JP6694229B2 - Glass - Google Patents

Glass Download PDF

Info

Publication number
JP6694229B2
JP6694229B2 JP2014207574A JP2014207574A JP6694229B2 JP 6694229 B2 JP6694229 B2 JP 6694229B2 JP 2014207574 A JP2014207574 A JP 2014207574A JP 2014207574 A JP2014207574 A JP 2014207574A JP 6694229 B2 JP6694229 B2 JP 6694229B2
Authority
JP
Japan
Prior art keywords
component
content
glass
less
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014207574A
Other languages
Japanese (ja)
Other versions
JP2016074575A (en
Inventor
浄行 桃野
浄行 桃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2014207574A priority Critical patent/JP6694229B2/en
Publication of JP2016074575A publication Critical patent/JP2016074575A/en
Application granted granted Critical
Publication of JP6694229B2 publication Critical patent/JP6694229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光学用途として有用な、低い平均線膨張係数および低い軟化点を有するガラスに関する。   The present invention relates to glasses having a low average linear expansion coefficient and a low softening point, which are useful for optical applications.

近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、同時に小型化も進んでいる。デジタルカメラやビデオカメラ等の撮影機器や、プロジェクタやプロジェクションテレビ等の画像再生(投影)機器等の各種光学機器の分野では、光学系で用いられるレンズやプリズム等の光学素子の枚数を削減し、光学系全体を軽量化及び小型化する要求が強まっている。
また、光学機器に限らず、その他の機器においても、氷点下から500℃近傍の高温にさらされるなど、温度変化の大きい環境で使用する光学系のニーズも近年の車載部品用途の拡大に伴い高まってきている。
In recent years, digitalization and high definition of devices using an optical system are rapidly progressing, and at the same time, miniaturization is also progressing. In the field of various optical devices such as shooting devices such as digital cameras and video cameras, and image reproduction (projection) devices such as projectors and projection televisions, the number of optical elements such as lenses and prisms used in the optical system is reduced, There is an increasing demand to reduce the weight and size of the entire optical system.
In addition to optical equipment, the need for optical systems used in environments with large temperature changes, such as exposure to sub-zero temperatures of up to 500 ° C, is increasing in other equipment as well as in-vehicle component applications in recent years. ing.

光学系全体を軽量化及び小型化するために、非球面レンズを使用することが行われている。
しかしながら、従来の研削、研磨工程で非球面や複雑な形状をした面を得ようとすると、高コストで且つ複雑な作業工程が必要であった。そこで、ゴブ又はガラスブロック、またはこれを再加熱して成形(リヒートプレス成形)から得られたプリフォーム材を、超精密加工された金型で直接プレス成形して光学素子の形状を得る方法、すなわち精密モールドプレス成形する方法が現在主流である。
このような精密モールドプレス成形には、金型の劣化を抑え大量生産に適するため、低温で成形可能な硝材を選択するのが一般的であるが、従来から存在する低融点ガラスは平均線膨張係数が大きいため、温度変化の大きい環境で使用すると割れなどの不具合が生じてしまう。
In order to reduce the weight and size of the entire optical system, an aspherical lens is used.
However, in order to obtain an aspherical surface or a surface having a complicated shape by the conventional grinding and polishing steps, high cost and complicated working steps are required. Therefore, a method of obtaining the shape of the optical element by directly press-molding a gob or a glass block, or a preform material obtained by reheating the glass block (reheat press molding) with an ultra-precision processed die, That is, the method of precision mold press molding is currently the mainstream.
For such precision mold press molding, it is common to select a glass material that can be molded at low temperatures because it suppresses mold deterioration and is suitable for mass production, but conventional low-melting glass has an average linear expansion coefficient. Since the coefficient is large, problems such as cracking will occur when used in an environment with large temperature changes.

特許文献1、2には低融点ガラスが開示されているが、平均線膨張係数が大きく、温度変化の大きい環境での使用に適さない。   Although Patent Documents 1 and 2 disclose low-melting glass, they have a large average linear expansion coefficient and are not suitable for use in an environment where the temperature changes greatly.

特開2009−143801号公報JP, 2009-143801, A

本発明は、上記問題点に鑑みてなされたものである。本発明の目的は、精密モールドプレス成形に適した温度で成形可能な粘性を有しながら、平均線膨張係数の小さいガラスを得ることにある。   The present invention has been made in view of the above problems. An object of the present invention is to obtain glass having a small average linear expansion coefficient while having a viscosity capable of being molded at a temperature suitable for precision mold press molding.

本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、特定の組成を有することで、上記課題を解決するガラスが得られることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   In order to solve the above problems, the present inventors have conducted intensive studies and studies, and as a result, have found that a glass having the specific composition can solve the above problems, and have completed the present invention. It was Specifically, the present invention provides the following.

