JP3867816B2 - Substrate glass - Google Patents

Substrate glass Download PDF

Info

Publication number
JP3867816B2
JP3867816B2 JP20307496A JP20307496A JP3867816B2 JP 3867816 B2 JP3867816 B2 JP 3867816B2 JP 20307496 A JP20307496 A JP 20307496A JP 20307496 A JP20307496 A JP 20307496A JP 3867816 B2 JP3867816 B2 JP 3867816B2
Authority
JP
Japan
Prior art keywords
glass
less
substrate
thermal expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20307496A
Other languages
Japanese (ja)
Other versions
JPH1025128A (en
Inventor
義治 三和
和彦 旭
純造 若木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP20307496A priority Critical patent/JP3867816B2/en
Publication of JPH1025128A publication Critical patent/JPH1025128A/en
Application granted granted Critical
Publication of JP3867816B2 publication Critical patent/JP3867816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、基板用ガラスに関し、特にプラズマディスプレイパネルの基板材料として好適な基板用ガラスに関するものである。
【0002】
【従来の技術】
従来よりプラズマディスプレイパネルの基板としては、建築窓用ソーダライムガラス板が使用されており、この基板表面に、Al、Ni、Ag、ITO、ネサ膜等からなる電極や絶縁ペーストを500〜600℃の温度で焼き付けることによって回路が形成される。その後、500〜600℃の温度でフリットシールすることによってプラズマディスプレイが作製される。
【0003】
そのためこの種の基板用ガラスには、一般に次のような特性を満足することが要求される。
【0004】
▲1▼500〜600℃、特に570℃以上の温度で熱処理する際の熱収縮を小さくするため、歪点が570℃以上であること。
【0005】
▲2▼熱膨張係数が、絶縁ペーストやシーリングフリットのそれと整合しているため反りが発生しないこと。つまり75〜95×10-7/℃の熱膨張係数を有すること。
【0006】
▲3▼ネサ膜等の薄膜電極と、ガラス中のアルカリ成分が反応すると、電極材料の電気抵抗値が変化してしまうため、ガラスの体積抵抗率が、150℃で1010Ω・cm以上と高く、アルカリ成分が薄膜電極と反応しないこと。
【0007】
【発明が解決しようとする課題】
建築窓用ソーダライムガラスは、約89×10-7/℃の熱膨張係数を有しており、これをプラズマディスプレイパネルの基板として用いても反りは発生しないが、歪点が500℃程度と低いため、570〜600℃の温度で熱処理する際の熱収縮が大きいという欠点を有している。
【0008】
またソーダライムガラスは、体積抵抗率が比較的低く、しかも化学的耐久性に乏しいため、長期間の保管、使用によって表面に焼けが発生し、プラズマディスプレイの表示画面が見づらくなるという欠点も有している。
【0009】
このような事情から特開平3−40933号には、熱膨張係数が75〜90×10-7/℃程度で、ソーダライムガラスに比べて、歪点と体積抵抗率の高いプラズマディスプレイパネル用ガラス基板が提案されている。
【0010】
しかしながら特開平3−40933号のガラス基板は、ソーダライムガラスに比べて、かなり密度が高いため、重量が大きくなるという問題がある。すなわちプラズマディスプレイパネルは、30〜50インチ程度の大画面で、しかも壁掛けテレビとなるため、これに用いられるガラス基板には、できるだけ軽量であることが要求される。ガラス基板を軽量化するためには、その厚みを薄くすれば良いが、強度面を考慮すると、薄板化については自ずと限界がある。そこでガラス基板の軽量化を図るためには、ガラスの密度を低くする方法を採らざるを得ないが、特開平3−40933号では、ガラスの密度について何ら配慮されていない。
【0011】
本発明は、上記事情に鑑みなされたものであり、その目的とするところは、密度が2.75g/cm3 以下と低く、570℃以上の温度で熱処理しても熱収縮が小さく、また75〜95×10-7/℃の熱膨張係数を有し、しかもソーダライムガラスに比べて体積抵抗率が高く、化学的耐久性に優れた基板用ガラスを提供することである。
【0012】
