JP4169545B2 - Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body - Google Patents

Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body Download PDF

Info

Publication number
JP4169545B2
JP4169545B2 JP2002238065A JP2002238065A JP4169545B2 JP 4169545 B2 JP4169545 B2 JP 4169545B2 JP 2002238065 A JP2002238065 A JP 2002238065A JP 2002238065 A JP2002238065 A JP 2002238065A JP 4169545 B2 JP4169545 B2 JP 4169545B2
Authority
JP
Japan
Prior art keywords
glass
infrared light
wavelength
transmittance
light absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002238065A
Other languages
Japanese (ja)
Other versions
JP2004083290A (en
JP2004083290A5 (en
Inventor
理恵 山根
洋一 蜂谷
学禄 鄒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2002238065A priority Critical patent/JP4169545B2/en
Priority to US10/612,145 priority patent/US7192897B2/en
Priority to CNB031546137A priority patent/CN1288103C/en
Priority to CN2006101318214A priority patent/CN1927751B/en
Publication of JP2004083290A publication Critical patent/JP2004083290A/en
Publication of JP2004083290A5 publication Critical patent/JP2004083290A5/ja
Application granted granted Critical
Publication of JP4169545B2 publication Critical patent/JP4169545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、近赤外光吸収ガラス、近赤外光吸収素子、近赤外光吸収フィルターおよび近赤外光吸収ガラス成形体の製造方法に関する。さらに詳しくは、本発明は、CCDなどの固体撮像素子の色感度補正などに用いられる近赤外光吸収フィルター等に好適な、耐候性や成形性などに優れる近赤外光吸収ガラス、並びに該ガラスからなる近赤外光吸収素子およびデジタルカメラやVTRカメラなどの色補正フィルター等として用いられる近赤外光吸収フィルター、さらには前記近赤外光吸収ガラスからなるガラス成形体の製造方法に関するものである。
【0002】
【従来の技術】
デジタルカメラやVTRカメラに用いられるCCDなどの固体撮像素子の分光感度は、可視域から1100nm付近の近赤外域にわたる。したがって、近赤外域を吸収するフィルターを用いて人間の視感度に近似させる画像を得ている。この目的のフィルターガラスとして、燐酸塩ガラスにCuOを添加したガラスが用いられてきたが、燐酸塩ガラスは耐候性が悪く、長期間高温高湿に曝すとガラス表面のあれや白濁が生じるという欠点があった。そのためフッ素成分を含み耐候性に優れるフツ燐酸塩ガラスを基本組成とした近赤外光吸収フィルターガラスが開発され、市販されている。
この種のガラスとしては、例えばフツ燐酸塩ガラスにCuOを添加した近赤外光吸収フィルターガラスが開示されている(特開平2−204342号公報)。
【0003】
ところで、近年、デジタルカメラやVTRカメラの小型化により、カメラの光学系も省スペースが求められている。それに伴って、近赤外光吸収フィルターガラスも薄板化が望まれている。しかしながら、従来の近赤外光吸収フィルターガラスをそのまま薄板化すると、近赤外光吸収も小さくなり、所望の分光特性が得られない。そのため、着色成分を増量して薄板化による吸収低下を補うことが必要になる。しかしながら、上記従来の近赤外光吸収フィルターガラスはCuの濃度を高くするとCuの価数が変化し、400nm付近の透過率が低下して青緑色になるという問題があった。
【0004】
例えば、特開平2−204342号公報には実施例2において、ガラス厚さ0.3mmの場合の透過率が示されているが、As23を含有するガラス以外では、400nmの透過率が80%を大きく下回っている。すなわち、Cuを高濃度にしてガラスを薄板化すると、400nmの透過率が低下し、緑色になることを示している。この実施例ではAs23で透過率悪化を改善しているが、As23は有害成分であり、研磨スラッジや研磨廃液に含まれると公害の原因になるので好ましくない。
【0005】
さらに、Cuを増量すると耐失透性が悪化し、ガラス中に結晶が析出しやすくなる上、液相温度が上昇しガラス成形が困難になる、液相温度における粘度が低下し、成形ガラス中で溶融ガラスの対流が起こり、脈理が生じやすくなるなどの問題があった。
【0006】
他方、近赤外光吸収ガラスとして代表的な、フツ燐酸塩ガラスでは、燐酸塩ガラスにフッ素を導入することにより、耐候性を向上させている。その一方、フッ素を導入すると、ガラス構造における燐酸の網目をフッ素が切断するため、ガラスの粘度が下がってしまう。また、フッ素の揮発により製造が難しいという欠点もあった。特に、フツ燐酸塩ガラスに銅を添加した近赤外光吸収ガラスは、銅の添加量が多くなるほどガラスが不安定になり、液相温度が上昇するため、成形温度を高く設定する必要があった。成形温度を高くすると、低粘度のガラスを流し出すことになるため、成形型の中でガラスが激しく対流し、ガラス内部に強烈な脈理が発生する。また成形温度が高いためフッ素の揮発が多くなり、成形中のガラス表面のフッ素濃度が減少するため、屈折率差が生じ、表面の脈理が発生しやすい。さらに、寸法が大きく厚いガラスを成形すると内部の冷却速度が遅くなり、ガラスの失透(結晶化)が発生しやすかった。それらの理由により、これまで高Cu濃度のフツ燐酸塩ガラスは製品の安定性、歩留まりが非常に悪く、高コストである上、大量生産が難しかった。
【0007】
【発明が解決しようとする課題】
本発明は、このような従来の近赤外光吸収ガラスが有する欠点を克服し、有害なヒ素を含まなくても良好な色感度補正特性を維持すると共に、ガラスの厚みを薄くすることができ、かつ耐候性や成形性に優れた近赤外光吸収ガラスおよび該ガラスからなる近赤外光吸収素子と該ガラスを用いた近赤外光吸収フィルター、さらには上記近赤外光吸収ガラスからなる高品質のガラス成形体を製造する方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の組成を有する近赤外光吸収ガラスおよび特定の透過率特性を有する近赤外光吸収ガラスにより、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。
【0009】
すなわち、本発明は、
(1)カチオン%表示で、P5+ 23〜41%、Al3+ 4〜16%、Li+ 11〜40%、Na+ 3〜13%、R2+ 12〜53%(ただし、R2+はMg2+、Ca2+、Sr2+、Ba2+およびZn2+の合計量)、およびCu2+ 2.6〜4.7%を含むと共に、アニオン成分としてF-およびO2-を含むことを特徴とする近赤外光吸収ガラス(以下、近赤外光吸収ガラスIと称す。)、
【0010】
(2)カチオン成分として、Zn2+を含む上記(1)項に記載の近赤外光吸収ガラス、
(3)アニオン%表示で、F- 25〜48%およびO2- 52〜75%を含む上記(1)または(2)項に記載の近赤外光吸収ガラス、
(4)実質的にヒ素および鉛を含まず、波長400〜700nmの分光透過率において透過率が50%を示す波長が615nmになる厚さが0.1〜0.8mmの範囲にあって、前記厚さにおける波長400nmの透過率が80%以上、波長800〜1000nmの透過率が5%未満、波長1200nmの透過率が20%未満であることを特徴とする近赤外光吸収ガラス(以下、近赤外光吸収ガラスIIと称す。)、
【0011】
(5)液相温度が750℃以下である上記(1)ないし(4)項のいずれか1項に記載の近赤外光吸収ガラス、
(6)厚さ0.5mmに換算した場合に、波長400〜700nmの分光透過率において、透過率50%を示す波長が630nm未満、この波長よりも長波長側の透過率が50%未満、前記波長よりも短波長側の透過率が50%超であって、液相温度における粘度が0.5Pa・s以上であることを特徴とする近赤外光吸収ガラス(以下、近赤外光吸収ガラスIIIと称す。)、
【0012】
(7)銅含有フツ燐酸塩ガラスである上記(4)ないし(6)項のいずれか1項に記載の近赤外光吸収ガラス、
(8)上記(1)ないし(7)項のいずれか1項に記載の近赤外光吸収ガラスからなる近赤外光吸収素子、
【0013】
(9)上記(1)ないし(7)項のいずれか1項に記載の近赤外光吸収ガラスからなるガラス板を備えたことを特徴とする近赤外光吸収フィルター、および
(10)710℃以下の溶融ガラスを成形、冷却して上記(6)項に記載の近赤外光吸収ガラスからなるガラス成形体を作製することを特徴とする近赤外光吸収ガラス成形体の製造方法
を提供するものである。
【0014】
【発明の実施の形態】
本発明の近赤外光吸収ガラスには、以下に示す近赤外光吸収ガラスI、IIおよびIIIの3つの態様があり、まず、近赤外光吸収ガラスIについて説明する。
【0015】
本発明の近赤外光吸収ガラスIは、カチオン%表示で、P5+ 23〜41%、Al3+ 4〜16%、Li+ 11〜40%、Na+ 3〜13%、R2+ 12〜53%(ただし、R2+はMg2+、Ca2+、Sr2+、Ba2+およびZn2+の合計量)、およびCu2+ 2.6〜4.7%を含むと共に、アニオン成分としてF-およびO2-を含むガラスである。
【0016】
このガラスIは、フツ燐酸塩ガラスであって、光吸収特性において重要な働きをするCu濃度を変化させてもCuの価数変化が起こりにくいベース組成に、所要のCuを添加することによって優れた近赤外域吸収特性と波長400nmにおける高い透過率を実現したものである。この観点から、ガラス中のアニオン成分がF-およびO2-からなることが望ましい。
【0017】
以下にガラスIの組成限定理由について述べる。なお、ガラスIの説明に限らず、以下の説明では、カチオン成分の含有量をカチオン%により表示し、アニオン成分の含有量をアニオン%により表示するものとする。
【0018】
5+はフツ燐酸塩ガラスの基本成分であり、赤外域の吸収をもたらす重要な成分である。23%未満では色補正機能が悪化して緑色を帯びる。逆に41%を超えると耐候性、耐失透性が悪化する。したがってP5+の含有量は23〜41%に限定される。好ましくは25〜40%である。
【0019】
Al3+はフツ燐酸塩ガラスの耐失透性を向上させる重要な成分である。4%未満では耐失透性が悪く、液相温度が高くなり高品質なガラスの溶解成形が困難になる。逆に16%を超えても耐失透性が悪化する。したがってAl3+の含有量は4〜16%に限定される。好ましくは8〜16%である。
【0020】
Li+はガラスの耐失透性を改善させる有用な成分であるが、11%未満ではその効果がなく、逆に40%を超えるとガラスの耐久性、加工性が悪化する。したがってLi+の含有量は11〜40%に限定される。好ましくは11〜25%である。
【0021】
Na+もガラスの耐失透性を改善させる有用な成分であるが、3%未満ではその効果がなく、13%を超えるとガラスの耐久性、加工性が悪化する。したがってNa+の含有量は3〜13%に限定される。好ましくは4〜13%である。
【0022】
2+(Mg2+、Ca2+、Sr2+、Ba2+、Zn2+)はフツ燐酸塩ガラスにおいて、ガラスの耐失透性、耐久性、加工性を向上させる有用な成分である。R2+の合計は12%未満ではガラスの耐失透性、耐久性が劣化し、逆に53%を超えると耐失透性が悪化する。したがってR2+の含有量は12〜53%に限定される。好ましくは15〜35%である。
【0023】
なお、Mg2+の好ましい範囲は2〜6%、Ca2+の好ましい範囲は6〜12%、Sr2+の好ましい範囲は4〜9%、Ba2+の好ましい範囲は3〜8%、Zn2+の好ましい範囲は0%より多く6%以下である。
【0024】
Zn2+は任意成分ではあるが、耐失透性を向上させる上で含有させることが好ましい。この観点からZn2+の望ましい範囲は0%より多く6%以下であり、より望ましい範囲は2〜6%である。
【0025】
Cu2+は光吸収特性において重要な働きをする成分であり、2.6%未満では赤外吸収が小さく、厚さ0.5mmに換算した透過率が波長400〜700nmの範囲において、透過率50%を示す波長が630nm以上となってしまい、固体撮像素子用のフィルターに用いた場合、良好な色補正が難しくなる。逆に4.7%を超えると耐失透性が悪化する。したがってCu2+の含有量は2.6〜4.7%に限定される。好ましくは2.8〜4.7%である。
【0026】
なお、Sb3+、Ce4+を任意成分として加えることができる。これらの成分は、ガラスの短波長域、特に波長400nmの透過率を向上させる上で有効な成分である。好ましい量はともに0〜1%(カチオン%)、より好ましい量は、0.001〜1%、さらに好ましい量は、0.001〜0.1%である。Sb3+とCe4+を同時に導入する場合は、合計量を1%以下とするのが好ましい。Sb3+、Ce4+のうち、短波長域の透過率を向上させる上で特に有効なものは、Sb3+であり、所要の目的を得る上からは、Sb3+のみを導入することが好ましい。なお、Sb3+(例えばSb23)を導入することによって、ガラス原料に鉄などの不純物が混入していても、波長400nm付近の透過率の低下を防ぐことができる。
【0027】
2-はガラスIにおいて特に重要なアニオン成分である。52%未満では2価のCu2+が還元され1価のCu+となりやすく短波長域、特に400nm付近の吸収が大きくなってしまい、緑色を呈する傾向がある。したがってO2-の含有量は52〜75%にすることが好ましく、53〜75%とするのがより好ましい。
【0028】
-はガラスの融点を下げ、耐候性を向上させる重要なアニオン成分である。25%未満では耐候性が悪化しやすく、逆に48%を超えるとO2-の含有量が減少するため1価のCu+による400nm付近の着色を生じやすくなる。したがってF-の含有量は25〜48%にするのが好ましく、25〜47%にするのがより好ましい。
【0029】
+、Zr4+、La3+、Gd3+、Y3+ 、Si4+、B3+は耐失透性の向上、ガラス粘度の調整、透過率の調整、清澄の目的で適宜用いることができる。これらの群から選ばれる少なくとも1種のカチオン成分を合計で5%未満加えることができる。好ましくは2%以下である。
【0030】
ガラスIの好ましい組成は上記のとおりであるが、以下、そのうちのいくつかを例示する。
(1)ガラスI−a−1
25〜48%のF-と52〜75%のO2-を含むガラスI。
(2)ガラスI−a−2
25〜47%のF-と53〜75%のO2-を含むガラスI。
【0031】
(3)ガラスI−b−1
カチオン成分としてZn2+を含むガラスI。
(4)ガラスI−b−2
5+、Al3+、Li+、Na+、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+、Cu2+よりなるカチオン成分と、F-、O2-よりなるアニオン成分を含むガラスI。
【0032】
(5)ガラスI−c−1
実質的にヒ素及び鉛を含まないガラスI。ただし、実質的に含まないとはガラス原料としてこれらの元素を使用しないことを意味する。不純物としても排除することが望ましい。
ヒ素、鉛は有害物質であり、環境影響上、排除することが好ましいが、このガラスによれば、研削、研磨、切断などの機械加工により生じる廃棄物(研磨スラッジや研磨廃液など)中に上記有害成分が含まれていないので、環境への影響を軽減することができる。
【0033】
(6)ガラスI−c−2
実質的にヒ素、セリウム、鉛を含まないガラスI。
(7)ガラスI−d−1
2+成分として、Mg2+ 2〜6%、Ca2+ 6〜12%+、Sr2+ 4〜9%、Ba2+ 3〜8%、Zn2+ 0〜6%を含むガラスI。
【0034】
(8)ガラスI−d−2
2+成分として、Mg2+ 2〜6%、Ca2+ 6〜12%+、Sr2+ 4〜9%、Ba2+ 3〜8%、Zn2+ 0%より多く6%以下を含むガラスI。
(9)ガラスI−d−3
2+成分として、Mg2+ 2〜6%、Ca2+ 6〜12%+、Sr2+ 4〜9%、Ba2+ 3〜8%、Zn2+ 2〜6%を含むガラスI。
【0035】
(10)ガラスI−e−1
カチオン成分として、P5+ 25〜40%、Al3+ 8〜16%、Li+ 11〜25%、Na+ 4〜13%、R2+ 15〜35%を含むガラスI。
(11)ガラスI−e−2
カチオン成分として、P5+ 25〜40%、Al3+ 8〜16%、Li+ 11〜25%、Na+ 4〜13%、R2+ 15〜35%、Zn2+ 0%より多く6%以下を含むガラスI。
【0036】
(12)ガラスI−e−3
カチオン成分として、P5+ 25〜40%、Al3+ 8〜16%、Li+ 11〜25%、Na+ 4〜13%、R2+ 15〜35%、Zn2+ 2〜6%を含むガラスI。
(13)ガラスI−f
カチオン成分として、Cu2+ 2.8〜4.7%を含むガラスI。
【0037】
(14)ガラスI−g−1
カチオン成分として、Sb3+ 0〜1%を含むガラスI。
(15)ガラスI−g−2
カチオン成分として、Sb3+ 0.001〜0.1%を含むガラスI。
【0038】
次にガラスIの特性について説明する。
〈透過率特性〉
