JP4132119B2 - Heat resistant glass - Google Patents

Heat resistant glass Download PDF

Info

Publication number
JP4132119B2
JP4132119B2 JP4346597A JP4346597A JP4132119B2 JP 4132119 B2 JP4132119 B2 JP 4132119B2 JP 4346597 A JP4346597 A JP 4346597A JP 4346597 A JP4346597 A JP 4346597A JP 4132119 B2 JP4132119 B2 JP 4132119B2
Authority
JP
Japan
Prior art keywords
glass
cao
resistant glass
mgo
bao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4346597A
Other languages
Japanese (ja)
Other versions
JPH101328A (en
Inventor
浩一 佐藤
弘治 相楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP4346597A priority Critical patent/JP4132119B2/en
Publication of JPH101328A publication Critical patent/JPH101328A/en
Application granted granted Critical
Publication of JP4132119B2 publication Critical patent/JP4132119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は耐熱性ガラスに関する。本発明の耐熱性ガラスは、例えばプラズマディスプレイ等の画像表示装置のガラス製パネルに好ましく用いられる。
【0002】
【従来の技術】
プラズマディスプレイの製造工程では、電極上に誘電体層を形成するときと、He−Neガスを封止するときに焼成を行い、その温度は600℃付近まで昇温することになる。そのため基板ガラスは600℃の温度においても変形しない熱的特性が要求される。またプラズマディスプレイの製造に用いられる誘電体材料や封止用のガラスフリットは82×10-7/℃程度の膨張係数を有するために焼成中に反りやクラックが生じないように基板ガラスの方も同程度の膨張係数が要求される。またガラス製パネルの電気絶縁性確保のためその体積抵抗率を大きくする必要もある。
【0003】
従来のプラズマディスプレイ用基板としては特開平7−101748号公報および米国特許第5,459,109号明細書に記載のものがあるが、特開平7−101748号公報に記載のガラスはLi2O、Na2O、K2Oのアルカリ成分をその合量で9〜16%含んでいるためガラス屈伏点(Ts)が600℃以下で耐熱性が充分とはいえない。また米国特許第5,459,109号明細書に記載のガラスはMgOが0〜1.5%、CaOが0〜2.5%、MgOとCaOの合量が0〜4%であり、比較的に少量であるので、液相温度が高く、失透しやすく大量生産に不向きである。
【0004】
また特開平4−46035号公報には、SiO2−B23−Al23−CaO−BaO系のグレースガラスが開示されているが、このグレースガラスは、セラミック基板に塗布されるものであり、基板ガラスの製法に用いられるものではない。このガラスはBaOを35wt%以上含んでいるため耐失透性が不充分でフロート成型等の板状成型を必須とするガラスディスプレイ製造工程には適さない。
【0005】
また特開平4−149039号公報には、SiO2−Al23−B23−CaO−BaO−Y23−ZrO2系のグレースガラスが開示されているが、このガラスもセラミック基板に塗布されるものであり、基板ガラスの製造に用いられるものではない。またこのガラスは、Y23を必須成分としているため、熱膨張係数が小さく、封止用ガラスフリットとの間にかなりの膨張係数差が生じることになるため、焼成中にクラックが入るという欠点を有する。
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題点を解消し、例えば600℃以上という温度でも粘性流動を起こさない耐熱性とガラス製パネル製造可能な耐失透性とを有し、従来のガラスよりも、さらに優れた電気絶縁性を持ちながら、膨張係数は誘電体材料や封止用ガラスフリットと同一ないし近似した熱的特性を有し、例えばガラス基板等のガラス板状製品の製造に好ましく用いられる耐熱性ガラスを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の耐熱性ガラスは、ガラス成分として重量%で表示して
SiO2 30〜45%
23 1〜10%
Al23 1〜 7%
