WO2019171851A1 - Method of manufacturing near infrared ray absorbing glass - Google Patents

Method of manufacturing near infrared ray absorbing glass Download PDF

Info

Publication number
WO2019171851A1
WO2019171851A1 PCT/JP2019/003771 JP2019003771W WO2019171851A1 WO 2019171851 A1 WO2019171851 A1 WO 2019171851A1 JP 2019003771 W JP2019003771 W JP 2019003771W WO 2019171851 A1 WO2019171851 A1 WO 2019171851A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
absorbing glass
infrared absorbing
wavelength
Prior art date
Application number
PCT/JP2019/003771
Other languages
French (fr)
Japanese (ja)
Inventor
永野雄太
中塚和人
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018227930A external-priority patent/JP7138849B2/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020207009718A priority Critical patent/KR20200130228A/en
Priority to CN201980006319.6A priority patent/CN111448169A/en
Publication of WO2019171851A1 publication Critical patent/WO2019171851A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/173Apparatus for changing the composition of the molten glass in glass furnaces, e.g. for colouring the molten glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the near-infrared absorbing glass of the present invention contains 3 to 40% of CuO by mass%, has a thickness of 0.05 mm, has a light transmittance of 82% or more at a wavelength of 500 nm, and has a light transmittance of 50% at a wavelength of 800 nm. It is characterized by the following.
  • a glass raw material prepared so as to become a glass having a desired composition is heated and melted to obtain a molten glass.
  • the melting temperature is preferably 500 to 1200 ° C, 550 to 1100 ° C, particularly 600 to 1000 ° C. If the melting temperature is too low, it is difficult to obtain a homogeneous glass. On the other hand, if the melting temperature is too high, the molten glass is reduced and the amount of Cu + increases too much. Therefore, the amount of Cu + can be sufficiently increased even if oxidizing gas bubbling is performed at a temperature below 1000 ° C. It becomes difficult to reduce. As a result, it becomes difficult to obtain desired spectral characteristics.
  • Example 1 By mass%, P 2 O 5 46.0%, CuO 6.9%, K 2 O 13.9%, Al 2 O 3 6.6%, MgO 2.7%, CaO 3.7%, BaO 20
  • the raw material powder prepared so as to have a composition of 2% was put into a cylindrical platinum crucible and heated and melted at 900 ° C. for 2 hours to obtain a homogeneous molten glass. Further, the molten glass was held at 900 ° C. for 5 hours while bubbling oxygen into the molten glass. Next, the molten glass was poured onto a carbon plate, cooled and solidified, and then annealed.

Abstract

Provided is a method which facilitates the manufacturing of near infrared ray absorbing glass that has excellent spectral characteristics. The method of manufacturing near infrared ray absorbing glass that comprises, in mass%, 10 to 70% of P2O5, 3 to 40% of CuO, and over 0 to 50% of R2O (where R is at least one selected from Li, Na, and K) is characterized by heating and melting a raw material into molten glass, and bubbling oxidized gas into the molten glass while keeping the molten glass at a temperature of 1000°C or less.