ガラスの透過率は厚みによって変化するが、均質なガラスであれば、光の透過する方向におけるガラスの厚さと透過率がわかれば、所定の厚さの透過率を計算によって求めることができる。ガラスIの好ましい透過率特性は、厚さ0.5mmに換算した場合、波長400〜700nmの分光透過率において透過率が50%を示す波長が[以下、λ50(0.5mm)と記す。]630nm未満である。なお、上記分光透過率を測定する際には、両面とも光学研磨された試料を用いる。上記透過率は外部透過率と呼ばれるもので、試料の表面反射による透過率の減少分も含む。また、波長400〜700nmにおいて、λ50(t=0.5mm)が一波長のみ存在することが望ましい。また、波長400〜700nmにおいて、λ50(t=0.5mm)よりも短波長側の任意の波長で透過率が50%より高く、λ50(t=0.5mm)よりも長波長側の任意の波長で透過率が50%より低いことが望ましい。
【0039】
厚さ0.5mmに換算した場合に、上記透過率が50%以上となる波長域の長波長端が630nm未満であることが好ましく、前記長波長端が605〜625nmの範囲にあることがより好ましい。さらに、前記厚さに換算した場合に、波長400nmにおける透過率が80%以上であることがさらに好ましい。このような特性によって良好な色補正機能が付与される。
【0040】
また、波長400〜700nmの分光透過率において透過率が50%を示す波長が615nmになる厚さが0.1〜0.8mmの範囲にあって、前記厚さにおける波長400nmの透過率が80%以上、波長800〜1000nmの透過率が5%未満、波長1200nmの透過率が20%未満であることが好ましい。さらに、波長400〜700nmの分光透過率において透過率が50%を示す波長(λ50)が615nmになる厚さが0.3〜0.6mmの範囲にあることが好ましく、当該厚さにおいて上記透過率特性を備えることがより好ましい。
【0041】
本発明の近赤外光吸収ガラスIの分光透過率曲線は図1に示すものに代表される。λ50が波長615nmになる厚さに換算した場合に、λ50となるもう一つの波長が紫外域に存在する。可視域のλ50をλ50(可視)とし、紫外域のλ50をλ50(紫外)とすると、λ50(紫外)は概ね320〜360nmの範囲に存在することが好ましい。λ50(紫外)からλ50(可視)の波長域において、波長が長くなるに伴い透過率が単調に増加した後、単調に減少してλ50(可視)において50%となる。この範囲において、透過率は50%以上を示す。これはガラスの厚みに関係ない。さらに前記厚さにおいて、波長400nmの透過率が80%以上であることが好ましい。λ50(可視)から波長800nmにかけて波長が長くなるに伴い、透過率は単調に減少する。波長400〜1200nmの分光透過率において、波長800〜1000nmの波長域における透過率が最も低くなる。この領域は、近赤外域であるが半導体撮像素子の感度が十分低くなっていないので、色補正用フィルターの透過率を十分低く抑える必要がある。波長1000〜1200nmにおける半導体撮像素子の感度は波長1000nmよりも短い波長域に比べると低下しているので、透過率の上限は緩和される。したがって、透過率が所定以下であれば、波長1000〜1200nmにおいて波長とともに透過率が単調に増加しても構わない。
【0042】
なお、近赤外光吸収ガラスIの屈折率ndは1.5付近、アッベ数νdは74.5付近が得られる。
これらの透過率特性により、近赤外光吸収ガラスIを用いたフィルターは固体撮像素子などの色補正を良好に行うことができる。
【0043】
〈耐候性〉
長期的な使用に耐えるためには、優れた耐候性が必要である。耐候性が低いとガラス表面に曇りが発生し、光学フィルターなどの用途に耐えられないものとなってしまう。
【0044】
近赤外光吸収ガラスIは優れた透過率特性と耐候性を兼ね備えている。耐候性は光学研磨したガラス試料を80℃、相対湿度90%の高温高湿槽中に1000時間保持した後、試料の光学研磨された表面の焼け状態を目視観察して調べる。その結果、焼け状態が観察されなければ長期的な使用に十分耐え得る良好な耐候性を確認できる。近赤外光吸収ガラスIは上記条件のもと焼け状態は観察されず、良好な耐候性を有していることが確認されている。
【0045】
〈耐失透性〉
近赤外光吸収ガラスIは光学フィルターなどに使用されるため、上記のように制御された透過率特性を備えている。しかし、製造過程でガラス中に結晶が発生すると透過率特性に悪影響を及ぼす。したがって、耐失透性は近赤外光吸収ガラスIが備えるべき重要な特性である。耐失透性は液相温度によって評価できる。耐失透性の向上は液相温度の低下に対応する。液相温度が高くなると、溶融ガラスから、近赤外光吸収ガラスIよりなるガラス成形体を成形する際、失透しないように成形温度を高くしなければならない。それに伴い、ガラスの成形が困難になったり、成形時のガラスの粘性が低下し、ガラス成形体となる溶融ガラス中で対流がおきて脈理が発生したり、ガラスからの揮発が著しくなり、ガラス成形体表面が変質したり、揮発物が成形型に付着して汚染するといった問題が生じる。
【0046】
従来のガラスでは上記透過率特性を付与するため、Cuの量を増加させると液相温度が上昇し、上記諸問題が発生する。それに対し、近赤外光吸収ガラスIは良好な透過率特性を備えつつ、液相温度を750℃以下に抑えることができるが、720℃以下に抑えることが好ましく、700℃以下に抑えることがより好ましく、690℃以下に抑えることがさらに好ましく、680℃以下に抑えることがより一層好ましく、670℃以下に抑えることがさらに一層好ましく、650℃以下に抑えることが特に好ましい。液相温度がこの範囲であれば、成形条件の選択範囲が広がるとともに、良好な近赤外光吸収ガラスが得られやすくなる。
【0047】
液相温度の測定は、白金坩堝に入れられた複数のガラス試料を用意し、これらを一定の間隔の異なる温度下に1時間保持する。その後、試料中の結晶を顕微鏡などで観察し、結晶が消失する温度の上限をもって液相温度とすればよい。
【0048】
また、近赤外光吸収ガラスIのガラス転移温度は、一般に550℃以下であるので、精密プレス成形(モールド成形)によって成形後に光学機能面に研削や研磨などの機械加工を施すことなしに、レンズ、回折格子などの光学素子を成形することもできる。
【0049】
次に、本発明の近赤外光吸収ガラスIIについて説明する。
本発明の近赤外光吸収ガラスIIは、実質的にヒ素および鉛を含まず、波長400〜700nmの分光透過率において透過率が50%を示す波長(λ50)が615nmになる厚さが0.1〜0.8mmの範囲にあって、前記厚さにおける波長400nmの透過率が80%以上、波長800〜1000nmの透過率が5%未満、波長1200nmの透過率が20%未満のガラスである。
【0050】
ここで、実質的にヒ素、鉛を含まないとは、前述の近赤外光吸収ガラスIの説明において触れたように、ガラス原料として使用しないということであって、不純物としても排除することが望ましい。
【0051】
上記透過率特性によれば、ガラスの厚みを薄くしても、固体撮像素子の色補正用フィルターなどに良好に適用できる。この観点から、前記厚さにおいて透過率50%となる波長域の長波長端が615nmであることが好ましい。また、波長400〜700nmの分光透過率において透過率が50%を示す波長が605〜625nmの範囲にある場合、近赤外光吸収ガラスIIの厚さが0.1〜0.8mmの範囲にあることが好ましい。
【0052】
また、波長400〜700nmの分光透過率において透過率が50%を示す波長が615nmになる厚さが0.1〜0.8mmの範囲にあって、前記厚さにおける波長400nmの透過率が80%以上、波長800〜1000nmの透過率が5%未満、波長1200nmの透過率が20%未満であることが好ましい。さらに、波長400〜700nmの分光透過率において透過率が50%を示す波長が615nmになる厚さが0.3〜0.6mmの範囲にあることが好ましく、当該厚さにおいて上記透過率特性を備えることがより好ましい。
さらに、前述の近赤外光吸収ガラスIが好ましい透過率特性として備える諸特性を近赤外光吸収ガラスIIも備えることが好ましい。
【0053】
当該近赤外光吸収ガラスIIの具体的な組成としては、銅含有のフツ燐酸塩ガラスを挙げることができる。
より好ましい組成は近赤外光吸収ガラスIと同様であり、中でも好ましい組成は、前記のガラスI−a〜fの各ガラスである。これらの好適な組合せについても近赤外光吸収ガラスIの説明で触れたとおりである。
【0054】
当該近赤外光吸収ガラスIIにおいても近赤外光吸収ガラスIと同様の理由により、液相温度が750℃以下であることが好ましいが、720℃以下に抑えることが好ましく、700℃以下に抑えることがより好ましく、690℃以下に抑えることがさらに好ましく、680℃以下に抑えることがより一層好ましく、670℃以下に抑えることがさらに一層好ましく、650℃以下に抑えることが特に好ましい。液相温度の測定は近赤外光吸収ガラスIの説明と同様である。耐候性についても近赤外光吸収ガラスIと同様である。
【0055】
次に、本発明の近赤外光吸収ガラスI、IIの製造方法について、一例を挙げて説明する。
本発明の近赤外光吸収ガラスI、IIは、ともに従来の銅含有フツ燐酸塩ガラスと同様の方法で製造される。すなわち、燐酸塩、フッ化物、炭酸塩、硝酸塩、酸化物などの原料を適宜用いて、所望の組成になるよう原料を秤量し、混合した後、白金坩堝中にて750〜900℃にて溶解する。好ましくは850℃以下である。その際、フッ素成分の揮発を抑制するため白金等の蓋を用いることが望ましい。また、溶解雰囲気は大気中で問題ないが、Cuの価数変化を抑えるため酸素雰囲気にするか、溶融ガラス中に酸素をバブリングするのが好ましい。溶融状態のガラスは、攪拌、清澄によって泡も含まない均質化された溶融ガラスとなる。
【0056】
溶融状態のガラスを攪拌、清澄を行った後、ガラスを流し出して成形する。ガラスを流し出す際は液相温度付近の温度まで降温し、ガラスの粘度を高めてから行う方が流し出したガラスの対流が起こりにくく、脈理が生じにくい。
ガラスの成形方法は、キャスト、パイプ流出、ロール、プレスなど従来から用いられている方法を使用できる。成形されたガラスは予めガラスの転移点付近に加熱されたアニール炉に移し、室温まで徐冷される。
【0057】
次に、本発明の近赤外光吸収ガラスIIIは、厚さ0.5mmに換算した場合に、波長400〜700nmの分光透過率において、透過率50%を示す波長が630nm未満、この波長よりも長波長側の透過率が50%未満、前記波長よりも短波長側の透過率が50%超であって、液相温度における粘度が0.5Pa・s以上である。
【0058】
厚さ0.5mmに換算した場合に、波長400〜700nmの範囲において、透過率50%を示す波長[λ50(t=0.5mm)]を境に長波長側の透過率を50%未満とすることにより、良好な近赤外光吸収特性を付与することができる。また、λ50(t=0.5mm)よりも短波長側の透過率を50%超とすることにより、良好な可視光透過特性を付与することができる。可視光透過特性をより良好にするため、厚さ0.5mmに換算した400nmにおける分光透過率が80%以上であることが望ましい。良好な近赤外光吸収特性と可視光透過特性を付与することにより、薄肉であっても十分な色補正機能を有する近赤外光吸収ガラスを提供することができる。この色補正機能は、後述するように固体撮像素子、特にCCDなどの半導体撮像素子の色補正に好適なものである。該近赤外光吸収ガラスIIIの光透過率特性について詳述する前に、このガラスIIIの他の性質について説明する。
【0059】
近赤外光吸収ガラスは、主として光学ガラスとして使用されるものであり、極めて高い品質が要求される。そのため、ガラスの脈理や失透などの欠点を排除する必要がある。脈理は、様々な要因によって生じるが、溶融されたガラスを成形する際、粘性流動する温度範囲におけるガラスの対流が主な要因になっていると考えられる。成形時の粘性が低いと上記対流が顕著になり、脈理が発生しやすくなる。一般にガラスの粘度は、温度が低下すると増加する傾向を示すことから、成形時の温度を下げればガラスの対流を低減できる。しかし、溶融ガラスの温度を低下させると、結晶化によるガラスの失透の危険性が増大する。つまり、脈理と失透をともに防止するには、耐失透性の指標となる液相温度におけるガラスの粘性に注目しなければならない。
【0060】
本発明の近赤外光吸収ガラスIIIにおいては、液相温度におけるガラスの粘度が0.5Pa・s以上である性質を付与すれば、成形時にガラスを失透させずに、ガラスの対流による脈理を防止することができる。好ましくは液相温度におけるガラスの粘度が1Pa・s以上、さらに好ましくは液相温度におけるガラスの粘度が1.5Pa・s以上である。
【0061】
また、上記脈理、失透を解消する上から、液相温度が690℃以下とすることが好ましく、680℃以下とすることがより好ましく、670℃以下とすることがさらに好ましく、650℃以下とすることがより一層好ましい。
【0062】
当該近赤外光吸収ガラスIIIとしては、銅含有フツ燐酸塩ガラスが好ましい。フツ燐酸塩ガラスでは、燐酸塩ガラスにフッ素を導入することにより、耐候性を向上させている。
なお、光透過率特性を良好にしたり、脱泡清澄の観点からヒ素の導入も考えられるが、ヒ素は毒性を示す物質であるので環境上への配慮からヒ素を実質的に含まないガラスが望ましい。同様に鉛を実質的に含まないガラスが望ましい。
【0063】
当該近赤外光吸収ガラスIIIは、液相温度におけるガラス粘度が0.5Pa・s以上である。そのため、液相温度付近の温度で成形しても成形型中におけるガラスの対流が抑えられる。特に、上記の銅含有フツ燐酸塩ガラスでは所要の光透過率特性を付与するため、銅の濃度を高くしても、上記粘性特性によってガラスの対流が抑えられ、脈理発生を防止することができる。しかも液相温度を690℃以下にすることができるので、フッ素の揮発が少なく、成形ガラスの表面脈理が抑えられる。
なお、当該近赤外光吸収ガラスIIIの好ましい組成としては、前述の近赤外光吸収ガラスIの組成と同じものを挙げることができる。
【0064】
次に、近赤外光吸収ガラスIIIの特性について説明する。
〈透過率特性〉
近赤外光吸収ガラスIIIの透過率特性は、上記のように、厚さ0.5mmに換算した場合に、波長400〜700nmの分光透過率においてλ50(t=0.5mm)が630nm未満である。また、波長400〜700nmにおいて、λ50(t=0.5mm)が一波長のみ存在することが望ましい。また、波長400〜700nmにおいて、λ50(t=0.5mm)よりも短波長側の任意の波長で透過率が50%より高く、λ50(t=0.5mm)よりも長波長側の任意の波長で透過率が50%より低い。λ50(t=0.5mm)が605〜625nmの範囲にあることがより好ましい。さらに、前記厚さに換算したときに、波長400nmにおける透過率が80%以上であることが好ましい。このような特性によって良好な色補正機能が付与される。
【0065】
また、波長400〜700nmの分光透過率において透過率が50%を示す波長が615nmになる厚さが0.1〜0.8mmの範囲にあって、前記厚さにおける波長400nmの透過率が80%以上、波長800〜1000nmの透過率が5%未満、波長1200nmの透過率が20%未満であることが好ましい。さらに、波長400〜700nmの分光透過率において透過率が50%を示す波長が615nmになる厚さが0.3〜0.6mmの範囲にあることが好ましく、当該厚さにおいて上記透過率特性を備えることがより好ましい。
【0066】
本発明の近赤外光吸収ガラスIIIの分光透過率曲線は前記図1に示すものに代表される。前述の近赤外光吸収ガラスIの場合と同様に、透過率が50%になる波長(λ50)が615nmになる厚さに換算した場合、λ50となるもう一つの波長が紫外域に存在する。可視域のλ50をλ50(可視)とし、紫外域のλ50をλ50(紫外)とすると、λ50(紫外)は概ね320〜360nmの範囲に存在することが好ましい。λ50(紫外)からλ50(可視)の波長域において、波長が長くなるにつれて透過率が単調に増加した後、単調に減少してλ50(可視)において50%となる。この範囲において、透過率は50%以上を示す。これはガラスの厚みに関係ない。さらに前記厚さにおいて、波長400nmの透過率が80%以上であることが好ましい。λ50(可視)から波長800nmにかけて波長が長くなるにつれて、透過率は単調に減少する。波長400〜1200nmの分光透過率において、波長800〜1000nmの波長域における透過率が最も低くなる。この領域は、近赤外域であるが半導体撮像素子の感度が十分低くなっていないので、色補正用フィルターの透過率を十分低く抑える必要がある。波長1000〜1200nmにおける半導体撮像素子の感度は波長1000nmよりも短い波長域に比べると低下しているので、透過率の上限は緩和される。したがって、透過率が所定以下であれば、波長1000〜1200nmにおいて波長とともに透過率が単調に増加しても構わない。
【0067】
なお、近赤外光吸収ガラスIIIの屈折率ndは1.5付近、アッベ数νdは74.5付近が得られる。
これらの透過率特性により、本発明の近赤外光吸収ガラスIIIを用いたフィルターは固体撮像素子などの色補正を良好に行うことができる。
また、当該近赤外光吸収ガラスIIIは、前述の近赤外光吸収ガラスIと同様に良好な耐候性を有している。
【0068】
〈耐失透性〉
当該近赤外光吸収ガラスIIIは光学フィルターなどに使用されるため、上記のように制御された透過率特性を備えている。しかし、製造過程でガラス中に結晶が発生すると透過率特性に悪影響を及ぼす。したがって、前述のガラスIにおいて説明したように、耐失透性は近赤外光吸収ガラスが備えるべき重要な特性であり、耐失透性は液相温度によって評価できる。耐失透性の向上は液相温度の低下に対応する。液相温度が高くなると、溶融ガラスから上記近赤外光吸収ガラスよりなるガラス成形体を成形する際、失透しないように成形温度を高くしなければならない。それに伴い、ガラスの成形が困難になったり、成形時のガラスの粘性が低下し、ガラス成形体となる溶融ガラス中で対流がおきて脈理が発生したり、ガラスからの揮発、特にフッ素の揮発が著しくなり、成形中のガラス表面のフッ素濃度が減少するため、屈折率差が生じ表面の脈理が発生しやすい。また、ガラス成形体表面が変質したり、揮発物が成形型に付着して汚染するといった問題が生じる。さらに、寸法が大きく厚いガラスを成形すると内部の冷却速度が遅くなり、ガラスの失透(結晶化)が発生しやすいという問題があった。
【0069】