SrO 1〜17%
BaO 22〜35%未満
MgO 0〜 5%
CaO 0〜14%
MgO+CaO 4%を超え16%以下
を含むことを特徴とする。
【0008】
本発明の耐熱性ガラスは更に、La23、ZrO2、ZnO、TiO2、As23、Sb23、SnO2、SO3のうち少なくとも1種を含むこともできる。これらの成分の含量は、重量%で表示してそれぞれLa23が0〜14%、ZrO2が0〜8%、ZnOが0〜5%、TiO2が0〜5%、As23が0〜2%、Sb23が0〜2%、SnO2が0〜2%、SO3が0〜2%である。
【0009】
さらに本発明は、上記本発明の耐熱性ガラスを板状に成型することにより得られる、プラズマディスプレイ用基板等に用いられるガラス板製品に関する。
【0010】
【発明を実施ための形態】
本発明の耐熱性ガラスにおける各成分およびその含量の限定理由を以下に説明する。
【0011】
SiO2はガラス形成成分であるため本発明には欠かせない成分である。そのためSiO2が30%未満になるとガラスの液相温度(L.T.)が上昇する。またSiO2が45%を超えると膨張係数が小さくなる。そのためSiO2の含量は30〜45%に限定される。好ましいSiO2の含量は32〜43%の範囲である。
【0012】
23は硅酸塩ガラスに添加することにより液相温度を下げる効果があるため本発明には欠かせない成分である。そのためB23が1%未満になるとガラスの液相温度が上昇する。また10%を超えると膨張係数が小さくなる。そのためB23の含量は1〜10%に限定される。好ましいB23の含量は3〜8%の範囲である。
【0013】
Al23はガラスの化学的耐久性を良くする効果と液相温度(L.T.)を下げる効果があるため本発明には欠かせない成分である。そのためAl23が1%未満になると化学的耐久性が悪化し、液相温度が上昇する。また7%を超えると膨張係数が小さくなる。そのためAl23の含量は1〜7%に限定される。好ましいAl23の含量は3〜5%である。
【0014】
BaO、SrOは適量添加によりガラスの液相温度を下げる効果があるため本発明には欠かせない成分である。そのためSrOが1%未満または17%を超えた場合、BaOが22%未満または35%以上の場合は液相温度が上昇する。従ってSrOは1〜17%に限定され、BaOは22%以上35%未満に限定される。好ましいSrOの含量は3〜15%であり、好ましいBaOの含量は26〜33%である。
【0015】
MgO、CaOは適量添加によりガラスの液相温度を下げ、膨張係数を上げる効果があるため本発明においてどちらか少なくとも1成分は欠かせない成分である。MgOが5%、CaOが14%を超えると液相温度が上がるため、MgOの含量は0〜5%、CaOの含量は0〜14%に限定される。MgOは0〜4%であるが好ましく、0〜3%が特に好ましい。CaOは0〜10%未満が好ましく、0.5〜9.5%が特に好ましい。
【0016】
また、MgOとCaOの合量が4%以下になると、液相温度(L.T.)が上昇し、膨張係数が小さくなる。また16%を超えても液相温度が上昇するため、MgOとCaOの合量は4%を超え16%以下に限定される。好ましくは4.5〜14%である。
【0017】
La23は任意成分として適量添加により液相温度の低下やガラス屈伏点(Ts)の調整が可能である。ただし14%を超えると液相温度が上昇するため、La23は0〜14%の範囲に限定される。好ましくは0〜12%の範囲である。
【0018】
ZrO2、ZnO、TiO2は任意成分として適量添加により液相温度を下げ化学的耐久性を上げることができる成分である。ただし、ZrO2が8%を超え、ZnO2またはTiO2が5%を超えると、熱膨張係数(α)が小さくなり、目的とする熱膨張特性が得られなくなる。よって、ZrO2は0〜8%、ZnOは0〜5%、TiO2は0〜5%の範囲に限定される。好ましくは、ZrO2が0〜6%、ZnOが0〜4%、TiO2が0〜4%の範囲である。
【0019】
As23、Sb23、SnO2、SO3は任意成分として適量添加により、清澄剤として有効である。しかしいずれも2%を超えて添加すると耐失透性を悪くする。そのためAs23、Sb23、SnO2、SO3はの含量はそれぞれ0〜2%の範囲に限定される。
【0020】
さらにNb25、Ta25、WO3、Gd23、PbO、Bi23、TeO2、P25等の成分も本発明の目的を損なわない程度であれば添加可能である。
【0021】
本発明の耐熱性ガラスの原料としては、いずれの成分も水酸化物、炭酸塩、硝酸塩、硫化物、酸化物等を適宜用いることが可能である。これらの原料を所望の割合に秤取し、混合して調合原料とし、これを1200℃〜1500℃に加熱した熔解炉に投入し、熔解・清澄後撹拌し、均一化してから鋳型に鋳込み徐冷することにより、本発明の耐熱性ガラスを得ることができる。
【0022】
本発明の耐熱性ガラスは、そのガラス屈伏点(Ts)が670℃以上で、100℃〜300℃の熱膨張係数(α)が78×10-7/℃〜92×10-7/℃の範囲にあるのが好ましい。
【0023】