【課題を解決するための手段】
本発明の基板用ガラスは、重量百分率で、SiO2 50〜65%、Al23 1〜9.5%、CaO+MgO+SrO+BaO 17%未満、ZrO2 1〜9%、Li2O 0〜1%、Na2O 2〜12%、K2O 2〜13%、TiO2 0〜5%の組成を有し、密度が2.75g/cm3以下であることを特徴とする。
【0013】
【作用】
以下、本発明の基板用ガラスの各成分を上記のように限定した理由を説明する。
【0014】
SiO2 は、ガラスのネットワークフォーマーである。その含有量は50〜65%である。50%より少ないと、ガラスの歪点が低くなるため、熱収縮が大きくなり、一方、65%より多いと、熱膨張係数が小さくなりすぎる。
【0015】
Al23 は、ガラスの歪点を高めるための成分であり、その含有量は1〜9.5%である。1%より少ないと、上記効果が得られず、一方、9.5%より多いと、ガラスが失透しやすく、成形が困難となる。すなわちガラスが失透しやすいと、失透物の発生を抑えるため溶融温度を高くする必要があるが、溶融温度を高くすると、成形時のガラスが軟らかくなる。その結果、ガラス板の表面にうねりが発生したり、寸法精度が低下しやすくなり、高い表面精度や寸法精度が要求されるプラズマディスプレイパネルの基板として使用することが不可能となる。
【0016】
CaO、MgO、SrO及びBaOは、ガラスを溶融しやすくすると共に熱膨張係数を制御するための成分であり、その合量が17%以上になると、ガラスの密度が高くなり、軽量化を図ることが困難となるため好ましくない。ただしこれらの成分が、少なくなりすぎると、75×10-7/℃以上の熱膨張係数が得られ難くなるため、合量で10%以上含有させることが望ましい。
【0017】
尚、CaOとMgOの含有量が多くなりすぎると、ガラスが失透しやすく、成形が困難となるため、CaOは2.9%以下、MgOは4%以下に抑えることが望ましい。
【0018】
またSrOは、上記した作用以外にも、失透性を改善し、且つ、歪点を上げるという作用も有するため、2%以上、好ましくは5.5%以上含有させることが望ましい。ただしSrOとBaOの含有量が増加するほど、ガラスの密度の上昇が著しくなるため、SrOは13%以下、BaOは5%以下、好ましくは1.9%以下に抑えることが望ましい。
【0019】
ZrO2 は、ガラスの化学的耐久性を向上させるのに効果のある成分であり、その含有量は、1〜9%である。1%より少ないと、化学的耐久性を向上させる効果に乏しくなると共に、歪点が低くなりすぎ、一方、9%より多いと、熱膨張係数が小さくなりすぎると共に、ガラスの溶融時に失透物が生成しやすく、成形が困難となる。
【0020】
Li2 O、Na2 O及びK2 Oは、いずれも熱膨張係数を制御するための成分であり、Li2 Oの含有量は、0〜1%である。Li2 Oが1%より多いと、歪点が低くなる。
【0021】
またNa2 Oの含有量は、2〜12%である。2%より少ないと、熱膨張係数が小さくなりすぎ、一方、12%より多いと、歪点が低くなりすぎる。
【0022】
2 Oの含有量は、2〜13%である。2%より少ないと、熱膨張係数が小さくなりすぎ、一方、13%より多いと、歪点が低くなりすぎる。
【0023】
尚、Li2 O、Na2 O及びK2 Oの合量が、少なすぎると、熱膨張係数が小さくなりやすく、逆に多すぎると、歪点が低くなりやすいため、8〜16%、好ましくは12.5〜15.5%となるように含有させることが望ましい。
【0024】
TiO2 は、ガラスの紫外線による着色を防止するための成分であり、その含有量は0〜5%である。プラズマディスプレイの場合、放電時に紫外線が発生するが、基板が紫外線によって着色すると、長期間使用している間に徐々に表示画面が見づらくなる。従って本発明においては、TiO2 を0.1%以上含有させることが望ましい。しかしながら5%より多くなると、ガラスが失透しやすく、成形が困難となるため好ましくない。
【0025】
また本発明においては、上記成分以外にも、ガラスの溶融性を向上させ、熱膨張係数を調整する目的で、ZnOを5%まで添加することが可能であり、紫外線によってガラスが褐色に着色するのを防止する目的で、Bi23 を5%まで添加することが可能である。さらに清澄剤として、As23 、Sb23 、SO3 、Cl等の成分を1%まで添加することが可能であり、着色剤として、Fe23 、CoO、Cr23 、NiO、CeO2 等の成分を1%まで添加することが可能である。
【0026】
しかしながら本発明においては、B23 を含有すると、歪点が低下しやすくなるため好ましくない。またPbOは、一般に融剤として作用するが、ガラスの化学的耐久性を低下させると共に、溶融時に融液の表面から揮発し、環境を汚染する虞れもあるため好ましくない。
【0027】
【実施例】
以下、本発明の基板用ガラスを実施例に基づいて詳細に説明する。
【0028】
表1は、実施例の基板用ガラス(試料No.1〜6)と、比較例の基板用ガラス(試料No.7、8)を示すものである。因に試料No.8は、一般の建築窓用ソーダライムガラスである。
【0029】
【表1】

