JP6241653B2 - Optical glass - Google Patents

Optical glass Download PDF

Info

Publication number
JP6241653B2
JP6241653B2 JP2013215294A JP2013215294A JP6241653B2 JP 6241653 B2 JP6241653 B2 JP 6241653B2 JP 2013215294 A JP2013215294 A JP 2013215294A JP 2013215294 A JP2013215294 A JP 2013215294A JP 6241653 B2 JP6241653 B2 JP 6241653B2
Authority
JP
Japan
Prior art keywords
glass
content
optical glass
transmittance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013215294A
Other languages
Japanese (ja)
Other versions
JP2015078086A (en
Inventor
聡子 此下
聡子 此下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013215294A priority Critical patent/JP6241653B2/en
Publication of JP2015078086A publication Critical patent/JP2015078086A/en
Application granted granted Critical
Publication of JP6241653B2 publication Critical patent/JP6241653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)
  • Glass Compositions (AREA)

Description

本発明は、赤外線カットフィルタ等の光学素子に使用される光学ガラスに関するものである。   The present invention relates to an optical glass used for an optical element such as an infrared cut filter.

従来、デジタルカメラやスマートフォン内のカメラ部分等に使用される赤外線吸収ガラスには、赤外域の一定波長の光を吸収するフツリン酸ガラスが広く使用されている。例えば、特許文献1〜3には、近赤外域の光をカットするCu含有フツリン酸ガラスが開示されている。   BACKGROUND ART Conventionally, fluorophosphate glass that absorbs light of a certain wavelength in the infrared region has been widely used as infrared absorption glass used for a camera portion in a digital camera or a smartphone. For example, Patent Documents 1 to 3 disclose Cu-containing fluorophosphate glasses that cut light in the near infrared region.

国際公開第2012/18026号公報International Publication No. 2012/18026 国際公開第2011/71157号公報International Publication No. 2011/71157 国際公開第2012/20857号公報International Publication No. 2012/20857

Cu含有フツリン酸ガラスからなる赤外カットフィルタは、Cu2+による赤外線の吸収能を利用している。従って、ガラス中のCuイオンを2価に安定に存在させておくことで、優れた赤外吸収特性を得ることが可能となる。しかしながら、Cu含有フツリン酸ガラスは溶融時にガラスが還元側シフトしやすく、Cuが還元されて1価になりやすい。そのため、Cuイオンによる所望の吸収特性が得られない場合がある。 An infrared cut filter made of Cu-containing fluorophosphate glass utilizes the infrared absorbing ability of Cu 2+ . Accordingly, it is possible to obtain excellent infrared absorption characteristics by allowing Cu ions in the glass to be stably present in a divalent state. However, when Cu-containing fluorophosphate glass is melted, the glass tends to shift on the reduction side, and Cu is easily reduced to become monovalent. For this reason, desired absorption characteristics by Cu ions may not be obtained.

また、フツリン酸ガラスは一般的に成形粘度が低いため、成形時にガラス成分が揮発し、脈理等が発生して不均質になりやすいという問題もある。   In addition, since fluorophosphate glass generally has a low molding viscosity, there is also a problem that glass components volatilize during molding, causing striae and the like, which tends to be inhomogeneous.

以上に鑑み、本発明は、所望の近赤外吸収特性を有し、成形時に脈理等の不具合が発生しにくく、量産化が可能な光学ガラスを提供することを目的とする。   In view of the above, an object of the present invention is to provide an optical glass that has desired near-infrared absorption characteristics, is less likely to cause defects such as striae during molding, and can be mass-produced.

本発明の光学ガラスは、カチオン%で、P5+ 15〜50%、Al3+ 7〜18%、R2+ 10〜50%(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)、R’ 5〜40%(R’はLi、Na及びKから選択される少なくとも1種)、Cu2+ 2〜12%、及び、アニオン%で、F 10〜60%、O2− 40〜90%を含有し、液相温度が700℃以下、液相粘度が100.5ポアズ以上、ガラス転移点が360℃以下であることを特徴とする。 The optical glass of the present invention is cation%, P 5+ 15-50%, Al 3+ 7-18%, R 2+ 10-50% (R is at least one selected from Mg, Ca, Sr, Ba and Zn) ), R '+ 5~40% ( R' at least one is selected from Li, Na and K), Cu 2+ 2~12%, and, by anionic%, F - 10~60%, O 2- The liquid phase temperature is 700 ° C. or lower, the liquid phase viscosity is 10 0.5 poise or higher, and the glass transition point is 360 ° C. or lower.