また本発明の耐熱性ガラスの液相温度は1020℃以下又は認めずであり、また体積抵抗率は40.0〜300.0×1014Ωcmであるのが好ましい。
【0024】
上記本発明の耐熱性ガラスを板状成型することにより、例えばプラズマディスプレイ等の画像表示装置用の基板ガラスが得られる。板状成型の方法は公知のフロート法やダウンドロー法等のいずれの成型方法でもガラスを失透させずに成型することが可能である。得られた板状ガラスの用途は上記に限定されず、他のガラスディスプレイ方式にも用いることができる。
【0025】
【実施例】
以下、実施例により本発明を説明する。
【0026】
実施例1〜5
表1に示す組成となるように各ガラス原料を調合した。このガラス原料を白金坩堝に入れ電気熔融炉を用いて1400℃に加熱熔融し、型枠に鋳込み徐冷して実施例1〜5の試料ガラスを得た。得られたガラスの液相温度(L.T.)、ガラス屈伏点(Ts)、熱膨張係数(α)、体積抵抗率(ρV)の測定を行った。
【0027】
液相温度(L.T.)は600℃〜1100℃の温度勾配のついた失透試験炉に1時間保持し、保持後、倍率100倍の顕微鏡により結晶の有無を観察し、結晶が存在する温度と結晶が存在しない温度の境目を液相温度とした。なお液相温度認めずとは、600℃〜1100℃の全温度域において、1時間保持で結晶が存在しなかったということである。
【0028】
ガラス屈伏点(Ts)と熱膨張係数(α)は径4mm、長さ15〜20mmの円柱状サンプルを熱膨張測定機を用いて、サンプルに10gの荷重をかけながら、8℃/minで昇温し、ガラス屈伏点は荷重によりガラスの膨張が止まったときの温度、熱膨張係数は、100℃〜300℃の範囲における平均線膨張係数を10-7/℃を単位として示してある。
【0029】
体積抵抗率ρV(Ω・cm)は、径26.5mm、厚み1mmの両面研磨試料について、アドバンテスト社R8340Aを用いて、温度20℃、湿度50%で測定した。これらの測定結果を表1に示した。
【0030】
比較例1〜6
特開平7−101748号公報の実施例の記載に従って、アルカリ分を高含量で含むガラス試料を作製し、前記実施例1〜5と同様にして液相温度、ガラス屈伏点、熱膨張係数、体積抵抗率を測定した。これらの測定結果を表2に示した。
【0031】
比較例7〜8
特開平4−46035号公報の実施例1および6の記載に従って、BaOを35wt%以上含むガラス試料を作製し、実施例1〜5と同様にして液相温度、ガラス屈伏点、熱膨張係数、体積抵抗率を測定した結果を表3に示す。
【0032】
比較例9
米国特許第5,459,109号明細書の記載に従って、MgOとCaOの合量が4%以下(1.4%)であるガラス試料を作製し、実施例1〜5と同様にして液相温度、ガラス屈伏点、熱膨張係数、体積抵抗率を測定した結果を表3に示す。
【0033】
【表1】

Figure 0004132119
【0034】
【表2】
Figure 0004132119
【0035】
【表3】
Figure 0004132119
【0036】
表1、表2、表3より次のことが明らかである。
【0037】
表2に示すように比較例1〜6のガラスはアルカリ成分をその合量で9〜16%含んでいるため、ガラス屈伏点(Ts)が600℃以下で耐熱性が充分ではない。また体積抵抗率が小さく、絶縁性に劣っている。
【0038】
比較例7〜8のガラスはBaOを35wt%以上含んでいるため、液相温度が1040℃以上ある。このガラス組成でシート成型を行なうとするならば、いかなる方法を用いても成型作業温度は1040℃未満でなくてはガラスの粘性が低すぎて成型はできない。よって、比較例7〜8のガラスでは液相温度が高いことになる。
【0039】
比較例9のガラスはMgOとCaOが4%以下(1.4%)と少ないため液相温度が高く、失透し易く大量生産に向かないことが明らかである。
【0040】
一方、表1に示すように実施例1〜5のガラスは、いずれもガラス屈伏点が670℃以上で液相温度は1020℃以下であるため、シート成型中でガラスが失透することは無く、得られた板を600℃まで昇温しても板が変型しない耐熱特性を有している。また熱膨張係数も従来用いられた誘電体材料や封止用ガラスフリットがそのまま使えるように78×10-7/℃〜92×10-7/℃の範囲にあり、また比較例1〜6のガラスよりも体積抵抗率が大きく電気絶縁性にも優れている。
【0041】
【発明の効果】
本発明によれば、耐熱性、耐失透性、電気絶縁性、熱膨張特性に優れ、プラズマディスプレイ用基板などのガラス板状製品に好ましく用いられるガラスが提供された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat resistant glass. The heat-resistant glass of the present invention is preferably used for a glass panel of an image display device such as a plasma display.