Figure 0003867816
【0030】
表1の各試料は、次のようにして調製した。
【0031】
まず表中のガラス組成となるように原料を調合し、これを白金坩堝に入れた後、電気炉中で1450〜1550℃の温度で4時間溶融し、この溶融ガラスをカーボン上に流し出して板状に成形した。次いで、このガラス板の両面を光学研磨することによってガラス基板を作製した。
【0032】
こうして得られた各試料について、密度、歪点、液相温度、熱膨張係数、体積抵抗率及び紫外線による着色の度合いを調べた。
【0033】
表1から明らかなように、実施例であるNo.1〜6の各試料は、密度が2.70g/cm3 以下であるため、軽量化を図ることが可能であり、歪点が572℃以上であるため、熱収縮が小さく、液相温度が1020℃以下であるため、失透し難いことが明らかである。またこれらの試料は、熱膨張係数が80〜83×10-7/℃であり、150℃における体積抵抗率が1011.1Ω・cm以上と高く、しかも紫外線による着色度合いが小さかった。
【0034】
それに対し、比較例であるNo.7の試料は、密度が2.87g/cm3 と高く、しかも液相温度が1200℃と高いことから、失透しやすく、成形し難いものと考えられる。またNo.8の試料は、歪点が500℃と低く、体積抵抗率が低いため、アルカリ成分が薄膜電極と反応しやすいものと考えられ、しかも紫外線による着色の度合いも大きかった。
【0035】
尚、表中の密度は、周知のアルキメデス法によって測定し、歪点は、ASTMC336−71の方法に基づいて測定し、液相温度は、白金ボートに297〜500μmの粒径を有するガラス粉末を入れ、温度勾配炉に48時間保持した後の失透観察によって求めたものである。
【0036】
また熱膨張係数は、ディラトメーターによって30〜380℃における平均熱膨張係数を測定したものであり、体積抵抗率は、ASTM C657−78に基づいて150℃における値を測定したものである。
【0037】
さらに紫外線による着色の度合いは、各ガラス基板を400Wの水銀ランプで48時間照射し、照射前後の波長400nmにおける紫外線透過率を測定し、その透過率の差を示したものである。この値が大きいほど、紫外線によって着色しやすいということになる。
【0038】
【発明の効果】
以上のように本発明の基板用ガラスは、密度が2.75g/cm3 以下と低く、570℃以上の温度で熱処理しても熱収縮が小さく、75〜95×10-7/℃の熱膨張係数を有し、また体積抵抗率が高く、しかも化学的耐久性に優れ、紫外線による着色も少ないため、プラズマディスプレイパネルの基板材料として好適である。
【0039】
さらに本発明の基板用ガラスは、失透し難いため、一般にガラス板の成形方法として知られているフロート法、フュージョン法、ロールアウト法等のいずれの方法によっても製造することが可能である。[0001]
[Industrial application fields]
The present invention relates to a glass for a substrate, and more particularly to a glass for a substrate suitable as a substrate material for a plasma display panel.
[0002]
[Prior art]
Conventionally, a soda-lime glass plate for architectural windows has been used as a substrate for a plasma display panel, and an electrode or insulating paste made of Al, Ni, Ag, ITO, Nesa film or the like is applied to the substrate surface at 500 to 600 ° C. The circuit is formed by baking at a temperature of Then, a plasma display is produced by frit-sealing at a temperature of 500-600 degreeC.
[0003]
Therefore, this type of substrate glass is generally required to satisfy the following characteristics.
[0004]
(1) The strain point must be 570 ° C. or higher in order to reduce thermal shrinkage during heat treatment at a temperature of 500 to 600 ° C., particularly 570 ° C. or higher.
[0005]
(2) Since the thermal expansion coefficient is consistent with that of insulating paste and sealing frit, no warping occurs. That is, it has a thermal expansion coefficient of 75 to 95 × 10 −7 / ° C.
[0006]
(3) When a thin film electrode such as a nesa film reacts with an alkali component in the glass, the electrical resistance value of the electrode material changes, so that the volume resistivity of the glass is 10 10 Ω · cm or more at 150 ° C. High and the alkali component does not react with the thin film electrode.
[0007]
[Problems to be solved by the invention]
Soda lime glass for architectural windows has a thermal expansion coefficient of about 89 × 10 −7 / ° C., and no warpage occurs when this is used as a substrate of a plasma display panel, but the strain point is about 500 ° C. Since it is low, it has the fault that the heat shrink at the time of heat processing at the temperature of 570-600 degreeC is large.
[0008]
Soda lime glass has a relatively low volume resistivity and poor chemical durability, so it has the disadvantage that the surface is burnt during long-term storage and use, making the display screen of the plasma display difficult to see. ing.
[0009]
In view of such circumstances, Japanese Patent Application Laid-Open No. 3-40933 discloses a glass for a plasma display panel having a thermal expansion coefficient of about 75 to 90 × 10 −7 / ° C. and having a higher strain point and volume resistivity than soda lime glass. A substrate has been proposed.
[0010]
However, the glass substrate of Japanese Patent Laid-Open No. 3-40933 has a problem that the weight is increased because the glass substrate is considerably higher in density than soda lime glass. That is, since the plasma display panel has a large screen of about 30 to 50 inches and becomes a wall-mounted television, the glass substrate used for it is required to be as light as possible. In order to reduce the weight of the glass substrate, the thickness may be reduced. However, considering the strength, there is a limit to the reduction in thickness. Therefore, in order to reduce the weight of the glass substrate, a method of reducing the density of the glass must be taken, but JP-A-3-40933 does not give any consideration to the density of the glass.
[0011]