本発明の光学ガラスは、カチオン%で、Mg2+ 2〜20%、Ca2+ 2〜20%、Sr2+ 2〜50%、Ba2+ 2〜20%及びZn2+ 0〜10%を含有することが好ましい。 The optical glass of the present invention contains cation 2%, Mg 2+ 2 to 20%, Ca 2+ 2 to 20%, Sr 2+ 2 to 50%, Ba 2+ 2 to 20%, and Zn 2+ 0 to 10%. preferable.

本発明の光学ガラスは、Li 5〜40%、Na 0〜3%及びK 0〜3%を含有することが好ましい。 The optical glass of the present invention preferably contains Li + 5 to 40%, Na + 0 to 3% and K + 0 to 3%.

本発明の光学ガラスは、615nmにおける透過率が50%となる厚みにおいて、波長500nmにおける透過率が80%以上、波長800nmにおける透過率が5%未満であることが好ましい。   The optical glass of the present invention preferably has a transmittance at a wavelength of 500 nm of 80% or more and a transmittance at a wavelength of 800 nm of less than 5% at a thickness at which the transmittance at 615 nm is 50%.

本発明の赤外線カットフィルタは、前記いずれかの光学ガラスからなることを特徴とする。   The infrared cut filter of the present invention is made of any one of the above optical glasses.

本発明によれば、所望の近赤外吸収特性を有し、成形時に脈理等の不具合が発生しにくく、量産化が可能な光学ガラスを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the optical glass which has a desired near-infrared absorption characteristic, cannot produce troubles, such as a striae at the time of shaping | molding, and can be mass-produced.

本発明の光学ガラスは、カチオン%で、P5+ 15〜50%、Al3+ 7〜18%、R2+ 10〜50%(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)、R’ 5〜40%(R’はLi、Na及びKから選択される少なくとも1種)、Cu2+ 2〜12%、及び、アニオン%で、F 10〜60%、O2− 40〜90%を含有する。以下に、ガラス組成を上記の通り限定した理由を説明する。 The optical glass of the present invention is cation%, P 5+ 15-50%, Al 3+ 7-18%, R 2+ 10-50% (R is at least one selected from Mg, Ca, Sr, Ba and Zn) ), R '+ 5~40% ( R' at least one is selected from Li, Na and K), Cu 2+ 2~12%, and, by anionic%, F - 10~60%, O 2- Contains 40-90%. The reason why the glass composition is limited as described above will be described below.

5+はガラス骨格を形成するための必須成分である。P5+の含有量は15〜50%であり、17〜45%が好ましく、20〜40%がより好ましく、23〜37%がさらに好ましい。P5+の含有量が少なすぎると、液相温度やガラス転移点が高くなる傾向がある。そのため高温での溶融が必要になり、ガラス中のCuイオンが還元され、所望の光学特性が得られにくくなる。一方、P5+の含有量が多すぎると、化学的耐久性が低下しやすくなる。 P 5+ is an essential component for forming a glass skeleton. The content of P 5+ is 15 to 50%, preferably 17 to 45%, more preferably 20 to 40%, and still more preferably 23 to 37%. When there is too little content of P5 + , there exists a tendency for a liquidus temperature and a glass transition point to become high. Therefore, melting at a high temperature is required, Cu ions in the glass are reduced, and it becomes difficult to obtain desired optical characteristics. On the other hand, when there is too much content of P5 + , chemical durability will fall easily.

Al3+は化学耐久性を向上させる成分である。Al3+の含有量は7〜18%であり、10〜18%が好ましく、12〜16%がより好ましい。Al3+の含有量が少なすぎると、上記効果が得られにくい。一方、Al3+の含有量が多すぎると、ガラス転移点が高くなりやすい。また、液相温度が高くなる(液相粘度が低くなる)傾向がある。 Al 3+ is a component that improves chemical durability. The content of Al 3+ is 7 to 18%, preferably 10 to 18%, and more preferably 12 to 16%. If the content of Al 3+ is too small, the above effect is difficult to obtain. On the other hand, when the content of Al 3+ is too large, the glass transition point tends to be high. Moreover, there exists a tendency for liquidus temperature to become high (liquidus viscosity becomes low).