Description

近赤外線吸収ガラスの製造方法Manufacturing method of near-infrared absorbing glass
 本発明は、近赤外線を選択的に吸収することが可能な近赤外線吸収ガラスの製造方法に関するものである。 The present invention relates to a method for producing a near-infrared absorbing glass capable of selectively absorbing near-infrared rays.
 一般に、デジタルカメラやスマートフォン等の光学デバイス内のカメラ部分には、CCD(電荷結合素子)やCMOS(相補性金属酸化膜半導体)等の固体撮像素子の視感度補正を目的として、近赤外線吸収ガラスが用いられている。近赤外線吸収ガラスとして必要な分光特性を満足するために、Cu含有リン酸ガラスが一般に用いられている。近赤外線吸収ガラスには、実用上、化学的耐久性や耐候性も要求されるため、組成及び製造方法の改良が種々行われてきた。 In general, near-infrared-absorbing glass is used for correcting the visibility of solid-state imaging devices such as CCDs (Charge Coupled Devices) and CMOSs (Complementary Metal Oxide Semiconductors) on camera parts in optical devices such as digital cameras and smartphones. Is used. In order to satisfy the spectral characteristics necessary for near infrared absorbing glass, Cu-containing phosphate glass is generally used. Near-infrared absorbing glass also requires chemical durability and weather resistance for practical use, and therefore various improvements in composition and manufacturing methods have been made.
 リン酸ガラスの化学的耐久性や耐候性を向上させるため、ガラス骨格を補強するSiOやAlを含有させることが提案されている(例えば特許文献1参照)。しかしながら、その場合、溶融性が低下して溶融温度が上昇する傾向がある。溶融温度が上昇すると、近赤外域に吸収を示すCu2+イオンが還元され、紫外域に吸収を示すCuイオンが生成し、紫外~可視域の光透過率が低下しやすくなるため、所望の分光特性が得られにくくなる。 In order to improve the chemical durability and weather resistance of phosphate glass, it has been proposed to contain SiO 2 or Al 2 O 3 that reinforces the glass skeleton (see, for example, Patent Document 1). However, in that case, the meltability tends to decrease and the melting temperature tends to increase. As the melting temperature rises, Cu 2+ ions that absorb in the near infrared region are reduced, Cu + ions that absorb in the ultraviolet region are generated, and the light transmittance in the ultraviolet to visible region tends to decrease. Spectral characteristics are difficult to obtain.
 そこで、銅の酸化状態を維持するために、原料に酸化剤を添加する方法が提案されている。 Therefore, in order to maintain the oxidation state of copper, a method of adding an oxidizing agent to the raw material has been proposed.
特開2011-121792号JP2011-121792A
 しかしながら、酸化剤の添加は、それ自身が分光特性に悪影響を及ぼす可能性がある。 However, the addition of an oxidant itself may adversely affect the spectral characteristics.
 以上に鑑み、本発明は、分光特性に優れた近赤外線吸収ガラスを容易に製造することが可能な方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a method capable of easily producing near-infrared absorbing glass excellent in spectral characteristics.
 本発明の近赤外線吸収ガラスの製造方法は、質量%で、P 10~70%、CuO 3~40%、RO 0超~50%(ただし、RはLi、Na及びKから選択される少なくとも1種)を含有する近赤外線吸収ガラスの製造方法であって、原料を加熱溶融して溶融ガラスにし、前記溶融ガラスを1000℃以下に保持しながら、前記溶融ガラス中に酸化性ガスをバブリングすることを特徴とする。このようにすれば、1000℃以下という低い温度で溶融ガラスを保持することで、溶融ガラスが酸化されやすくなる。さらに、溶融ガラス中に酸化性ガスをバブリングすることにより、溶融ガラス中に酸化性ガスが取り込まれ、溶融ガラスがさらに酸化されやすくなる。その結果、溶融ガラス中に含まれるCuをCu2+に価数変化させることが容易になり、Cuの量が少なく、優れた分光特性を有するガラスを得ることができる。 The manufacturing method of the near infrared ray absorbing glass of the present invention is, by mass%, P 2 O 5 10 to 70%, CuO 3 to 40%, R 2 O more than 50 to 50% (where R is from Li, Na and K) A method for producing a near-infrared absorbing glass containing at least one selected from the group consisting of heat-melting a raw material into a molten glass and maintaining the molten glass at 1000 ° C. or lower while oxidizing the molten glass. It is characterized by bubbling gas. If it does in this way, a molten glass will become easy to be oxidized by hold | maintaining a molten glass at the low temperature of 1000 degrees C or less. Further, by bubbling the oxidizing gas into the molten glass, the oxidizing gas is taken into the molten glass and the molten glass is further easily oxidized. As a result, it becomes easy to change the valence of Cu + contained in the molten glass to Cu 2+ , and it is possible to obtain a glass having a small amount of Cu + and having excellent spectral characteristics.
 本発明の近赤外線吸収ガラスの製造方法において、近赤外線吸収ガラスが、質量%で、P 20~60%、CuO 5~35%、RO 0超~40%(ただし、RはLi、Na及びKから選択される少なくとも1種)、Al 0~19%、R’O 0~50%(ただし、R’はMg、Ca、Sr及びBaから選択される少なくとも1種)を含有することが好ましい。 In the method for producing a near-infrared absorbing glass of the present invention, the near-infrared absorbing glass is, by mass%, P 2 O 5 20 to 60%, CuO 5 to 35%, R 2 O 0 to more than 40% (where R is At least one selected from Li, Na and K), Al 2 O 3 0-19%, R′O 0-50% (where R ′ is at least one selected from Mg, Ca, Sr and Ba) ) Is preferably contained.
 本発明の近赤外線吸収ガラスは、質量%で、P 10~70%、CuO 3~40%、RO 0超~50%(ただし、RはLi、Na及びKから選択される少なくとも1種)を含有し、厚みが0.2mm未満であり、厚み0.05mmにて波長500nmにおける光透過率が82%以上であることを特徴とする。本発明の近赤外線吸収ガラスは、CuOを3質量%以上含有しているため、厚みが0.2mm未満と薄くても優れた分光特性を得ることができる。また、厚みが0.2mm未満と薄いため、光学デバイスを薄型化しやすい。 The near-infrared absorbing glass of the present invention is, by mass%, P 2 O 5 10 to 70%, CuO 3 to 40%, R 2 O over 0 to 50% (where R is selected from Li, Na and K) At least one kind), having a thickness of less than 0.2 mm, and having a thickness of 0.05 mm and a light transmittance of 82% or more at a wavelength of 500 nm. Since the near infrared ray absorbing glass of the present invention contains 3% by mass or more of CuO, excellent spectral characteristics can be obtained even when the thickness is as thin as less than 0.2 mm. Moreover, since the thickness is as thin as less than 0.2 mm, the optical device can be easily thinned.
 本発明の近赤外線吸収ガラスは、厚み0.05mmにて波長800nmにおける光透過率が50%以下であることが好ましい。 The near-infrared absorbing glass of the present invention preferably has a thickness of 0.05 mm and a light transmittance of 50% or less at a wavelength of 800 nm.