(構成1)
酸化物換算のモル%で、
SiO成分を30.0%〜90.0%、
成分を0%〜25.0%、
Al成分を0%〜20.0%、
100〜300℃における平均線膨張係数が80×10−7―1以下であり、
軟化点(粘度が107.65dPa・sとなるときの温度)が780℃以下であることを特徴とするガラス。
(構成2)
酸化物換算のモル%で、
LiO成分の含有量が0%〜20.0%、
NaO成分の含有量が0%〜20.0%、
O成分の含有量が0%〜20.0%、
ZnO成分の含有量が0%〜25.0%、
MgO成分の含有量が0%〜20.0%、
CaO成分の含有量が0%〜20.0%
SrO成分の含有量が0%〜20.0%、
BaO成分の含有量が0%〜20.0%である構成1に記載のガラス。
(構成3)
酸化物換算のモル%で、
LiO成分、NaO成分およびKO成分のからなる1種以上の成分の合計の含有量が25.0%未満である構成1または2に記載のガラス。
(構成4)
酸化物換算のモル%で、
ZnO成分、MgO成分、CaO成分、SrO成分およびBaO成分からなる1種以上の成分の合計の含有量が30.0%未満である構成1から3のいずれかに記載のガラス。
(構成5)
酸化物換算のモル%で、
ZrO成分の含有量が0%〜10.0%、
TiO成分の含有量が0%〜10.0%、
Nb成分の含有量が0%〜10.0%、
WO成分の含有量が0%〜10.0%、
Ta成分の含有量が0%〜10.0%、
Sb成分の含有量が0%〜10.0%、
As成分の含有量が0%〜10.0%、
SnO成分の含有量が0%〜3%である構成1から4のいずれかに記載のガラス。
(Structure 1)
In terms of oxide equivalent mol%,
SiO 2 component is 30.0% to 90.0%,
B 2 O 3 component 0% 25.0%
Al 2 O 3 component is 0% to 20.0%,
The average linear expansion coefficient at 100 to 300 ° C. is 80 × 10 −7 ° C. −1 or less,
A glass having a softening point (temperature at which the viscosity becomes 10 7.65 dPa · s) is 780 ° C. or lower.
(Structure 2)
In terms of oxide equivalent mol%,
The content of the Li 2 O component is 0% to 20.0%,
The content of Na 2 O component is 0% to 20.0%,
The content of K 2 O component is 0% to 20.0%,
The content of ZnO component is 0% to 25.0%,
The content of MgO component is 0% to 20.0%,
Content of CaO component is 0% to 20.0%
The content of SrO component is 0% to 20.0%,
The glass according to Structure 1, wherein the content of the BaO component is 0% to 20.0%.
(Structure 3)
In terms of oxide equivalent mol%,
The glass according to Configuration 1 or 2, wherein the total content of one or more components consisting of a Li 2 O component, a Na 2 O component and a K 2 O component is less than 25.0%.
(Structure 4)
In terms of oxide equivalent mol%,
The glass according to any one of Configurations 1 to 3, wherein the total content of one or more components consisting of a ZnO component, a MgO component, a CaO component, a SrO component and a BaO component is less than 30.0%.
(Structure 5)
In terms of oxide equivalent mol%,
The content of the ZrO 2 component is 0% to 10.0%,
The content of the TiO 2 component is 0% to 10.0%,
The content of the Nb 2 O 5 component is 0% to 10.0%,
The content of the WO 3 component is 0% to 10.0%,
The content of Ta 2 O 5 component is 0% to 10.0%,
The content of Sb 2 O 3 component is 0% to 10.0%,
The content of As 2 O 3 component is 0% to 10.0%,
The glass according to any one of configurations 1 to 4, wherein the content of the SnO 2 component is 0% to 3%.

本発明によれば、精密モールドプレス成形に適した温度で成形可能な粘性を有しながら、平均線膨張係数の小さいガラスを得ることができる。すなわち、本発明で得られるガラスは、軟化点(粘度が107.65dPa・sとなるときの温度)が780℃以下であり、100℃〜300℃における平均線膨張係数が80×10−7―1以下である。より好ましい態様によれば、軟化点が770℃以下であり、100〜300℃における平均線膨張係数が70×10−7―1以下である。さらに好ましい態様によれば、軟化点が760℃以下であり、100〜300℃における平均線膨張係数が65×10−7―1以下である。 According to the present invention, it is possible to obtain glass having a small average linear expansion coefficient while having a viscosity capable of being molded at a temperature suitable for precision mold press molding. That is, the glass obtained by the present invention has a softening point (temperature at which the viscosity becomes 10 7.65 dPa · s) of 780 ° C. or lower, and an average linear expansion coefficient at 100 ° C. to 300 ° C. of 80 × 10 −. 7-1 or less. According to a more preferable aspect, the softening point is 770 ° C. or lower, and the average linear expansion coefficient at 100 to 300 ° C. is 70 × 10 −7 ° C. −1 or lower. According to a further preferred embodiment, the softening point is 760 ° C. or lower, and the average linear expansion coefficient at 100 to 300 ° C. is 65 × 10 −7 ° C. −1 or lower.

以下、本発明のガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。   Hereinafter, embodiments of the glass of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and may be carried out with appropriate modifications within the scope of the object of the present invention. You can It should be noted that the description of the overlapping description may be omitted as appropriate, but this does not limit the gist of the invention.

[ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成のガラス全物質量に対するモル%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総物質量を100モル%として、ガラス中に含有される各成分を表記した組成である。
[Glass component]
The composition range of each component constituting the optical glass of the present invention will be described below. In the present specification, unless otherwise specified, the contents of the respective components are all expressed in mol% with respect to the total amount of glass-based substances having an oxide equivalent composition. Here, the “oxide equivalent composition” means that when it is assumed that the oxides, composite salts, metal fluorides, etc. used as raw materials for the glass constituents of the present invention are all decomposed during melting and converted into oxides. It is a composition in which each component contained in the glass is described, with the total amount of the produced oxides being 100 mol%.

SiO成分は、本発明のガラス骨格を形成する必須成分である。特に、SiO成分の含有量を30.0%以上にすることで、低い平均線膨張係数が得やすくなる。SiO成分の含有量は、好ましくは40.0%、より好ましくは45.0%、最も好ましくは50.0%を下限とする。
一方、SiO成分の含有量を90.0%以下にすることで、精密モールドプレス成形温度の上昇や熔融性の悪化を抑えられる。従って、SiO成分の含有量は、好ましくは90.0%、より好ましくは85.0%、さらに好ましくは80.0%、最も好ましくは75.0%を上限とする。
The SiO 2 component is an essential component forming the glass skeleton of the present invention. In particular, when the content of the SiO 2 component is 30.0% or more, a low average linear expansion coefficient is easily obtained. The lower limit of the content of the SiO 2 component is preferably 40.0%, more preferably 45.0% and most preferably 50.0%.
On the other hand, by setting the content of the SiO 2 component to 90.0% or less, it is possible to suppress an increase in precision mold press molding temperature and deterioration of meltability. Therefore, the upper limit of the content of the SiO 2 component is preferably 90.0%, more preferably 85.0%, further preferably 80.0%, and most preferably 75.0%.

