料粉末バッチの代わりに、質量%で、Al 10%、AlF 10%、MgF 6%、CaF 15%、SrF 24%、SrF 18%、BaO 3%、LiF 9%、LiO 1%、及びCuO 4%の組成となるように調製したフツリン酸塩系ガラスの原料粉末バッチを用いたこと以外は実施例1と同様にして赤外線吸収ガラス板を得た。
(Comparative Example 1)
Instead of the raw material powder batch of phosphate glass, by mass%, Al 2 O 3 10%, AlF 3 10%, MgF 2 6%, CaF 2 15%, SrF 2 24%, SrF 2 18%, BaO Infrared absorbing glass in the same manner as in Example 1, except that a raw powder batch of fluorophosphate glass prepared to have a composition of 3%, LiF 9%, Li 2 O 1%, and CuO 4% was used. I got a plate.
 しかしながら、比較例1においては、フツリン酸塩系ガラスは耐アルカリ性が高く、アルカリ洗剤によるエッチング工程において、エッチングされなかったため、赤外線吸収ガラス板の厚みが0.25mmであり、厚み0.2mm以下の赤外線吸収ガラス板を得ることができなかった。 However, in Comparative Example 1, since the fluorophosphate glass has high alkali resistance and was not etched in the etching process with an alkaline detergent, the thickness of the infrared absorbing glass plate was 0.25 mm, and the thickness was 0.2 mm or less. An infrared absorbing glass plate could not be obtained.
 上記ようにして作製したフツリン酸塩系ガラスからなる赤外線吸収ガラス板(30枚)について、両端部を把持して水平に持ち上げたところ、割れが発生することはなかった。しかし、側面を光学顕微鏡で観察したところ、1μm~10μm程度のマイクロクラックが存在していた。 When the infrared absorbing glass plate (30 sheets) made of fluorophosphate-based glass produced as described above was held and lifted horizontally, no cracks were generated. However, when the side surface was observed with an optical microscope, microcracks of about 1 μm to 10 μm were present.
 また、得られた赤外線吸収ガラス板(30枚)について、支点間距離2.5mmにおける3点曲げ強度を測定したところ、30~60N/mmであった。 The obtained infrared-absorbing glass plate (30 sheets) was measured for a three-point bending strength at a fulcrum distance of 2.5 mm, which was 30 to 60 N / mm 2 .
 赤外線吸収ガラス板のアレイ;
 図4は、本発明の他の実施形態に係る赤外線吸収ガラス板のアレイの製造工程を説明するための模式的断面図である。また、図5は、本発明の他の実施形態に係る赤外線吸収ガラス板のアレイの製造工程を説明するための模式的平面図である。スマートフォンのカメラ等に用いる赤外線吸収ガラス板は、一般に、小さなサイズである。そのため、大きなサイズの赤外線吸収ガラス板を作製してから、ダイシング等により分割して、小さなサイズの赤外線吸収ガラス板のアレイを製造し、アレイから小さなサイズの赤外線吸収ガラス板を取り出して用いてもよい。以下、赤外線吸収ガラス板のアレイの製造方法について説明する。
An array of infrared absorbing glass plates;
FIG. 4 is a schematic cross-sectional view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention. FIG. 5 is a schematic plan view for explaining a manufacturing process of an array of infrared absorbing glass plates according to another embodiment of the present invention. Infrared absorbing glass plates used for smartphone cameras and the like are generally small in size. Therefore, it is possible to manufacture a large size infrared absorbing glass plate and then divide it by dicing or the like to manufacture an array of small size infrared absorbing glass plates, and take out and use the small size infrared absorbing glass plate from the array. Good. Hereinafter, a method for manufacturing an array of infrared absorbing glass plates will be described.
 まず、ガラス母材として、アルカリ洗浄した大きなサイズの赤外線吸収ガラス板21を用意する。赤外線吸収ガラス板21の第1の主面21a及び第2の主面21bの上には、必要に応じて、反射防止膜や赤外線反射膜などの光学膜22及び23が設けられている。本実施形態において、光学膜22及び23は、誘電体多層膜から構成される。 First, as a glass base material, a large-size infrared-absorbing glass plate 21 cleaned with an alkali is prepared. On the first main surface 21a and the second main surface 21b of the infrared absorbing glass plate 21, optical films 22 and 23 such as an antireflection film and an infrared reflection film are provided as necessary. In the present embodiment, the optical films 22 and 23 are composed of dielectric multilayer films.
 光学膜22及び23が設けられた赤外線吸収ガラス板21を、支持体30の上に接着させる。支持体30として、例えば、紫外線照射により接着強度が低下するUVテープを用いることができる。 The infrared absorbing glass plate 21 provided with the optical films 22 and 23 is bonded onto the support 30. As the support 30, for example, a UV tape whose adhesive strength is reduced by ultraviolet irradiation can be used.
 次に、カッティングラインAに沿って、支持体30の上の赤外線吸収ガラス板21をダイシングソーなどで切断し、マトリクス状に配置された複数の赤外線吸収ガラス板に分割する。 Next, along the cutting line A, the infrared absorbing glass plate 21 on the support 30 is cut with a dicing saw or the like, and divided into a plurality of infrared absorbing glass plates arranged in a matrix.
 次に、支持体30に接着している複数の赤外線吸収ガラス板を、支持体30とともに、上記アルカリ洗剤に浸漬し、赤外線吸収ガラス板の側面をエッチングする。これにより、ダイシングにより側面に生じたマイクロクラック等を除去することができる。このため、割れの生じ難い赤外線吸収ガラス板にすることができる。 Next, the plurality of infrared absorbing glass plates bonded to the support 30 are immersed in the alkaline detergent together with the support 30 to etch the side surfaces of the infrared absorbing glass plate. Thereby, the microcrack etc. which arose on the side surface by dicing can be removed. For this reason, it can be set as the infrared rays absorption glass plate which a crack does not produce easily.
 以上のようにして、本発明の他の実施形態に係る赤外線吸収ガラス板のアレイを製造することができる。 As described above, an array of infrared absorbing glass plates according to another embodiment of the present invention can be manufactured.
 図6は、本発明の他の実施形態に係る赤外線吸収ガラス板のアレイを示す模式的平面図である。本実施形態の赤外線吸収ガラス板のアレイ40は、支持体30と、支持体30上にマトリクス状に配置された複数の赤外線吸収ガラス板31とを備えている。本実施形態において、支持体30はUVテープから構成されているので、紫外線を照射することにより接着強度を低下させて、赤外線吸収ガラス板31を容易に支持体30から取り外すことができる。 FIG. 6 is a schematic plan view showing an array of infrared absorbing glass plates according to another embodiment of the present invention. The array 40 of infrared absorbing glass plates of the present embodiment includes a support 30 and a plurality of infrared absorbing glass plates 31 arranged on the support 30 in a matrix. In this embodiment, since the support 30 is composed of a UV tape, the infrared absorbing glass plate 31 can be easily detached from the support 30 by reducing the adhesive strength by irradiating ultraviolet rays.
 上記実施形態では、赤外線吸収ガラス板21をダイシングにより切断したが、ダイシングによる切断に代えて、レーザー照射により切断してもよい。レーザー照射による切断の場合、切断面にマイクロクラック等が生じ難いので、その後のエッチング工程を省略してもよい。 In the above embodiment, the infrared absorbing glass plate 21 is cut by dicing, but it may be cut by laser irradiation instead of cutting by dicing. In the case of cutting by laser irradiation, since a microcrack or the like hardly occurs on the cut surface, a subsequent etching step may be omitted.
1…赤外線吸収ガラス板
1a,1b…第1,第2の主面
1c…側面
2…反射防止膜
3…赤外線反射膜
10…固体撮像素子デバイス
11…固体撮像素子
12…パッケージ
13…接着剤層
21…赤外線吸収ガラス板
21a,21b…第1,第2の主面
22,23…光学膜
30…支持体
31…赤外線吸収ガラス板
40…赤外線吸収ガラス板のアレイ
DESCRIPTION OF SYMBOLS 1 ... Infrared absorption glass plate 1a, 1b ... 1st, 2nd main surface 1c ... Side surface 2 ... Antireflection film 3 ... Infrared reflective film 10 ... Solid-state image sensor device 11 ... Solid-state image sensor 12 ... Package 13 ... Adhesive layer DESCRIPTION OF SYMBOLS 21 ... Infrared absorption glass plate 21a, 21b ... 1st, 2nd main surface 22, 23 ... Optical film 30 ... Support body 31 ... Infrared absorption glass plate 40 ... Array of infrared absorption glass plate

Claims (19)

  1.  互いに対向している第1及び第2の主面と、前記第1及び第2の主面を結ぶ側面とを有する赤外線吸収ガラス板であって、
     リン酸塩系ガラスにより構成されており、
     厚みが0.2mm以下であり、
     前記側面に、マイクロクラックが存在していない、赤外線吸収ガラス板。
    An infrared-absorbing glass plate having first and second main surfaces facing each other and a side surface connecting the first and second main surfaces,
    It is composed of phosphate glass,
    The thickness is 0.2 mm or less,
    An infrared ray absorbing glass plate having no microcracks on the side surface.
  2.  前記リン酸塩系ガラスが、質量%で、P 25~60%、Al 2~19%、RO(ただしRは、Mg、Ca、Sr及びBaから選択される少なくとも1種) 5~45%、ZnO 0~13%、KO 8~20%、NaO 0~12%、及びCuO 0.3~20%を含み、かつフッ素を実質的に含んでいない、請求項1に記載の赤外線吸収ガラス板。 The phosphate glass is, by mass%, P 2 O 5 25-60%, Al 2 O 3 2-19%, RO (where R is at least one selected from Mg, Ca, Sr and Ba) ) 5 to 45%, ZnO 0 to 13%, K 2 O 8 to 20%, Na 2 O 0 to 12%, and CuO 0.3 to 20%, and substantially free of fluorine, Item 14. An infrared absorbing glass plate according to Item 1.
  3.  前記第1及び第2の主面に、研磨跡が存在していない、請求項1又は2に記載の赤外線吸収ガラス板。 The infrared absorbing glass plate according to claim 1 or 2, wherein no polishing mark is present on the first and second main surfaces.
  4.  前記第1の主面の面積が、100mm以上、25000mm以下である、請求項1~3のいずれか1項に記載の赤外線吸収ガラス板。 The area of the first main surface, 100 mm 2 or more and 25000 mm 2 or less, an infrared absorbing glass plate according to any one of claims 1-3.
  5.  前記第1の主面の面積が、1000mm以上、25000mm以下である、請求項4に記載の赤外線吸収ガラス板。 The area of the first main surface, 1000 mm 2 or more and 25000 mm 2 or less, an infrared absorbing glass plate according to claim 4.
  6.  支点間距離2.5mmにおける3点曲げ強度が、35N/mm以上である、請求項1~5のいずれか1項に記載の赤外線吸収ガラス板。 The infrared-absorbing glass plate according to any one of claims 1 to 5, wherein a three-point bending strength at a fulcrum distance of 2.5 mm is 35 N / mm 2 or more.
  7.  前記第1の主面の面積が、1mm以上、1000mm未満である、請求項1~3のいずれか1項に記載の赤外線吸収ガラス板。 The infrared-absorbing glass plate according to any one of claims 1 to 3, wherein an area of the first main surface is 1 mm 2 or more and less than 1000 mm 2 .
  8.  固体撮像素子デバイスに用いられる、請求項1~7のいずれか1項に記載の赤外線吸収ガラス板。 The infrared-absorbing glass plate according to any one of claims 1 to 7, which is used for a solid-state imaging device device.
  9.  前記第1の主面及び前記第2の主面の少なくとも一方の上に光学膜が設けられている、請求項1~8のいずれか一項に記載の赤外線吸収ガラス板。 The infrared absorbing glass plate according to any one of claims 1 to 8, wherein an optical film is provided on at least one of the first main surface and the second main surface.
  10.  前記光学膜が誘電体多層膜である、請求項9に記載の赤外線吸収ガラス板。 The infrared-absorbing glass plate according to claim 9, wherein the optical film is a dielectric multilayer film.
  11.  支持体と、前記支持体上にマトリクス状に配置された請求項1~10のいずれか一項に記載の複数の赤外線吸収ガラス板とを備える、赤外線吸収ガラス板のアレイ。 An array of infrared absorbing glass plates, comprising: a support; and a plurality of infrared absorbing glass plates according to any one of claims 1 to 10 arranged in a matrix on the support.
  12.  請求項1~8のいずれか1項に記載の赤外線吸収ガラス板の製造方法であって、
     リン酸塩系ガラスにより構成されている板状のガラス母材を、物理研磨する研磨工程と、
     前記物理研磨されたガラス母材を、アルカリ洗剤に浸漬することによりエッチングするエッチング工程とを備える、赤外線吸収ガラス板の製造方法。
    A method for producing an infrared-absorbing glass plate according to any one of claims 1 to 8,
    A polishing step of physically polishing a plate-like glass base material composed of phosphate glass;
    The manufacturing method of an infrared rays absorption glass plate provided with the etching process of etching by immersing the said glass base material by which the said physical polishing was carried out in alkaline detergent.
  13.  前記研磨工程において、前記物理研磨により、前記ガラス母材の厚みを、0.23mm以上、0.3mm以下にする、請求項12に記載の赤外線吸収ガラス板の製造方法。 The method for producing an infrared-absorbing glass plate according to claim 12, wherein in the polishing step, the thickness of the glass base material is set to 0.23 mm or more and 0.3 mm or less by the physical polishing.
  14.  前記エッチング工程において、前記物理研磨されたガラス母材を、pHが7.1以上であるアルカリ洗剤に浸漬することによりエッチングする、請求項12又は13に記載の赤外線吸収ガラス板の製造方法。 The method for producing an infrared-absorbing glass plate according to claim 12 or 13, wherein in the etching step, the physically polished glass base material is etched by being immersed in an alkaline detergent having a pH of 7.1 or higher.
  15.  前記アルカリ洗剤が、アミノポリカルボン酸のアルカリ塩を含む、請求項12~14のいずれか一項に記載の赤外線吸収ガラス板の製造方法。 The method for producing an infrared-absorbing glass plate according to any one of claims 12 to 14, wherein the alkaline detergent contains an alkali salt of an aminopolycarboxylic acid.
  16.  請求項9又は10に記載の赤外線吸収ガラス板の製造方法であって、
     エッチング後の前記ガラス母材の前記第1の主面及び前記第2の主面の少なくとも一方の上に前記光学膜を形成する工程をさらに備える、請求項12~15のいずれか一項に記載の赤外線吸収ガラス板の製造方法。
    A method for producing an infrared-absorbing glass plate according to claim 9 or 10,
    The step of forming the optical film on at least one of the first main surface and the second main surface of the glass base material after etching is further provided. Manufacturing method of infrared absorbing glass plate.
  17.  請求項11に記載の赤外線吸収ガラス板のアレイの製造方法であって、
     請求項12~16のいずれか一項に記載の方法で、エッチングされた前記ガラス母材を作製する工程と、
     前記ガラス母材を前記支持体の上に載置する工程と、
     前記支持体上の前記ガラス母材をダイシングし、マトリクス状に配置された前記複数の赤外線吸収ガラス板に分割する工程と、
     前記支持体上の前記赤外線吸収ガラス板を、前記アルカリ洗剤に浸漬することによりエッチングするエッチング工程とを備える、赤外線吸収ガラス板のアレイの製造方法。
    A method of manufacturing an array of infrared absorbing glass plates according to claim 11,
    Producing the etched glass preform by the method according to any one of claims 12-16;
    Placing the glass base material on the support;
    Dicing the glass base material on the support, and dividing the plurality of infrared absorbing glass plates arranged in a matrix; and
    The manufacturing method of the array of infrared absorption glass plates provided with the etching process of etching by immersing the said infrared absorption glass plate on the said support body in the said alkaline detergent.
  18.  前記支持体が、紫外線照射により接着強度が低下するUVテープである、請求項17に記載の赤外線吸収ガラス板のアレイの製造方法。 The method for producing an array of infrared-absorbing glass plates according to claim 17, wherein the support is a UV tape whose adhesive strength is reduced by ultraviolet irradiation.
  19.  請求項1~10のいずれか1項に記載の赤外線吸収ガラス板を備える、固体撮像素子デバイス。 A solid-state imaging device device comprising the infrared absorbing glass plate according to any one of claims 1 to 10.
PCT/JP2017/005266 2016-04-11 2017-02-14 Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device WO2017179283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780004742.3A CN108367966B (en) 2016-04-11 2017-02-14 Infrared absorbing glass plate, method for manufacturing same, and solid-state imaging element apparatus
KR1020187014209A KR102657651B1 (en) 2016-04-11 2017-02-14 Infrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-078768 2016-04-11
JP2016078768 2016-04-11
JP2016153687A JP6811053B2 (en) 2016-04-11 2016-08-04 Infrared absorbing glass plate and its manufacturing method, and solid-state image sensor device
JP2016-153687 2016-08-04

Publications (1)

Publication Number Publication Date
WO2017179283A1 true WO2017179283A1 (en) 2017-10-19

Family

ID=60042475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005266 WO2017179283A1 (en) 2016-04-11 2017-02-14 Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device

Country Status (2)

Country Link
TW (1) TWI753884B (en)
WO (1) WO2017179283A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044757A1 (en) * 2017-08-31 2019-03-07 日本電気硝子株式会社 Method for etching glass, etching treatment device and glass sheet
WO2019065100A1 (en) * 2017-09-27 2019-04-04 日本電気硝子株式会社 Glass plate and method for producing same
JP2020142952A (en) * 2019-03-06 2020-09-10 日本電気硝子株式会社 Near-infrared absorbing glass plate
WO2021019837A1 (en) * 2019-07-31 2021-02-04 日本電気硝子株式会社 Etching method of glass plate

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137357A (en) * 1978-04-17 1979-10-25 Hoya Glass Works Ltd Near infrared absorbing filter for color television camera
JPH0578148A (en) * 1991-02-28 1993-03-30 Asahi Glass Co Ltd Near infrared light cutting filter glass
JP2002160943A (en) * 2000-09-13 2002-06-04 Nippon Sheet Glass Co Ltd Method for processing amorphous material and glass basal plate
JP2006248850A (en) * 2005-03-11 2006-09-21 Sumita Optical Glass Inc Glass for near-infrared absorbing filter
JP2007317719A (en) * 2006-05-23 2007-12-06 Fujitsu Ltd Imaging device and its manufacturing method
JP2010168262A (en) * 2008-03-31 2010-08-05 Asahi Glass Co Ltd Tabular optical glass and method for processing end face of tabular optical glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
JP2011162409A (en) * 2010-02-12 2011-08-25 Asahi Glass Co Ltd Near infrared cut filter glass and method for producing near infrared cut filter glass
JP2011168455A (en) * 2010-02-19 2011-09-01 Asahi Glass Co Ltd Near-infrared light cutting filter glass
WO2011132786A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Uv-transmitting near-infrared cut-off filter glass
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2015089855A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Near-infrared absorbing glass
WO2015182300A1 (en) * 2014-05-29 2015-12-03 旭硝子株式会社 Optical glass and method for cutting glass substrate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137357A (en) * 1978-04-17 1979-10-25 Hoya Glass Works Ltd Near infrared absorbing filter for color television camera
JPH0578148A (en) * 1991-02-28 1993-03-30 Asahi Glass Co Ltd Near infrared light cutting filter glass
JP2002160943A (en) * 2000-09-13 2002-06-04 Nippon Sheet Glass Co Ltd Method for processing amorphous material and glass basal plate
JP2006248850A (en) * 2005-03-11 2006-09-21 Sumita Optical Glass Inc Glass for near-infrared absorbing filter
JP2007317719A (en) * 2006-05-23 2007-12-06 Fujitsu Ltd Imaging device and its manufacturing method
JP2010168262A (en) * 2008-03-31 2010-08-05 Asahi Glass Co Ltd Tabular optical glass and method for processing end face of tabular optical glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
JP2011162409A (en) * 2010-02-12 2011-08-25 Asahi Glass Co Ltd Near infrared cut filter glass and method for producing near infrared cut filter glass
JP2011168455A (en) * 2010-02-19 2011-09-01 Asahi Glass Co Ltd Near-infrared light cutting filter glass
WO2011132786A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Uv-transmitting near-infrared cut-off filter glass
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2015089855A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Near-infrared absorbing glass
WO2015182300A1 (en) * 2014-05-29 2015-12-03 旭硝子株式会社 Optical glass and method for cutting glass substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044757A1 (en) * 2017-08-31 2019-03-07 日本電気硝子株式会社 Method for etching glass, etching treatment device and glass sheet
US11174195B2 (en) 2017-08-31 2021-11-16 Nippon Electric Glass Co., Ltd. Method for etching glass, etching treatment device and glass sheet
WO2019065100A1 (en) * 2017-09-27 2019-04-04 日本電気硝子株式会社 Glass plate and method for producing same
JP2020142952A (en) * 2019-03-06 2020-09-10 日本電気硝子株式会社 Near-infrared absorbing glass plate
WO2020179516A1 (en) * 2019-03-06 2020-09-10 日本電気硝子株式会社 Near-infrared absorbing glass plate
WO2021019837A1 (en) * 2019-07-31 2021-02-04 日本電気硝子株式会社 Etching method of glass plate
JP2021024747A (en) * 2019-07-31 2021-02-22 日本電気硝子株式会社 Etching method of glass plate
CN114026053A (en) * 2019-07-31 2022-02-08 日本电气硝子株式会社 Method for etching glass plate
JP7260852B2 (en) 2019-07-31 2023-04-19 日本電気硝子株式会社 Glass plate etching method

Also Published As

Publication number Publication date
TW201802052A (en) 2018-01-16
TWI753884B (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6811053B2 (en) Infrared absorbing glass plate and its manufacturing method, and solid-state image sensor device
WO2017179283A1 (en) Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device
KR102144324B1 (en) Method for cutting glass substrate, glass substrate, near infrared ray cut filter glass and method for manufacturing glass substrate
WO2019058858A1 (en) Infrared ray absorbent glass plate and method for producing same, and solid-state imaging element device
JP5407490B2 (en) Window glass for solid-state image sensor package
JPWO2018025883A1 (en) Glass substrate, semiconductor device and display device
TWI730251B (en) Glass plate with optical film and its manufacturing method
TW201343593A (en) Infrared absorbing glass wafer and method for producing same
JP7230816B2 (en) Glass plate and its manufacturing method
JP7445189B2 (en) Glass plate and its manufacturing method
JP5994686B2 (en) Optical glass
WO2020195438A1 (en) Glass plate and production method therefor
WO2020179516A1 (en) Near-infrared absorbing glass plate
JP2014066943A (en) Optical low-pass filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187014209

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782102

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782102

Country of ref document: EP

Kind code of ref document: A1