従来のガラスでは上記透過率特性を付与するため、銅の量を増加させると液相温度が上昇してしまい、上記諸問題が発生してしまう。
これに対し、近赤外光吸収ガラスIIIの液相温度をガラスの粘度が0.5Pa・sを示す温度以下とすることにより、上記問題を解決することができ、高品質の近赤外光吸収ガラスを提供することができる。好ましい液相温度は、690℃以下である。液相温度がこの範囲であれば、成形条件の選択範囲が広がるとともに、高品質な近赤外光吸収ガラスが得やすくなる。
【0070】
また、当該近赤外光吸収ガラスIIIのガラス転移温度は550℃以下であるので、精密プレス成形(モールド成形)によって成形後に光学機能面に研削や研磨などの機械加工を施すことなしにレンズ、回折格子などの光学素子を成形することもできる。
【0071】
次に、本発明の近赤外光吸収ガラス成形体の製造方法について説明する。
本発明の近赤外光吸収ガラス成形体の製造方法においては、700℃未満の溶融ガラスを成形、冷却して、近赤外光吸収ガラスIIIからなるガラス成形体を作製する。
【0072】
〈ガラスの溶解〉
ガラスの溶解については、前述の近赤外光吸収ガラスI、IIの製造方法において説明したとおりである。
【0073】
〈溶融ガラスを用いた成形〉
上記近赤外光吸収ガラスIIIは、液相温度におけるガラス粘度が0.5Pa・s以上である。そのため、液相温度付近の温度で成形しても成形型中におけるガラスの対流が抑えられる。特に、上記銅含有フツ燐酸塩ガラスでは銅濃度が高いにもかかわらず、上記特性を備えているため、上記対流が抑えられ、脈理発生を防止することができる。しかも液相温度を690℃以下とすることができるので、フッ素の揮発が少なく、成形ガラスの表面脈理が抑えられる。さらに上記特性を有するため耐失透性に優れ、板厚のブロック成形によっても均質なガラスを製造することができる。
【0074】
近赤外光吸収ガラスIIIからなるガラス成形体を成形するには、均質化された溶融ガラスを流し出して成形する。流し出す際の溶融ガラスの温度は、液相温度〜液相温度+20℃を目安にするとよい。溶融ガラスを流し出す際は、液相温度付近の温度まで降温し、ガラスの粘度を高めてから行うと、流し出したガラスの対流が起こりにくく、脈理が生じにくい。ガラスの成形は710℃以下で行われる。好ましくは700℃以下、さらに好ましくは680℃以下、より一層好ましくは660℃以下である。
【0075】
ガラスの成形方法は、溶融ガラスを鋳型に鋳込むキャスト成形、溶融ガラスをパイプから流出し、所望の重量分を分離してガラス塊に成形する方法、ロール成形、プレス成形などを例示できる。
【0076】
当該近赤外光吸収ガラスIIIは、成形性、耐失透性に優れているので、板厚、大判のブロック成形ができる。そのため、精度のよいスライス技術と組み合わせると、薄肉の大判ガラスを安価に提供することができる。
【0077】
このような成形の一例を以下に示す。平坦かつ水平な底面と、この底面を挟んで互いに平行に対抗する一対の側壁と、一対の側壁の間に位置する一方の開口部を塞ぐ堰板によって構成された鋳型を用意する。この鋳型に白金合金製のパイプから一定の流出スピードで均質化された溶融ガラスを鋳込む。鋳込まれた溶融ガラスは鋳型内に広がり、一対の側壁によって一定の幅に規制されたガラス板に成形される。成形されたガラス板は、鋳型の開口部から連続的に引き出されていく。ここで鋳型の形状、寸法、溶融ガラスの流出スピードなどの成形条件を適宜設定することにより、大判かつ肉厚のガラスブロックを成形することができる。この成形では、板の厚みは鋳型中の溶融ガラスの深さによって決まる。板を厚くするには、溶融ガラスの深さを深くしなければならない。このように溶融ガラスの深さが深いところにパイプより溶融ガラスを連続的に供給するため、低粘性の溶融ガラスを流し込むと脈理の要因となるガラスの対流が顕著になってしまう。しかし、当該近赤外光吸収ガラスIIIを使用すれば、成形中にガラスを失透させることなく、比較的高粘性でガラスの流し込みを行うことができるので、対流などによる脈理の発生を防止することができる。したがって、板厚を厚くしても脈理や失透などの欠点のないガラスブロックを作製することができる。
【0078】
成形されたガラス成形体は、予めガラスの転移点付近に加熱されたアニール炉に移され、室温まで徐冷される。徐冷によって歪が除かれたガラス成形体には精度のよいスライス、研削、研磨加工が施される。この際、中途半端に薄い成形ガラスを両面研削研磨で薄板に加工するよりも、板厚のガラス材料を精度良くスライスする方が削りしろが少なく、総合的にコストも安くなるため好ましい。
【0079】
次に、本発明の近赤外光吸収素子は、前述の本発明の近赤外光吸収ガラスI、IIまたはIIIからなる光学素子であって、近赤外光吸収フィルターに使用される薄板状のガラス素子や、レンズなどを例示することができる。これらの素子は固体撮像素子の色補正用に好適であり、その成形方法としては上記成形方法や上記成形方法によって得られた成形体に切断、切削、研削、研磨などの機械加工を施す方法、ガラスI、IIまたはガラスIIIからなるプリフォームを成形し、このプリフォームを加熱、軟化してプレス成形する方法(特に光学機能面に研削、研磨などの機械加工を施すことなしに最終製品をプレス成形する精密プレス成形法)などを例示することができる。
【0080】
これらの近赤外光吸収素子は、近赤外光吸収ガラスI、IIまたはガラスIIIからなるので、薄くしても良好な色補正機能を有し、優れた耐失透性、耐候性を備えている。なお、近赤外光吸収素子の厚さ(透過光の入射面と出射面の間隔)は当該素子の透過率特性を考慮して決められるが、概ね0.1〜0.8mmの間で決めることが望ましく、0.3〜0.6mmの間で決めることがより望ましい。さらにλ50が605〜625nmの範囲にあることが好ましく、615nmであることが特に好ましい。このような近赤外光吸収素子を得るためには、近赤外光吸収ガラスI、IIまたはIIIの組成を調整し、上記特性が得られる厚みに加工すればよい。
【0081】
次に近赤外光吸収フィルターについて一例を示しながら説明する。このフィルターは両面が光学研磨された近赤外光吸収ガラスI、IIまたはIIIからなる板状の近赤外光吸収素子を備えており、この素子によってフィルターの色補正機能が付与される。この素子の片面には、両面とも光学研磨された板状の水晶が貼り合わされている。水晶の片面には可視光を透過し両面とも光学研磨された板状の光学ガラス、例えばBK−7が貼り合わされている。このような構造によって近赤外光吸収フィルターは構成されるが、薄板状光学ガラスの片面にもう一枚、可視光を透過し両面とも光学研磨された板状の光学ガラス(例えばBK−7)を貼り合わせてもよい。フィルターの表面には必要に応じて光学多層膜を形成する。
【0082】
このフィルターは固体撮像素子の撮影画像の色補正を行うため、固体撮像素子の受光面の前に配置される。このフィルターによれば、近赤外光吸収ガラスI、IIまたはIIIからなる近赤外光吸収素子が使用されているので、良好な色補正機能を備えつつ、フィルターの厚みを薄くすることができる。また、優れた耐候性を有する近赤外光吸収ガラスI、IIまたはIIIからなる近赤外光素子を使用しているので長期に使用しても表面焼けなどの劣化を防止することもできる。
【0083】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
【0084】
実施例1〜12
ガラス原料としてAl(PO3)3、AlF3、Li2CO3、NaF、MgF2、CaF2、SrF2、BaF2、ZnF2、Sb23、CuOなどを、表1、表2に示される組成のガラスが得られるよう秤量混合し、白金製坩堝中に投入し、蓋をして790℃から850℃で溶解し、攪拌して脱泡、均質化を行った後、予熱した金型に流し出し、所定形状に成形した。得られたガラス成形体をガラス転移点付近に加熱したアニール炉に移し、室温まで徐冷した。得られたガラスからテストピースを切り出し、下記のようにして諸特性を測定した。
【0085】
ガラスの分光透過率は、厚さ0.5mmのガラスの波長200〜1200nmの透過率を、分光光度計を使用して測定した。このようにして得られた透過率を、波長615nmにおいて透過率50%ととなるような厚みに換算した場合の各波長における透過率を算出した。
【0086】
熱膨張係数は、熱機械分析装置を用いて測定した100〜300℃の平均線膨張係数である。
液相温度は、ガラスを白金坩堝に入れ、10℃刻みで所定の温度に1時間保持した際に、結晶が消失する温度の上限から求めた。
【0087】
耐候性は、光学研磨したガラスサンプルを80℃、相対湿度90%の高温高湿槽中に1000時間保持した後のガラス表面のヤケ状態を目視観察し、ヤケが認められないものを良好な耐候性(耐候性あり)とした。
【0088】
実施例1〜12の各ガラスの組成、波長615nmにおける透過率が50%となる厚み(λ50=615nmとなる肉厚)、その厚みにおける波長400nm、600nm、800nm、900nm、1000nm、1200nmにおける透過率、厚さ0.5mmにおける波長400nm、600nm、800nm、900nm、1000nm、1200nmにおける透過率、液相温度LT、耐候性の良否を表1〜表5に示す。いずれの実施例においても、λ50=615nmの場合の肉厚における波長800〜1000nmの透過率は5%未満であった。また、波長400〜1200nmにおける分光透過率は、図1に示すものとほぼ同様のものとなった。
【0089】
以上のことから、本発明のフツ燐酸塩ガラスは肉厚が薄く、色も改善され耐候性、耐失透性が優れているものとなった。
なお、得られた各ガラスのガラス転移温度は360℃付近、屈伏点は400℃付近であった。
【0090】
比較例1、2
ガラスIの組成範囲外の組成を有するガラスを2種類、上記実施例と同様に溶解し、攪拌して脱泡、均質化を行った後、所定形状に成形した。得られたガラス成形体をガラス転移点付近に加熱したアニール炉に移し、室温まで徐冷し、得られたガラスからテストピースを切り出して評価した。2種類のガラスの組成ならびに評価結果を比較例1、2として表1〜表5に示す。表より明らかなように両比較例のガラスとも所望の透過率特性が得られず、液相温度が800℃以上と高かった。
【0091】
【表1】

Figure 0004169545
【0092】
【表2】
Figure 0004169545
【0093】
【表3】
Figure 0004169545
【0094】
【表4】
Figure 0004169545
【0095】
【表5】
Figure 0004169545
【0096】
実施例13
実施例1〜12と同様にして、ガラスを溶解、清澄、均質化し、鋳型に射込んで実施例1〜12と同様の組成を有するガラスからなるガラス板を成形した。このガラス板をスライスした後、両面に光学研磨を施して所望の厚みの薄板とした。この薄板をダイシング加工して前記厚みを有する所望の大きさの近赤外光吸収素子を得た。当該素子の厚みは波長615±10nmにおいて透過率50%となる肉厚とし、サイズは10mm×10mm〜30mm×30mmとした。次に、板状に加工された水晶と2枚の光学ガラス(BK−7)からなる薄板ガラスを準備し、それぞれの両面に光学研磨を施した。そして、近赤外光吸収素子、水晶、BK−7製薄板ガラス2枚の順に積層されるように光学研磨された面で各薄板を貼り合わせ、最外表面に光学多層膜を設けて近赤外光吸収フィルターを作製した。このフィルターを固体撮像素子の受光面前側に配置して撮影された画像を観察した結果、良好な色補正がなされていることを確認した。
【0097】
実施例14
実施例1〜12と同様にして、ガラスを溶解、清澄、均質化してガラス融液とし、白金製ノズルから流下させた。そして、適量のガラス融液を受け型に受けて、球状のガラスプリフォームを成形した。成形されたプリフォームを一旦、室温まで冷却し、再度、窒素ガス、あるいは窒素と水素の混合ガスのような非酸化性雰囲気中で再加熱、軟化して、プレス成形型でプレスした。プレス成形型の成形面は予め、目的とする光学素子の形状を反転した形状に精密に加工され、上記プレス工程ではこれら成形面をガラスに精密に転写した。プレス成形型中でガラスが変形しない温度にまで冷却した後、プレス成形した光学素子を成形型から取り出し、アニールした。このようにして非球面レンズや回折格子などの光学素子を得ることができた。また、レンズ表面に回折格子を有する素子を精密プレス成形によって作ることもできる。
【0098】
実施例15〜19
実施例1〜12と同様にして、ガラス原料を溶解し、攪拌して脱泡、均質化を行った後、所定形状に成形した。得られたガラス成形体をガラス転移点付近に加熱したアニール炉に移し、室温まで徐冷し、得られたガラスからテストピースを切り出して評価した。
【0099】
実施例15〜19の各ガラスの組成、液相温度における粘度、液相温度、耐候性の良否、波長615nmにおける透過率が50%となる厚み(λ50=615nmとなる肉厚)、その厚みにおける波長400nm、600nm、1200nmにおける透過率、厚さ0.5mmにおける波長400nm、600nm、1200nmにおける透過率を表6〜表9に示す。いずれの実施例においても、λ50(t=0.5mm)が630nm未満、波長400〜1200nmにおける分光透過率は、図1に示すものとほぼ同様のものとなった。
【0100】
また、液相温度はすべて690℃以下、液相温度における粘度はすべて0.5Pa・s以上であった。
以上のことから、本発明のフツ燐酸塩ガラスは肉厚が薄く、色も改善され耐候性、耐失透性が優れており、液相温度における粘度が0.5Pa・s以上と優れた成形性を備えている。
【0101】
比較例3、4
液相温度における粘度が0.5Pa・s未満のガラスを2種類、実施例15〜19と同様に溶解し、攪拌して脱泡、均質化を行った後、所定形状に成形した。得られたガラス成形体をガラス転移点付近に加熱したアニール炉に移し、室温まで徐冷し、得られたガラスからテストピースを切り出して評価した。2種類のガラスの組成ならびに評価結果を比較例3、4として表6〜表9に示す。これらの表より明らかなように両比較例のガラスとも所望の透過率特性が得られず、液相温度が800℃以上と高かった。
【0102】
【表6】
Figure 0004169545
【0103】
【表7】
Figure 0004169545
【0104】
【表8】
Figure 0004169545
【0105】
【表9】
Figure 0004169545
【0106】
実施例20
実施例16〜19の近赤外光吸収ガラスが得られる清澄、均質化された溶融ガラスを、670〜710℃にて白金合金製のパイプから一定流量で連続的に鋳型に流し込み、一定板厚、板幅のガラス板を成形した。成形されたガラス板を鋳型側面の開口部から一定スピードで引き出し、アニール炉へ移送し、徐冷した。板状のガラス成形体を観察したところ、失透ならびに脈理は認められず、良好な品質な成形体が得られたことを確認した。
【0107】
徐冷されたガラス成形体を薄板状に切断加工し、両面に光学研磨を施して厚み0.5mm付近で波長615±10nmにおいて透過率50%となる厚みの近赤外光吸収素子を作製した。次に、板状に加工された水晶と2枚のBK−7からなる薄板ガラスを準備し、それぞれの両面に光学研磨を施した。そして、近赤外光吸収素子、水晶、BK−7製薄板ガラス2枚の順に積層されるように光学研磨された面で各薄板を貼り合わせ、最外表面に光学多層膜を設けて近赤外光吸収フィルターを作製した。このフィルターを固体撮像素子の受光面前側に配置して撮影された画像を観察した結果、良好な色補正がなされていることを確認した。
【0108】
比較例5
比較例3、4のガラスが得られる溶融ガラスを、830〜930℃にて実施例20と同じように鋳型に流し込んでガラス成形体を成形した。ガラスの失透が防止されるよう注意しつつ成形を行ったが、ガラス成形体には成形時のガラスの対流に起因すると思われる脈理が認められた。
【0109】
【発明の効果】
本発明によれば、有害なヒ素を含まなくても良好な色感度補正特性を維持すると共に、ガラスの厚みを薄くでき、耐候性、成形性、あるいは耐失透性などに優れる近赤外光吸収ガラスを提供することができる。また、本発明によれば、有害なヒ素を含まなくても良好な色感度補正特性を維持すると共に、フィルターの厚みを薄くでき、耐候性や耐失透性などに優れる近赤外光吸収素子ならびに近赤外光吸収フィルターを提供することができる。
さらに、本発明によれば、上記近赤外光吸収ガラスからなる高品質なガラス成形体を、成形性よく製造する方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の近赤外光吸収ガラスの1例の分光透過率曲線を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a near-infrared light absorbing glass, a near-infrared light absorbing element, a near-infrared light absorbing filter, and a method for producing a near-infrared light absorbing glass molded body. More specifically, the present invention relates to a near-infrared light absorbing glass excellent in weather resistance, moldability, etc. suitable for a near-infrared light absorbing filter used for color sensitivity correction of a solid-state imaging device such as a CCD, and the like. The present invention relates to a near-infrared light absorbing element made of glass, a near-infrared light absorbing filter used as a color correction filter for digital cameras and VTR cameras, and a method for producing a glass molded body made of the near-infrared light absorbing glass. It is.