成分は、溶融性を向上させ、精密モールドプレス成形温度を下げる効果を有する任意成分である。B成分の含有量は、好ましくは0%超、より好ましくは5.0%、最も好ましくは10.0%を下限とする。
一方、B成分の含有量を25.0%以下にすることで、ガラスの分相化を抑え、且つ化学的耐久性の悪化を抑えられる。従って、B成分の含有量は、好ましくは25.0%、より好ましくは23.0%、さらに好ましくは20.0%、最も好ましくは15.0%を上限とする。
The B 2 O 3 component is an optional component having the effects of improving the meltability and lowering the precision mold press molding temperature. The lower limit of the content of the B 2 O 3 component is preferably more than 0%, more preferably 5.0%, and most preferably 10.0%.
On the other hand, by setting the content of the B 2 O 3 component to 25.0% or less, it is possible to suppress the phase separation of the glass and suppress the deterioration of the chemical durability. Therefore, the upper limit of the content of the B 2 O 3 component is preferably 25.0%, more preferably 23.0%, further preferably 20.0%, and most preferably 15.0%.

Al成分は、低い平均線膨張係数を得やすくするとともに、分相を抑制するための任意成分である。Al成分の含有量は、好ましくは0%超、より好ましくは1.0%、最も好ましくは2.0%を下限とする。
一方、Al成分の含有量を20.0%以下にすることで、精密モールドプレス成形温度の上昇を抑えられる。従って、Al成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%、最も好ましくは5.0%を上限とする。
The Al 2 O 3 component is an optional component that facilitates obtaining a low average linear expansion coefficient and suppresses phase separation. The lower limit of the content of the Al 2 O 3 component is preferably more than 0%, more preferably 1.0%, and most preferably 2.0%.
On the other hand, by setting the content of the Al 2 O 3 component to 20.0% or less, it is possible to suppress an increase in the precision mold press molding temperature. Therefore, the upper limit of the content of the Al 2 O 3 component is preferably 20.0%, more preferably 15.0%, further preferably 10.0%, and most preferably 5.0%.

LiO成分は低温溶融性を向上させるとともに、精密モールドプレス成形温度を下げる効果を有する任意成分である。一方でLiO成分の含有量を20%以下にすることで、LiO成分の過剰な含有による化学的耐久性の悪化や平均線膨張係数の上昇を抑えられる。従ってLiO成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは6.0%を上限とする。 The Li 2 O component is an optional component that has the effects of improving low-temperature meltability and lowering the precision mold press molding temperature. On the other hand, by setting the content of the Li 2 O component to 20% or less, deterioration of chemical durability and increase in average linear expansion coefficient due to excessive content of the Li 2 O component can be suppressed. Therefore, the upper limit of the content of the Li 2 O component is preferably 20.0%, more preferably 10.0%, and most preferably 6.0%.

NaO成分は低温溶融性を向上させるとともに、精密モールドプレス成形温度を下げる効果を有する任意成分である。一方でNaO成分の含有量を20%以下にすることで、NaO成分の過剰な含有による化学的耐久性の悪化や平均線膨張係数の上昇を抑えられる。従ってNaO成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは6.0%を上限とする。 The Na 2 O component is an optional component that has the effects of improving low-temperature meltability and lowering the precision mold press molding temperature. On the other hand, by setting the content of the Na 2 O component to 20% or less, deterioration of chemical durability and increase of the average linear expansion coefficient due to excessive content of the Na 2 O component can be suppressed. Therefore, the upper limit of the content of Na 2 O component is preferably 20.0%, more preferably 10.0%, and most preferably 6.0%.

O成分は低温溶融性を向上させるとともに、精密モールドプレス成形温度を下げる効果を有する任意成分である。一方でKO成分の含有量を20.0%以下にすることで、KO成分の過剰な含有による化学的耐久性の悪化や平均線膨張係数の上昇を抑えられる。従ってKO成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは6.0%を上限とする。 The K 2 O component is an optional component that has the effects of improving low-temperature meltability and lowering the precision mold press molding temperature. On the other hand, by setting the content of the K 2 O component to 20.0% or less, deterioration of chemical durability and increase of the average linear expansion coefficient due to excessive content of the K 2 O component can be suppressed. Therefore, the upper limit of the content of the K 2 O component is preferably 20.0%, more preferably 10.0%, and most preferably 6.0%.

ZnO成分は、0%超含有する場合に、低温溶融性を向上させるとともに、且つ化学的耐久性を改善できる任意成分である。従って、ZnO成分の含有量は、好ましくは0%超としてもよく、より好ましくは3.0%、さらに好ましくは5.0%を下限としてもよい。
一方で、ZnO成分の含有量を25.0%以下にすることで、失透性の悪化や平均線膨張係数の上昇を抑えられる。従って、ZnO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、さらに好ましくは15.0%、最も好ましくは10.0%を上限とする。
The ZnO component is an optional component capable of improving the low temperature melting property and the chemical durability when the content thereof exceeds 0%. Therefore, the content of the ZnO component may be preferably more than 0%, more preferably 3.0%, and further preferably 5.0% as the lower limit.
On the other hand, when the content of the ZnO component is 25.0% or less, deterioration of devitrification and increase of average linear expansion coefficient can be suppressed. Therefore, the upper limit of the content of the ZnO component is preferably 25.0%, more preferably 20.0%, further preferably 15.0%, and most preferably 10.0%.

MgO成分は、0%超含有する場合に、低温溶融性を向上させる任意成分である。一方で、MgO成分の含有量を20.0%以下にすることで、MgO成分の過剰な含有による耐失透性の低下や平均線膨張係数の上昇を抑えられる。従って、MgO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。   The MgO component is an optional component that improves the low temperature meltability when the content exceeds 0%. On the other hand, by setting the content of the MgO component to 20.0% or less, it is possible to suppress a decrease in devitrification resistance and an increase in the average linear expansion coefficient due to the excessive content of the MgO component. Therefore, the upper limit of the content of the MgO component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.