2+(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)はガラス転移点を低下させるのに有効な成分である。また、耐候性を向上させる効果がある。R2+の含有量は10〜50%であり、20〜45%が好ましく、30〜40%がより好ましい。R2+の含有量が少なすぎると、上記効果が得られにくい。一方、R2+の含有量が多すぎると、ガラス化が不安定になる傾向がある。R2+として2種以上含有させる場合は、合量で上記範囲を満たすものとする。 R 2+ (R is at least one selected from Mg, Ca, Sr, Ba and Zn) is an effective component for lowering the glass transition point. Moreover, there exists an effect which improves a weather resistance. The content of R 2+ is 10 to 50%, preferably 20 to 45%, and more preferably 30 to 40%. If the content of R 2+ is too small, it is difficult to obtain the above effect. On the other hand, when there is too much content of R <2+> , there exists a tendency for vitrification to become unstable. When 2 or more types are contained as R 2+ , the total amount should satisfy the above range.

なお、R2+の各成分の含有量は以下の通りとすることが好ましい。 The content of each component of R 2+ is preferably as follows.

Mg2+、Ca2+及びBa2+の含有量は、それぞれ2〜20%が好ましく、3〜15%がより好ましく、4〜13%がさらに好ましい。Sr2+の含有量は2〜50%が好ましく、3〜30%がより好ましく、4〜20%がさらに好ましい。 The content of Mg 2+ , Ca 2+ and Ba 2+ is preferably 2 to 20%, more preferably 3 to 15%, and still more preferably 4 to 13%. The content of Sr 2+ is preferably 2 to 50%, more preferably 3 to 30%, and still more preferably 4 to 20%.

Zn2+の含有量は0〜10%が好ましく、0〜5%がより好ましく、0〜1.5%がさらに好ましい。Zn2+はガラス化の安定及び耐候性の向上の効果が特に高い成分である。ただし、Zn2+の含有量が多すぎると、ガラス転移点が高くなる傾向がある。 The content of Zn 2+ is preferably 0 to 10%, more preferably 0 to 5%, and still more preferably 0 to 1.5%. Zn 2+ is a component that is particularly effective in stabilizing vitrification and improving weather resistance. However, when there is too much content of Zn2 + , there exists a tendency for a glass transition point to become high.

R’(R’はLi、Na及びKから選択される少なくとも1種)はガラス転移点や液相粘度を低下させる成分である。R’の含有量は5〜40%であり、10〜35%が好ましく、15〜25%がより好ましい。R’の含有量が少なすぎると、上記効果が得られにくい。一方、R’の含有量が多すぎると、ガラス化が不安定になるとともに、化学的耐久性が低下する傾向がある。R’として2種以上含有させる場合は、合量で上記範囲を満たすものとする。 R ′ + (R ′ is at least one selected from Li, Na and K) is a component that lowers the glass transition point and the liquid phase viscosity. The content of R ′ + is 5 to 40%, preferably 10 to 35%, and more preferably 15 to 25%. If the content of R ′ + is too small, the above effect is difficult to obtain. On the other hand, when there is too much content of R ' + , while vitrification will become unstable, there exists a tendency for chemical durability to fall. When two or more types are contained as R ′ + , the total amount should satisfy the above range.

なお、R’の各成分の含有量は以下の通りとすることが好ましい。 The content of each component of R ′ + is preferably as follows.

R’の中でもLiを積極的に含有させることにより、ガラス転移点の低いガラスを安定に得ることができる。Liの含有量は5〜40%が好ましく、10〜25%がより好ましい。Liの含有量が少なすぎると、ガラス転移点が高くなる傾向がある。一方、Liの含有量が多すぎると、液相粘度が低下して、ガラス化が不安定になる傾向がある。 By positively containing Li + among R ′ +, a glass having a low glass transition point can be stably obtained. The content of Li + is preferably 5 to 40%, more preferably 10 to 25%. When there is too little content of Li <+> , there exists a tendency for a glass transition point to become high. On the other hand, when there is too much content of Li + , there exists a tendency for liquid phase viscosity to fall and vitrification to become unstable.

Naの含有量は0〜3%が好ましく、0〜2%が好ましく、含有しないことがさらに好ましい。Naの含有量が多すぎると、液相粘度が低下して、ガラス化が不安定になる傾向がある。 The content of Na + is preferably 0 to 3%, preferably 0 to 2%, and more preferably not contained. When there is too much content of Na + , there exists a tendency for liquid phase viscosity to fall and vitrification to become unstable.

の含有量は0〜3%が好ましく、0〜1%がより好ましい。Kの含有量が多すぎると、液相粘度が低下して、ガラス化が不安定になる傾向がある。 The content of K + is preferably 0 to 3%, more preferably 0 to 1%. When there is too much content of K + , there exists a tendency for liquid phase viscosity to fall and vitrification to become unstable.

本発明のフツリン酸ガラスにおいてCu2+を含有させることにより、可視域での高い透過率を維持しつつ、近赤外域の光をシャープにカットすることができる。そのため、近赤外カットフィルタとして好適なガラスとなる。Cu2+の含有量は2〜12%であり、3〜10%が好ましい。Cu2+の含有量が少なすぎると、上記効果が得られにくくなる。一方、Cu2+の含有量が多すぎると、ガラス化が不安定になりやすい。 By containing Cu 2+ in the fluorophosphate glass of the present invention, light in the near infrared region can be sharply cut while maintaining high transmittance in the visible region. Therefore, it becomes a glass suitable as a near infrared cut filter. The content of Cu 2+ is 2 to 12%, preferably 3 to 10%. When there is too little content of Cu2 + , the said effect will become difficult to be acquired. On the other hand, when there is too much content of Cu2 + , vitrification tends to become unstable.

その他に、本発明の光学ガラスには、カチオン成分として、Bi3+、La3+、Y3+、Gd3+、Te4+、Si4+、Ta5+、Nb5+、Ti4+、Zr4+またはSb3+等を、本発明の効果を損なわない範囲で含有させても構わない。具体的には、これらの成分の含有量は、それぞれ0〜3%が好ましく、0〜1%がより好ましい。 In addition, the optical glass of the present invention includes Bi 3+ , La 3+ , Y 3+ , Gd 3+ , Te 4+ , Si 4+ , Ta 5+ , Nb 5+ , Ti 4+ , Zr 4+ or Sb 3+ as cation components, You may make it contain in the range which does not impair the effect of this invention. Specifically, the content of these components is preferably 0 to 3%, and more preferably 0 to 1%.

Pb成分(Pb2+等)及びAs成分(As3+等)は環境負荷物質であるため、本発明では実質的に含有しないことが好ましい。なお、「実質的に含有しない」とは、原料として意図的に含有させないことを意味し、客観的には各成分の含有量が0.1%未満であることをいう。 Since the Pb component (Pb 2+ etc.) and the As component (As 3+ etc.) are environmentally hazardous substances, it is preferable that they are not substantially contained in the present invention. In addition, “substantially not containing” means not intentionally containing as a raw material, and objectively means that the content of each component is less than 0.1%.

ガラス原料中にUやThが不純物として混入すると、ガラスからα線が放出され、そのα線によりCCDやCMOSの信号に不具合をきたす傾向がある。よって、特に本発明の光学ガラスを視感度補正フィルタや色調整フィルタとして使用する場合、これらの不純物をなるべく低減させる必要がある。従って、本発明の光学ガラスにおけるUおよびThの含有量は、それぞれ20ppb以下であることが好ましい。また、本発明の光学ガラスから放出されるα線量は1.0c/cm・h以下であることが好ましい。 When U or Th is mixed as an impurity in the glass raw material, α rays are emitted from the glass, and the α rays tend to cause defects in the signals of the CCD and CMOS. Therefore, particularly when the optical glass of the present invention is used as a visibility correction filter or a color adjustment filter, it is necessary to reduce these impurities as much as possible. Therefore, it is preferable that the contents of U and Th in the optical glass of the present invention are each 20 ppb or less. Further, the α dose emitted from the optical glass of the present invention is preferably 1.0 c / cm 2 · h or less.

アニオン成分の組成としては、F 10〜60%、及び、O2− 40〜90%を含有し、F 10〜55%、及び、O2− 45〜90%を含有することが好ましい。Fの含有量が少なすぎる(O2−の含有量が多すぎる)と、ロット間での光透過率のばらつきが大きくなる傾向がある。一方、Fの含有量が多すぎる(O2−の含有量が少なすぎる)と、ガラス化しにくくなる。 The composition of the anionic component, F - 10 to 60%, and contains a O 2- 40~90%, F - 10~55 %, and preferably contains O 2-45 to 90%. If the content of F is too small (the content of O 2− is too large), variation in light transmittance between lots tends to increase. On the other hand, if the content of F is too large (the content of O 2− is too small), vitrification becomes difficult.

本発明の光学ガラスの液相温度は700℃以下であり、680℃以下が好ましい。液相温度が高すぎると、成形時に脈理等が発生して均質なガラスが得られにくくなる。   The liquid phase temperature of the optical glass of the present invention is 700 ° C. or lower, preferably 680 ° C. or lower. If the liquidus temperature is too high, striae and the like occur during molding, and it becomes difficult to obtain a homogeneous glass.

本発明の光学ガラスの液相粘度は100.5ポアズ以上であり、100.6ポアズ以上が好ましい。液相粘度が低すぎると、成形時に脈理等が発生して均質なガラスが得られにくくなる。 The liquid phase viscosity of the optical glass of the present invention is 10 0.5 poise or more, preferably 10 0.6 poise or more. If the liquid phase viscosity is too low, striae and the like occur during molding, and it becomes difficult to obtain a homogeneous glass.

本発明の光学ガラスのガラス転移点は360℃以下であり、350℃以下が好ましく、340℃以下がより好ましい。ガラス転移点が高すぎると、溶融温度が高くなる傾向があり、結果として、Cuイオンが還元側に偏り、所望の赤外吸収特性が得られにくくなる。なお、ガラス転移点が低すぎると、耐熱性に劣る傾向がある。ガラスの耐熱性が低下すると、例えば成形後のガラス部材に成膜する際に、軟化変形する傾向がある。したがって、ガラス転移点は280℃以上が好ましく、300℃以上がより好ましく、320℃以上がさらに好ましい。   The glass transition point of the optical glass of the present invention is 360 ° C. or lower, preferably 350 ° C. or lower, and more preferably 340 ° C. or lower. If the glass transition point is too high, the melting temperature tends to increase, and as a result, Cu ions are biased toward the reduction side, making it difficult to obtain desired infrared absorption characteristics. If the glass transition point is too low, the heat resistance tends to be inferior. When the heat resistance of glass is lowered, for example, when a film is formed on a molded glass member, the glass tends to be softened and deformed. Therefore, the glass transition point is preferably 280 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 320 ° C. or higher.

本発明の光学ガラスは、可視光域において高い透過率を有しつつ、近赤外域の光をシャープにカットする。具体的には、本発明の光学ガラスは、透過率が50%になる波長が615nmになる厚みにおいて、波長500nmにおける透過率が80%以上、波長800nmにおける透過率が5%未満であることが好ましい。   The optical glass of the present invention sharply cuts light in the near infrared region while having high transmittance in the visible light region. Specifically, the optical glass of the present invention may have a transmittance of 80% or more at a wavelength of 500 nm and a transmittance of less than 5% at a wavelength of 800 nm at a thickness where the wavelength at which the transmittance is 50% is 615 nm. preferable.

本発明の光学ガラスは、成形後、必要に応じて所望の形状(例えば、平板状)になるように研削または研磨して、赤外線カットフィルタや熱線吸収フィルタ等の光学素子として使用される。   The optical glass of the present invention is used as an optical element such as an infrared cut filter or a heat ray absorption filter after being molded or ground or polished so as to have a desired shape (for example, a flat plate shape) as necessary.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

表1及び2は本発明の実施例(No.1〜5)及び比較例(No.6〜8)を示す。   Tables 1 and 2 show examples (Nos. 1 to 5) and comparative examples (Nos. 6 to 8) of the present invention.

(1)試料の作製
まず、表1及び2に記載の各ガラス組成となるように調合した原料を白金ルツボに投入し、700〜850℃で均質になるように溶融した。次に、予熱した金型に溶融ガラスを流し出して成形し、アニールを行うことにより試料を作製した。
(1) Preparation of sample First, the raw material prepared so that it might become each glass composition of Table 1 and 2 was thrown into the platinum crucible, and it fuse | melted so that it might become homogeneous at 700-850 degreeC. Next, a molten glass was poured out into a preheated mold and molded, and annealing was performed to prepare a sample.

(2)試料の評価
得られた試料について、液相温度、液相粘度、ガラス転移点及び光透過特性について測定した。結果を表1及び2に示す。
(2) Evaluation of sample About the obtained sample, liquid phase temperature, liquid phase viscosity, a glass transition point, and the light transmission characteristic were measured. The results are shown in Tables 1 and 2.

液相温度は、温度傾斜を設けた容器に溶融ガラスを2時間保持し、その後室温に取り出し、結晶の有無を顕微鏡にて確認して求めた。結晶が確認された温度を液相温度とした。液相粘度は、液相温度における粘度を白金球引き上げ法にて求めた。表中には、液相粘度(η)の常用対数(log10η)の値を示している。 The liquidus temperature was obtained by holding the molten glass for 2 hours in a container provided with a temperature gradient, then taking it out to room temperature, and confirming the presence or absence of crystals with a microscope. The temperature at which crystals were confirmed was defined as the liquidus temperature. The liquid phase viscosity was determined by the platinum ball pulling method at the liquid phase temperature. In the table, the value of the common logarithm (log 10 η) of the liquid phase viscosity (η) is shown.

ガラス転移点は、熱膨張測定装置(dilato meter)にて得られた熱膨張曲線において、低温度域の直線と高温度域の直線の交点より求めた。   The glass transition point was calculated | required from the intersection of the straight line of a low temperature range and the straight line of a high temperature range in the thermal expansion curve obtained with the thermal expansion measuring apparatus (dilatometer).

透過率は次のようにして測定した。両面を鏡面研磨した試料について、可視域〜近赤外域における分光透過特性を島津製作所製UV−3100PCを用いて測定し、透過率曲線を得た。なお、試料の厚みは、それぞれ波長が615nmにおける透過率が50%となる厚みを採用した。得られた透過率曲線について、波長500nm及び800nmにおける透過率を読み取った。   The transmittance was measured as follows. About the sample which mirror-polished both surfaces, the spectral transmission characteristic in visible region-near-infrared region was measured using Shimadzu UV-3100PC, and the transmittance | permeability curve was obtained. The thickness of the sample was such that the transmittance at a wavelength of 615 nm was 50%. For the obtained transmittance curve, the transmittance at wavelengths of 500 nm and 800 nm was read.

(3)結果
実施例であるNo.1〜5の試料は、液相温度が650℃以下であり、液相粘度が100.8ポアズ以上、ガラス転移点が330℃以下であった。一方、比較例であるNo.6及び8の試料は、ガラス転移点が370℃以上と高かった。また、No.7の試料は、液相温度が720℃と高く、液相粘度が100.4ポアズと低かった。
(3) Result No. which is an example. Samples 1 to 5 had a liquidus temperature of 650 ° C. or lower, a liquidus viscosity of 10 0.8 poise or higher, and a glass transition point of 330 ° C. or lower. On the other hand, No. which is a comparative example. The samples 6 and 8 had a glass transition point as high as 370 ° C. or higher. No. 7 samples, the higher the liquidus temperature is 720 ° C., liquidus viscosity was as low as 10 0.4 poises.

本発明の光学ガラスは、赤外線カットフィルタ、視感度補正フィルタ、色調整フィルタ等に使用することが可能である。   The optical glass of the present invention can be used for an infrared cut filter, a visibility correction filter, a color adjustment filter, and the like.

Claims (4)

カチオン%で、P5+ 15〜29%、Al3+ 7〜18%、R2+ 10〜50%(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)、R’ 5〜40%(R’はLi、Na及びKから選択される少なくとも1種)、Li 5〜19%、Na 0〜2%、K 0〜3%、Cu2+ 2〜12%、及び、
アニオン%で、F 42〜60%、O2− 40〜58%
を含有し、
液相温度が700℃以下、液相粘度が100.5ポアズ以上、ガラス転移点が360℃以下であることを特徴とする光学ガラス。
Cationic%, P 5+ 15~ 29%, Al 3+ 7~18%, R 2+ 10~50% ( at least one R is selected from Mg, Ca, Sr, Ba and Zn), R '+ 5~ 40% (R ′ is at least one selected from Li, Na and K), Li + 5 to 19%, Na + 0 to 2%, K + 0 to 3%, Cu 2+ 2 to 12%, and
Anionic%, F - 42~60%, O 2- 40~58%
Containing
An optical glass having a liquidus temperature of 700 ° C. or less, a liquidus viscosity of 10 0.5 poise or more, and a glass transition point of 360 ° C. or less.
カチオン%で、Mg2+ 2〜20%、Ca2+ 2〜20%、Sr2+ 2〜50%、Ba2+ 2〜20%及びZn2+ 0〜10%を含有することを特徴とする請求項1に記載の光学ガラス。 The cation% contains Mg 2+ 2-20%, Ca 2+ 2-20%, Sr 2+ 2-50%, Ba 2+ 2-20% and Zn 2+ 0-10%. The optical glass described. 615nmにおける透過率が50%となる厚みにおいて、
波長500nmにおける透過率が80%以上、波長800nmにおける透過率が5%未満であることを特徴とする請求項1または2に記載の光学ガラス。
At a thickness where the transmittance at 615 nm is 50%,
The optical glass according to claim 1 or 2, wherein the transmittance at a wavelength of 500 nm is 80% or more and the transmittance at a wavelength of 800 nm is less than 5%.
請求項1〜3のいずれか一項に記載の光学ガラスからなることを特徴とした赤外線カットフィルタ。   An infrared cut filter comprising the optical glass according to any one of claims 1 to 3.
JP2013215294A 2013-10-16 2013-10-16 Optical glass Active JP6241653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215294A JP6241653B2 (en) 2013-10-16 2013-10-16 Optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215294A JP6241653B2 (en) 2013-10-16 2013-10-16 Optical glass

Publications (2)

Publication Number Publication Date
JP2015078086A JP2015078086A (en) 2015-04-23
JP6241653B2 true JP6241653B2 (en) 2017-12-06

Family

ID=53009891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215294A Active JP6241653B2 (en) 2013-10-16 2013-10-16 Optical glass

Country Status (1)

Country Link
JP (1) JP6241653B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531557A (en) 2015-04-24 2018-01-02 旭硝子株式会社 Near infrared ray cut-off filter glass
WO2017018273A1 (en) * 2015-07-24 2017-02-02 旭硝子株式会社 Near-infrared cutoff filter glass
JP6844396B2 (en) * 2016-06-30 2021-03-17 Agc株式会社 UV transmission filter
CN111051262B (en) * 2017-08-31 2022-09-13 Agc株式会社 Glass
CN109626820B (en) * 2019-01-25 2021-11-16 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN109608040B (en) * 2019-01-25 2021-11-16 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN109626819B (en) * 2019-01-25 2021-11-16 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
TW202112690A (en) 2019-09-27 2021-04-01 日商Hoya股份有限公司 Optical glass and optical element capable of reducing occurrence of streaks while being manufactured and suitable for chromatic aberration correction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169545B2 (en) * 2002-07-05 2008-10-22 Hoya株式会社 Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body
JP3965352B2 (en) * 2002-10-16 2007-08-29 Hoya株式会社 Copper-containing glass, near infrared light absorption element, and near infrared light absorption filter
JP2007091537A (en) * 2005-09-29 2007-04-12 Hoya Corp Near-infrared light absorbing glass material lot and method for manufacturing optical element by using the same
JPWO2010119964A1 (en) * 2009-04-17 2012-10-22 旭硝子株式会社 Near-infrared cut filter glass

Also Published As

Publication number Publication date
JP2015078086A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6241653B2 (en) Optical glass
JP6256857B2 (en) Near infrared absorbing glass
JP6136009B2 (en) Optical glass
JP6583609B2 (en) Near infrared absorbing glass
JP6366122B2 (en) Method for producing fluorophosphate glass
TWI704117B (en) Near infrared absorption glass
JP7134396B2 (en) optical glass
JP6233563B2 (en) Glass for IR cut filter
JP6020153B2 (en) Glass
WO2017208679A1 (en) Method and device for manufacturing near infrared absorbing glass
WO2019044324A1 (en) Near infrared ray absorbing glass
JP2017109887A (en) Near-infrared absorbing glass
JP5270973B2 (en) Near infrared absorption filter glass
JP2018049250A (en) Method and device for manufacturing near infrared absorbing glass
JP7022369B2 (en) Near infrared absorber glass
WO2016098554A1 (en) Glass for near infrared absorption filter
JP2017165641A (en) Near-infrared absorption filter glass
JP2016060671A (en) Glass for near-infrared absorption filter
JP2017178632A (en) Near-infrared absorbing glass
JP2016020295A (en) Near infrared ray absorption glass sheet
WO2018138990A1 (en) Near infrared ray absorbing glass
TW202304824A (en) Optical glass, near-infrared cut filter, glass element for press molding, optical element blank, and optical elements
WO2019171851A1 (en) Method of manufacturing near infrared ray absorbing glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6241653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150