[0002]
[Prior art]
The spectral sensitivity of a solid-state imaging device such as a CCD used in a digital camera or a VTR camera ranges from the visible range to the near infrared range near 1100 nm. Therefore, an image approximated to human visibility is obtained using a filter that absorbs the near infrared region. Glass for which CuO is added to phosphate glass has been used as a filter glass for this purpose, but phosphate glass has poor weather resistance and has the disadvantage that glass surface roughness or cloudiness occurs when exposed to high temperature and high humidity for a long time. was there. Therefore, near-infrared light absorbing filter glass based on fluorophosphate glass containing a fluorine component and excellent in weather resistance has been developed and is commercially available.
As this type of glass, for example, a near-infrared light absorbing filter glass in which CuO is added to a fluorophosphate glass is disclosed (Japanese Patent Laid-Open No. 2-204342).
[0003]
By the way, in recent years, with the miniaturization of digital cameras and VTR cameras, the optical system of cameras is also required to save space. Accordingly, the near-infrared light absorbing filter glass is also desired to be thin. However, if the conventional near-infrared light absorbing filter glass is thinned as it is, the near-infrared light absorption is also reduced, and desired spectral characteristics cannot be obtained. Therefore, it is necessary to compensate for the decrease in absorption due to thinning by increasing the amount of coloring components. However, the conventional near-infrared light absorbing filter glass has a problem that when the Cu concentration is increased, the valence of Cu changes, and the transmittance near 400 nm is lowered to become blue-green.
[0004]
For example, Japanese Patent Laid-Open No. 2-204342 discloses the transmittance in Example 2 when the glass thickness is 0.3 mm. 2 O Three Except for the glass containing, the transmittance at 400 nm is much lower than 80%. That is, when the glass is thinned with a high Cu concentration, the transmittance at 400 nm is lowered and the color becomes green. In this embodiment, As 2 O Three Is improving the transmission deterioration, but As 2 O Three Is a harmful component, and if contained in polishing sludge or polishing waste liquid, it causes pollution, which is not preferable.
[0005]
Further, when the amount of Cu is increased, the devitrification resistance is deteriorated, and crystals are likely to be precipitated in the glass, and the liquidus temperature is increased to make glass molding difficult. However, there was a problem that convection of the molten glass occurred and striae easily occurred.
[0006]
On the other hand, in a fluorophosphate glass that is typical as a near-infrared light absorbing glass, the weather resistance is improved by introducing fluorine into the phosphate glass. On the other hand, when fluorine is introduced, the fluorine cuts the phosphoric acid network in the glass structure, which lowers the viscosity of the glass. In addition, there is a drawback that the production is difficult due to volatilization of fluorine. In particular, near-infrared light absorbing glass obtained by adding copper to fluorophosphate glass becomes unstable as the amount of copper added increases, and the liquidus temperature rises. Therefore, it is necessary to set the molding temperature high. It was. When the molding temperature is raised, low-viscosity glass is poured out, so that the glass violently convects in the mold and intense striae are generated inside the glass. Further, since the molding temperature is high, the volatilization of fluorine increases, and the fluorine concentration on the glass surface during molding decreases, so that a difference in refractive index occurs and surface striae easily occur. Furthermore, when a glass having a large size was formed, the internal cooling rate was slow, and devitrification (crystallization) of the glass was likely to occur. For these reasons, fluorophosphate glasses with high Cu concentration have so far been very poor in product stability and yield, high in cost, and difficult to mass-produce.
[0007]
[Problems to be solved by the invention]
The present invention overcomes the drawbacks of such conventional near-infrared light absorbing glass, maintains good color sensitivity correction characteristics without containing harmful arsenic, and can reduce the thickness of the glass. A near-infrared light absorbing glass excellent in weather resistance and moldability, a near-infrared light absorbing element comprising the glass, a near-infrared light absorbing filter using the glass, and the near-infrared light absorbing glass. An object of the present invention is to provide a method for producing a high-quality glass molded body.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have achieved the object by using a near infrared light absorbing glass having a specific composition and a near infrared light absorbing glass having a specific transmittance characteristic. It has been found that it can be achieved, and the present invention has been completed based on this finding.
[0009]
That is, the present invention
(1) P in% cation 5+ 23-41%, Al 3+ 4-16%, Li + 11-40%, Na + 3-13%, R 2+ 12-53% (however, R 2+ Is Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ And Zn 2+ Total amount), and Cu 2+ 2.6 to 4.7% and F as an anionic component - And O 2- Near-infrared light absorbing glass (hereinafter referred to as near-infrared light absorbing glass I),
[0010]
(2) As a cation component, Zn 2+ The near-infrared light-absorbing glass according to item (1), comprising
(3) F in terms of anion% - 25-48% and O 2- Near-infrared light absorbing glass according to item (1) or (2), comprising 52 to 75%,
(4) It is substantially free of arsenic and lead, and has a thickness of 0.1 to 0.8 mm where the wavelength at which the transmittance is 50% in the spectral transmittance of 400 to 700 nm is 615 nm, The near-infrared light-absorbing glass (hereinafter referred to as the near-infrared light absorbing glass) having a transmittance at a wavelength of 400 nm of 80% or more, a transmittance at a wavelength of 800 to 1000 nm of less than 5%, and a transmittance of a wavelength of 1200 nm less than 20% , Referred to as near infrared light absorbing glass II).
[0011]
(5) The near-infrared light absorbing glass according to any one of (1) to (4) above, wherein the liquidus temperature is 750 ° C. or lower,
(6) When converted to a thickness of 0.5 mm, in the spectral transmittance at a wavelength of 400 to 700 nm, the wavelength showing a transmittance of 50% is less than 630 nm, the transmittance on the longer wavelength side from this wavelength is less than 50%, Near-infrared light absorbing glass (hereinafter referred to as near-infrared light) characterized by having a transmittance on the short wavelength side of the wavelength of more than 50% and a viscosity at a liquidus temperature of 0.5 Pa · s or more. Called absorption glass III),
[0012]
(7) The near infrared light absorbing glass according to any one of the above (4) to (6), which is a copper-containing fluorophosphate glass,
(8) A near-infrared light absorbing element comprising the near-infrared light-absorbing glass according to any one of (1) to (7) above,
[0013]
(9) A near-infrared light absorption filter comprising a glass plate made of the near-infrared light absorption glass according to any one of (1) to (7) above, and
(10) A near-infrared light-absorbing glass molded body produced by molding and cooling a molten glass at 710 ° C. or lower to produce a glass molded body made of the near-infrared light-absorbing glass described in (6) above. Manufacturing method
Is to provide.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The near-infrared light absorbing glass of the present invention has the following three forms of near-infrared light absorbing glass I, II and III. First, the near-infrared light absorbing glass I will be described.