The present invention has been made in view of the above circumstances. The object of the present invention is to have a density as low as 2.75 g / cm 3 or less, and heat shrinkage is small even when heat-treated at a temperature of 570 ° C. or higher. It is to provide a glass for a substrate having a thermal expansion coefficient of ˜95 × 10 −7 / ° C., a volume resistivity higher than that of soda lime glass, and excellent in chemical durability.
[0012]
[Means for Solving the Problems]
Glass substrate of the present invention, in% by weight, SiO 2 50~65%, Al 2 O 3 1~9.5%, CaO + MgO + SrO + BaO less than 17%, ZrO 2 1~9%, Li 2 O 0~1%, Na 2 O 2~12%, K 2 O 2~13%, has contains a composition of TiO 2 0 to 5%, wherein the density is 2.75 g / cm 3 or less.
[0013]
[Action]
Hereinafter, the reason which limited each component of the glass for substrates of this invention as mentioned above is demonstrated.
[0014]
SiO 2 is a glass network former. Its content is 50-65%. If it is less than 50%, the glass has a low strain point, so that the thermal shrinkage becomes large. On the other hand, if it exceeds 65%, the thermal expansion coefficient becomes too small.
[0015]
Al 2 O 3 is a component for increasing the strain point of glass, and its content is 1 to 9.5%. If the amount is less than 1%, the above effect cannot be obtained. On the other hand, if the amount is more than 9.5%, the glass tends to be devitrified and molding becomes difficult. That is, if the glass is easily devitrified, it is necessary to increase the melting temperature in order to suppress the generation of devitrified matter. However, if the melting temperature is increased, the glass during molding becomes soft. As a result, waviness occurs on the surface of the glass plate or the dimensional accuracy is liable to be lowered, making it impossible to use as a substrate of a plasma display panel that requires high surface accuracy and dimensional accuracy.
[0016]
CaO, MgO, SrO and BaO are components for facilitating melting of the glass and controlling the thermal expansion coefficient. When the total amount is 17% or more, the density of the glass is increased and the weight is reduced. Is not preferable because it becomes difficult. However, if these components are too small, it is difficult to obtain a thermal expansion coefficient of 75 × 10 −7 / ° C. or more. Therefore, it is desirable to contain a total amount of 10% or more.
[0017]
If the contents of CaO and MgO are too large, the glass tends to devitrify and it becomes difficult to mold. Therefore, it is desirable to keep CaO to 2.9% or less and MgO to 4% or less.
[0018]
In addition to the above-described effects, SrO has the effects of improving devitrification and raising the strain point, so it is desirable to contain 2% or more, preferably 5.5% or more. However, as the contents of SrO and BaO increase, the density of the glass increases remarkably. Therefore, SrO is desirably 13% or less, BaO is 5% or less, and preferably 1.9% or less.
[0019]
ZrO 2 is a component effective for improving the chemical durability of glass, and its content is 1 to 9%. If it is less than 1%, the effect of improving chemical durability is poor, and the strain point is too low. On the other hand, if it is more than 9%, the coefficient of thermal expansion becomes too small, and devitrified materials when the glass melts. Is easy to form, making it difficult to mold.
[0020]
Li 2 O, Na 2 O and K 2 O are all components for controlling the thermal expansion coefficient, and the content of Li 2 O is 0 to 1%. When Li 2 O is more than 1%, the strain point is lowered.
[0021]
The Na 2 O content is 2 to 12%. If it is less than 2%, the thermal expansion coefficient becomes too small, while if it exceeds 12%, the strain point becomes too low.
[0022]
The content of K 2 O is 2 to 13%. If it is less than 2%, the thermal expansion coefficient becomes too small, while if it is more than 13%, the strain point becomes too low.
[0023]
If the total amount of Li 2 O, Na 2 O and K 2 O is too small, the thermal expansion coefficient tends to be small, and conversely if too large, the strain point tends to be low, so 8 to 16%, preferably It is desirable to contain 12.5 to 15.5%.
[0024]
TiO 2 is a component for preventing the glass from being colored by ultraviolet rays, and its content is 0 to 5%. In the case of a plasma display, ultraviolet rays are generated during discharge, but when the substrate is colored by ultraviolet rays, the display screen gradually becomes difficult to see during long-term use. Therefore, in the present invention, it is desirable to contain 0.1% or more of TiO 2 . However, if it exceeds 5%, the glass tends to be devitrified and molding becomes difficult, which is not preferable.
[0025]