[0002]
[Prior art]
In the manufacturing process of the plasma display, firing is performed when the dielectric layer is formed on the electrode and when the He—Ne gas is sealed, and the temperature is raised to around 600 ° C. Therefore, the substrate glass is required to have thermal characteristics that do not deform even at a temperature of 600 ° C. In addition, since the dielectric material used for manufacturing the plasma display and the glass frit for sealing have an expansion coefficient of about 82 × 10 −7 / ° C., the substrate glass is also used to prevent warping and cracks during firing. A similar expansion coefficient is required. It is also necessary to increase the volume resistivity in order to ensure the electrical insulation of the glass panel.
[0003]
Conventional plasma display substrates include those described in JP-A-7-101748 and US Pat. No. 5,459,109, but the glass described in JP-A-7-101748 is Li 2 O. , Na 2 O and K 2 O contain alkali components in a total amount of 9 to 16%, so that the glass yield point (Ts) is 600 ° C. or less, and the heat resistance is not sufficient. The glass described in US Pat. No. 5,459,109 has 0 to 1.5% MgO, 0 to 2.5% CaO, and 0 to 4% of the total amount of MgO and CaO. Therefore, the liquid phase temperature is high, and it is easy to devitrify and is not suitable for mass production.
[0004]
JP-A-4-46035 discloses a SiO 2 —B 2 O 3 —Al 2 O 3 —CaO—BaO-based grace glass, which is applied to a ceramic substrate. It is not used for the manufacturing method of substrate glass. Since this glass contains 35 wt% or more of BaO, it is not suitable for a glass display manufacturing process in which devitrification resistance is insufficient and plate-like molding such as float molding is essential.
[0005]
Japanese Patent Application Laid-Open No. 4-149039 discloses a grace glass of SiO 2 —Al 2 O 3 —B 2 O 3 —CaO—BaO—Y 2 O 3 —ZrO 2. It is applied to the substrate and is not used for manufacturing the substrate glass. In addition, since this glass has Y 2 O 3 as an essential component, the thermal expansion coefficient is small, and a considerable difference in expansion coefficient is generated between the glass frit for sealing, so that cracks occur during firing. Has drawbacks.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, has heat resistance that does not cause viscous flow even at a temperature of, for example, 600 ° C. or more, and devitrification resistance that can produce a glass panel, and is superior to conventional glass. In addition, it has the same thermal characteristics as the dielectric material and sealing glass frit, while having electrical insulation, and has a thermal characteristic that is preferably used for the production of glass plate products such as glass substrates. The purpose is to provide.
[0007]
[Means for Solving the Problems]
The heat-resistant glass of the present invention is expressed as% by weight as a glass component, and SiO 2 is 30 to 45%.
B 2 O 3 1-10%
Al 2 O 3 1-7%
SrO 1-17%
BaO 22-35% MgO 0-5%
CaO 0-14%
It is characterized by containing MgO + CaO over 4% and up to 16%.
[0008]
The heat-resistant glass of the present invention can further contain at least one of La 2 O 3 , ZrO 2 , ZnO, TiO 2 , As 2 O 3 , Sb 2 O 3 , SnO 2 , and SO 3 . The contents of these components are expressed in weight%, La 2 O 3 is 0 to 14%, ZrO 2 is 0 to 8%, ZnO is 0 to 5%, TiO 2 is 0 to 5%, As 2 O 3 is 0 to 2%, Sb 2 O 3 is 0 to 2%, SnO 2 is 0 to 2%, and SO 3 is 0 to 2%.