[0015]
The near-infrared light absorbing glass I of the present invention is expressed as cation%, P 5+ 23-41%, Al 3+ 4-16%, Li + 11-40%, Na + 3-13%, R 2+ 12-53% (however, R 2+ Is Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ And Zn 2+ Total amount), and Cu 2+ 2.6 to 4.7% and F as an anionic component - And O 2- It is glass containing.
[0016]
This glass I is a fluorophosphate glass, and it is excellent by adding the required Cu to the base composition in which the valence change of Cu does not easily occur even if the Cu concentration, which plays an important role in light absorption characteristics, is changed. In addition, near-infrared absorption characteristics and high transmittance at a wavelength of 400 nm are realized. From this point of view, the anion component in the glass is F - And O 2- It is desirable to consist of.
[0017]
The reason for limiting the composition of glass I will be described below. In addition to the description of the glass I, in the following description, the content of the cation component is represented by cation%, and the content of the anion component is represented by% anion.
[0018]
P 5+ Is a basic component of fluorophosphate glass and an important component that brings about absorption in the infrared region. If it is less than 23%, the color correction function deteriorates and becomes green. Conversely, if it exceeds 41%, the weather resistance and devitrification resistance deteriorate. Therefore P 5+ The content of is limited to 23-41%. Preferably it is 25 to 40%.
[0019]
Al 3+ Is an important component for improving the devitrification resistance of fluorophosphate glass. If it is less than 4%, the devitrification resistance is poor, the liquidus temperature becomes high, and it becomes difficult to melt and mold high-quality glass. Conversely, even if it exceeds 16%, devitrification resistance deteriorates. Therefore Al 3+ The content of is limited to 4-16%. Preferably it is 8 to 16%.
[0020]
Li + Is a useful component for improving the devitrification resistance of glass, but if it is less than 11%, there is no effect, and if it exceeds 40%, the durability and workability of the glass deteriorate. Therefore Li + The content of is limited to 11-40%. Preferably it is 11 to 25%.
[0021]
Na + Is a useful component for improving the devitrification resistance of glass, but if it is less than 3%, there is no effect, and if it exceeds 13%, the durability and workability of the glass deteriorate. Therefore Na + The content of is limited to 3-13%. Preferably it is 4 to 13%.
[0022]
R 2+ (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ ) Is a useful component for improving devitrification resistance, durability and workability of fluorophosphate glass. R 2+ If the total is less than 12%, the devitrification resistance and durability of the glass deteriorate. Conversely, if it exceeds 53%, the devitrification resistance deteriorates. Therefore R 2+ The content of is limited to 12 to 53%. Preferably it is 15 to 35%.
[0023]
Mg 2+ The preferable range of 2 to 6%, Ca 2+ The preferred range of 6-12%, Sr 2+ The preferred range of 4-9%, Ba 2+ The preferred range of 3-8%, Zn 2+ The preferable range of is more than 0% and 6% or less.
[0024]
Zn 2+ Is an optional component, but is preferably contained for improving devitrification resistance. From this point of view, Zn 2+ The desirable range is more than 0% and not more than 6%, and the more desirable range is 2 to 6%.
[0025]
Cu 2+ Is a component that plays an important role in the light absorption characteristics. If the content is less than 2.6%, the infrared absorption is small, and the transmittance converted to a thickness of 0.5 mm is in the wavelength range of 400 to 700 nm. The wavelength shown becomes 630 nm or more, and when used for a filter for a solid-state imaging device, good color correction becomes difficult. Conversely, if it exceeds 4.7%, the devitrification resistance deteriorates. Therefore Cu 2+ The content of is limited to 2.6 to 4.7%. Preferably it is 2.8 to 4.7%.
[0026]
Sb 3+ , Ce 4+ Can be added as an optional ingredient. These components are effective components for improving the transmittance of the short wavelength region of glass, particularly the wavelength of 400 nm. A preferable amount is 0 to 1% (cation%), a more preferable amount is 0.001 to 1%, and a further preferable amount is 0.001 to 0.1%. Sb 3+ And Ce 4+ Is preferably introduced simultaneously, the total amount is preferably 1% or less. Sb 3+ , Ce 4+ Among these, Sb is particularly effective in improving the transmittance in the short wavelength region. 3+ From the viewpoint of obtaining the required purpose, Sb 3+ It is preferable to introduce only. Sb 3+ (Eg Sb 2 O Three ), It is possible to prevent a decrease in transmittance around a wavelength of 400 nm even if impurities such as iron are mixed in the glass raw material.
[0027]
O 2- Is an anion component particularly important in glass I. Less than 52%, divalent Cu 2+ Is reduced to monovalent Cu + The absorption in the short wavelength region, particularly in the vicinity of 400 nm is increased, and there is a tendency to exhibit a green color. Therefore O 2- The content of is preferably 52 to 75%, more preferably 53 to 75%.
[0028]
F - Is an important anion component that lowers the melting point of glass and improves weather resistance. If it is less than 25%, the weather resistance tends to deteriorate, and conversely if it exceeds 48%, O 2- Monovalent Cu because the content of + It tends to cause coloring in the vicinity of 400 nm. Therefore F - The content of is preferably 25 to 48%, more preferably 25 to 47%.
[0029]
K + , Zr 4+ , La 3+ , Gd 3+ , Y 3+ , Si 4+ , B 3+ Can be appropriately used for the purpose of improving devitrification resistance, adjusting glass viscosity, adjusting transmittance, and clarifying. At least one cation component selected from these groups can be added in a total amount of less than 5%. Preferably it is 2% or less.
[0030]
Although the preferable composition of the glass I is as above-mentioned, some of them are illustrated below.
(1) Glass Ia-1
25-48% F - And 52-75% O 2- Glass I containing
(2) Glass Ia-2
25-47% F - And 53-75% O 2- Glass I containing
[0031]
(3) Glass Ib-1
Zn as cation component 2+ Glass I containing
(4) Glass Ib-2
P 5+ , Al 3+ , Li + , Na + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Cu 2+ A cation component comprising: F - , O 2- Glass I containing an anionic component comprising:
[0032]
(5) Glass Ic-1
Glass I substantially free of arsenic and lead. However, substantially free means that these elements are not used as a glass raw material. It is desirable to exclude it as an impurity.
Arsenic and lead are harmful substances, and it is preferable to eliminate them in terms of environmental impact. However, according to this glass, the above-mentioned wastes generated by machining such as grinding, polishing, and cutting (polishing sludge, polishing waste liquid, etc.) Since no harmful components are contained, the impact on the environment can be reduced.
[0033]
(6) Glass Ic-2
Glass I substantially free of arsenic, cerium and lead.
(7) Glass Id-1
R 2+ As an ingredient, Mg 2+ 2-6%, Ca 2+ 6-12% + , Sr 2+ 4-9%, Ba 2+ 3-8%, Zn 2+ Glass I containing 0-6%.
[0034]
(8) Glass Id-2
R 2+ As an ingredient, Mg 2+ 2-6%, Ca 2+ 6-12% + , Sr 2+ 4-9%, Ba 2+ 3-8%, Zn 2+ Glass I containing more than 0% and not more than 6%.
(9) Glass Id-3
R 2+ As an ingredient, Mg 2+ 2-6%, Ca 2+ 6-12% + , Sr 2+ 4-9%, Ba 2+ 3-8%, Zn 2+ Glass I containing 2-6%.
[0035]
(10) Glass Ie-1
As a cation component, P 5+ 25-40%, Al 3+ 8-16%, Li + 11-25%, Na + 4-13%, R 2+ Glass I containing 15-35%.
(11) Glass Ie-2
As a cation component, P 5+ 25-40%, Al 3+ 8-16%, Li + 11-25%, Na + 4-13%, R 2+ 15-35%, Zn 2+ Glass I containing more than 0% and not more than 6%.
[0036]
(12) Glass Ie-3
As a cation component, P 5+ 25-40%, Al 3+ 8-16%, Li + 11-25%, Na + 4-13%, R 2+ 15-35%, Zn 2+ Glass I containing 2-6%.
(13) Glass If
As a cation component, Cu 2+ Glass I containing 2.8-4.7%.
[0037]
(14) Glass Ig-1
As a cationic component, Sb 3+ Glass I containing 0-1%.
(15) Glass Ig-2
As a cationic component, Sb 3+ Glass I containing 0.001 to 0.1%.
[0038]
Next, the characteristics of the glass I will be described.
<Transmissivity characteristics>
The transmittance of the glass varies depending on the thickness. If the glass is homogeneous, the transmittance of the predetermined thickness can be obtained by calculation if the thickness and transmittance of the glass in the light transmitting direction are known. A preferable transmittance characteristic of the glass I is that when the thickness is converted to 0.5 mm, the wavelength at which the transmittance is 50% in the spectral transmittance of a wavelength of 400 to 700 nm is [hereinafter referred to as λ 50 (0.5 mm). ] Less than 630 nm. When measuring the spectral transmittance, a sample optically polished on both sides is used. The above transmittance is called external transmittance, and includes a decrease in transmittance due to surface reflection of the sample. Further, at a wavelength of 400 to 700 nm, λ 50 It is desirable that only one wavelength exists (t = 0.5 mm). Further, at a wavelength of 400 to 700 nm, λ 50 The transmittance is higher than 50% at an arbitrary wavelength shorter than (t = 0.5 mm), and λ 50 It is desirable that the transmittance is lower than 50% at an arbitrary wavelength longer than (t = 0.5 mm).
[0039]
When converted to a thickness of 0.5 mm, the long wavelength end of the wavelength region where the transmittance is 50% or more is preferably less than 630 nm, and the long wavelength end is more preferably in the range of 605 to 625 nm. preferable. Furthermore, when converted into the thickness, the transmittance at a wavelength of 400 nm is more preferably 80% or more. Such characteristics provide a good color correction function.
[0040]
Further, in the spectral transmittance of wavelengths 400 to 700 nm, the thickness at which the wavelength at which the transmittance is 50% is 615 nm is in the range of 0.1 to 0.8 mm, and the transmittance at the wavelength of 400 nm is 80%. %, The transmittance at a wavelength of 800 to 1000 nm is preferably less than 5%, and the transmittance at a wavelength of 1200 nm is preferably less than 20%. Further, the wavelength (λ) at which the transmittance is 50% at the spectral transmittance of 400 to 700 nm. 50 ) Is preferably in the range of 0.3 to 0.6 mm, and more preferably has the above transmittance characteristics at the thickness.
[0041]
The spectral transmittance curve of the near-infrared light absorbing glass I of the present invention is represented by the one shown in FIG. λ 50 Is converted to a thickness with a wavelength of 615 nm, λ 50 Another wavelength exists in the ultraviolet region. Λ in the visible range 50 Λ 50 (Visible) and λ in the ultraviolet region 50 Λ 50 (Ultraviolet), λ 50 It is preferable that (ultraviolet) exists in the range of about 320 to 360 nm. λ 50 (UV) to λ 50 In the (visible) wavelength range, the transmittance monotonously increases as the wavelength becomes longer, and then decreases monotonously. 50 It becomes 50% in (visible). In this range, the transmittance is 50% or more. This is not related to the thickness of the glass. Further, in the thickness, the transmittance at a wavelength of 400 nm is preferably 80% or more. λ 50 As the wavelength increases from (visible) to a wavelength of 800 nm, the transmittance decreases monotonously. In the spectral transmittance of wavelength 400-1200 nm, the transmittance in the wavelength region of wavelength 800-1000 nm is the lowest. Although this region is in the near infrared region, the sensitivity of the semiconductor image sensor is not sufficiently low, so the transmittance of the color correction filter must be sufficiently low. Since the sensitivity of the semiconductor image sensor at a wavelength of 1000 to 1200 nm is lower than that at a wavelength region shorter than the wavelength of 1000 nm, the upper limit of the transmittance is relaxed. Therefore, if the transmittance is below a predetermined value, the transmittance may increase monotonously with the wavelength at a wavelength of 1000 to 1200 nm.
[0042]
The near-infrared light absorbing glass I has a refractive index nd of about 1.5 and an Abbe number νd of about 74.5.
Due to these transmittance characteristics, the filter using the near-infrared light absorbing glass I can satisfactorily perform color correction of a solid-state imaging device or the like.
[0043]
<Weatherability>
In order to withstand long-term use, excellent weather resistance is required. If the weather resistance is low, the glass surface will be fogged, and it will not be able to withstand applications such as optical filters.
[0044]
Near-infrared light absorbing glass I has excellent transmittance characteristics and weather resistance. The weather resistance is determined by holding the optically polished glass sample in a high-temperature and high-humidity tank at 80 ° C. and 90% relative humidity for 1000 hours, and then visually observing the burned state of the optically polished surface of the sample. As a result, good weather resistance that can sufficiently withstand long-term use can be confirmed if no burnt state is observed. Near-infrared light absorbing glass I is not observed to be burnt under the above conditions, and has been confirmed to have good weather resistance.
[0045]
<Devitrification resistance>
Since the near-infrared light absorbing glass I is used for an optical filter or the like, it has a transmittance characteristic controlled as described above. However, the generation of crystals in the glass during the manufacturing process adversely affects the transmittance characteristics. Therefore, devitrification resistance is an important characteristic that the near-infrared light absorbing glass I should have. The devitrification resistance can be evaluated by the liquidus temperature. Improvement in devitrification resistance corresponds to a decrease in liquidus temperature. When the liquidus temperature increases, the molding temperature must be increased so as not to devitrify when a glass molded body made of the near-infrared light absorbing glass I is molded from the molten glass. Along with that, it becomes difficult to mold the glass, the viscosity of the glass during molding decreases, convection occurs in the molten glass that becomes the glass molded body, striae occurs, volatilization from the glass becomes significant, There arises a problem that the surface of the glass molded body is altered or volatile substances adhere to the mold and become contaminated.
[0046]
In the conventional glass, the transmittance characteristics are imparted, so that the liquid phase temperature rises when the amount of Cu is increased, and the above problems occur. On the other hand, the near-infrared light absorbing glass I can suppress the liquidus temperature to 750 ° C. or lower while having good transmittance characteristics, but is preferably suppressed to 720 ° C. or lower, and preferably 700 ° C. or lower. More preferably, it is further preferably suppressed to 690 ° C. or lower, more preferably 680 ° C. or lower, still more preferably 670 ° C. or lower, and particularly preferably 650 ° C. or lower. When the liquidus temperature is within this range, the selection range of molding conditions is widened, and a good near-infrared light absorbing glass is easily obtained.