 本発明の近赤外線吸収ガラスは、質量%で、P 10~70%、CuO 3~40%、RO 0超~50%(ただし、RはLi、Na及びKから選択される少なくとも1種)を含有し、溶存酸素量が100μL/g以上であることを特徴とする。本発明の近赤外線吸収ガラスは、溶存酸素量が100μL/g以上と多く十分に酸化されているため、ガラス中に含まれるCuの量が少なく、優れた分光特性を有しやすい。なお、「溶存酸素量」とは、ガラスをヘリウム等の不活性雰囲気下にて8℃/分の昇温速度で450℃から1450℃まで加熱した際にガラスが放出した酸素の量を意味する。 The near-infrared absorbing glass of the present invention is, by mass%, P 2 O 5 10 to 70%, CuO 3 to 40%, R 2 O over 0 to 50% (where R is selected from Li, Na and K) At least one kind), and the dissolved oxygen amount is 100 μL / g or more. Since the near-infrared absorbing glass of the present invention is sufficiently oxidized with a dissolved oxygen amount of 100 μL / g or more, the amount of Cu + contained in the glass is small and it is easy to have excellent spectral characteristics. The “dissolved oxygen amount” means the amount of oxygen released from the glass when the glass is heated from 450 ° C. to 1450 ° C. at a temperature increase rate of 8 ° C./min in an inert atmosphere such as helium. .
 本発明の近赤外線吸収ガラスは、質量%で、CuO 3~40%を含有し、厚み0.05mmにて波長500nmにおける光透過率が82%以上であり、波長800nmにおける光透過率が50%以下であることを特徴とする。 The near-infrared absorbing glass of the present invention contains 3 to 40% of CuO by mass%, has a thickness of 0.05 mm, has a light transmittance of 82% or more at a wavelength of 500 nm, and has a light transmittance of 50% at a wavelength of 800 nm. It is characterized by the following.
 本発明の製造方法によれば、分光特性に優れた近赤外線吸収ガラスを容易に製造することが可能となる。 According to the production method of the present invention, it is possible to easily produce near-infrared absorbing glass having excellent spectral characteristics.
 本発明の近赤外線吸収ガラスの製造方法について説明する。 The method for producing the near-infrared absorbing glass of the present invention will be described.
 まず、所望の組成を有するガラスとなるように調合したガラス原料を加熱溶融して溶融ガラスを得る。溶融温度は500~1200℃、550~1100℃、特に600~1000℃であることが好ましい。溶融温度が低すぎると、均質なガラスが得にくくなる。一方、溶融温度が高すぎると、溶融ガラスが還元されてCuの量が多くなりすぎるため、後に1000℃以下の温度に保持して酸化性ガスバブリングを行ってもCuの量を十分に少なくすることが困難になる。その結果、所望の分光特性が得られにくくなる。 First, a glass raw material prepared so as to become a glass having a desired composition is heated and melted to obtain a molten glass. The melting temperature is preferably 500 to 1200 ° C, 550 to 1100 ° C, particularly 600 to 1000 ° C. If the melting temperature is too low, it is difficult to obtain a homogeneous glass. On the other hand, if the melting temperature is too high, the molten glass is reduced and the amount of Cu + increases too much. Therefore, the amount of Cu + can be sufficiently increased even if oxidizing gas bubbling is performed at a temperature below 1000 ° C. It becomes difficult to reduce. As a result, it becomes difficult to obtain desired spectral characteristics.
 得られた溶融ガラスを一定の温度にて保持する。保持温度は1000℃以下であり、950℃以下、特に900℃以下であることが好ましい。保持温度が高すぎると、CuがCu2+に十分に酸化されず、所望の分光特性が得られにくくなる。なお、保持温度が低すぎると溶融ガラス保持中あるいは成形時に失透が発生しやすくなるため、保持温度の下限は500℃以上、550℃以上、特に600℃以上であることが好ましい。また、溶融ガラスの保持温度での保持時間は1~20時間、特に3~18時間であることが好ましい。保持時間が短すぎると、CuがCu2+に十分に酸化されず、所望の分光特性が得られにくくなる。一方、保持時間が長すぎると、ガラス成分が揮発して所望の組成が得られにくくなる。その結果、分光特性等に悪影響を及ぼすおそれがある。 The obtained molten glass is kept at a constant temperature. The holding temperature is 1000 ° C. or lower, preferably 950 ° C. or lower, and particularly preferably 900 ° C. or lower. If the holding temperature is too high, Cu + is not sufficiently oxidized to Cu 2+ and it becomes difficult to obtain desired spectral characteristics. If the holding temperature is too low, devitrification tends to occur during holding of the molten glass or at the time of molding. Therefore, the lower limit of the holding temperature is preferably 500 ° C. or higher, 550 ° C. or higher, particularly 600 ° C. or higher. The holding time of the molten glass at the holding temperature is preferably 1 to 20 hours, particularly 3 to 18 hours. If the holding time is too short, Cu + is not sufficiently oxidized to Cu 2+ and it becomes difficult to obtain desired spectral characteristics. On the other hand, if the holding time is too long, the glass component volatilizes and it becomes difficult to obtain a desired composition. As a result, the spectral characteristics and the like may be adversely affected.
 さらに、保持温度で溶融ガラスを保持する際に溶融ガラス中に酸化性ガスをバブリングする。このようにすれば、溶融ガラスが酸化されやすくなるため、Cuの量が少なくなり優れた分光特性を得やすくなる。なお、酸化性ガスとしては、酸素、オゾン、窒素酸化物(亜酸化窒素、一酸化窒素、二酸化窒素等)等が挙げられる。コスト、環境面、安全面を考慮すると、特に酸素であることが好ましい。 Furthermore, oxidizing gas is bubbled in the molten glass when the molten glass is held at the holding temperature. In this way, since the molten glass is easily oxidized, the amount of Cu + is reduced, and excellent spectral characteristics are easily obtained. Examples of the oxidizing gas include oxygen, ozone, and nitrogen oxides (nitrous oxide, nitrogen monoxide, nitrogen dioxide, etc.). In view of cost, environment and safety, oxygen is particularly preferable.
 一定時間保持した溶融ガラスは、その後所望の形状に成形される。成形方法としては、鋳造法、ダウンドロー法、ロールアウト法等が挙げられる。成形後のガラスは必要に応じて切断や研磨等の後加工を経て近赤外線吸収ガラスが得られる。 The molten glass held for a certain time is then formed into a desired shape. Examples of the forming method include a casting method, a downdraw method, and a rollout method. The molded glass is subjected to post-processing such as cutting and polishing as necessary to obtain a near-infrared absorbing glass.
 次に、本発明の近赤外線吸収ガラスについて説明する。 Next, the near infrared ray absorbing glass of the present invention will be described.
 本発明の近赤外線吸収ガラスは、質量%で、P 10~70%、CuO 3~40%、RO 0超~50%(ただし、RはLi、Na及びKから選択される少なくとも1種)を含有する。ガラス組成をこのように規制した理由を以下に説明する。 The near-infrared absorbing glass of the present invention is, by mass%, P 2 O 5 10 to 70%, CuO 3 to 40%, R 2 O over 0 to 50% (where R is selected from Li, Na and K) Containing at least one). The reason why the glass composition is regulated in this way will be described below.
 Pはガラス骨格を形成するために欠かせない成分である。Pの含有量は10~70%であり、20~60%、31~56%、41~50%、特に45~49%であることが好ましい。Pの含有量が少なすぎると、ガラス化しにくくなったり、所望の分光特性が得られにくくなる。具体的には、近赤外線吸収特性が低下しやすくなる。一方、Pの含有量が多すぎると、耐候性が低下しやすくなる。 P 2 O 5 is an essential component for forming a glass skeleton. The content of P 2 O 5 is 10 to 70%, preferably 20 to 60%, 31 to 56%, 41 to 50%, particularly preferably 45 to 49%. When the content of P 2 O 5 is too small, or not easily be vitrified, desired spectral characteristics are difficult to obtain. Specifically, the near-infrared absorption characteristics are likely to deteriorate. On the other hand, when the content of P 2 O 5 is too large, the weather resistance tends to lower.
 CuOは近赤外線を吸収するための必須成分である。CuOの含有量は3~40%であり、4~37%、5~35%、特に6~30%であることが好ましい。CuOの含有量が少なすぎると、所望の近赤外線吸収特性を得るためにガラスを厚くする必要があり、結果として光学デバイスを薄型化しにくくなる。一方、CuOの含有量が多すぎると、液相温度が高くなり、耐失透性が低下しやすくなる。 CuO is an essential component for absorbing near infrared rays. The CuO content is 3 to 40%, preferably 4 to 37%, 5 to 35%, and particularly preferably 6 to 30%. When the content of CuO is too small, it is necessary to thicken the glass in order to obtain desired near infrared absorption characteristics, and as a result, it becomes difficult to make the optical device thin. On the other hand, when there is too much content of CuO, liquidus temperature will become high and devitrification resistance will fall easily.
 RO(ただし、RはLi、Na及びKから選択される少なくとも1種)は溶融温度を低下させる成分である。ROの含有量は0超~50%であり、0超~40%、3~30%、特に5~20%であることが好ましい。ROの含有量が少なすぎると、溶融温度が高くなり、後に1000℃以下の温度に保持して酸化性ガスバブリングを行ってもCuの量を十分に少なくすることが困難になる。結果として所望の分光特性が得にくくなる。一方、ROの含有量が多すぎると、ガラス化しにくくなる。 R 2 O (where R is at least one selected from Li, Na, and K) is a component that lowers the melting temperature. The content of R 2 O is more than 0 to 50%, preferably more than 0 to 40%, 3 to 30%, particularly preferably 5 to 20%. When the content of R 2 O is too small, the melting temperature becomes high, and it becomes difficult to sufficiently reduce the amount of Cu + even if oxidizing gas bubbling is performed while maintaining the temperature at 1000 ° C. or lower. As a result, it becomes difficult to obtain desired spectral characteristics. On the other hand, when the content of R 2 O is too large, it is difficult to vitrify.
 なお、ROの各成分の好ましい範囲は以下の通りである。LiOの含有量は0~50%、0超~40%、3~30%、特に5~20%であることが好ましい。NaOの含有量は0~50%、0超~40%、3~30%、特に5~20%であることが好ましい。KOの含有量は0超~50%、0超~40%、3~30%、特に5~20%であることが好ましい。 A preferable range of each component of R 2 O is as follows. The Li 2 O content is preferably 0 to 50%, more than 0 to 40%, 3 to 30%, particularly 5 to 20%. The content of Na 2 O is preferably 0 to 50%, more than 0 to 40%, 3 to 30%, particularly 5 to 20%. The K 2 O content is preferably more than 0 to 50%, more than 0 to 40%, 3 to 30%, particularly preferably 5 to 20%.
 本発明の近赤外線吸収ガラスには、上記成分以外にも下記の成分を含有させることができる。 The near infrared absorbing glass of the present invention may contain the following components in addition to the above components.
 Alは耐候性を大幅に向上させる成分である。また、耐失透性を向上させる成分でもある。Alの含有量は0~19%、3~14%、3~8%、特に4~6%であることが好ましい。Alの含有量が多すぎると、溶融性が低下して溶融温度が上昇する傾向がある。 Al 2 O 3 is a component that greatly improves the weather resistance. It is also a component that improves devitrification resistance. The content of Al 2 O 3 is preferably 0 to 19%, 3 to 14%, 3 to 8%, particularly 4 to 6%. When the content of Al 2 O 3 is too large, there is a tendency that the melting temperature fusible reduced increases.
 R’O(ただし、R’はMg、Ca、Sr及びBaから選択される少なくとも1種)は耐候性を改善するとともに、溶融性を向上させる成分である。また、耐失透性を向上させる成分でもある。R’Oの含有量は0~50%、3~30%、特に5~20%であることが好ましい。R’Oの含有量が多すぎると、成形時にR’O成分起因の結晶が析出しやすくなる。 R′O (where R ′ is at least one selected from Mg, Ca, Sr, and Ba) is a component that improves the weather resistance and improves the meltability. It is also a component that improves devitrification resistance. The content of R′O is preferably 0 to 50%, 3 to 30%, particularly 5 to 20%. If the content of R′O is too large, crystals due to the R′O component tend to precipitate during molding.
 なお、R’Oの各成分の含有量の好ましい範囲は以下の通りである。 In addition, the preferable range of the content of each component of R′O is as follows.
 MgOは耐候性を改善する成分である。MgOの含有量は0~15%、特に0.4~7%であることが好ましい。MgOの含有量が多すぎると、ガラス化しにくくなる。 MgO is a component that improves weather resistance. The MgO content is preferably 0 to 15%, particularly preferably 0.4 to 7%. When there is too much content of MgO, it will become difficult to vitrify.
 CaOはMgOと同様に耐候性を改善する成分である。CaOの含有量は0~15%、特に0.4~7%であることが好ましい。CaOの含有量が多すぎると、ガラス化しにくくなる。 CaO is a component that improves the weather resistance like MgO. The CaO content is preferably 0 to 15%, particularly preferably 0.4 to 7%. When there is too much content of CaO, it will become difficult to vitrify.
 SrOもMgOと同様に耐候性を改善する成分である。SrOの含有量は0~12%、特に0.3~5%であることが好ましい。SrOの含有量が多すぎると、ガラス化しにくくなる。 SrO is a component that improves the weather resistance as well as MgO. The SrO content is preferably 0 to 12%, particularly preferably 0.3 to 5%. When there is too much content of SrO, it will become difficult to vitrify.
 BaOはガラス化の安定性を高めるとともに、耐候性を向上させる成分である。特にPが少ない場合に、BaOによるガラス化安定性の効果を享受しやすい。BaOの含有量は0~30%、5~30%、7~25%、特に7.2~23%であることが好ましい。BaOの含有量が多すぎると、成形中にBaO起因の結晶が析出しやすくなる。 BaO is a component that increases the stability of vitrification and improves the weather resistance. Especially when less is P 2 O 5, to easily enjoy the effect of vitrification stability by BaO. The content of BaO is preferably 0 to 30%, 5 to 30%, 7 to 25%, particularly 7.2 to 23%. When there is too much content of BaO, the crystal | crystallization resulting from BaO will precipitate easily during shaping | molding.
 なお、本発明の近赤外線吸収ガラスは、CuOを3%以上と多く含有している。CuOの含有量が多くなると失透しやすくなるが、AlやR’Oを含有させることにより耐失透性を向上させることができる。 In addition, the near-infrared absorption glass of this invention contains CuO as much as 3% or more. When the content of CuO increases, devitrification tends to occur. However, by including Al 2 O 3 or R′O, devitrification resistance can be improved.
 ZnOはガラス化の安定性及び耐候性を改善する成分である。ZnOの含有量は0~13%、0.1~12%、特に1~10%であることが好ましい。ZnOの含有量が多すぎると、溶融性が低下して溶融温度が高くなり、結果として所望の分光特性が得られにくくなる。また、ZnO成分起因の結晶が析出しやすくなる。なお、特にPが少ない場合に、ZnOによるガラス化安定性の効果を享受しやすい。 ZnO is a component that improves the stability and weather resistance of vitrification. The content of ZnO is preferably 0 to 13%, 0.1 to 12%, particularly 1 to 10%. When there is too much content of ZnO, a meltability will fall and a melting temperature will become high, and it will become difficult to obtain a desired spectral characteristic as a result. In addition, crystals due to the ZnO component are likely to precipitate. In particular, when the amount of P 2 O 5 is small, it is easy to enjoy the effect of vitrification stability due to ZnO.
 Nb及びTaは耐候性を高める成分である。Nb及びTaの各成分の含有量は0~20%、0.1~20%、1~18%、特に2~15%であることが好ましい。これらの成分の含有量が多すぎると、溶融温度が高くなって、所望の分光特性が得にくくなる。なお、Nb及びTaの合量は0~20%、0.1~20%、1~18%、特に2~15%であることが好ましい。 Nb 2 O 5 and Ta 2 O 5 are components that enhance the weather resistance. The content of each component of Nb 2 O 5 and Ta 2 O 5 is preferably 0 to 20%, 0.1 to 20%, 1 to 18%, particularly 2 to 15%. When there is too much content of these components, melting temperature will become high and it will become difficult to obtain desired spectral characteristics. The total amount of Nb 2 O 5 and Ta 2 O 5 is preferably 0 to 20%, 0.1 to 20%, 1 to 18%, particularly preferably 2 to 15%.
 GeOは耐候性を高める成分である。GeOの含有量は0~20%、0.1~20%、0.3~17%、特に0.4~15%であることが好ましい。GeOの含有量が多すぎると、溶融温度が高くなって、所望の分光特性が得られにくくなる。 GeO 2 is a component that enhances weather resistance. The GeO 2 content is preferably 0 to 20%, 0.1 to 20%, 0.3 to 17%, particularly preferably 0.4 to 15%. When the content of GeO 2 is too large, the melting temperature becomes higher, the desired spectral characteristics are difficult to obtain.
 SiOはガラス骨格を強化する成分である。また、耐候性を向上させる効果がある。SiOの含有量は0~10%、0.1~8%、特に1~6%であることが好ましい。SiOの含有量が多すぎると、かえって耐候性が低下しやすくなる。また、ガラス化が不安定になる傾向がある。 SiO 2 is a component that reinforces the glass skeleton. Moreover, there exists an effect which improves a weather resistance. The content of SiO 2 is preferably 0 to 10%, 0.1 to 8%, particularly 1 to 6%. When the content of SiO 2 is too large, rather weather resistance tends to lower. Also, vitrification tends to be unstable.
 また、上記成分以外にも、B、Y、La、CeO、Sb等を本発明の効果を損なわない範囲で含有させても構わない。具体的には、これらの成分の含有量は、各々0~3%、特に各々0~2%であることが好ましい。なお、フッ素を含有させることにより化学的耐久性を向上させることが可能であるが、フッ素は環境負荷物質であるため、アニオン%で、15%以下、10%以下、5%以下、1%以下、特に含有しないことが好ましい。 Further, in addition to the above components also, B 2 O 3, Y 2 O 3, La 2 O 3, may be a CeO 2, Sb 2 O 3 or the like is contained in a range that does not impair the effects of the present invention. Specifically, the content of these components is preferably 0 to 3%, particularly preferably 0 to 2%. Although chemical durability can be improved by containing fluorine, since fluorine is an environmentally hazardous substance, anion% is 15% or less, 10% or less, 5% or less, 1% or less. In particular, it is preferably not contained.
 本発明の近赤外線吸収ガラスの液相温度は900℃以下、890℃以下、880℃以下、870℃以下、860℃以下、特に850℃以下であることが好ましい。液相温度が高すぎると、製造工程において(特に成形時に)失透しやすくなる。 The liquid phase temperature of the near-infrared absorbing glass of the present invention is preferably 900 ° C. or lower, 890 ° C. or lower, 880 ° C. or lower, 870 ° C. or lower, 860 ° C. or lower, particularly 850 ° C. or lower. If the liquidus temperature is too high, devitrification tends to occur in the manufacturing process (particularly during molding).
 上記の方法で得られた近赤外線吸収ガラスは、可視域における高い光透過率及び近赤外域における優れた光吸収特性の両者を達成することが可能となる。具体的には、厚み0.05mmにて、波長500nmにおける光透過率は82%以上であり、83%以上、84%以上、85%以上、86%以上、87%以上、特に88%以上であることが好ましい。一方、波長800nmにおける光透過率は50%以下、40%以下、35%以下、30%以下、29%以下、28%以下、27%以下、特に26.5%以下であることが好ましく、波長1200nmにおける光透過率は70%以下、65%以下、60%以下、59%以下、58%以下、57%以下、56%以下、特に55%以下であることが好ましい。 The near-infrared absorbing glass obtained by the above method can achieve both high light transmittance in the visible range and excellent light absorption characteristics in the near-infrared range. Specifically, at a thickness of 0.05 mm, the light transmittance at a wavelength of 500 nm is 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, particularly 88% or more. Preferably there is. On the other hand, the light transmittance at a wavelength of 800 nm is preferably 50% or less, 40% or less, 35% or less, 30% or less, 29% or less, 28% or less, 27% or less, and particularly preferably 26.5% or less. The light transmittance at 1200 nm is preferably 70% or less, 65% or less, 60% or less, 59% or less, 58% or less, 57% or less, 56% or less, particularly 55% or less.
 本発明の近赤外線吸収ガラスは、通常、板状で用いられる。厚みは0.2mm未満であり、0.18mm以下、0.15mm以下、0.12mm以下、0.1mm以下、0.1mm未満、0.07mm以下、特に0.05mm以下であることが好ましい。厚みが大きすぎると、光学デバイスの薄型化が困難になる傾向がある。なお、機械的強度の観点から厚みの下限は0.01mm以上であることが好ましい。 The near-infrared absorbing glass of the present invention is usually used in a plate shape. The thickness is less than 0.2 mm, preferably 0.18 mm or less, 0.15 mm or less, 0.12 mm or less, 0.1 mm or less, less than 0.1 mm, 0.07 mm or less, particularly 0.05 mm or less. If the thickness is too large, it is difficult to reduce the thickness of the optical device. In addition, it is preferable that the minimum of thickness is 0.01 mm or more from a viewpoint of mechanical strength.
 本発明の近赤外線吸収ガラスの溶存酸素量は100μL/g以上であり、500μL/g以上、1000μL/g以上、1500μL/g以上、2000μL/g以上、2500μL/g以上、3000μL/g以上、3100μL/g以上、3200μL/g以上、3300μL/g以上、特に3400μL/g以上であることが好ましい。溶存酸素量が少なすぎると、ガラスが十分に酸化されていないため、ガラス中に含まれるCuの量が多く所望の分光特性が得られにくくなる。なお、溶存酸素量の上限は特に限定されないが、現実的には100000μL/g以下である。 The near-infrared absorbing glass of the present invention has a dissolved oxygen amount of 100 μL / g or more, 500 μL / g or more, 1000 μL / g or more, 1500 μL / g or more, 2000 μL / g or more, 2500 μL / g or more, 3000 μL / g or more, 3100 μL. / G or more, 3200 μL / g or more, 3300 μL / g or more, and particularly preferably 3400 μL / g or more. If the amount of dissolved oxygen is too small, the glass is not sufficiently oxidized, so that the amount of Cu + contained in the glass is large and it becomes difficult to obtain desired spectral characteristics. In addition, although the upper limit of the amount of dissolved oxygen is not specifically limited, In reality, it is 100,000 μL / g or less.
 以下、本発明の近赤外線吸収ガラスの製造方法を実施例に基づいて詳細に説明するが、本発明は本実施例に限定されるものではない。 Hereinafter, although the manufacturing method of the near-infrared absorption glass of this invention is demonstrated in detail based on an Example, this invention is not limited to a present Example.
 (実施例1)
 質量%で、P 46.0%、CuO 6.9%、KO 13.9%、Al 6.6%、MgO 2.7%、CaO 3.7%、BaO 20.2%の組成となるように調合した原料粉末を円筒状の白金ルツボに投入し、900℃で2時間加熱溶融することにより均質な溶融ガラスとした。さらに、溶融ガラス中に酸素をバブリングしながら、溶融ガラスを900℃で5時間保持した。次に、溶融ガラスをカーボン板上に流し出し、冷却固化した後、アニールを行った。得られた板状ガラスについて、0.05mm厚となるように両面を鏡面研磨することにより、近赤外線吸収ガラスを得た。得られた近赤外線吸収ガラスについて、分光光度計(島津製作所社製UV-3100PC)を用いて、波長300~1300nmの範囲で光透過率を測定した。波長500nmにおいて89%、波長800nmにおいて26%、波長1200nmにおいて52%と良好な分光特性を示した。また、得られた近赤外線吸収ガラスについて、昇温脱離ガス分析装置(キヤノンアネルバ社製)を用いて、ヘリウム雰囲気下にて8℃/分の昇温速度で450℃から1450℃まで加熱した際にガラスが放出した酸素の量(溶存酸素量)を測定したところ、3300μL/gであった。
Example 1
By mass%, P 2 O 5 46.0%, CuO 6.9%, K 2 O 13.9%, Al 2 O 3 6.6%, MgO 2.7%, CaO 3.7%, BaO 20 The raw material powder prepared so as to have a composition of 2% was put into a cylindrical platinum crucible and heated and melted at 900 ° C. for 2 hours to obtain a homogeneous molten glass. Further, the molten glass was held at 900 ° C. for 5 hours while bubbling oxygen into the molten glass. Next, the molten glass was poured onto a carbon plate, cooled and solidified, and then annealed. About the obtained plate glass, near-infrared absorption glass was obtained by mirror-polishing both surfaces so that it might become 0.05 mm thickness. With respect to the obtained near-infrared absorbing glass, the light transmittance was measured in the wavelength range of 300 to 1300 nm using a spectrophotometer (UV-3100PC manufactured by Shimadzu Corporation). Good spectral characteristics were obtained: 89% at a wavelength of 500 nm, 26% at a wavelength of 800 nm, and 52% at a wavelength of 1200 nm. Further, the obtained near-infrared absorbing glass was heated from 450 ° C. to 1450 ° C. at a heating rate of 8 ° C./min in a helium atmosphere using a temperature programmed desorption gas analyzer (manufactured by Canon Anelva). When the amount of oxygen released by the glass (dissolved oxygen amount) was measured, it was 3300 μL / g.
 (実施例2)
 溶融ガラス中に酸素をバブリングする際の溶融ガラスの保持温度を950℃、保持時間を6時間に変更したこと以外は実施例1と同様にして近赤外線吸収ガラスを得た。得られた近赤外線吸収ガラスの光透過率は、波長500nmにおいて88%、波長800nmにおいて26%、波長1200nmにおいて53%であり、溶存酸素量は3100μL/gであった。
(Example 2)
A near-infrared absorbing glass was obtained in the same manner as in Example 1 except that the holding temperature of the molten glass when bubbling oxygen into the molten glass was changed to 950 ° C. and the holding time was changed to 6 hours. The light transmittance of the obtained near-infrared absorbing glass was 88% at a wavelength of 500 nm, 26% at a wavelength of 800 nm, 53% at a wavelength of 1200 nm, and the amount of dissolved oxygen was 3100 μL / g.
 (実施例3)
 溶融ガラス中に酸素をバブリングする際の溶融ガラスの保持温度を880℃、保持時間を8時間に変更したこと以外は実施例1と同様にして近赤外線吸収ガラスを得た。得られた近赤外線吸収ガラスの光透過率は、波長500nmにおいて90%、波長800nmにおいて25%、波長1200nmにおいて52%であり、溶存酸素量は3400μL/gであった。
(Example 3)
A near-infrared absorbing glass was obtained in the same manner as in Example 1 except that the holding temperature of the molten glass when bubbling oxygen into the molten glass was changed to 880 ° C. and the holding time was changed to 8 hours. The light transmittance of the obtained near-infrared absorbing glass was 90% at a wavelength of 500 nm, 25% at a wavelength of 800 nm, 52% at a wavelength of 1200 nm, and the amount of dissolved oxygen was 3400 μL / g.
 (実施例4~52)
 組成を表1~5の通り変更したこと以外は、実施例1と同様にして近赤外線透過ガラスを作製し、光透過率、及び溶存酸素量を測定した。結果を表1~5に示す。
(Examples 4 to 52)
Except that the composition was changed as shown in Tables 1 to 5, a near-infrared transmitting glass was prepared in the same manner as in Example 1, and the light transmittance and the amount of dissolved oxygen were measured. The results are shown in Tables 1-5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5から明らかなように、実施例4~52の光透過率は、波長500nmにおいて85~90%、波長800nmにおいて19~31%、波長1200nmにおいて49~57%であり、溶存酸素量は3000~3500μL/gであった。 As is apparent from Tables 1 to 5, the light transmittances of Examples 4 to 52 are 85 to 90% at a wavelength of 500 nm, 19 to 31% at a wavelength of 800 nm, and 49 to 57% at a wavelength of 1200 nm. Was 3000 to 3500 μL / g.
 (比較例)
 質量%で、P 62.1%、CuO 7.6%、Al 3.8%、MgO 3.1%、CaO 2.9%、BaO 20.5%の組成となるように調合した原料粉末を円筒状の白金ルツボに投入し、1100℃で2時間加熱溶融することにより均質な溶融ガラスとした。次に、溶融ガラスをカーボン板上に流し出し、冷却固化した後、アニールを行った。得られた板状ガラスについて、0.05mm厚となるように両面を鏡面研磨することにより、近赤外線吸収ガラスを得た。得られた近赤外線吸収ガラスについて、分光光度計(島津製作所社製UV-3100PC)を用いて、波長300~1300nmの範囲で光透過率を測定した。波長500nmにおいて76%、波長800nmにおいて52%、波長1200nmにおいて72%となった。
(Comparative example)
By mass%, P 2 O 5 62.1%, CuO 7.6%, Al 2 O 3 3.8%, MgO 3.1%, CaO 2.9%, BaO 20.5% The raw material powder prepared in 1 was put into a cylindrical platinum crucible and heated and melted at 1100 ° C. for 2 hours to obtain a homogeneous molten glass. Next, the molten glass was poured onto a carbon plate, cooled and solidified, and then annealed. About the obtained plate glass, near-infrared absorption glass was obtained by mirror-polishing both surfaces so that it might become 0.05 mm thickness. With respect to the obtained near-infrared absorbing glass, the light transmittance was measured in the wavelength range of 300 to 1300 nm using a spectrophotometer (UV-3100PC manufactured by Shimadzu Corporation). It was 76% at a wavelength of 500 nm, 52% at a wavelength of 800 nm, and 72% at a wavelength of 1200 nm.
 上記から明らかなように、実施例1~52は比較例と比較して可視域での光透過率が高く、また近赤外光をシャープにカットしていることがわかる。 As is apparent from the above, it can be seen that Examples 1 to 52 have higher light transmittance in the visible region than the comparative example, and sharply cut near infrared light.

Claims (6)

  1.  質量%で、P 10~70%、CuO 3~40%、RO 0超~50%(ただし、RはLi、Na及びKから選択される少なくとも1種)を含有する近赤外線吸収ガラスの製造方法であって、
     原料を加熱溶融して溶融ガラスにし、
     前記溶融ガラスを1000℃以下に保持しながら、前記溶融ガラス中に酸化性ガスをバブリングすることを特徴とする近赤外線吸収ガラスの製造方法。
    Near-infrared ray containing 10 to 70% P 2 O 5 , 3 to 40% CuO, and more than 50% R 2 O (wherein R is at least one selected from Li, Na and K) by mass% A method of manufacturing an absorbent glass,
    The raw material is heated and melted into molten glass,
    A method for producing near-infrared absorbing glass, wherein an oxidizing gas is bubbled into the molten glass while maintaining the molten glass at 1000 ° C. or lower.
  2.  近赤外線吸収ガラスが、質量%で、P 20~60%、CuO 5~35%、RO 0超~40%(ただし、RはLi、Na及びKから選択される少なくとも1種)、Al 0~19%、R’O 0~50%(ただし、R’はMg、Ca、Sr及びBaから選択される少なくとも1種)を含有することを特徴とする請求項1に記載の近赤外線吸収ガラスの製造方法。 Near infrared absorbing glass, in mass%, P 2 O 5 20 ~ 60%, CuO 5 ~ 35%, R 2 O 0 super 40% (provided that at least one R is Li, chosen from Na and K 2 ) Al 2 O 3 0-19%, R′O 0-50% (wherein R ′ is at least one selected from Mg, Ca, Sr and Ba). The manufacturing method of the near-infrared absorptive glass described in 2.
  3.  質量%で、P 10~70%、CuO 3~40%、RO 0超~50%(ただし、RはLi、Na及びKから選択される少なくとも1種)を含有し、
     厚みが0.2mm未満であり、
     厚み0.05mmにて波長500nmにおける光透過率が82%以上であることを特徴とする近赤外線吸収ガラス。
    Containing, by mass%, P 2 O 5 10-70%, CuO 3-40%, R 2 O more than 50-50% (where R is at least one selected from Li, Na and K),
    The thickness is less than 0.2 mm,
    A near-infrared absorbing glass having a thickness of 0.05 mm and a light transmittance of 82% or more at a wavelength of 500 nm.
  4.  厚み0.05mmにて波長800nmにおける光透過率が50%以下であることを特徴とする請求項3に記載の近赤外線吸収ガラス。 The near-infrared absorbing glass according to claim 3, wherein the light transmittance at a wavelength of 800 nm is 50% or less at a thickness of 0.05 mm.
  5.  質量%で、P 10~70%、CuO 3~40%、RO 0超~50%(ただし、RはLi、Na及びKから選択される少なくとも1種)を含有し、
     溶存酸素量が100μL/g以上であることを特徴とする近赤外線吸収ガラス。
    Containing, by mass%, P 2 O 5 10-70%, CuO 3-40%, R 2 O more than 50-50% (where R is at least one selected from Li, Na and K),
    A near-infrared absorbing glass having a dissolved oxygen amount of 100 μL / g or more.
  6.  質量%で、CuO 3~40%を含有し、
     厚み0.05mmにて波長500nmにおける光透過率が82%以上であり、波長800nmにおける光透過率が50%以下であることを特徴とする近赤外線吸収ガラス。
    Containing 3 to 40% CuO by mass%,
    A near-infrared absorbing glass having a thickness of 0.05 mm, a light transmittance at a wavelength of 500 nm of 82% or more, and a light transmittance at a wavelength of 800 nm of 50% or less.
PCT/JP2019/003771 2018-03-05 2019-02-04 Method of manufacturing near infrared ray absorbing glass WO2019171851A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207009718A KR20200130228A (en) 2018-03-05 2019-02-04 Manufacturing method of near-infrared absorption glass
CN201980006319.6A CN111448169A (en) 2018-03-05 2019-02-04 Method for producing near-infrared-absorbing glass

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-038675 2018-03-05
JP2018038675 2018-03-05
JP2018146501 2018-08-03
JP2018-146501 2018-08-03
JP2018-227930 2018-12-05
JP2018227930A JP7138849B2 (en) 2018-03-05 2018-12-05 Manufacturing method of near-infrared absorbing glass

Publications (1)

Publication Number Publication Date
WO2019171851A1 true WO2019171851A1 (en) 2019-09-12

Family

ID=67847287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003771 WO2019171851A1 (en) 2018-03-05 2019-02-04 Method of manufacturing near infrared ray absorbing glass

Country Status (2)

Country Link
TW (1) TW201938502A (en)
WO (1) WO2019171851A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083290A (en) * 2002-07-05 2004-03-18 Hoya Corp Near-infrared absorption glass, element and filter and process for manufacturing molded product of the glass
JP2006342045A (en) * 2005-04-22 2006-12-21 Schott Corp Aluminophosphate glass containing copper (ii) oxide and use thereof for light filtering
JP2009263190A (en) * 2008-04-29 2009-11-12 Ohara Inc Infrared absorption glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
JP2012148964A (en) * 2010-12-23 2012-08-09 Schott Ag Fluorophosphate glass
JP2012224491A (en) * 2011-04-18 2012-11-15 Asahi Glass Co Ltd Near-infrared ray cut filter glass
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2015089855A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Near-infrared absorbing glass
JP2017014044A (en) * 2015-06-30 2017-01-19 Hoya株式会社 Near infrared absorbing glass and filter
WO2017208679A1 (en) * 2016-06-01 2017-12-07 日本電気硝子株式会社 Method and device for manufacturing near infrared absorbing glass
JP2018188353A (en) * 2017-04-28 2018-11-29 ショット アクチエンゲゼルシャフトSchott AG Filter glass

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083290A (en) * 2002-07-05 2004-03-18 Hoya Corp Near-infrared absorption glass, element and filter and process for manufacturing molded product of the glass
JP2006342045A (en) * 2005-04-22 2006-12-21 Schott Corp Aluminophosphate glass containing copper (ii) oxide and use thereof for light filtering
JP2009263190A (en) * 2008-04-29 2009-11-12 Ohara Inc Infrared absorption glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
JP2012148964A (en) * 2010-12-23 2012-08-09 Schott Ag Fluorophosphate glass
JP2012224491A (en) * 2011-04-18 2012-11-15 Asahi Glass Co Ltd Near-infrared ray cut filter glass
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2015089855A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Near-infrared absorbing glass
JP2017014044A (en) * 2015-06-30 2017-01-19 Hoya株式会社 Near infrared absorbing glass and filter
WO2017208679A1 (en) * 2016-06-01 2017-12-07 日本電気硝子株式会社 Method and device for manufacturing near infrared absorbing glass
JP2018188353A (en) * 2017-04-28 2018-11-29 ショット アクチエンゲゼルシャフトSchott AG Filter glass

Also Published As

Publication number Publication date
TW201938502A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6256857B2 (en) Near infrared absorbing glass
JP6241653B2 (en) Optical glass
JP2011121792A (en) Near infrared ray cutting filter glass
JP6583609B2 (en) Near infrared absorbing glass
WO2017208679A1 (en) Method and device for manufacturing near infrared absorbing glass
TWI704117B (en) Near infrared absorption glass
WO2015001944A1 (en) Glass for ir-cut filter
JP6799273B2 (en) Manufacturing method and manufacturing equipment for near-infrared absorbing glass
JP2017109887A (en) Near-infrared absorbing glass
JP2014125395A (en) Glass
WO2019044324A1 (en) Near infrared ray absorbing glass
WO2019171851A1 (en) Method of manufacturing near infrared ray absorbing glass
JP7138849B2 (en) Manufacturing method of near-infrared absorbing glass
WO2016098554A1 (en) Glass for near infrared absorption filter
JP6048403B2 (en) Optical glass and optical element
JP2017165641A (en) Near-infrared absorption filter glass
JP7022369B2 (en) Near infrared absorber glass
JP2016060671A (en) Glass for near-infrared absorption filter
JP2017178632A (en) Near-infrared absorbing glass
WO2017154560A1 (en) Near-infrared absorption filter glass
WO2018138990A1 (en) Near infrared ray absorbing glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764760

Country of ref document: EP

Kind code of ref document: A1