In the present invention, in addition to the above components, ZnO can be added up to 5% for the purpose of improving the meltability of the glass and adjusting the thermal expansion coefficient, and the glass is colored brown by ultraviolet rays. In order to prevent this, Bi 2 O 3 can be added up to 5%. Furthermore, as a clarifier, components such as As 2 O 3 , Sb 2 O 3 , SO 3 and Cl can be added up to 1%. As colorants, Fe 2 O 3 , CoO, Cr 2 O 3 , Components such as NiO and CeO 2 can be added up to 1%.
[0026]
However, in the present invention, if B 2 O 3 is contained, the strain point tends to decrease, which is not preferable. PbO generally acts as a flux, but is not preferable because it lowers the chemical durability of the glass and volatilizes from the surface of the melt at the time of melting and may contaminate the environment.
[0027]
【Example】
Hereinafter, the glass for substrates of this invention is demonstrated in detail based on an Example.
[0028]
Table 1 shows the glass for substrates of the examples (sample Nos. 1 to 6) and the glass for substrates of the comparative examples (samples No. 7 and 8). The sample No. 8 is a general soda-lime glass for architectural windows.
[0029]
[Table 1]
Figure 0003867816
[0030]
Each sample in Table 1 was prepared as follows.
[0031]
First, the raw materials were prepared so as to have the glass composition in the table, put in a platinum crucible, melted in an electric furnace at a temperature of 1450 to 1550 ° C. for 4 hours, and the molten glass was poured onto carbon. Molded into a plate. Subsequently, the glass substrate was produced by optically polishing both surfaces of this glass plate.
[0032]
Each sample thus obtained was examined for density, strain point, liquidus temperature, thermal expansion coefficient, volume resistivity, and degree of coloration by ultraviolet rays.
[0033]
As is apparent from Table 1, No. 1 as an example. Each of the samples 1 to 6 has a density of 2.70 g / cm 3 or less, and thus can be reduced in weight. Since the strain point is 572 ° C. or higher, the thermal shrinkage is small and the liquidus temperature is low. Since it is 1020 degrees C or less, it is clear that it is hard to devitrify. Further, these samples had a thermal expansion coefficient of 80 to 83 × 10 −7 / ° C., a volume resistivity at 150 ° C. of as high as 10 11.1 Ω · cm or more, and a degree of coloring by ultraviolet rays was small.
[0034]
On the other hand, No. which is a comparative example. The sample No. 7 has a high density of 2.87 g / cm 3 and a high liquidus temperature of 1200 ° C., so it is considered to be easily devitrified and difficult to mold. No. The sample No. 8 had a low strain point of 500 ° C. and a low volume resistivity. Therefore, it was considered that the alkali component was likely to react with the thin film electrode, and the degree of coloring by ultraviolet rays was also large.
[0035]
The density in the table is measured by the well-known Archimedes method, the strain point is measured based on the method of ASTM C336-71, and the liquidus temperature is a glass powder having a particle size of 297 to 500 μm on a platinum boat. It was obtained by observing devitrification after being placed in a temperature gradient furnace for 48 hours.
[0036]
The coefficient of thermal expansion is a value obtained by measuring an average coefficient of thermal expansion at 30 to 380 ° C. using a dilatometer, and the volume resistivity is a value obtained by measuring a value at 150 ° C. based on ASTM C657-78.
[0037]
Further, the degree of coloring by ultraviolet rays is the difference in transmittance between each glass substrate irradiated with a 400 W mercury lamp for 48 hours, and measured for ultraviolet transmittance at a wavelength of 400 nm before and after irradiation. The larger this value, the easier it is to color with ultraviolet light.
[0038]
【The invention's effect】
As described above, the glass for a substrate of the present invention has a density as low as 2.75 g / cm 3 or less and has a small thermal shrinkage even when heat-treated at a temperature of 570 ° C. or higher, and heat of 75 to 95 × 10 −7 / ° C. Since it has an expansion coefficient, has a high volume resistivity, is excellent in chemical durability, and is less colored by ultraviolet rays, it is suitable as a substrate material for a plasma display panel.
[0039]
Furthermore, since the glass for a substrate of the present invention is not easily devitrified, it can be produced by any method such as a float method, a fusion method, or a roll-out method that is generally known as a glass plate forming method.