[0047]
The liquid phase temperature is measured by preparing a plurality of glass samples put in a platinum crucible and holding them at different temperatures at regular intervals for 1 hour. Thereafter, the crystal in the sample is observed with a microscope or the like, and the upper limit of the temperature at which the crystal disappears may be set as the liquidus temperature.
[0048]
Moreover, since the glass transition temperature of the near-infrared light absorbing glass I is generally 550 ° C. or less, without performing mechanical processing such as grinding or polishing on the optical functional surface after molding by precision press molding (mold molding), Optical elements such as lenses and diffraction gratings can also be molded.
[0049]
Next, the near infrared light absorbing glass II of the present invention will be described.
The near-infrared light absorbing glass II of the present invention is substantially free of arsenic and lead, and has a wavelength (λ that exhibits a transmittance of 50% at a spectral transmittance of 400 to 700 nm. 50 ) Is in the range of 0.1 to 0.8 mm, the transmittance at a wavelength of 400 nm is 80% or more, the transmittance at a wavelength of 800 to 1000 nm is less than 5%, and the wavelength is 1200 nm. It is a glass having a transmittance of less than 20%.
[0050]
Here, “substantially free of arsenic and lead” means that it is not used as a glass raw material, as mentioned in the description of the near-infrared light absorbing glass I, and can be excluded as an impurity. desirable.
[0051]
According to the transmittance characteristics, even if the glass is thin, it can be favorably applied to a color correction filter for a solid-state imaging device. From this viewpoint, it is preferable that the long wavelength end of the wavelength region where the transmittance is 50% in the thickness is 615 nm. Further, when the wavelength at which the transmittance is 50% in the spectral transmittance of 400 to 700 nm is in the range of 605 to 625 nm, the thickness of the near infrared light absorbing glass II is in the range of 0.1 to 0.8 mm. Preferably there is.
[0052]
Further, in the spectral transmittance of wavelengths 400 to 700 nm, the thickness at which the wavelength at which the transmittance is 50% is 615 nm is in the range of 0.1 to 0.8 mm, and the transmittance at the wavelength of 400 nm is 80%. %, The transmittance at a wavelength of 800 to 1000 nm is preferably less than 5%, and the transmittance at a wavelength of 1200 nm is preferably less than 20%. Furthermore, it is preferable that the thickness at which the wavelength at which the transmittance is 50% in the spectral transmittance at a wavelength of 400 to 700 nm is 615 nm is in the range of 0.3 to 0.6 mm, and the transmittance characteristic is obtained at the thickness. More preferably.
Furthermore, it is preferable that the near-infrared light absorbing glass II has various characteristics that the above-mentioned near-infrared light absorbing glass I has as preferable transmittance characteristics.
[0053]
As a specific composition of the near-infrared light absorbing glass II, a copper-containing fluorophosphate glass can be mentioned.
A more preferable composition is the same as that of the near-infrared light absorbing glass I. Among them, preferable compositions are the glasses Ia to f described above. These preferred combinations are also as mentioned in the description of the near infrared light absorbing glass I.
[0054]
In the near-infrared light absorbing glass II, for the same reason as the near-infrared light absorbing glass I, the liquidus temperature is preferably 750 ° C. or lower, but preferably suppressed to 720 ° C. or lower, and 700 ° C. or lower. More preferably, it is more preferably suppressed to 690 ° C. or less, still more preferably 680 ° C. or less, still more preferably 670 ° C. or less, and particularly preferably 650 ° C. or less. The measurement of the liquidus temperature is the same as the description of the near infrared light absorbing glass I. The weather resistance is the same as that of the near infrared light absorbing glass I.
[0055]
Next, an example is given and demonstrated about the manufacturing method of near-infrared light absorption glass I and II of this invention.
The near-infrared light absorbing glasses I and II of the present invention are both produced by the same method as conventional copper-containing fluorophosphate glasses. That is, using raw materials such as phosphates, fluorides, carbonates, nitrates, and oxides as appropriate, the raw materials are weighed and mixed to have a desired composition, and then melted at 750 to 900 ° C. in a platinum crucible. To do. Preferably it is 850 degrees C or less. At that time, it is desirable to use a lid made of platinum or the like to suppress volatilization of the fluorine component. Although there is no problem in the melting atmosphere in the air, it is preferable to use an oxygen atmosphere in order to suppress the change in Cu valence or to bubble oxygen into the molten glass. The glass in the molten state becomes a homogenized molten glass that does not contain bubbles by stirring and clarification.
[0056]
After the molten glass is stirred and clarified, the glass is poured out and molded. When the glass is poured out, the temperature is lowered to a temperature close to the liquidus temperature, and the glass flow is increased after the glass viscosity is increased.
Conventionally used methods such as casting, pipe outflow, roll and press can be used as the glass forming method. The formed glass is transferred to an annealing furnace preheated in the vicinity of the glass transition point, and gradually cooled to room temperature.
[0057]
Next, when the near-infrared light absorbing glass III of the present invention is converted into a thickness of 0.5 mm, the spectral transmittance of a wavelength of 400 to 700 nm has a wavelength of less than 630 nm, indicating a transmittance of 50%. The transmittance on the long wavelength side is less than 50%, the transmittance on the short wavelength side of the wavelength is more than 50%, and the viscosity at the liquidus temperature is 0.5 Pa · s or more.
[0058]
When converted to a thickness of 0.5 mm, a wavelength [λ indicating a transmittance of 50% in the wavelength range of 400 to 700 nm. 50 By setting the transmittance on the long wavelength side to less than 50% with (t = 0.5 mm) as a boundary, good near infrared light absorption characteristics can be imparted. Λ 50 By setting the transmittance on the shorter wavelength side than (t = 0.5 mm) to be more than 50%, good visible light transmission characteristics can be imparted. In order to make visible light transmission characteristics better, the spectral transmittance at 400 nm converted to a thickness of 0.5 mm is desirably 80% or more. By providing good near infrared light absorption characteristics and visible light transmission characteristics, it is possible to provide a near infrared light absorption glass having a sufficient color correction function even if it is thin. As will be described later, this color correction function is suitable for color correction of a solid-state image sensor, particularly a semiconductor image sensor such as a CCD. Before describing the light transmittance characteristics of the near infrared light absorbing glass III in detail, other properties of the glass III will be described.
[0059]
Near-infrared light absorbing glass is mainly used as optical glass, and requires extremely high quality. Therefore, it is necessary to eliminate defects such as striae and devitrification of glass. Although striae are caused by various factors, it is considered that the glass convection in the temperature range in which viscous flow occurs is the main factor when forming molten glass. If the viscosity at the time of molding is low, the above convection becomes prominent and striae easily occur. In general, the viscosity of glass shows a tendency to increase as the temperature decreases, so that the convection of the glass can be reduced by lowering the temperature during molding. However, reducing the temperature of the molten glass increases the risk of glass devitrification due to crystallization. In other words, in order to prevent both striae and devitrification, attention must be paid to the viscosity of the glass at the liquidus temperature, which is an index of devitrification resistance.
[0060]
In the near-infrared light absorbing glass III of the present invention, if the viscosity of the glass at the liquidus temperature is 0.5 Pa · s or more, the glass is not devitrified during molding, and the pulsation due to convection of the glass. Can be prevented. Preferably, the viscosity of the glass at the liquidus temperature is 1 Pa · s or more, and more preferably, the viscosity of the glass at the liquidus temperature is 1.5 Pa · s or more.
[0061]
In order to eliminate the striae and devitrification, the liquidus temperature is preferably 690 ° C. or less, more preferably 680 ° C. or less, further preferably 670 ° C. or less, and 650 ° C. or less. It is even more preferable that
[0062]
As the near-infrared light absorbing glass III, a copper-containing fluorophosphate glass is preferable. In the fluorophosphate glass, the weather resistance is improved by introducing fluorine into the phosphate glass.
Although it is possible to introduce arsenic from the viewpoint of improving the light transmittance characteristics and defoaming and clarifying, arsenic is a toxic substance, so it is desirable to use glass that does not substantially contain arsenic for environmental considerations. . Similarly, glass substantially free of lead is desirable.
[0063]
The near-infrared light absorbing glass III has a glass viscosity at a liquidus temperature of 0.5 Pa · s or more. Therefore, convection of glass in the mold can be suppressed even if the molding is performed at a temperature near the liquidus temperature. In particular, the above-mentioned copper-containing fluorophosphate glass gives the required light transmittance characteristics, so that even if the copper concentration is increased, the convection of the glass is suppressed by the above-mentioned viscosity characteristics, and striae can be prevented from occurring. it can. Moreover, since the liquidus temperature can be made 690 ° C. or less, the volatilization of fluorine is small and the surface striae of the molded glass can be suppressed.
In addition, as a preferable composition of the said near-infrared light absorption glass III, the same composition as the composition of the above-mentioned near-infrared light absorption glass I can be mentioned.
[0064]
Next, the characteristics of the near infrared light absorbing glass III will be described.
<Transmissivity characteristics>
As described above, the transmittance characteristic of the near-infrared light absorbing glass III is λ at a spectral transmittance of a wavelength of 400 to 700 nm when converted to a thickness of 0.5 mm. 50 (T = 0.5 mm) is less than 630 nm. Further, at a wavelength of 400 to 700 nm, λ 50 It is desirable that only one wavelength exists (t = 0.5 mm). Further, at a wavelength of 400 to 700 nm, λ 50 The transmittance is higher than 50% at an arbitrary wavelength shorter than (t = 0.5 mm), and λ 50 The transmittance is lower than 50% at an arbitrary wavelength longer than (t = 0.5 mm). λ 50 (T = 0.5 mm) is more preferably in the range of 605 to 625 nm. Furthermore, when converted into the thickness, the transmittance at a wavelength of 400 nm is preferably 80% or more. Such characteristics provide a good color correction function.
[0065]
Further, in the spectral transmittance of wavelengths 400 to 700 nm, the thickness at which the wavelength at which the transmittance is 50% is 615 nm is in the range of 0.1 to 0.8 mm, and the transmittance at the wavelength of 400 nm is 80%. %, The transmittance at a wavelength of 800 to 1000 nm is preferably less than 5%, and the transmittance at a wavelength of 1200 nm is preferably less than 20%. Furthermore, it is preferable that the thickness at which the wavelength at which the transmittance is 50% in the spectral transmittance at a wavelength of 400 to 700 nm is 615 nm is in the range of 0.3 to 0.6 mm, and the transmittance characteristic is obtained at the thickness. More preferably.
[0066]
The spectral transmittance curve of the near-infrared light absorbing glass III of the present invention is represented by the one shown in FIG. As in the case of the near-infrared light absorbing glass I described above, the wavelength at which the transmittance is 50% (λ 50 ) Is converted to a thickness of 615 nm, λ 50 Another wavelength exists in the ultraviolet region. Λ in the visible range 50 Λ 50 (Visible) and λ in the ultraviolet region 50 Λ 50 (Ultraviolet), λ 50 It is preferable that (ultraviolet) exists in the range of about 320 to 360 nm. λ 50 (UV) to λ 50 In the (visible) wavelength range, the transmittance increases monotonously as the wavelength increases, and then monotonously decreases to λ 50 It becomes 50% in (visible). In this range, the transmittance is 50% or more. This is not related to the thickness of the glass. Further, in the thickness, the transmittance at a wavelength of 400 nm is preferably 80% or more. λ 50 As the wavelength increases from (visible) to a wavelength of 800 nm, the transmittance decreases monotonously. In the spectral transmittance of wavelength 400-1200 nm, the transmittance in the wavelength region of wavelength 800-1000 nm is the lowest. Although this region is in the near infrared region, the sensitivity of the semiconductor image sensor is not sufficiently low, so the transmittance of the color correction filter must be sufficiently low. Since the sensitivity of the semiconductor image sensor at a wavelength of 1000 to 1200 nm is lower than that at a wavelength region shorter than the wavelength of 1000 nm, the upper limit of the transmittance is relaxed. Therefore, if the transmittance is below a predetermined value, the transmittance may increase monotonously with the wavelength at a wavelength of 1000 to 1200 nm.
[0067]
The near-infrared light absorbing glass III has a refractive index nd of about 1.5 and an Abbe number νd of about 74.5.
Due to these transmittance characteristics, the filter using the near-infrared light absorbing glass III of the present invention can satisfactorily perform color correction of a solid-state imaging device or the like.
Further, the near-infrared light absorbing glass III has good weather resistance like the above-mentioned near-infrared light absorbing glass I.
[0068]
<Devitrification resistance>
Since the near-infrared light absorbing glass III is used for an optical filter or the like, it has transmittance characteristics controlled as described above. However, the generation of crystals in the glass during the manufacturing process adversely affects the transmittance characteristics. Therefore, as described in the above-mentioned glass I, devitrification resistance is an important characteristic that the near-infrared light absorbing glass should have, and devitrification resistance can be evaluated by the liquidus temperature. Improvement in devitrification resistance corresponds to a decrease in liquidus temperature. When the liquidus temperature is increased, the molding temperature must be increased so as not to devitrify when the glass molded body made of the near-infrared light absorbing glass is molded from the molten glass. As a result, glass molding becomes difficult, the viscosity of the glass during molding decreases, convection occurs in the molten glass that becomes the glass molded body, striae occurs, volatilization from the glass, especially fluorine Volatilization becomes significant, and the fluorine concentration on the glass surface during molding decreases, so that a refractive index difference occurs and surface striae easily occur. In addition, there are problems that the surface of the glass molded body is altered or that volatiles adhere to the mold and become contaminated. Further, when a glass having a large size is formed, there is a problem that the internal cooling rate is slowed and the glass is easily devitrified (crystallized).
[0069]
In the conventional glass, the transmittance characteristics are imparted, so that the liquid phase temperature rises when the amount of copper is increased, and the above problems occur.
On the other hand, by setting the liquid phase temperature of the near-infrared light absorbing glass III to be equal to or lower than the temperature at which the viscosity of the glass shows 0.5 Pa · s, the above problem can be solved, and high-quality near-infrared light can be obtained. Absorbent glass can be provided. A preferred liquidus temperature is 690 ° C. or lower. If the liquidus temperature is within this range, the selection range of molding conditions is widened, and high-quality near-infrared light absorbing glass is easily obtained.
[0070]
Further, since the glass transition temperature of the near-infrared light absorbing glass III is 550 ° C. or less, the lens without performing mechanical processing such as grinding or polishing on the optical functional surface after molding by precision press molding (mold molding), An optical element such as a diffraction grating can also be formed.
[0071]
Next, the manufacturing method of the near-infrared light absorption glass molding of this invention is demonstrated.