[0009]
Furthermore, this invention relates to the glass plate product used for the substrate for plasma displays etc. which are obtained by shape | molding the heat resistant glass of the said invention in plate shape.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting each component and its content in the heat-resistant glass of the present invention will be described below.
[0011]
Since SiO 2 is a glass forming component, it is an essential component for the present invention. Therefore SiO 2 is below 30%, the glass liquidus temperature (L.T.) is increased. If SiO 2 exceeds 45%, the expansion coefficient becomes small. Therefore the content of SiO 2 is limited to 30% to 45%. The content of the SiO 2 content is preferably in the range of 32-43%.
[0012]
B 2 O 3 is an indispensable component for the present invention because it has the effect of lowering the liquidus temperature when added to oxalate glass. Therefore, when B 2 O 3 is less than 1%, the liquidus temperature of the glass increases. If it exceeds 10%, the expansion coefficient becomes small. Therefore, the content of B 2 O 3 is limited to 1 to 10%. The preferred B 2 O 3 content is in the range of 3-8%.
[0013]
Al 2 O 3 is an indispensable component for the present invention because it has the effect of improving the chemical durability of the glass and the effect of lowering the liquidus temperature (LT). Therefore, when Al 2 O 3 is less than 1%, the chemical durability is deteriorated and the liquidus temperature is increased. If it exceeds 7%, the expansion coefficient becomes small. Therefore, the content of Al 2 O 3 is limited to 1 to 7%. A preferable content of Al 2 O 3 is 3 to 5%.
[0014]
BaO and SrO are indispensable components for the present invention because they have the effect of lowering the liquidus temperature of the glass when added in appropriate amounts. Therefore, when SrO is less than 1% or exceeds 17%, the liquidus temperature rises when BaO is less than 22% or 35% or more. Therefore, SrO is limited to 1 to 17%, and BaO is limited to 22% or more and less than 35%. The preferred SrO content is 3 to 15%, and the preferred BaO content is 26 to 33%.
[0015]
Since MgO and CaO have the effect of lowering the liquidus temperature of the glass and increasing the expansion coefficient when added in appropriate amounts, at least one of them is an indispensable component in the present invention. If the MgO content exceeds 5% and the CaO content exceeds 14%, the liquidus temperature increases, so the MgO content is limited to 0-5% and the CaO content is limited to 0-14%. MgO is preferably 0 to 4%, particularly preferably 0 to 3%. CaO is preferably 0 to less than 10%, particularly preferably 0.5 to 9.5%.
[0016]
On the other hand, when the total amount of MgO and CaO is 4% or less, the liquidus temperature (LT) increases and the expansion coefficient decreases. Moreover, since liquid phase temperature rises even if it exceeds 16%, the total amount of MgO and CaO is limited to more than 4% and 16% or less. Preferably it is 4.5 to 14%.
[0017]
La 2 O 3 is possible to adjust the reduction and glass deformation point of the liquidus temperature (Ts) by adding an appropriate amount as an optional ingredient. However, if it exceeds 14%, the liquidus temperature rises, so La 2 O 3 is limited to the range of 0 to 14%. Preferably it is 0 to 12% of range.
[0018]
ZrO 2 , ZnO, and TiO 2 are components that can lower the liquidus temperature and increase the chemical durability by adding appropriate amounts as optional components. However, if ZrO 2 exceeds 8% and ZnO 2 or TiO 2 exceeds 5%, the thermal expansion coefficient (α) decreases, and the desired thermal expansion characteristics cannot be obtained. Therefore, ZrO 2 is limited to 0 to 8%, ZnO is limited to 0 to 5%, and TiO 2 is limited to 0 to 5%. Preferably, ZrO 2 is 0 to 6%, ZnO is 0 to 4%, and TiO 2 is 0 to 4%.
[0019]
As 2 O 3 , Sb 2 O 3 , SnO 2 , and SO 3 are effective as refining agents by adding appropriate amounts as optional components. However, if both are added in excess of 2%, the devitrification resistance is deteriorated. Therefore, the contents of As 2 O 3 , Sb 2 O 3 , SnO 2 and SO 3 are limited to the range of 0 to 2%, respectively.