Claims (3)

重量百分率で、SiO2 50〜65%、Al23 1〜9.5%、CaO+MgO+SrO+BaO 17%未満、ZrO2 1〜9%、Li2O 0〜1%、Na2O 2〜12%、K2O 2〜13%、TiO2 0〜5%の組成を含有し、密度が2.75g/cm3以下であることを特徴とする基板用ガラス。In weight percent, SiO 2 50~65%, Al 2 O 3 1~9.5%, CaO + MgO + SrO + BaO less than 17%, ZrO 2 1~9%, Li 2 O 0~1%, Na 2 O 2~12%, A glass for a substrate comprising a composition of 2 to 13% of K 2 O and 0 to 5% of TiO 2 and having a density of 2.75 g / cm 3 or less. 重量百分率で、SiO2 50〜65%、Al23 1〜9.5%、BaO 0〜1.9%、CaO+MgO+SrO+BaO 17%未満、ZrO2 1〜9%、Li2O 0〜1%、Na2O 2〜12%、K2O 2〜13%、TiO2 0〜5%の組成を含有し、密度が2.75g/cm3以下であることを特徴とする請求項1に記載の基板用ガラス。In weight percent, SiO 2 50~65%, Al 2 O 3 1~9.5%, BaO 0~1.9%, CaO + MgO + SrO + BaO less than 17%, ZrO 2 1~9%, Li 2 O 0~1%, The composition according to claim 1, wherein the composition contains Na 2 O 2-12%, K 2 O 2-13%, TiO 2 0-5%, and a density of 2.75 g / cm 3 or less. Glass for substrates. 30〜380℃における平均熱膨張係数が75〜95×10-7/℃であることを特徴とする請求項1または2に記載の基板用ガラス。Glass substrate according to claim 1 or 2 average thermal expansion coefficient is equal to or is 75~95 × 10 -7 / ℃ at 30 to 380 ° C..
JP20307496A 1996-07-12 1996-07-12 Substrate glass Expired - Fee Related JP3867816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20307496A JP3867816B2 (en) 1996-07-12 1996-07-12 Substrate glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20307496A JP3867816B2 (en) 1996-07-12 1996-07-12 Substrate glass