In the method for producing a near-infrared light absorbing glass molded body of the present invention, a molten glass having a temperature of less than 700 ° C. is molded and cooled to produce a glass molded body made of near-infrared light absorbing glass III.
[0072]
<Melting glass>
The melting of the glass is as described in the method for producing the near-infrared light absorbing glasses I and II described above.
[0073]
<Molding using molten glass>
The near infrared light absorbing glass III has a glass viscosity at a liquidus temperature of 0.5 Pa · s or more. Therefore, convection of glass in the mold can be suppressed even if the molding is performed at a temperature near the liquidus temperature. In particular, since the copper-containing fluorophosphate glass has the above-mentioned characteristics even though the copper concentration is high, the convection can be suppressed and striae can be prevented. Moreover, since the liquidus temperature can be set to 690 ° C. or less, the volatilization of fluorine is small, and the surface striae of the molded glass can be suppressed. Furthermore, since it has the above-mentioned characteristics, it has excellent devitrification resistance, and a homogeneous glass can be produced by block molding with a plate thickness.
[0074]
In order to form a glass molded body made of the near infrared light absorbing glass III, a homogenized molten glass is poured out and molded. The temperature of the molten glass at the time of pouring out is good to make liquid phase temperature-liquid phase temperature +20 degreeC into a standard. When the molten glass is poured out, if the temperature is lowered to a temperature close to the liquidus temperature and the viscosity of the glass is increased, the convection of the poured glass hardly occurs and striae hardly occur. The glass is molded at 710 ° C. or lower. Preferably it is 700 degrees C or less, More preferably, it is 680 degrees C or less, More preferably, it is 660 degrees C or less.
[0075]
Examples of the glass forming method include cast molding in which molten glass is cast into a mold, molten glass is discharged from a pipe, a desired weight is separated and formed into a glass lump, roll molding, press molding, and the like.
[0076]
Since the near-infrared light absorbing glass III is excellent in moldability and devitrification resistance, plate thickness and large block molding can be performed. Therefore, when combined with an accurate slicing technique, a thin large glass can be provided at a low cost.
[0077]
An example of such molding is shown below. A mold is prepared that includes a flat and horizontal bottom surface, a pair of side walls that face each other in parallel with the bottom surface interposed therebetween, and a weir plate that closes one opening located between the pair of side walls. The molten glass homogenized at a constant outflow speed from a platinum alloy pipe is cast into this mold. The cast molten glass spreads in the mold and is formed into a glass plate regulated to a certain width by a pair of side walls. The formed glass plate is continuously drawn out from the opening of the mold. Here, a large and thick glass block can be molded by appropriately setting molding conditions such as the shape and dimensions of the mold and the outflow speed of the molten glass. In this molding, the thickness of the plate is determined by the depth of the molten glass in the mold. To thicken the plate, the depth of the molten glass must be increased. Thus, since molten glass is continuously supplied from a pipe to a place where the molten glass is deep, convection of glass that causes striae becomes prominent when low-viscosity molten glass is poured. However, if the near-infrared light absorbing glass III is used, the glass can be poured with a relatively high viscosity without devitrifying the glass during molding, thus preventing the occurrence of striae due to convection. can do. Therefore, a glass block free from defects such as striae and devitrification can be produced even if the plate thickness is increased.
[0078]
The molded glass molded body is transferred to an annealing furnace that has been heated in the vicinity of the glass transition point in advance and gradually cooled to room temperature. The glass molded body from which distortion has been removed by slow cooling is subjected to accurate slicing, grinding and polishing. At this time, it is preferable to slice a glass material having a thickness with high precision rather than processing a thin molded glass into a thin plate by double-side grinding and polishing, because the cutting margin is less and the cost is reduced overall.
[0079]
Next, the near-infrared light absorbing element of the present invention is an optical element made of the above-mentioned near-infrared light absorbing glass I, II or III of the present invention, and is a thin plate used for a near-infrared light absorbing filter. A glass element, a lens, etc. can be illustrated. These elements are suitable for color correction of a solid-state imaging device, and the molding method is a method of subjecting the molded body obtained by the molding method or the molding method to machining such as cutting, cutting, grinding, and polishing, Forming preforms made of glass I, II or glass III, then heating and softening the preforms and press-molding (especially pressing the final product without applying mechanical processing such as grinding or polishing to the optical functional surface) Examples thereof include a precision press molding method).
[0080]
These near-infrared light absorbing elements are made of near-infrared light absorbing glass I, II or glass III, so they have a good color correction function even when made thin, and have excellent devitrification resistance and weather resistance. ing. The thickness of the near-infrared light absorbing element (the distance between the incident surface and the exit surface of the transmitted light) is determined in consideration of the transmittance characteristics of the element, but is generally determined between 0.1 and 0.8 mm. Desirably, it is more desirable to determine between 0.3 and 0.6 mm. Furthermore, λ 50 Is preferably in the range of 605 to 625 nm, particularly preferably 615 nm. In order to obtain such a near-infrared light absorbing element, the composition of the near-infrared light absorbing glass I, II, or III may be adjusted and processed to a thickness that provides the above characteristics.
[0081]
Next, the near infrared light absorption filter will be described with an example. This filter includes a plate-like near-infrared light absorbing element made of near-infrared light-absorbing glass I, II or III whose surfaces are optically polished, and this element provides a color correction function of the filter. On one side of this element, a plate-like crystal optically polished on both sides is bonded. A plate-like optical glass, for example, BK-7, which transmits visible light and is optically polished on both sides is attached to one side of the crystal. Although such a structure constitutes a near-infrared light absorbing filter, another sheet of optical glass that is transparent to both sides and optically polished on one side (eg, BK-7). May be pasted together. An optical multilayer film is formed on the surface of the filter as necessary.
[0082]
This filter is arranged in front of the light-receiving surface of the solid-state image sensor in order to correct the color of the captured image of the solid-state image sensor. According to this filter, since the near-infrared light absorbing element made of near-infrared light absorbing glass I, II or III is used, the thickness of the filter can be reduced while providing a good color correction function. . In addition, since a near-infrared light element made of near-infrared light absorbing glass I, II or III having excellent weather resistance is used, deterioration such as surface burning can be prevented even when used for a long time.
[0083]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0084]
Examples 1-12
Al (PO as glass raw material Three ) Three , AlF Three , Li 2 CO Three , NaF, MgF 2 , CaF 2 , SrF 2 , BaF 2 ZnF 2 , Sb 2 O Three , CuO, etc. are weighed and mixed so as to obtain glasses having the compositions shown in Tables 1 and 2, put into a platinum crucible, covered and melted at 790 to 850 ° C., stirred and defoamed After homogenization, the mixture was poured into a preheated mold and formed into a predetermined shape. The obtained glass molded body was transferred to an annealing furnace heated near the glass transition point and gradually cooled to room temperature. A test piece was cut out from the obtained glass, and various properties were measured as follows.
[0085]
The spectral transmittance of the glass was measured using a spectrophotometer for the transmittance of a glass having a thickness of 0.5 mm at a wavelength of 200 to 1200 nm. Thus, the transmittance | permeability in each wavelength at the time of converting into the thickness which becomes the transmittance | permeability 50% in wavelength 615nm was computed.
[0086]
A thermal expansion coefficient is an average linear expansion coefficient of 100-300 degreeC measured using the thermomechanical analyzer.
The liquidus temperature was determined from the upper limit of the temperature at which crystals disappeared when glass was put in a platinum crucible and held at a predetermined temperature in increments of 10 ° C. for 1 hour.
[0087]
The weather resistance is determined by visually observing the burnt state of the glass surface after holding the optically polished glass sample in a high-temperature and high-humidity tank at 80 ° C. and a relative humidity of 90% for 1000 hours. (With weather resistance).
[0088]
The composition of each glass of Examples 1 to 12, the thickness at which the transmittance at a wavelength of 615 nm is 50% (λ 50 = Thickness of 615 nm), transmittance at wavelengths of 400 nm, 600 nm, 800 nm, 900 nm, 1000 nm and 1200 nm, transmittance at wavelengths of 400 nm, 600 nm, 800 nm, 900 nm, 1000 nm and 1200 nm at a thickness of 0.5 mm, liquid Tables 1 to 5 show the phase temperature LT and the weather resistance. In either embodiment, λ 50 = Transmittance at a wavelength of 800 to 1000 nm in the wall thickness in the case of 615 nm was less than 5%. Further, the spectral transmittance at wavelengths of 400 to 1200 nm was almost the same as that shown in FIG.
[0089]
From the above, the fluorophosphate glass of the present invention was thin, improved in color, and excellent in weather resistance and devitrification resistance.
In addition, the glass transition temperature of each obtained glass was 360 degreeC vicinity, and the yield point was 400 degreeC vicinity.
[0090]
Comparative Examples 1 and 2
Two types of glass having a composition outside the composition range of glass I were melted in the same manner as in the above examples, stirred and defoamed and homogenized, and then molded into a predetermined shape. The obtained glass molded body was transferred to an annealing furnace heated near the glass transition point, gradually cooled to room temperature, and a test piece was cut out from the obtained glass and evaluated. The compositions and evaluation results of the two types of glass are shown in Tables 1 to 5 as Comparative Examples 1 and 2. As is clear from the table, the glass of both comparative examples did not have the desired transmittance characteristics, and the liquidus temperature was as high as 800 ° C. or higher.
[0091]
[Table 1]
Figure 0004169545
[0092]
[Table 2]
Figure 0004169545
[0093]
[Table 3]
Figure 0004169545
[0094]
[Table 4]
Figure 0004169545
[0095]
[Table 5]
Figure 0004169545
[0096]
Example 13
In the same manner as in Examples 1-12, the glass was melted, clarified, homogenized, and injected into a mold to form a glass plate made of glass having the same composition as in Examples 1-12. After slicing this glass plate, optical polishing was performed on both sides to form a thin plate with a desired thickness. The thin plate was diced to obtain a near-infrared light absorbing element having a desired size having the above thickness. The thickness of the element was set to a thickness that provides a transmittance of 50% at a wavelength of 615 ± 10 nm, and the size was set to 10 mm × 10 mm to 30 mm × 30 mm. Next, a thin plate glass made of a crystal processed into a plate shape and two optical glasses (BK-7) was prepared, and optical polishing was performed on both surfaces. Each thin plate is bonded to the optically polished surface so that the near-infrared light absorbing element, crystal, and two BK-7 thin glass plates are laminated in this order, and an optical multilayer film is provided on the outermost surface to provide near-red An external light absorption filter was produced. As a result of observing an image taken by arranging this filter on the front side of the light receiving surface of the solid-state imaging device, it was confirmed that good color correction was performed.
[0097]
Example 14
In the same manner as in Examples 1 to 12, the glass was melted, clarified and homogenized to obtain a glass melt, which was allowed to flow down from a platinum nozzle. Then, an appropriate amount of glass melt was received in a mold to form a spherical glass preform. The molded preform was once cooled to room temperature, reheated and softened again in a non-oxidizing atmosphere such as nitrogen gas or a mixed gas of nitrogen and hydrogen, and pressed with a press mold. The molding surface of the press mold was precisely processed in advance into a shape obtained by inverting the shape of the target optical element, and these molding surfaces were precisely transferred to glass in the pressing step. After cooling to a temperature at which the glass does not deform in the press mold, the press-molded optical element was removed from the mold and annealed. In this way, an optical element such as an aspheric lens or a diffraction grating could be obtained. An element having a diffraction grating on the lens surface can also be made by precision press molding.
[0098]
Examples 15-19
In the same manner as in Examples 1 to 12, the glass raw material was dissolved, stirred, defoamed and homogenized, and then molded into a predetermined shape. The obtained glass molded body was transferred to an annealing furnace heated near the glass transition point, gradually cooled to room temperature, and a test piece was cut out from the obtained glass and evaluated.
[0099]
Composition of each glass of Examples 15 to 19, viscosity at liquidus temperature, liquidus temperature, quality of weather resistance, thickness at which transmittance at a wavelength of 615 nm is 50% (λ 50 Table 6 to Table 9 show transmittances at wavelengths of 400 nm, 600 nm, and 1200 nm, and transmittances at wavelengths of 400 nm, 600 nm, and 1200 nm at a thickness of 0.5 mm. In either embodiment, λ 50 The spectral transmittance at (t = 0.5 mm) of less than 630 nm and a wavelength of 400 to 1200 nm was almost the same as that shown in FIG.
[0100]
The liquid phase temperatures were all 690 ° C. or lower, and the viscosities at the liquid phase temperature were all 0.5 Pa · s or higher.
From the above, the fluorophosphate glass of the present invention has a thin wall thickness, improved color, excellent weather resistance and devitrification resistance, and excellent molding with a viscosity at a liquidus temperature of 0.5 Pa · s or more. It has sex.
[0101]
Comparative Examples 3 and 4
Two types of glass having a viscosity at a liquidus temperature of less than 0.5 Pa · s were melted in the same manner as in Examples 15 to 19, stirred, defoamed and homogenized, and then molded into a predetermined shape. The obtained glass molded body was transferred to an annealing furnace heated near the glass transition point, gradually cooled to room temperature, and a test piece was cut out from the obtained glass and evaluated. The compositions and evaluation results of the two types of glass are shown in Tables 6 to 9 as Comparative Examples 3 and 4. As is apparent from these tables, the glass of both comparative examples did not have the desired transmittance characteristics, and the liquidus temperature was as high as 800 ° C. or higher.
[0102]
[Table 6]
Figure 0004169545
[0103]
[Table 7]
Figure 0004169545
[0104]
[Table 8]
Figure 0004169545
[0105]
[Table 9]
Figure 0004169545
[0106]
Example 20
The clarified and homogenized molten glass from which the near-infrared light absorbing glass of Examples 16 to 19 was obtained was poured continuously from a platinum alloy pipe at a constant flow rate into a mold at 670 to 710 ° C. A glass plate having a plate width was formed. The molded glass plate was pulled out from the opening on the side surface of the mold at a constant speed, transferred to an annealing furnace, and gradually cooled. Observation of the plate-like glass molding confirmed that devitrification and striae were not observed, and that a good quality molding was obtained.
[0107]
The slowly cooled glass molded body was cut into a thin plate shape and subjected to optical polishing on both sides to produce a near infrared light absorbing element having a thickness of about 0.5 mm and a transmittance of 50% at a wavelength of 615 ± 10 nm. . Next, a thin plate glass composed of quartz and two BK-7 processed into a plate shape was prepared, and optical polishing was performed on both surfaces. Each thin plate is bonded to the optically polished surface so that the near-infrared light absorbing element, crystal, and two BK-7 thin glass plates are laminated in this order, and an optical multilayer film is provided on the outermost surface to provide near-red An external light absorption filter was produced. As a result of observing an image taken by arranging this filter on the front side of the light receiving surface of the solid-state imaging device, it was confirmed that good color correction was performed.