[0020]
Furthermore, components such as Nb 2 O 5 , Ta 2 O 5 , WO 3 , Gd 2 O 3 , PbO, Bi 2 O 3 , TeO 2 , and P 2 O 5 can be added as long as the purpose of the present invention is not impaired. It is.
[0021]
As the raw material for the heat-resistant glass of the present invention, any component can be appropriately used hydroxide, carbonate, nitrate, sulfide, oxide and the like. These raw materials are weighed in a desired ratio, mixed to prepare a mixed raw material, which is put into a melting furnace heated to 1200 ° C. to 1500 ° C., stirred after melting and clarification, homogenized, and gradually poured into a mold. The heat-resistant glass of the present invention can be obtained by cooling.
[0022]
The heat resistant glass of the present invention has a glass yield point (Ts) of 670 ° C. or higher and a thermal expansion coefficient (α) of 100 ° C. to 300 ° C. of 78 × 10 −7 / ° C. to 92 × 10 −7 / ° C. Preferably it is in the range.
[0023]
Further, the liquidus temperature of the heat-resistant glass of the present invention is preferably 1020 ° C. or less, and the volume resistivity is preferably 40.0 to 300.0 × 10 14 Ωcm.
[0024]
By forming the heat-resistant glass of the present invention into a plate shape, for example, a substrate glass for an image display device such as a plasma display can be obtained. The plate-shaped molding method can be performed without devitrifying the glass by any known molding method such as a float method or a downdraw method. The use of the obtained sheet glass is not limited to the above, and can be used for other glass display systems.
[0025]
【Example】
Hereinafter, the present invention will be described by way of examples.
[0026]
Examples 1-5
Each glass raw material was prepared so that it might become a composition shown in Table 1. This glass raw material was put in a platinum crucible, heated and melted to 1400 ° C. using an electric melting furnace, cast into a mold and gradually cooled to obtain sample glasses of Examples 1 to 5. The liquid phase temperature (LT), glass yield point (Ts), thermal expansion coefficient (α), and volume resistivity (ρV) of the obtained glass were measured.
[0027]
The liquidus temperature (L.T.) is held in a devitrification test furnace with a temperature gradient of 600 ° C. to 1100 ° C. for 1 hour. After holding, the presence or absence of crystals is observed with a microscope at a magnification of 100 times. The boundary between the temperature at which the crystal is present and the temperature at which no crystal is present is defined as the liquidus temperature. In addition, that liquid phase temperature is not recognized means that the crystal | crystallization did not exist by hold | maintaining for 1 hour in the whole temperature range of 600 to 1100 degreeC.
[0028]
The glass yield point (Ts) and the coefficient of thermal expansion (α) were increased at 8 ° C./min while applying a 10 g load to a sample of a cylindrical sample having a diameter of 4 mm and a length of 15 to 20 mm using a thermal expansion measuring machine. raised, glass deformation point temperature at which expansion of the glass is stopped by the load, the thermal expansion coefficient is shown an average linear expansion coefficient in the range of 100 ° C. to 300 ° C. in units of 10 -7 / ° C..
[0029]
The volume resistivity ρV (Ω · cm) was measured on a double-sided polished sample having a diameter of 26.5 mm and a thickness of 1 mm using Advantest R8340A at a temperature of 20 ° C. and a humidity of 50%. These measurement results are shown in Table 1.
[0030]
Comparative Examples 1-6
According to the description of Examples in JP-A-7-101748, a glass sample containing a high content of alkali was prepared, and the liquidus temperature, glass yield point, thermal expansion coefficient, volume in the same manner as in Examples 1-5. The resistivity was measured. The measurement results are shown in Table 2.
[0031]
Comparative Examples 7-8
According to the description of Examples 1 and 6 of JP-A-4-46035, a glass sample containing 35 wt% or more of BaO was prepared, and the liquidus temperature, the glass yield point, the thermal expansion coefficient, The results of measuring the volume resistivity are shown in Table 3.
[0032]
Comparative Example 9
According to the description in US Pat. No. 5,459,109, a glass sample in which the total amount of MgO and CaO is 4% or less (1.4%) is prepared, and the liquid phase is obtained in the same manner as in Examples 1-5. Table 3 shows the results of measurement of temperature, glass yield point, thermal expansion coefficient, and volume resistivity.
[0033]
[Table 1]
Figure 0004132119
[0034]
[Table 2]
Figure 0004132119
[0035]
[Table 3]
Figure 0004132119
[0036]
From Table 1, Table 2, and Table 3, the following is clear.
[0037]
As shown in Table 2, since the glasses of Comparative Examples 1 to 6 contain 9 to 16% of the total amount of alkali components, the glass yield point (Ts) is 600 ° C. or less and the heat resistance is not sufficient. In addition, the volume resistivity is small and the insulating property is poor.
[0038]
Since the glasses of Comparative Examples 7 to 8 contain 35 wt% or more of BaO, the liquidus temperature is 1040 ° C. or more. If sheet molding is performed with this glass composition, the molding operation temperature must be less than 1040 ° C., and the viscosity of the glass is too low to be molded. Therefore, in the glasses of Comparative Examples 7 to 8, the liquidus temperature is high.
[0039]
It is clear that the glass of Comparative Example 9 has a high liquidus temperature because it contains less than 4% (1.4%) of MgO and CaO, is easily devitrified, and is not suitable for mass production.
[0040]
On the other hand, as shown in Table 1, since the glasses of Examples 1 to 5 all have a glass yield point of 670 ° C. or higher and a liquidus temperature of 1020 ° C. or lower, the glass is not devitrified during sheet molding. The obtained plate has heat resistance characteristics that do not deform even when the temperature is raised to 600 ° C. Also, the thermal expansion coefficient is in the range of 78 × 10 −7 / ° C. to 92 × 10 −7 / ° C. so that the conventionally used dielectric material and sealing glass frit can be used as they are. It has a larger volume resistivity than glass and is excellent in electrical insulation.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the glass which was excellent in heat resistance, devitrification resistance, electrical insulation, and a thermal expansion characteristic, and was preferably used for glass plate-shaped products, such as a substrate for plasma displays, was provided.

Claims (7)

ガラス成分として、重量%で表示して
SiO 30〜45%
1〜10%
Al 1〜 7%
SrO 1〜17%
BaO 22〜35%未満
MgO 0〜 5%
CaO 0〜14%
MgO+CaO 4%を超え16%以下
を含み、LiO,NaOおよびKOを含まず、さらにPbO含まない(但し、CaO+BaOが40重量%以上である場合を除く)ことを特徴とする耐熱性ガラス。
As a glass component, expressed in weight%, SiO 2 30-45%
B 2 O 3 1~10%
Al 2 O 3 1-7%
SrO 1-17%
BaO 22-35% MgO 0-5%
CaO 0-14%
MgO + CaO more than 4% and less than 16%, Li 2 O, Na 2 O and K 2 O are not included, and PbO is not included (except when CaO + BaO is 40% by weight or more). Heat resistant glass.
ガラス成分として、重量%で表示して
SiO 30〜45%
1〜10%
Al 1〜 7%
SrO 1〜17%
BaO 22〜35%未満
MgO 0〜 5%
CaO 0〜14%
MgO+CaO 4%を超え16%以下
を含み、PbOを含まない(但し、CaO+BaOが40重量%以上である場合を除く)ことおよびプラズマディスプレイ用基板に用いられることを特徴とする耐熱性ガラス。
As a glass component, expressed in weight%, SiO 2 30-45%
B 2 O 3 1~10%
Al 2 O 3 1-7%
SrO 1-17%
BaO 22-35% MgO 0-5%
CaO 0-14%
A heat-resistant glass characterized in that it contains more than 4% MgO + CaO and less than 16% and does not contain PbO (except when CaO + BaO is 40% by weight or more) and is used for a substrate for plasma display.
CaOを0〜10%未満含む請求項1または2に記載の耐熱性ガラス。  The heat-resistant glass according to claim 1 or 2, comprising 0 to less than 10% of CaO. Laを0〜14%、ZrOを0〜8%、ZnOを0〜5%、TiOを0〜5%、Asを0〜2%、Sbを0〜2%、SnOを0〜2%、SOを0〜2%さらに含む請求項1または2に記載の耐熱性ガラス。La 2 O 3 0-14%, ZrO 2 0-8%, ZnO 0-5%, TiO 2 0-5%, As 2 O 3 0-2%, Sb 2 O 3 0-0% The heat resistant glass according to claim 1 or 2, further comprising 2%, SnO 2 in an amount of 0 to 2%, and SO 3 in an amount of 0 to 2%. ガラス屈伏点(Ts)が670℃以上で、100℃〜300℃の熱膨張係数(α)が78×10−7/℃〜92×10−7/℃の範囲にある請求項1〜4のいずれか一項に記載の耐熱性ガラス。The glass yield point (Ts) is 670 ° C. or higher, and the thermal expansion coefficient (α) at 100 ° C. to 300 ° C. is in the range of 78 × 10 −7 / ° C. to 92 × 10 −7 / ° C. 5. The heat resistant glass as described in any one of Claims. 請求項1〜5のいずれか1項に記載の耐熱性ガラスを板状に成型することにより得られるガラス板状製品。  The glass plate-shaped product obtained by shape | molding the heat resistant glass of any one of Claims 1-5 in plate shape. プラズマディスプレイ用基板に用いられる、請求項6に記載のガラス板状製品。  The glass plate-like product according to claim 6, which is used for a plasma display substrate.
JP4346597A 1996-03-13 1997-02-27 Heat resistant glass Expired - Lifetime JP4132119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346597A JP4132119B2 (en) 1996-03-13 1997-02-27 Heat resistant glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-56417 1996-03-13
JP5641796 1996-03-13
JP4346597A JP4132119B2 (en) 1996-03-13 1997-02-27 Heat resistant glass

Publications (2)

Publication Number Publication Date
JPH101328A JPH101328A (en) 1998-01-06
JP4132119B2 true JP4132119B2 (en) 2008-08-13

Family

ID=26383226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346597A Expired - Lifetime JP4132119B2 (en) 1996-03-13 1997-02-27 Heat resistant glass

Country Status (1)

Country Link
JP (1) JP4132119B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800443B2 (en) * 1996-10-22 2006-07-26 日本電気硝子株式会社 Non-alkali glass substrate for display and method for producing the same
JP2003112942A (en) * 2001-10-03 2003-04-18 Nippon Electric Glass Co Ltd Glass substrate for field emission type display
JP2006160546A (en) * 2004-12-06 2006-06-22 Hitachi Ltd Flat surface-type display device
JP6175742B2 (en) * 2011-05-18 2017-08-09 日本電気硝子株式会社 High refractive index glass
JP6694229B2 (en) * 2014-10-08 2020-05-13 株式会社オハラ Glass
WO2016072241A1 (en) * 2014-11-05 2016-05-12 日本電気硝子株式会社 Glass
CN115180824B (en) * 2022-07-05 2024-01-16 河北光兴半导体技术有限公司 Fireproof glass composition, fireproof glass and preparation method thereof

Also Published As

Publication number Publication date
JPH101328A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
JP7177412B2 (en) Alkali-free glass substrate
JP2738036B2 (en) Glass composition for substrates
US5116787A (en) High alumina, alkaline earth borosilicate glasses for flat panel displays
US6313052B1 (en) Glass for a substrate
JP3858293B2 (en) Alkali-free glass substrate
JP3666054B2 (en) Substrate glass
GB2317611A (en) Heat-resistant glass composition
JPH04325435A (en) Alkali-free glass
JP2001072433A (en) Glass for anodic joining
JPH05213627A (en) Flat panel display device
JP4898792B2 (en) High-deformation point glass composition for substrates
TWI843033B (en) Alkali-free glass plate
JP4686858B2 (en) Glass substrate for flat panel display
JP4132119B2 (en) Heat resistant glass
JP2001226138A (en) Glass substrate for flat panel display device
JP3460298B2 (en) Glass composition for substrates
JPH08290939A (en) Glass for substrate
JP3741526B2 (en) Substrate glass for display devices
JP2000072472A (en) Heat-resistant glass composition and plasma display panel using it
JP7389400B2 (en) Alkali-free glass plate
JP3867817B2 (en) Substrate glass
CN118084324A (en) Alkali-free glass plate
US5858895A (en) Heat-resistant glass
JP2926800B2 (en) Glass composition
JP3867816B2 (en) Substrate glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term