Publications (2)

Publication Number Publication Date
JPH1025128A JPH1025128A (en) 1998-01-27
JP3867816B2 true JP3867816B2 (en) 2007-01-17

Family

ID=16467926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20307496A Expired - Fee Related JP3867816B2 (en) 1996-07-12 1996-07-12 Substrate glass

Country Status (1)

Country Link
JP (1) JP3867816B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19721738C1 (en) * 1997-05-24 1998-11-05 Schott Glas Aluminosilicate glass for flat displays and uses
EP0953549B1 (en) 1998-04-28 2002-09-11 Asahi Glass Company Ltd. Plate glass and substrate glass for electronics
TW565539B (en) 1998-08-11 2003-12-11 Asahi Glass Co Ltd Glass for a substrate
JP4635297B2 (en) * 1999-06-08 2011-02-23 旭硝子株式会社 Substrate glass and glass substrate
JP5013304B2 (en) * 2006-03-17 2012-08-29 日本電気硝子株式会社 Glass substrate for display
US9637408B2 (en) * 2009-05-29 2017-05-02 Corsam Technologies Llc Fusion formable sodium containing glass
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
CN111018345A (en) * 2019-11-23 2020-04-17 石家庄旭新光电科技有限公司 Composition for aluminosilicate glass for OLED panel, aluminosilicate glass and preparation method thereof

Also Published As

Publication number Publication date
JPH1025128A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP3666054B2 (en) Substrate glass
US5854153A (en) Glasses for display panels
EP0795522B1 (en) Glass composition for a substrate
JP3831957B2 (en) Glass composition and substrate for plasma display
KR100750990B1 (en) High Strain-point Glass composition for substrate
JPH10114538A (en) Alkali-free glass and its production
JP3867817B2 (en) Substrate glass
JP4686858B2 (en) Glass substrate for flat panel display
JP2001226138A (en) Glass substrate for flat panel display device
JPH08290939A (en) Glass for substrate
JP2000128572A (en) Borosilicate glass and its production
JP3867816B2 (en) Substrate glass
KR100320628B1 (en) Substrate glass and plasma display made by using the same
JPH1025129A (en) Glass for substrate
JPH07257937A (en) Glass composition
JP4389257B2 (en) Glass substrate for flat panel display
JPH11100226A (en) Substrate glass for display device
JP3770670B2 (en) Substrate glass for display devices
JP2003335547A (en) Glass substrate for flat panel display equipment
JP2004244257A (en) Glass substrate for flat panel display device
JPH1045423A (en) Plasma display device
KR100320627B1 (en) Substrate glass and plasma display made by using the same
JP4756428B2 (en) Glass substrate for flat panel display
JP4265157B2 (en) Glass substrate for flat panel display
JP4924974B2 (en) Glass substrate for flat panel display

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees