JP2015089855A - Near-infrared absorbing glass - Google Patents

Near-infrared absorbing glass Download PDF

Info

Publication number
JP2015089855A
JP2015089855A JP2013229332A JP2013229332A JP2015089855A JP 2015089855 A JP2015089855 A JP 2015089855A JP 2013229332 A JP2013229332 A JP 2013229332A JP 2013229332 A JP2013229332 A JP 2013229332A JP 2015089855 A JP2015089855 A JP 2015089855A
Authority
JP
Japan
Prior art keywords
glass
absorbing glass
infrared absorbing
infrared
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013229332A
Other languages
Japanese (ja)
Other versions
JP6256857B2 (en
Inventor
竹内 宏和
Hirokazu Takeuchi
宏和 竹内
清行 奥長
Kiyoyuki Okunaga
清行 奥長
籔内 浩一
Koichi Yabuuchi
浩一 籔内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013229332A priority Critical patent/JP6256857B2/en
Publication of JP2015089855A publication Critical patent/JP2015089855A/en
Application granted granted Critical
Publication of JP6256857B2 publication Critical patent/JP6256857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide near-infrared absorbing glass which is easily formed into a thin plate by an overflow downdraw method or the like and has high visible transmittance and high near-infrared ray absorbing ability.SOLUTION: There is provided near-infrared absorbing glass which comprises, by mass%, 40 to 70% of PO, 3 to 15% of AlO, 8 to 16% of KO, 5 to 25% of BaO, 2.5 to 10% of CuO, 0.1 to 1.0% of CeO+SbOand 0 to 5% of NaO and is formed into a thin plate by an overflow downdraw method or the like.

Description

本発明は、近赤外線吸収ガラスに関するものである。   The present invention relates to near-infrared absorbing glass.

一般に、デジタルカメラやスマートフォン内のカメラ部分には、CCDやCMOS等の固体撮像素子の視感度補正のため、近赤外線吸収ガラスが用いられている。また、カメラの薄型化、軽量化のため、近赤外線吸収ガラスの薄板化が望まれている。例えば、特許文献1には、フッ化物を含有しないリン酸塩系ガラスからなる赤外線カットフィルタガラスが開示されている。   Generally, near-infrared absorbing glass is used for a camera portion in a digital camera or a smartphone in order to correct the visibility of a solid-state imaging device such as a CCD or CMOS. In addition, in order to reduce the thickness and weight of the camera, it is desired to reduce the thickness of the near infrared absorbing glass. For example, Patent Document 1 discloses an infrared cut filter glass made of phosphate glass that does not contain fluoride.

特開2011−121792号JP2011-121792A

特許文献1に記載の赤外線カットフィルタガラスは、溶融温度が800〜1100℃であるのに対し、液相温度が720〜980℃と高い。したがって、オーバーフローダウンドロー法やフロート法等により薄板を成形すると、ガラスが失透しやすいという問題がある。   The infrared cut filter glass described in Patent Document 1 has a melting temperature of 800 to 1100 ° C. and a liquidus temperature as high as 720 to 980 ° C. Therefore, when a thin plate is formed by an overflow downdraw method, a float method, or the like, there is a problem that the glass is easily devitrified.

以上に鑑み、本発明は、オーバーフローダウンドロー法等により薄板に成形しやすく、また、可視透過率が高く、近赤外線の吸収能が高い近赤外線吸収ガラスを提供することを目的とする。   In view of the above, an object of the present invention is to provide a near-infrared absorbing glass that can be easily formed into a thin plate by an overflow downdraw method or the like, has high visible transmittance, and has high near-infrared absorbing ability.

本発明の近赤外線吸収ガラスは、質量%で、P 40〜70%、Al 3〜15%、KO 8〜16%、BaO 5〜25%、CuO 2.5〜10%、CeO+Sb 0.1〜1.0%、NaO 0〜5%を含有することを特徴とする。 Near-infrared-absorbing glass of the present invention, in mass%, P 2 O 5 40~70% , Al 2 O 3 3~15%, K 2 O 8~16%, BaO 5~25%, CuO 2.5~ 10%, CeO 2 + Sb 2 O 3 0.1-1.0%, Na 2 O 0-5%.

本発明の近赤外線吸収ガラスは、KO/Alが、質量基準で0.5〜2.5であることが好ましい。 In the near-infrared absorbing glass of the present invention, K 2 O / Al 2 O 3 is preferably 0.5 to 2.5 on a mass basis.

本発明の近赤外線吸収ガラスは、さらに、質量%で、MgO+CaO+SrO 0〜5%、ZnO 0〜10%、Nb 0〜3%、Y 0〜3%、La 0〜3%、Ta 0〜3%を含有することが好ましい。 Near-infrared-absorbing glass of the present invention further contains, by mass%, MgO + CaO + SrO 0~5 %, 0~10% ZnO, Nb 2 O 5 0~3%, Y 2 O 3 0~3%, La 2 O 3 0 to 3%, preferably contains Ta 2 O 5 0~3%.

本発明の近赤外線吸収ガラスは、板厚が0.01〜1.4mmであることが好ましい。   The near-infrared absorbing glass of the present invention preferably has a thickness of 0.01 to 1.4 mm.

本発明の近赤外線吸収ガラスは、104.0dPa・sにおける温度が750℃以下であることが好ましい。 The near-infrared absorbing glass of the present invention preferably has a temperature at 10 4.0 dPa · s of 750 ° C. or lower.

本発明の近赤外線吸収ガラスは、104.0dPa・sにおける温度において、失透が発生しないことが好ましい。 Near-infrared-absorbing glass of the present invention, in the temperature at 10 4.0 dPa · s, it is preferred that the devitrification does not occur.

本発明の近赤外線吸収ガラスは、オーバーフローダウンドロー法で成形してなることが好ましい。   The near-infrared absorbing glass of the present invention is preferably formed by an overflow down draw method.

本発明によれば、オーバーフローダウンドロー法等により薄板に成形しやすく、また、可視透過率が高く、近赤外線の吸収能が高い近赤外線吸収ガラスを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the near-infrared absorptive glass which is easy to shape | mold into a thin plate by the overflow downdraw method etc., and has high visible transmittance and a high near-infrared absorptivity.

以下に、本発明の近赤外線吸収ガラスの組成を上記の通り限定した理由について説明する。以下の各成分の説明において、「%」は「質量%」を示す。   Below, the reason which limited the composition of the near-infrared absorption glass of this invention as mentioned above is demonstrated. In the description of each component below, “%” indicates “% by mass”.

はガラス骨格を形成するために欠かせない成分である。Pの含有量は40〜70%であり、50〜65%であることが好ましく、55〜63%であることがより好ましい。Pの含有量が少なすぎると、ガラス化が不安定になる傾向がある。一方、Pの含有量が多すぎると、ガラス構造が化学的に弱くなり、失透しやすくなる。 P 2 O 5 is an essential component for forming a glass skeleton. The content of P 2 O 5 is 40 to 70%, preferably 50 to 65%, and more preferably 55 to 63%. When the content of P 2 O 5 is too small, there is a tendency for vitrification tends to be unstable. On the other hand, when the content of P 2 O 5 is too large, the glass structure is chemically weakened, tends to be devitrified.

Alはガラス化を安定にする成分である。Alの含有量は3〜15%であり、6〜12%であることが好ましく、7.1〜12%であることがより好ましい。Alの含有量が少なすぎると、上記効果が得られにくい。一方、Alの含有量が多すぎると、逆にAl起因の結晶が溶融及び成形中に析出しやすくなり、ガラス化が不安定になる。 Al 2 O 3 is a component that stabilizes vitrification. The content of Al 2 O 3 is 3 to 15%, preferably 6 to 12%, and more preferably 7.1 to 12%. If the content of Al 2 O 3 is too small, the above effect is difficult to obtain. On the other hand, if the content of Al 2 O 3 is too large, on the other hand, crystals due to Al 2 O 3 tend to precipitate during melting and molding, and vitrification becomes unstable.

Oはガラスの溶融温度を低下させる成分である。KOの含有量は8〜16%であり、10〜15%であることが好ましい。KOの含有量が少なすぎると、溶融温度が高くなるため、ガラス中のCuイオンが還元されやすくなり、Cuの割合が著しく増加し、その結果、所望の分光特性を得られにくくなる。一方、KOの含有量が多すぎると、KO起因の結晶が成形中に析出しやすくなり、ガラス化が不安定になる。 K 2 O is a component that lowers the melting temperature of the glass. The content of K 2 O is 8 to 16%, preferably 10 to 15%. When the content of K 2 O is too small, the melting temperature becomes high, so that Cu ions in the glass are easily reduced, and the ratio of Cu + is remarkably increased. As a result, it becomes difficult to obtain desired spectral characteristics. . On the other hand, when the content of K 2 O is too large, K 2 O resulting crystal tends to deposit in the molding, vitrification tends to be unstable.

BaOはガラス化を安定にする成分である。BaOの含有量は5〜25%であり、10〜20%であることが好ましく、12〜18%であることがより好ましい。BaOの含有量が少なすぎると、上記効果が得られにくい。一方、BaOの含有量が多すぎると、BaO起因の結晶が成形中に析出しやすくなる。   BaO is a component that stabilizes vitrification. The content of BaO is 5 to 25%, preferably 10 to 20%, and more preferably 12 to 18%. If the content of BaO is too small, the above effect is difficult to obtain. On the other hand, when there is too much content of BaO, the crystal | crystallization derived from BaO will precipitate easily during shaping | molding.

CuOは近赤外線を吸収する成分である。CuOの含有量は2.5〜10%であり、3〜9%であることが好ましく、4〜9%であることがより好ましい。CuOの含有量が少なすぎると、薄板で十分な近赤外線吸収能を得られない。一方、CuOの含有量が多すぎると、紫外〜可視域の透過率が低下する傾向にある。   CuO is a component that absorbs near infrared rays. The CuO content is 2.5 to 10%, preferably 3 to 9%, and more preferably 4 to 9%. If the content of CuO is too small, a thin plate cannot obtain a sufficient near infrared absorption ability. On the other hand, if the CuO content is too large, the transmittance in the ultraviolet to visible range tends to decrease.

CeOおよびSbはガラスの溶融温度を低下させ、Cu2+の存在割合を高く維持できる成分である。CeOおよびSbの含有量は、合量で0.1〜0.5%であり、0.1〜0.3%であることが好ましい。これらの成分の含有量が少なすぎると上記効果が得られにくい。一方、これらの成分の含有量が多すぎると、ガラス化が不安定になる傾向がある。 CeO 2 and Sb 2 O 3 are components that can lower the melting temperature of the glass and maintain a high proportion of Cu 2+ . The CeO 2 and Sb 2 O 3 contents are 0.1 to 0.5% in total, and preferably 0.1 to 0.3%. If the content of these components is too small, the above effect is difficult to obtain. On the other hand, when there is too much content of these components, there exists a tendency for vitrification to become unstable.

NaOはガラスの溶融温度を低下させる成分である。NaOの含有量は0〜5%であり、0〜3%であることが好ましい。NaOの含有量が多すぎるとガラス化が不安定になりやすい。 Na 2 O is a component that lowers the melting temperature of the glass. The content of Na 2 O is 0 to 5%, preferably 0 to 3%. Na 2 O content is too large when the vitrification tends to be unstable.

また、溶融温度の低下とガラス化を安定させるためには、KO/Alを一定の範囲にすることが好ましい。具体的には、これらの成分比を質量基準で0.5〜2.5とすることが好ましく、1〜2とすることがより好ましい。これらの成分比が小さすぎると、溶融温度が高くなる傾向がある。一方、これらの成分比が大きすぎると、失透性が高まり、均質なガラスを得られにくくなる。 In order to stabilize the decrease in melting temperature and vitrification, it is preferable to keep K 2 O / Al 2 O 3 within a certain range. Specifically, these component ratios are preferably 0.5 to 2.5 and more preferably 1 to 2 on a mass basis. When these component ratios are too small, the melting temperature tends to increase. On the other hand, when these component ratios are too large, devitrification increases and it becomes difficult to obtain a homogeneous glass.

本発明の近赤外線吸収ガラスには、上記成分以外に下記の成分を含有させることができる。   The near-infrared absorbing glass of the present invention can contain the following components in addition to the above components.

MgO、CaOおよびSrOはガラス化を安定にする成分である。MgO、CaOおよびSrOの含有量は、合量で0〜5%であることが好ましく、0〜3%であることがより好ましい。これらの成分の含有量が多すぎると、これらの成分に起因する結晶が成形中に析出しやすくなる。   MgO, CaO and SrO are components that stabilize vitrification. The total content of MgO, CaO and SrO is preferably 0 to 5%, more preferably 0 to 3%. When there is too much content of these components, the crystal | crystallization resulting from these components will precipitate easily during shaping | molding.

ZnOは粘性の調整を目的に含有させることができる。ZnOの含有量は0〜10%であることが好ましく、1〜8%であることがより好ましい。ZnOの含有量が多すぎると、ガラス化が不安定になりやすい。   ZnO can be contained for the purpose of adjusting the viscosity. The content of ZnO is preferably 0 to 10%, and more preferably 1 to 8%. When there is too much content of ZnO, vitrification will become unstable easily.

Nbはガラス化を安定にする成分である。Nbの含有量は0〜3%であることが好ましく、0〜2%であることがより好ましい。Nbの含有量が多すぎると、溶融性が低下し、溶融温度が高くなるため、所望の分光特性を得られにくくなる。 Nb 2 O 5 is a component that stabilizes vitrification. The content of Nb 2 O 5 is preferably 0 to 3%, and more preferably 0 to 2%. When the content of Nb 2 O 5 is too large, it decreases the meltability, the melting temperature becomes high, it is difficult to obtain the desired spectral characteristics.

はガラス化を安定にする成分である。Yの含有量は0〜3%であることが好ましく、0〜2%であることがより好ましい。 Y 2 O 3 is a component that stabilizes vitrification. The content of Y 2 O 3 is preferably 0 to 3%, and more preferably 0 to 2%.

Laはガラス化を安定にする成分である。Laの含有量は0〜3%であることが好ましく、0〜2%であることがより好ましい。 La 2 O 3 is a component that stabilizes vitrification. The content of La 2 O 3 is preferably 0 to 3%, and more preferably 0 to 2%.

Taは化学的耐久性を高める成分である。Taの含有量は0〜3%であることが好ましく、0〜2%であることがより好ましい。 Ta 2 O 5 is a component that enhances chemical durability. The content of Ta 2 O 5 is preferably 0 to 3%, and more preferably 0 to 2%.

その他に、LiOやB等を本発明の効果を損なわない範囲で含有させても構わない。具体的には、これら成分の含有量は、それぞれ0〜3%であることが好ましく、0〜2%であることがより好ましい。 In addition, it may be a Li 2 O and B 2 O 3 or the like is contained in a range that does not impair the effects of the present invention. Specifically, the content of these components is preferably 0 to 3%, and more preferably 0 to 2%.

本発明の近赤外線吸収ガラスは、平板形状であることが好ましく、板厚は0.01〜1.4mmであることが好ましく、0.05〜0.5mmであることがより好ましく、0.1〜0.3mmであることがさらに好ましい。板厚が小さい程、薄型で軽量なカメラ等の光学デバイスを作製し易くなるが、板厚が極端に小さくなると、ガラスが破損し易くなる。   The near-infrared absorbing glass of the present invention preferably has a flat plate shape, a plate thickness of preferably 0.01 to 1.4 mm, more preferably 0.05 to 0.5 mm, 0.1 More preferably, it is -0.3 mm. The smaller the plate thickness, the easier it is to manufacture a thin and light optical device such as a camera. However, when the plate thickness is extremely small, the glass is easily broken.

本発明の近赤外線吸収ガラスは、104.0dPa・sにおける温度が750℃以下であることが好ましく、700℃以下であることがより好ましく、650℃以下であることがさらに好ましい。104.0dPa・sにおける温度が高すぎると、溶融温度が高温化しやすくなるため、ガラス中のCuイオンが還元されやすくなり、Cuの割合が著しく増加し、その結果、所望の分光特性を得られにくくなる。なお、「104.0dPa・sにおける温度」は、ガラスの粘度が104.0dPa・sとなるときのガラスの温度を表す。 In the near-infrared absorbing glass of the present invention, the temperature at 10 4.0 dPa · s is preferably 750 ° C. or lower, more preferably 700 ° C. or lower, and further preferably 650 ° C. or lower. If the temperature at 10 4.0 dPa · s is too high, the melting temperature tends to increase, so that Cu ions in the glass are likely to be reduced, and the proportion of Cu + is significantly increased. As a result, desired spectral characteristics are obtained. It becomes difficult to obtain. The “temperature at 10 4.0 dPa · s” represents the temperature of the glass when the viscosity of the glass is 10 4.0 dPa · s.

本発明の近赤外線吸収ガラスは、104.0dPa・sにおける温度において、失透が発生しないことが好ましい。上記構成とすることにより、成形時にガラスが失透し難くなり、オーバーフローダウンドロー法やフロート法等でガラス板を成形し易くなる。 Near-infrared-absorbing glass of the present invention, in the temperature at 10 4.0 dPa · s, it is preferred that the devitrification does not occur. By setting it as the said structure, it becomes difficult to devitrify glass at the time of shaping | molding, and it becomes easy to shape | mold a glass plate by the overflow downdraw method, the float glass method, etc.

本発明の近赤外線吸収ガラスは、ダウンドロー法、特にオーバーフローダウンドロー法で成形してなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を安価、且つ大量に製造することができる。また、ガラス板の大型化、薄板化を図り易くなる。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法を採用することができる。このようにすれば、板厚が小さいガラス板を作製し易くなる。ここで、「スロットダウンドロー法」は、略矩形の隙間から溶融ガラスを流し出しながら、下方に延伸成形して、ガラス板を成形する方法である。   The near-infrared absorbing glass of the present invention is preferably formed by a down draw method, particularly an overflow down draw method. In this way, it is possible to manufacture a glass plate that is unpolished and has good surface quality at a low cost and in large quantities. Further, it becomes easy to increase the size and thickness of the glass plate. In addition to the overflow downdraw method, a slot downdraw method can be employed. If it does in this way, it will become easy to produce a glass plate with small board thickness. Here, the “slot down draw method” is a method of forming a glass plate by drawing downward from a substantially rectangular gap while drawing molten glass.

上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法は、大型のガラス板を効率良く作製することができる   In addition to the above molding method, for example, a redraw method, a float method, a roll-out method, or the like can be employed. In particular, the float method can efficiently produce a large glass plate.

以下、本発明の近赤外線吸収ガラスを実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although the near-infrared absorption glass of this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

(1)各試料の作製
本発明の実施例(No.1〜12)、および比較例(No.13〜15)を表1および表2に示す。
(1) Production of Samples Tables 1 and 2 show examples (Nos. 1 to 12) and comparative examples (Nos. 13 to 15) of the present invention.

各試料は、以下のようにして作製した。   Each sample was produced as follows.

まず、各表に記載の組成となるように調合したガラス原料を白金ルツボに投入し、900〜1000℃で均質になるように溶融した。次に、溶融ガラスをカーボン板上に流し出し、冷却固化した後、アニールを行って試料を作製した。   First, the glass raw material prepared so that it might become the composition as described in each table | surface was thrown into the platinum crucible, and it melted so that it might become homogeneous at 900-1000 degreeC. Next, the molten glass was poured out on the carbon plate, cooled and solidified, and then annealed to prepare a sample.

(2)各試料の評価
得られた試料について、光透過率、104.0dPa・sにおける温度、耐失透性を以下の方法により測定または評価した。結果を表1および表2に示す。
(2) Evaluation The resulting samples of each sample, the light transmittance, temperature at 10 4.0 dPa · s, was measured or evaluated by the following methods devitrification resistance. The results are shown in Tables 1 and 2.

光透過率は、両面を鏡面研磨した12×20×0.3mmの試料について、株式会社日立製作所製U−4100を用いて、300〜1500nmの範囲で測定した。λ50は、得られた光透過率曲線の波長500〜700nmの範囲における光透過率が50%となる波長である。 The light transmittance was measured in the range of 300 to 1500 nm using a U-4100 manufactured by Hitachi, Ltd. for a 12 × 20 × 0.3 mm sample whose both surfaces were mirror-polished. λ 50 is a wavelength at which the light transmittance is 50% in the wavelength range of 500 to 700 nm of the obtained light transmittance curve.

104.0dPa・sにおける温度の測定は、下記のとおり行った。まず、上記試料を適正な寸法に破砕し、なるべく気泡が巻き込まれないように白金製坩堝に投入した。続いて白金製坩堝を加熱して、試料を融液状態とし、白金球引き上げ法によって複数の温度におけるガラスの粘度を求めた。その後、得られた複数の計測値から粘度曲線を作成し、その内挿によって104.0dPa・sとなる温度を算出した。 The measurement of temperature at 10 4.0 dPa · s was performed as follows. First, the sample was crushed to an appropriate size and put into a platinum crucible so that bubbles were not caught as much as possible. Subsequently, the platinum crucible was heated to bring the sample into a molten state, and the viscosity of the glass at a plurality of temperatures was determined by a platinum ball pulling method. Thereafter, a viscosity curve was created from the obtained plurality of measured values, and the temperature at which the viscosity was 10 4.0 dPa · s was calculated by interpolation.

耐失透性は、100cc相当の白金製坩堝に上記試料の粗砕品を適正量投入し、900〜1000℃で30分間加熱し、5〜10時間かけて104.0dPa・sにおける温度まで降温し、さらにその温度で3時間保持した後、光学顕微鏡を用いてガラス内部および白金界面を観察し、ガラス内部および白金界面に失透が確認されなかったものは「○」、ガラス内部または白金界面に失透が確認されたものは「×」として評価した。 The devitrification resistance was measured by putting an appropriate amount of the crushed sample into a platinum crucible equivalent to 100 cc, heating at 900 to 1000 ° C. for 30 minutes, and temperature at 10 4.0 dPa · s over 5 to 10 hours. The glass interior and the platinum interface were observed using an optical microscope, and no devitrification was observed in the glass interior or platinum interface. The case where devitrification was confirmed at the platinum interface was evaluated as “x”.

(3)結果の考察
実施例であるNo.1〜12は、104.0dPa・sにおける温度が681℃以下と低く、耐失透性も良好であるため、オーバーフローダウンドロー法での成形が可能であった。また、波長500nmでの透過率が85%以上、波長700nmでの透過率が10%以下、λ50は601nm〜640nmと、近赤外線カットフィルタとして好適な分光透過特性も有していた。一方、比較例であるNo.13、14はガラスの溶融時に失透が大量に発生しガラス化できず、比較例15は、耐失透性が悪かったため、オーバーフローダウンドロー法での成形は困難である。
(3) Discussion of results No. as an example. Nos. 1 to 12 had a temperature at 10 4.0 dPa · s as low as 681 ° C. or less and good devitrification resistance, and therefore could be molded by the overflow down draw method. In addition, the transmittance at a wavelength of 500 nm was 85% or more, the transmittance at a wavelength of 700 nm was 10% or less, and λ 50 was 601 nm to 640 nm. On the other hand, No. which is a comparative example. Nos. 13 and 14 generate a large amount of devitrification at the time of melting of the glass and cannot be vitrified. In Comparative Example 15, the devitrification resistance was poor, and therefore, molding by the overflow downdraw method is difficult.

本発明の本発明の近赤外線吸収ガラスは、デジタルカメラのレンズ、CCDカバーガラス、CCDやCMOSに使用される熱線吸収ガラス、さらにはIR/UV吸収ガラス、視感度補正フィルター、色調整フィルター等の光学フィルター等に使用することが可能である。   The near-infrared absorbing glass of the present invention is a lens of a digital camera, a CCD cover glass, a heat ray absorbing glass used for a CCD or CMOS, and further an IR / UV absorbing glass, a visibility correction filter, a color adjustment filter, etc. It can be used for an optical filter or the like.

Claims (7)

質量%で、P 40〜70%、Al 3〜15%、KO 8〜16%、BaO 5〜25%、CuO 2.5〜10%、CeO+Sb 0.1〜1.0%、NaO 0〜5%を含有することを特徴とする近赤外線吸収ガラス。 By mass%, P 2 O 5 40~70% , Al 2 O 3 3~15%, K 2 O 8~16%, BaO 5~25%, CuO 2.5~10%, CeO 2 + Sb 2 O 3 A near infrared ray absorbing glass containing 0.1 to 1.0% and Na 2 O 0 to 5%. O/Alが、質量基準で0.5〜2.5であることを特徴とする請求項1に記載の近赤外線吸収ガラス。 The near-infrared absorbing glass according to claim 1, wherein K 2 O / Al 2 O 3 is 0.5 to 2.5 on a mass basis. さらに、質量%で、MgO+CaO+SrO 0〜5%、ZnO 0〜10%、Nb 0〜3%、Y 0〜3%、La 0〜3%、Ta 0〜3%を含有することを特徴とする請求項1または2に記載の近赤外線吸収ガラス。 Moreover, in mass%, MgO + CaO + SrO 0~5 %, 0~10% ZnO, Nb 2 O 5 0~3%, Y 2 O 3 0~3%, La 2 O 3 0~3%, Ta 2 O 5 0 The near-infrared absorbing glass according to claim 1, comprising ˜3%. 板厚が0.01〜1.4mmであることを特徴とする請求項1〜3のいずれか一項に記載の近赤外線吸収ガラス。   Plate | board thickness is 0.01-1.4 mm, The near-infrared absorption glass as described in any one of Claims 1-3 characterized by the above-mentioned. 104.0dPa・sにおける温度が750℃以下であることを特徴とする請求項1〜4のいずれか一項に記載の近赤外線吸収ガラス。 The near-infrared absorbing glass according to claim 1, wherein the temperature at 10 4.0 dPa · s is 750 ° C. or lower. 104.0dPa・sにおける温度において、失透が発生しないことを特徴とする請求項1〜5のいずれか一項に記載の近赤外線吸収ガラス。 The near-infrared absorbing glass according to claim 1, wherein devitrification does not occur at a temperature of 10 4.0 dPa · s. オーバーフローダウンドロー法で成形してなることを特徴とする請求項1〜6のいずれか一項に記載の近赤外線吸収ガラス。
The near-infrared absorbing glass according to claim 1, which is formed by an overflow downdraw method.
JP2013229332A 2013-11-05 2013-11-05 Near infrared absorbing glass Active JP6256857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229332A JP6256857B2 (en) 2013-11-05 2013-11-05 Near infrared absorbing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229332A JP6256857B2 (en) 2013-11-05 2013-11-05 Near infrared absorbing glass

Publications (2)

Publication Number Publication Date
JP2015089855A true JP2015089855A (en) 2015-05-11
JP6256857B2 JP6256857B2 (en) 2018-01-10

Family

ID=53193554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229332A Active JP6256857B2 (en) 2013-11-05 2013-11-05 Near infrared absorbing glass

Country Status (1)

Country Link
JP (1) JP6256857B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108206A (en) * 2014-12-10 2016-06-20 株式会社住田光学ガラス Glass for near infrared absorptive filter
WO2016163270A1 (en) * 2015-04-10 2016-10-13 日本電気硝子株式会社 Near infrared absorbing glass
JP2017109887A (en) * 2015-12-15 2017-06-22 日本電気硝子株式会社 Near-infrared absorbing glass
WO2017179283A1 (en) * 2016-04-11 2017-10-19 日本電気硝子株式会社 Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device
JP2017190282A (en) * 2016-04-11 2017-10-19 日本電気硝子株式会社 Infrared absorbing glass plate and method for producing the same, and solid state image sensor device
WO2017208679A1 (en) * 2016-06-01 2017-12-07 日本電気硝子株式会社 Method and device for manufacturing near infrared absorbing glass
JP2018049250A (en) * 2016-06-01 2018-03-29 日本電気硝子株式会社 Method and device for manufacturing near infrared absorbing glass
WO2018138990A1 (en) * 2017-01-26 2018-08-02 日本電気硝子株式会社 Near infrared ray absorbing glass
JP2018118898A (en) * 2017-01-26 2018-08-02 日本電気硝子株式会社 Near infrared ray absorbing glass
JP2018193284A (en) * 2017-05-22 2018-12-06 日本電気硝子株式会社 Device and method for producing glass plate
WO2019039202A1 (en) * 2017-08-25 2019-02-28 日本電気硝子株式会社 Near-infrared radiation absorption glass
WO2019171851A1 (en) * 2018-03-05 2019-09-12 日本電気硝子株式会社 Method of manufacturing near infrared ray absorbing glass
JP2020023425A (en) * 2018-03-05 2020-02-13 日本電気硝子株式会社 Manufacturing method of near infrared ray absorption glass
CN114538772A (en) * 2022-03-24 2022-05-27 成都光明光电股份有限公司 Glass, glass element and optical filter
KR102657651B1 (en) * 2016-04-11 2024-04-15 니폰 덴키 가라스 가부시키가이샤 Infrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201419219D0 (en) * 2014-10-29 2014-12-10 Imp Innovations Ltd Electromagnetic accoustic transducer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137357A (en) * 1978-04-17 1979-10-25 Hoya Glass Works Ltd Near infrared absorbing filter for color television camera
JPS57149845A (en) * 1981-03-09 1982-09-16 Ohara Inc Filter glass for absorbing near infrared ray
JPH09100136A (en) * 1995-07-24 1997-04-15 Hoya Corp Near infrared absorbing filter glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
WO2011132786A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Uv-transmitting near-infrared cut-off filter glass
JP2012076988A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive thin film material and method for producing the same
US20130344343A1 (en) * 2012-06-22 2013-12-26 Schott Ag Coloured glasses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137357A (en) * 1978-04-17 1979-10-25 Hoya Glass Works Ltd Near infrared absorbing filter for color television camera
JPS57149845A (en) * 1981-03-09 1982-09-16 Ohara Inc Filter glass for absorbing near infrared ray
JPH09100136A (en) * 1995-07-24 1997-04-15 Hoya Corp Near infrared absorbing filter glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
WO2011132786A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Uv-transmitting near-infrared cut-off filter glass
JP2012076988A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive thin film material and method for producing the same
US20130344343A1 (en) * 2012-06-22 2013-12-26 Schott Ag Coloured glasses

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108206A (en) * 2014-12-10 2016-06-20 株式会社住田光学ガラス Glass for near infrared absorptive filter
US10106455B2 (en) 2015-04-10 2018-10-23 Nippon Electric Glass Co., Ltd. Near infrared absorbing glass
WO2016163270A1 (en) * 2015-04-10 2016-10-13 日本電気硝子株式会社 Near infrared absorbing glass
JP2017109887A (en) * 2015-12-15 2017-06-22 日本電気硝子株式会社 Near-infrared absorbing glass
JP2017190282A (en) * 2016-04-11 2017-10-19 日本電気硝子株式会社 Infrared absorbing glass plate and method for producing the same, and solid state image sensor device
CN108367966A (en) * 2016-04-11 2018-08-03 日本电气硝子株式会社 Infrared absorbing glass plate and its manufacturing method and solid-state imager equipment
TWI753884B (en) * 2016-04-11 2022-02-01 日商日本電氣硝子股份有限公司 Infrared absorbing glass plate, method for manufacturing the same, and solid-state imaging element device
WO2017179283A1 (en) * 2016-04-11 2017-10-19 日本電気硝子株式会社 Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device
KR102657651B1 (en) * 2016-04-11 2024-04-15 니폰 덴키 가라스 가부시키가이샤 Infrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device
WO2017208679A1 (en) * 2016-06-01 2017-12-07 日本電気硝子株式会社 Method and device for manufacturing near infrared absorbing glass
JP2018049250A (en) * 2016-06-01 2018-03-29 日本電気硝子株式会社 Method and device for manufacturing near infrared absorbing glass
WO2018138990A1 (en) * 2017-01-26 2018-08-02 日本電気硝子株式会社 Near infrared ray absorbing glass
JP2018118898A (en) * 2017-01-26 2018-08-02 日本電気硝子株式会社 Near infrared ray absorbing glass
CN110225894A (en) * 2017-01-26 2019-09-10 日本电气硝子株式会社 Near-infrared ray absorption glass
JP7022369B2 (en) 2017-01-26 2022-02-18 日本電気硝子株式会社 Near infrared absorber glass
JP2018193284A (en) * 2017-05-22 2018-12-06 日本電気硝子株式会社 Device and method for producing glass plate
WO2019039202A1 (en) * 2017-08-25 2019-02-28 日本電気硝子株式会社 Near-infrared radiation absorption glass
TWI704117B (en) * 2017-08-25 2020-09-11 日商日本電氣硝子股份有限公司 Near infrared absorption glass
CN110621627A (en) * 2017-08-25 2019-12-27 日本电气硝子株式会社 Near infrared ray absorption glass
JP7071608B2 (en) 2017-08-25 2022-05-19 日本電気硝子株式会社 Near infrared absorber glass
JP2019038719A (en) * 2017-08-25 2019-03-14 日本電気硝子株式会社 Near-infrared radiation absorption glass
JP2020023425A (en) * 2018-03-05 2020-02-13 日本電気硝子株式会社 Manufacturing method of near infrared ray absorption glass
CN111448169A (en) * 2018-03-05 2020-07-24 日本电气硝子株式会社 Method for producing near-infrared-absorbing glass
WO2019171851A1 (en) * 2018-03-05 2019-09-12 日本電気硝子株式会社 Method of manufacturing near infrared ray absorbing glass
JP7138849B2 (en) 2018-03-05 2022-09-20 日本電気硝子株式会社 Manufacturing method of near-infrared absorbing glass
CN114538772A (en) * 2022-03-24 2022-05-27 成都光明光电股份有限公司 Glass, glass element and optical filter
CN114538772B (en) * 2022-03-24 2022-12-02 成都光明光电股份有限公司 Glass, glass element and optical filter

Also Published As

Publication number Publication date
JP6256857B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6256857B2 (en) Near infrared absorbing glass
JP6136009B2 (en) Optical glass
JP6241653B2 (en) Optical glass
JP2009173520A (en) Optical glass for mold press forming
KR20170038799A (en) High-transparency glass
JP6583609B2 (en) Near infrared absorbing glass
JP6075714B2 (en) Optical glass
JP7071608B2 (en) Near infrared absorber glass
JP2006248850A (en) Glass for near-infrared absorbing filter
JP7134396B2 (en) optical glass
WO2017208679A1 (en) Method and device for manufacturing near infrared absorbing glass
WO2015001944A1 (en) Glass for ir-cut filter
WO2018155105A1 (en) Optical glass
JP2017109887A (en) Near-infrared absorbing glass
WO2015194456A1 (en) Near-infrared ray-absorbing glass plate
JP2017165641A (en) Near-infrared absorption filter glass
WO2019044324A1 (en) Near infrared ray absorbing glass
WO2016098554A1 (en) Glass for near infrared absorption filter
JP2018049250A (en) Method and device for manufacturing near infrared absorbing glass
JP2018118898A (en) Near infrared ray absorbing glass
JP2005239506A (en) Optical glass and optical glass lens
WO2017154560A1 (en) Near-infrared absorption filter glass
JP6771365B2 (en) Optical glass, optics, and optics
JP2005075677A (en) Glass for sharp cut filter, and sharp cut filter
WO2018138990A1 (en) Near infrared ray absorbing glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6256857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171126