CaO成分は、0%超含有する場合に、低温溶融性を向上させる任意成分である。一方で、CaO成分の含有量を20.0%以下にすることで、CaO成分の過剰な含有による耐失透性の低下や平均線膨張係数の上昇を抑えられる。従って、CaO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。   The CaO component is an optional component that improves the low temperature meltability when the content of CaO exceeds 0%. On the other hand, by setting the content of the CaO component to 20.0% or less, it is possible to suppress the decrease in devitrification resistance and the increase in the average linear expansion coefficient due to the excessive content of the CaO component. Therefore, the upper limit of the CaO content is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.

SrO成分は、0%超含有する場合に、低温溶融性を向上させる任意成分である。一方で、SrO成分の含有量を20.0%以下にすることで、SrO成分の過剰な含有による耐失透性の低下や平均線膨張係数の上昇を抑えられる。従って、SrO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。   The SrO component is an optional component that improves the low temperature meltability when the content exceeds 0%. On the other hand, by setting the content of the SrO component to 20.0% or less, it is possible to suppress a decrease in devitrification resistance and an increase in the average linear expansion coefficient due to an excessive content of the SrO component. Therefore, the upper limit of the content of the SrO component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.

BaO成分は、0%超含有する場合に、低温溶融性を向上させる任意成分である。一方で、BaO成分の含有量を20.0%以下にすることで、BaO成分の過剰な含有による耐失透性の低下や平均線膨張係数の上昇を抑えられる。従って、BaO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。   The BaO component is an optional component that improves the low temperature meltability when the content of BaO exceeds 0%. On the other hand, by setting the content of the BaO component to 20.0% or less, it is possible to suppress a decrease in devitrification resistance and an increase in the average linear expansion coefficient due to an excessive content of the BaO component. Therefore, the upper limit of the BaO component content is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.

LiO成分、NaO成分およびKO成分からなる1種以上の成分の合計の含有量は、25.0%以下が好ましい。これにより、平均線膨張係数の上昇を抑え、且つ耐失透性を高められる。従って、前記合計の含有量は、好ましくは25.0%、より好ましくは20.0%、さらに好ましくは15.0%、最も好ましくは10.0%を上限とする。 The total content of one or more components consisting of the Li 2 O component, the Na 2 O component and the K 2 O component is preferably 25.0% or less. As a result, it is possible to suppress an increase in the average linear expansion coefficient and enhance the devitrification resistance. Therefore, the upper limit of the total content is preferably 25.0%, more preferably 20.0%, further preferably 15.0%, and most preferably 10.0%.

本発明のガラスは、ZnO成分、MgO成分、CaO成分、SrO成分およびBaO成分からなる1種以上の成分の合計の含有量が、30.0%以下であることが好ましい。これにより、平均線膨張係数の上昇を抑え、且つ耐失透性を高められる。従って、前記合計の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、最も好ましくは15.0%を上限とする。   In the glass of the present invention, the total content of one or more components consisting of ZnO component, MgO component, CaO component, SrO component and BaO component is preferably 30.0% or less. As a result, it is possible to suppress an increase in the average linear expansion coefficient and enhance the devitrification resistance. Therefore, the upper limit of the total content is preferably 30.0%, more preferably 25.0%, further preferably 20.0%, most preferably 15.0%.

ZrO成分は、0%超含有する場合に、化学的耐久性を向上させる任意成分である。一方で、ZrO成分の含有量を10.0%以下にすることで、ZrO成分の過剰な含有による耐失透性の低下を抑えられる。従って、ZrO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは6.0%を上限とする。 The ZrO 2 component is an optional component that improves the chemical durability when the content exceeds 0%. On the other hand, by setting the content of the ZrO 2 component to 10.0% or less, it is possible to suppress the deterioration of the devitrification resistance due to the excessive content of the ZrO 2 component. Therefore, the upper limit of the ZrO 2 component content is preferably 10.0%, more preferably 8.0%, and most preferably 6.0%.

TiO成分は、0%超含有する場合に、化学的耐久性を向上させる任意成分である。
一方で、TiO成分の含有量を10.0%以下にすることで、TiO成分の過剰な含有による耐失透性の低下抑えられる。従って、TiO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは6.0%を上限とする。
The TiO 2 component is an optional component that improves the chemical durability when the content exceeds 0%.
On the other hand, by setting the content of the TiO 2 component to 10.0% or less, the devitrification resistance can be prevented from lowering due to the excessive content of the TiO 2 component. Therefore, the upper limit of the content of the TiO 2 component is preferably 10.0%, more preferably 8.0%, and most preferably 6.0%.

Nb成分は、0%超含有する場合に、化学的耐久性を向上させる任意成分である。一方で、Nb成分の含有量を10.0%以下にすることで、材料のコストを抑えつつ、Nb成分の過剰な含有によるガラスの耐失透性を抑えることができる。従って、Nb成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは6.0%を上限とする。 The Nb 2 O 5 component is an optional component that improves the chemical durability when the content exceeds 0%. On the other hand, by setting the content of the Nb 2 O 5 component to 10.0% or less, it is possible to suppress the devitrification resistance of the glass due to the excessive content of the Nb 2 O 5 component while suppressing the material cost. .. Therefore, the upper limit of the content of the Nb 2 O 5 component is preferably 10.0%, more preferably 8.0%, and most preferably 6.0%.

WO成分は、0%超含有する場合に、化学的耐久性を向上させる任意成分である。
一方で、WO成分の含有量を10.0%以下にすることで、材料のコストを抑えつつ、WO成分の過剰な含有によるガラスの耐失透性の低下を抑えることができる。従って、WO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは6.0%を上限とする。
The WO 3 component is an optional component that improves the chemical durability when the content of WO 3 exceeds 0%.
On the other hand, by setting the content of the WO 3 component to 10.0% or less, it is possible to suppress the reduction of the devitrification resistance of the glass due to the excessive content of the WO 3 component while suppressing the material cost. Therefore, the upper limit of the content of the WO 3 component is preferably 10.0%, more preferably 8.0%, and most preferably 6.0%.

Ta成分は、0%超含有する場合に、化学的耐久性を向上させる任意成分である。耐失透性を高め、且つ溶融ガラスの粘性を高められる任意成分である。一方で、高価なTa成分を10.0%以下にすることで、ガラスの材料コストを低減できる。従って、Ta成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは6.0%を上限とする。 The Ta 2 O 5 component is an optional component that improves the chemical durability when the content exceeds 0%. It is an optional component that can improve devitrification resistance and viscosity of molten glass. On the other hand, by setting the expensive Ta 2 O 5 component to 10.0% or less, the material cost of glass can be reduced. Therefore, the upper limit of the content of the Ta 2 O 5 component is preferably 10.0%, more preferably 8.0%, and most preferably 6.0%.

Sb成分は、0%超含有する場合に、溶融ガラスを脱泡できる任意成分である。
一方で、Sb量が多すぎると、失透性の悪化や脱泡不良を引き起こす。従って、Sb成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは1.0%、最も好ましくは0.2%を上限とする。
The Sb 2 O 3 component is an optional component capable of defoaming the molten glass when the content thereof exceeds 0%.
On the other hand, when the amount of Sb 2 O 3 is too large, devitrification is deteriorated and defoaming is defective. Therefore, the upper limit of the Sb 2 O 3 component content is preferably 10.0%, more preferably 5.0%, even more preferably 1.0%, and most preferably 0.2%.

As成分は、0%超含有する場合に、溶融ガラスを脱泡できる任意成分である。
一方で、As量が多すぎると、失透性の悪化や脱泡不良を引き起こす。従って、As成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは1.0%、最も好ましくは0.5%を上限とする。
The As 2 O 3 component is an optional component capable of defoaming the molten glass when the content exceeds 0%.
On the other hand, if the amount of As 2 O 3 is too large, devitrification is deteriorated and defoaming is defective. Therefore, the content of the As 2 O 3 component is preferably 10.0%, more preferably 5.0%, further preferably 1.0%, and most preferably 0.5%.

SnO成分は、0%超含有する場合に、溶融ガラスの酸化を低減して清澄できる任意成分である。
一方で、SnO成分の含有量を3.0%以下にすることで、失透性の悪化を抑え、SnOの吸収によるガラスの着色を低減できる。従って、SnO成分の含有量は、好ましくは3.0%、より好ましくは2.0%、さらに好ましくは1.0%を上限とする。
The SnO 2 component is an optional component that can reduce the oxidation of the molten glass and clarify it when the content exceeds 0%.
On the other hand, by setting the content of the SnO 2 component to 3.0% or less, deterioration of devitrification can be suppressed and coloring of the glass due to absorption of SnO 2 can be reduced. Therefore, the upper limit of the content of the SnO 2 component is preferably 3.0%, more preferably 2.0%, and further preferably 1.0%.

TeO成分は、屈折率を高め、且つガラス転移点を下げられる任意成分である。
しかしながら、TeOは白金製の坩堝や、溶融ガラスと接する部分が白金で形成されている溶融槽でガラス原料を溶融する際、白金と合金化しうる問題がある。従って、TeO成分の含有量は、好ましくは10%、より好ましくは5%、最も好ましくは3%を上限とし、さらに好ましくは含有しない。
The TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point.
However, TeO 2 has a problem that it can be alloyed with platinum when the glass raw material is melted in a crucible made of platinum or a melting tank in which a portion in contact with the molten glass is made of platinum. Therefore, the content of the TeO 2 component is preferably 10%, more preferably 5%, most preferably 3%, and further preferably no content.

Bi成分は、屈折率を高め、且つガラス転移点を下げられる任意成分である。
一方で、Bi成分の含有量を10.0%以下にすることで、ガラスの耐失透性を高められ、且つ、ガラスの着色を低減して可視光透過率を高められる。従って、Bi成分の含有量は、好ましくは10%、より好ましくは5%、最も好ましくは3%を上限とする。
The Bi 2 O 3 component is an optional component capable of increasing the refractive index and lowering the glass transition point.
On the other hand, by setting the content of the Bi 2 O 3 component to 10.0% or less, the devitrification resistance of the glass can be increased, and the coloring of the glass can be reduced to increase the visible light transmittance. Therefore, the upper limit of the content of the Bi 2 O 3 component is preferably 10%, more preferably 5%, and most preferably 3%.

成分は、0%超含有する場合に、ガラスの耐失透性を高められる任意成分である。特に、P成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えられる。従って、P成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。 The P 2 O 5 component is an optional component that can enhance the devitrification resistance of the glass when the content exceeds 0%. In particular, by setting the content of the P 2 O 5 component to 10.0% or less, it is possible to suppress the decrease in the chemical durability of the glass, particularly the water resistance. Therefore, the upper limit of the content of the P 2 O 5 component is preferably 10.0%, more preferably 5.0%, and further preferably 3.0%.

GeO成分は、0%超含有する場合に、ガラスの屈折率を高め、且つ耐失透性を向上できる任意成分である。しかしながら、GeOは原料価格が高いため、その量が多いと材料コストが高くなる。従って、GeO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは5.0%を上限とする。 The GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when the content exceeds 0%. However, since the raw material cost of GeO 2 is high, the material cost becomes high if the amount thereof is large. Therefore, the upper limit of the content of the GeO 2 component is preferably 10.0%, more preferably 8.0%, and further preferably 5.0%.

なお、ガラスを清澄し脱泡する成分は、上記のSb、AsおよびSnO成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。 The components for clarifying and defoaming the glass are not limited to the above Sb 2 O 3 , As 2 O 3 and SnO 2 components, but are known fining agents, defoaming agents or those known in the field of glass production. Can be used.

<含有すべきでない成分について>
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<Ingredients that should not be contained>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferable to be contained will be described.

上述されていない他の成分を、本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、実質的に含まないことが好ましい。   Other components not mentioned above can be added, if necessary, within a range that does not impair the characteristics of the glass of the present invention. However, each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, except Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is used alone. Alternatively, even if a small amount is contained in combination, the glass is colored, and absorption occurs at a specific wavelength in the visible range.

さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。   Furthermore, the components Th, Cd, Tl, Os, Be, and Se have tended to be refrained from being used as harmful chemical substances in recent years, and are used not only in the glass manufacturing process but also in the processing process and post-commercial disposal. Environmental measures need to be taken. Therefore, when importance is attached to the influence on the environment, it is preferable that they are not substantially contained.

[製造方法]
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス組成の溶融難易度に応じて電気炉で1200〜1540℃の温度範囲で5〜20時間溶融し、攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above raw materials were uniformly mixed so that each component was within a predetermined content range, the prepared mixture was put into a platinum crucible, and 1200 to 1540 ° C. in an electric furnace depending on the melting difficulty of the glass composition. It is prepared by melting in the temperature range of 5 to 20 hours, stirring and homogenizing, lowering to an appropriate temperature, casting in a mold, and slowly cooling.

本発明のガラスは、100℃〜300℃における平均線膨張係数が低いことが望ましい。
低い線膨張係数を有することで、氷点下から500℃以上の高温域にわたる温度変化の大きい環境においてもガラス素子が破損することなく使用することができる。従って本発明のガラスは、100℃〜300℃における平均線膨張係数が80×10−7―1以下とすることが好ましく、70×10−7―1以下とすることがさらに好ましく、65×10−7―1以下とすることが最も好ましい。
The glass of the present invention preferably has a low average linear expansion coefficient at 100 ° C to 300 ° C.
By having a low coefficient of linear expansion, the glass element can be used without being damaged even in an environment where there is a large temperature change from below freezing to a high temperature range of 500 ° C. or higher. Therefore, the glass of the present invention preferably has an average linear expansion coefficient of 80 × 10 −7 ° C.− 1 or less at 100 ° C. to 300 ° C., more preferably 70 × 10 −7 ° C.− 1 or less, and 65 Most preferably, it is set to x10-7 ° C- 1 or less.

本発明のガラスは、軟化点(粘度が107.65dPa・sとなるときの温度)が低いことが好ましい。軟化点が低いことで精密モールドプレス成形時に、金型の劣化を抑え大量生産することが可能となる。従って本発明のガラスは、軟化点が780℃以下とすることが好ましく、770℃以下とすることがさらに好ましく、760℃以下とすることが最も好ましい。
なお、軟化点は、平行板加圧粘度計(有限会社オプト企業社製)により測定することができる。
The glass of the present invention preferably has a low softening point (temperature at which the viscosity becomes 10 7.65 dPa · s). Since the softening point is low, it is possible to suppress the deterioration of the mold at the time of precision mold press molding and mass-produce it. Therefore, the glass of the present invention preferably has a softening point of 780 ° C. or lower, more preferably 770 ° C. or lower, and most preferably 760 ° C. or lower.
The softening point can be measured by a parallel plate pressure viscometer (manufactured by Opto Enterprise Co., Ltd.).

[ガラスの成形]
本発明のガラスは、公知の方法によって、熔解成形することが可能である。なお、ガラス溶融体を成形する手段は限定されない。
[Molding of glass]
The glass of the present invention can be melt-formed by a known method. The means for shaping the glass melt is not limited.

[ガラス成形体及び光学素子]
本発明のガラスは、例えば研削及び研磨加工の手段等を用いて、ガラス成形体を作製することができる。すなわち、ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製することができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Glass molded article and optical element]
With respect to the glass of the present invention, a glass molded body can be produced, for example, by means of grinding and polishing. That is, the glass molding can be produced by performing mechanical processing such as grinding and polishing on the glass. The means for producing the glass molded body is not limited to these means.

このように、本発明のガラスから形成したガラス成形体は、様々な光学素子及び光学設計に有用であるが、平均線膨張係数が小さいため温度変化の大きい環境で使用することが可能である。   As described above, the glass molded body formed from the glass of the present invention is useful for various optical elements and optical designs, but since it has a small average linear expansion coefficient, it can be used in an environment where the temperature change is large.

本発明のガラスの実施例の組成、これらのガラスの屈折率(n)、アッベ数(ν)、ガラス転移温度(Tg)、屈服点(At)、100℃〜300℃における平均線膨張係数(α)、軟化点を表1〜表3に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Compositions of Examples of the glass of the present invention, the refractive index of these glasses (n d), Abbe number ([nu d), glass transition temperature (Tg), yield point (At), the average linear expansion at 100 ° C. to 300 ° C. Table 1 to Table 3 show the coefficient (α) and the softening point. It should be noted that the following embodiments are merely for the purpose of illustration, and the embodiments are not limited thereto.

本発明の実施例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の溶融難易度に応じて電気炉で1200〜1550℃の温度範囲で5〜20時間溶融した後、攪拌均質化してから金型等に鋳込み、徐冷してガラスを作製した。   The glass of each of the examples of the present invention is used as a raw material for each component in a usual optical glass such as a corresponding oxide, hydroxide, carbonate, nitrate, fluoride, hydroxide or metaphosphoric acid compound. High purity raw material is selected, weighed and uniformly mixed so that the composition ratio of each example shown in the table is obtained, and then charged into a platinum crucible, and an electric furnace is used according to the melting difficulty of the glass composition. After melting in a temperature range of 1200 to 1550 ° C. for 5 to 20 hours, the mixture was stirred and homogenized, then cast into a mold or the like, and gradually cooled to produce glass.

ここで、実施例のガラスの屈折率及びアッベ数は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。ここで、屈折率及びアッベ数は、徐冷降温速度を−25℃/hrにして得られたガラスについて測定を行うことで求めた。   Here, the refractive index and the Abbe number of the glass of the examples were measured based on the Japan Optical Glass Industry Association Standard JOGIS01-2003. Here, the refractive index and the Abbe's number were obtained by measuring the glass obtained by setting the slow cooling rate to -25 ° C / hr.

また、実施例のガラスの平均線膨張係数およびガラス転移温度は、日本光学硝子工業会規格JOGIS08―2003に基づき、縦型膨張測定器(Bruker社製)を用いた測定を行うことで求めた。ここで、測定を行う際のサンプルはφ4.5mm、長さ20mmのものを使用し、昇温速度を4℃/minとした。











Further, the average linear expansion coefficient and glass transition temperature of the glass of the examples were determined by performing measurement using a vertical expansion measuring device (manufactured by Bruker) based on Japan Optical Glass Industry Standard JOGIS08-2003. Here, the sample used for the measurement had a diameter of 4.5 mm and a length of 20 mm, and the heating rate was 4 ° C./min.











Figure 0006694229
Figure 0006694229















Figure 0006694229
Figure 0006694229















Figure 0006694229
Figure 0006694229

本発明の実施例のガラスは、いずれも100〜300℃における平均線膨張係数が80×10−7―1以下、軟化点が760℃以下であり、いずれも所望の範囲内であった。このため、本発明の実施例のガラスは精密モールドプレス成形に適し、温度による膨張変化が小さいことが明らかになった。 Each of the glasses of the examples of the present invention had an average linear expansion coefficient of 80 × 10 −7 ° C.− 1 or less at 100 to 300 ° C. and a softening point of 760 ° C. or less, which were all within the desired ranges. Therefore, it was revealed that the glass of the example of the present invention is suitable for precision mold press molding and has a small expansion change due to temperature.

本発明のガラスは、精密モールドプレス成形に適しておりながら、温度変化の大きい環境や500℃付近の高温下で使用する光学素子用途に好適である。   The glass of the present invention is suitable for precision mold press molding, but is also suitable for use as an optical element used in an environment where temperature changes greatly or at a high temperature of around 500 ° C.

Claims (4)

酸化物換算のモル%で、
SiO2成分の含有量が30.0%〜78.15%、
23成分の含有量が10.0%〜15.0%、
Al23成分の含有量が0%〜1.81%
Na2O成分の含有量が1.66%〜10.0%、
ZnO成分の含有量が4.76%〜25.0%
Li2O成分、Na2O成分およびK2O成分からなる1種以上の成分の合計含有量が10.03%以下であり、
100〜300℃における平均線膨張係数が80×10-7-1以下であり、
軟化点(粘度が107.65dPa・sとなるときの温度)が780℃以下であることを特徴とするガラス。
In terms of oxide equivalent mol%,
The content of SiO 2 component is 30.0% to 78.15%,
The content of B 2 O 3 component is 10.0% to 15.0%,
The content of Al 2 O 3 component is 0% to 1.81% ,
The content of Na 2 O component is 1.66% to 10.0%,
The content of ZnO component is 4.76% to 25.0% ,
The total content of one or more components consisting of Li 2 O component, Na 2 O component and K 2 O component is 10.03% or less,
The average linear expansion coefficient at 100 to 300 ° C. is 80 × 10 −7 ° C. −1 or less,
A glass having a softening point (temperature at which the viscosity becomes 10 7.65 dPa · s) is 780 ° C. or lower.
酸化物換算のモル%で、
MgO成分の含有量が0%〜20.0%、
CaO成分の含有量が0%〜20.0%、
SrO成分の含有量が0%〜20.0%、
BaO成分の含有量が0%〜20.0%である請求項1に記載のガラス。
In terms of oxide equivalent mol%,
The content of MgO component is 0% to 20.0%,
The content of CaO component is 0% to 20.0%,
The content of SrO component is 0% to 20.0%,
The glass according to claim 1, wherein the content of the BaO component is 0% to 20.0%.
酸化物換算のモル%で、
ZnO成分、MgO成分、CaO成分、SrO成分およびBaO成分からなる1種以上の成分の合計含有量が30.0%未満である請求項1または2に記載のガラス。
In terms of oxide equivalent mol%,
The glass according to claim 1 or 2, wherein the total content of one or more components consisting of ZnO component, MgO component, CaO component, SrO component and BaO component is less than 30.0%.
酸化物換算のモル%で、
ZrO2成分の含有量が0%〜10.0%、
TiO2成分の含有量が0%〜10.0%、
Nb25成分の含有量が0%〜10.0%、
WO3成分の含有量が0%〜10.0%、
Ta25成分の含有量が0%〜10.0%、
Sb23成分の含有量が0%〜10.0%、
As23成分の含有量が0%〜10.0%、
SnO2成分の含有量が0%〜3%である請求項1から3のいずれかに記載のガラス。
In terms of oxide equivalent mol%,
The content of ZrO 2 component is 0% to 10.0%,
The content of the TiO 2 component is 0% to 10.0%,
The content of the Nb 2 O 5 component is 0% to 10.0%,
The content of the WO 3 component is 0% to 10.0%,
The content of Ta 2 O 5 component is 0% to 10.0%,
The content of Sb 2 O 3 component is 0% to 10.0%,
The content of As 2 O 3 component is 0% to 10.0%,
The glass according to claim 1, wherein the content of the SnO 2 component is 0% to 3%.
JP2014207574A 2014-10-08 2014-10-08 Glass Active JP6694229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207574A JP6694229B2 (en) 2014-10-08 2014-10-08 Glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207574A JP6694229B2 (en) 2014-10-08 2014-10-08 Glass

Publications (2)

Publication Number Publication Date
JP2016074575A JP2016074575A (en) 2016-05-12
JP6694229B2 true JP6694229B2 (en) 2020-05-13

Family

ID=55950811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207574A Active JP6694229B2 (en) 2014-10-08 2014-10-08 Glass

Country Status (1)

Country Link
JP (1) JP6694229B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107857472A (en) * 2017-11-25 2018-03-30 滕州市耀海玻雕有限公司 The manufacture method of cover plate and cover plate
WO2020237399A1 (en) * 2019-05-31 2020-12-03 Abk Biomedical Incorporated Radiopaque glass material
CN110282873B (en) * 2019-07-05 2021-08-10 齐鲁工业大学 Large bottle and can glass with long material property and preparation method thereof
DE102020108867A1 (en) 2020-03-31 2021-09-30 Schott Ag Melting jar and its use
CN111533443B (en) * 2020-05-27 2022-04-15 成都光明光电股份有限公司 Optical glass
CN112794643A (en) * 2021-01-12 2021-05-14 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777045A (en) * 1980-10-28 1982-05-14 Fuji Photo Film Co Ltd Glass containing phosphate
JPS57200247A (en) * 1981-05-30 1982-12-08 Toshiba Corp Glass fiber of multi-component system for optical communication
US4439487A (en) * 1982-12-17 1984-03-27 E. I. Du Pont De Nemours & Company Polyester/nylon bicomponent flament
JPS6071540A (en) * 1983-09-26 1985-04-23 Ohara Inc Glass for photomask substrate
US4501819A (en) * 1982-12-23 1985-02-26 Kabushiki Kaisha Ohara Kogaku Garasu Seizosho Glass for a photomask
US4507393A (en) * 1983-08-11 1985-03-26 Schott Glass Technologies, Inc. Highly prefractive, low dispersion optical glass suitable for multifocal corrective lenses
JPS60155551A (en) * 1984-01-24 1985-08-15 Toshiba Corp Coating glass for optical fiber
JPS62153143A (en) * 1985-12-27 1987-07-08 Asahi Glass Co Ltd Display device
US4746634A (en) * 1987-05-28 1988-05-24 Corning Glass Works Solarization-resistant glass microsheet
JPH0274536A (en) * 1988-09-07 1990-03-14 Toshiba Glass Co Ltd Hard glass for press molding
US4925814A (en) * 1989-02-27 1990-05-15 Corning Incorporated Ultraviolet transmitting glasses for EPROM windows
JP2645923B2 (en) * 1991-03-18 1997-08-25 五鈴精工硝子株式会社 UV blocking material
DE4230607C1 (en) * 1992-09-12 1994-01-05 Schott Glaswerke Chemically and thermally highly durable, can be fused with tungsten borosilicate glass and its use
DE4336122C1 (en) * 1993-10-22 1995-04-27 Deutsche Spezialglas Ag High-refraction ophthalmic glass and use of the glass
JP4132119B2 (en) * 1996-03-13 2008-08-13 Hoya株式会社 Heat resistant glass
JP2002020136A (en) * 2000-06-30 2002-01-23 Hoya Corp Optical glass and optical product using the same
US6881489B2 (en) * 2000-12-15 2005-04-19 Corning Incorporated Thin sheet mirror and Nd2O3 doped glass
JP2002241143A (en) * 2001-02-09 2002-08-28 Ngk Insulators Ltd Sealing composition
JP2003261352A (en) * 2002-03-08 2003-09-16 Asahi Techno Glass Corp Glass for display and glass part for display
US7517822B2 (en) * 2002-05-16 2009-04-14 Schott Ag UV-blocking borosilicate glass, the use of the same, and a fluorescent lamp
JP2004026606A (en) * 2002-06-27 2004-01-29 Okamoto Glass Co Ltd Low thermal expansion glass
JP2005162600A (en) * 2003-11-11 2005-06-23 Nippon Electric Glass Co Ltd Cover glass plate for semiconductor package
JP2007302551A (en) * 2006-04-14 2007-11-22 Nippon Electric Glass Co Ltd Glass for illumination
JP5910851B2 (en) * 2011-07-26 2016-04-27 日本電気硝子株式会社 Glass used for optical element for concentrating solar power generation apparatus, optical element for concentrating solar power generation apparatus and concentrating solar power generation apparatus using the same
JP2014108908A (en) * 2012-12-03 2014-06-12 Nippon Electric Glass Co Ltd Glass used in fresnel lens for concentrating solar power generation apparatus

Also Published As

Publication number Publication date
JP2016074575A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6694229B2 (en) Glass
JP6603449B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2008254953A (en) Optical glass
JP2008201646A (en) Optical glass and optical element
JP5946237B2 (en) Optical glass, preform material and optical element
JP2009203135A (en) Optical glass, optical element and preform for precision press molding
JP2017088482A (en) Optical glass, preform material and optical element
JP2015044724A (en) Optical glass, preform, and optical element
JP2016088835A (en) Optical glass, preform and optical element
JP6721087B2 (en) Optical glass, preform for press molding and optical element
JP2012092016A (en) Optical glass
JP6363141B2 (en) Optical glass, preform material and optical element
JP5875572B2 (en) Optical glass, preform material and optical element
JP6146691B2 (en) Optical glass
JP2012153558A (en) Optical glass
JP6639074B2 (en) Optical glass, lens preform and optical element
JP2009269770A (en) Optical glass, preform for precision press molding and optical element
JP2022125089A (en) Optical glass, preform and optical element
JP6062613B2 (en) Optical glass, preform material and optical element
JP2019099395A (en) Optical glass, preform and optical element
JP2014111521A (en) Optical glass, preform, and optical element
JP2018012631A (en) Optical glass, preform material and optical element
JP2013151402A (en) Optical glass, preform and optical element
JP2013087047A (en) Optical glass, optical element, and preform
JP6689057B2 (en) Optical glass, preforms and optical elements

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200417

R150 Certificate of patent or registration of utility model

Ref document number: 6694229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250