[0108]
Comparative Example 5
The molten glass from which the glasses of Comparative Examples 3 and 4 were obtained was poured into a mold at 830 to 930 ° C. in the same manner as in Example 20 to form a glass molded body. Molding was performed while taking care to prevent devitrification of the glass. However, striae that was thought to be caused by convection of the glass during molding was observed in the glass molded body.
[0109]
【The invention's effect】
According to the present invention, near-infrared light that maintains good color sensitivity correction characteristics without containing harmful arsenic, can reduce the thickness of the glass, and is excellent in weather resistance, moldability, or devitrification resistance, etc. Absorbent glass can be provided. In addition, according to the present invention, a near-infrared light absorbing element that maintains good color sensitivity correction characteristics without containing harmful arsenic, can reduce the thickness of the filter, and is excellent in weather resistance, devitrification resistance, and the like. In addition, a near infrared light absorption filter can be provided.
Furthermore, according to this invention, the method of manufacturing the high quality glass molded object which consists of said near-infrared-light absorption glass with sufficient moldability can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a spectral transmittance curve of one example of the near infrared light absorbing glass of the present invention.

Claims (10)

カチオン%表示で、P5+ 23〜41%、Al3+ 4〜16%、Li 11〜40%、Na 3〜13%、R2+ 12〜53%(ただし、R2+はMg2+、Ca2+、Sr2+、Ba2+およびZn2+の合計量)、およびCu2+ 2.6〜4.7%を含むと共に、アニオン%表示で、 25〜48%およびO2− 52〜75%を含み、実質的にヒ素および鉛を含まず、液相温度が750℃以下であることを特徴とする近赤外光吸収ガラス。In terms of cation%, P 5+ 23 to 41%, Al 3+ 4 to 16%, Li + 11 to 40%, Na + 3 to 13%, R 2+ 12 to 53% (where R 2+ is Mg 2+ , Ca 2+ , Sr 2+, the total amount of Ba 2+ and Zn 2+), and with including Cu 2+ 2.6 to 4.7%, by anionic% display, F - including the 25 to 48% and O 2-fifty-two to seventy-five% A near-infrared light-absorbing glass characterized by being substantially free of arsenic and lead and having a liquidus temperature of 750 ° C. or lower . カチオン%表示で、PP in% cation 5+5+ 23〜41%、Al  23-41%, Al 3+3+ 4〜16%、Li  4-16%, Li ++ 11〜40%、Na  11-40%, Na ++ 3〜13%、R  3-13%, R 2+2+ 12〜53%(ただし、R  12-53% (however, R 2+2+ はMgIs Mg 2+2+ 、Ca, Ca 2+2+ 、Sr, Sr 2+2+ 、Ba, Ba 2+2+ およびZnAnd Zn 2+2+ の合計量)、およびCuTotal amount), and Cu 2+2+ 2.6〜4.7%を含むと共に、アニオン%表示で、F  2.6-4.7% and anion%, F 25〜48%およびO25-48% and O 2−2- 52〜75%を含み、実質的にヒ素および鉛を含まず、  52-75%, substantially free of arsenic and lead,
波長400〜700nmの分光透過率において透過率が50%を示す波長が615nmになる厚さが0.1〜0.8mmの範囲にあって、前記厚さにおける波長400nmの透過率が80%以上、波長800〜1000nmの透過率が5%未満、波長1200nmの透過率が20%未満であり、The spectral transmittance at a wavelength of 400 to 700 nm is such that the wavelength at which the transmittance is 50% and the wavelength at which the wavelength is 615 nm is 0.1 to 0.8 mm, and the transmittance at the wavelength of 400 nm is 80% or more. The transmittance at a wavelength of 800 to 1000 nm is less than 5%, the transmittance at a wavelength of 1200 nm is less than 20%,
液相温度が750℃以下であるLiquidus temperature is 750 ° C or lower
ことを特徴とする近赤外光吸収ガラス。A near-infrared light absorbing glass.
カチオン%表示で、PP in% cation 5+5+ 23〜41%、Al  23-41%, Al 3+3+ 4〜16%、Li  4-16%, Li + 11〜40%、Na  11-40%, Na + 3〜13%、R  3-13%, R 2+2+ 12〜53%(ただし、R  12-53% (however, R 2+2+ はMgIs Mg 2+2+ 、Ca, Ca 2+2+ 、Sr, Sr 2+2+ 、Ba, Ba 2+2+ およびZnAnd Zn 2+2+ の合計量)、およびCuTotal amount), and Cu 2+2+ 2.6〜4.7%を含むと共に、アニオン%表示で、F  2.6-4.7% and anion%, F 25〜48%およびO25-48% and O 2−2- 52〜75%を含み、実質的にヒ素および鉛を含まず、  52-75%, substantially free of arsenic and lead,
厚さ0.5mmに換算した場合に、波長400〜700nmの分光透過率において、透過率50%を示す波長が630nm未満、この波長よりも長波長側の透過率が50%未満、前記波長よりも短波長側の透過率が50%超であって、液相温度における粘度が0.5Pa・s以上であるWhen converted to a thickness of 0.5 mm, in the spectral transmittance at a wavelength of 400 to 700 nm, the wavelength showing a transmittance of 50% is less than 630 nm, the transmittance on the longer wavelength side from this wavelength is less than 50%, from the above wavelength Also, the transmittance on the short wavelength side is more than 50%, and the viscosity at the liquidus temperature is 0.5 Pa · s or more.
ことを特徴とする近赤外光吸収ガラス。A near-infrared light absorbing glass.
液相温度が750℃以下である請求項3に記載の近赤外光吸収ガラス。The near-infrared light absorbing glass according to claim 3, wherein the liquidus temperature is 750 ° C or lower. カチオン成分として、ZnZn as a cation component 2+2+ を含む請求項1ないし4のいずれか1項に記載の近赤外光吸収ガラス。The near-infrared light absorption glass of any one of Claims 1 thru | or 4 containing this. 請求項1ないしのいずれか1項に記載の近赤外光吸収ガラスからなることを特徴とする近赤外光吸収素子。 A near-infrared light-absorbing element comprising the near-infrared light-absorbing glass according to any one of claims 1 to 5 . 請求項1ないしのいずれか1項に記載の近赤外光吸収ガラスからなるガラス板を備えたことを特徴とする近赤外光吸収フィルター。Near-infrared light absorbing filter characterized by comprising a glass plate made of near infrared light-absorbing glass according to any one of claims 1 to 5. 請求項1ないし5のいずれか1項に記載の近赤外吸収ガラスからなることを特徴とする精密プレス成形用プリフォーム。A precision press-molding preform comprising the near-infrared absorbing glass according to any one of claims 1 to 5. 710℃以下の溶融ガラスを成形、冷却して請求項に記載の近赤外光吸収ガラスからなるガラス成形体を作製することを特徴とする近赤外光吸収ガラス成形体の製造方法。A method for producing a near-infrared light-absorbing glass molded body, comprising molding and cooling a molten glass at 710 ° C. or lower to produce a glass molded body made of the near-infrared light-absorbing glass according to claim 3 . 請求項1ないし5のいずれか1項に記載の近赤外光吸収ガラスからなるプリフォームをA preform comprising the near infrared light absorbing glass according to any one of claims 1 to 5. 精密プレス成形することを特徴とする光学素子の製造方法。A method of manufacturing an optical element, characterized by precision press molding.
JP2002238065A 2002-07-05 2002-08-19 Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body Expired - Fee Related JP4169545B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002238065A JP4169545B2 (en) 2002-07-05 2002-08-19 Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body
US10/612,145 US7192897B2 (en) 2002-07-05 2003-07-03 Near-infrared light-absorbing glass, near-infrared light-absorbing element, near-infrared light-absorbing filter, and method of manufacturing near-infrared light-absorbing formed glass article, and copper-containing glass
CNB031546137A CN1288103C (en) 2002-07-05 2003-07-05 Nearinfrared-ray absorbing galss, element, light filter and their production method and copper-contained glass
CN2006101318214A CN1927751B (en) 2002-07-05 2003-07-05 Near-infrared absorption glass, element and filter and process for manufacturing glass containing copper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002196785 2002-07-05
JP2002238065A JP4169545B2 (en) 2002-07-05 2002-08-19 Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body

Publications (3)

Publication Number Publication Date
JP2004083290A JP2004083290A (en) 2004-03-18
JP2004083290A5 JP2004083290A5 (en) 2005-09-29
JP4169545B2 true JP4169545B2 (en) 2008-10-22

Family

ID=32072018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238065A Expired - Fee Related JP4169545B2 (en) 2002-07-05 2002-08-19 Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body

Country Status (1)

Country Link
JP (1) JP4169545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170054322A (en) * 2015-01-14 2017-05-17 아사히 가라스 가부시키가이샤 Near-infrared cut filter and imaging device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563709B2 (en) * 2004-03-29 2010-10-13 富士通株式会社 Filter and electronic device
JP4493417B2 (en) * 2004-06-09 2010-06-30 Hoya株式会社 Glass for semiconductor package window, glass window for semiconductor package and semiconductor package
JP4447393B2 (en) * 2004-07-23 2010-04-07 Hoya株式会社 Glass member with optical multilayer film, and optical element using the glass member
JP2006182585A (en) * 2004-12-27 2006-07-13 Asahi Techno Glass Corp Filter glass for cutting near-infrared ray
JP4570576B2 (en) * 2005-03-30 2010-10-27 Hoya株式会社 Optical glass, press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP4498315B2 (en) * 2005-07-28 2010-07-07 Hoya株式会社 Optical glass, optical element and manufacturing method thereof
JP2007099604A (en) * 2005-09-06 2007-04-19 Hoya Corp Near infrared ray absorbing glass, near infrared ray absorbing element provided with the same and imaging device
JP5004202B2 (en) 2005-09-14 2012-08-22 Hoya株式会社 Optical glass, precision press-molding preform and optical element
JP2007091537A (en) * 2005-09-29 2007-04-12 Hoya Corp Near-infrared light absorbing glass material lot and method for manufacturing optical element by using the same
JP4652941B2 (en) * 2005-09-30 2011-03-16 Hoya株式会社 Lens and manufacturing method thereof
JP2007145627A (en) * 2005-11-25 2007-06-14 Konica Minolta Opto Inc Glass suitable for droplet-like glass
JP4953347B2 (en) * 2006-06-21 2012-06-13 Agcテクノグラス株式会社 Visibility correction filter glass and visibility correction filter
JP4958213B2 (en) * 2006-10-25 2012-06-20 Hoya株式会社 Optical element manufacturing method
JP2008137877A (en) 2006-12-05 2008-06-19 Hoya Corp Optical glass and optical element
JP5251365B2 (en) * 2008-08-28 2013-07-31 旭硝子株式会社 Near-infrared cut filter glass
WO2010119964A1 (en) * 2009-04-17 2010-10-21 旭硝子株式会社 Filter glass cutting near infrared rays
JP2011093757A (en) * 2009-10-30 2011-05-12 Hoya Corp Fluorophosphate glass, near infrared ray absorbing filter, optical element, and glass window for semiconductor image sensor
WO2012018026A1 (en) * 2010-08-03 2012-02-09 旭硝子株式会社 Near-infrared cut filter glass and process for manufacturing same
TWI555717B (en) * 2010-12-23 2016-11-01 史考特公司 Fluorophosphate glasses
CN102923950B (en) 2011-08-11 2016-08-17 Hoya株式会社 Fluophosphate glass and manufacture method thereof and near-infrared absorption filter
JP5801773B2 (en) * 2011-08-11 2015-10-28 Hoya株式会社 Fluorophosphate glass, method for producing the same, and near infrared light absorption filter
WO2013120421A1 (en) * 2012-02-17 2013-08-22 成都光明光电股份有限公司 Near infrared light absorbing glass, element and filter
JP6001094B2 (en) * 2012-02-17 2016-10-05 成都光明光▲電▼股▲分▼有限公司 Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter
DE102012103076B4 (en) * 2012-04-10 2020-08-06 Schott Ag Lens system for a camera module with an infrared filter and camera module with a lens system and method for producing a lens system
DE102012103077B4 (en) * 2012-04-10 2017-06-22 Schott Ag Infrared absorbing glass wafer and process for its production
CN102923949A (en) * 2012-04-11 2013-02-13 成都光明光电股份有限公司 Near infrared light absorption glass, component, and light filter
KR102056613B1 (en) 2012-08-23 2019-12-17 에이지씨 가부시키가이샤 Near-infrared cut filter and solid-state imaging device
CN104341105B (en) * 2013-08-05 2017-04-19 成都光明光电股份有限公司 Near-infrared light absorbing glass, element and light filter
JP6241653B2 (en) * 2013-10-16 2017-12-06 日本電気硝子株式会社 Optical glass
CN106164002A (en) 2014-04-09 2016-11-23 旭硝子株式会社 Near infrared cut-off filters glass
CN107406304B (en) 2015-03-24 2020-05-12 Agc株式会社 Near infrared ray cut-off filter glass
JP2017014044A (en) 2015-06-30 2017-01-19 Hoya株式会社 Near infrared absorbing glass and filter
WO2017018273A1 (en) * 2015-07-24 2017-02-02 旭硝子株式会社 Near-infrared cutoff filter glass
CN107850713B (en) 2015-07-31 2020-05-12 Agc株式会社 Optical filter and near infrared ray cut filter
WO2017208679A1 (en) * 2016-06-01 2017-12-07 日本電気硝子株式会社 Method and device for manufacturing near infrared absorbing glass
JP6799273B2 (en) * 2016-06-01 2020-12-16 日本電気硝子株式会社 Manufacturing method and manufacturing equipment for near-infrared absorbing glass
JP7071608B2 (en) 2017-08-25 2022-05-19 日本電気硝子株式会社 Near infrared absorber glass
JP2019055889A (en) * 2017-09-20 2019-04-11 日本電気硝子株式会社 Infrared ray-absorbing glass plate and method of producing the same, and solid-state imaging element device
JP7138849B2 (en) * 2018-03-05 2022-09-20 日本電気硝子株式会社 Manufacturing method of near-infrared absorbing glass
WO2019171851A1 (en) * 2018-03-05 2019-09-12 日本電気硝子株式会社 Method of manufacturing near infrared ray absorbing glass
WO2020059431A1 (en) * 2018-09-20 2020-03-26 日本電気硝子株式会社 Method for manufacturing infrared absorbing glass
CN109626821B (en) * 2019-01-25 2020-12-01 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN115803295A (en) * 2020-07-10 2023-03-14 豪雅株式会社 Near-infrared absorbing glass and near-infrared cut filter
WO2022044286A1 (en) * 2020-08-28 2022-03-03 Hoya株式会社 Near-infrared cut filter and imaging device provided with same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170054322A (en) * 2015-01-14 2017-05-17 아사히 가라스 가부시키가이샤 Near-infrared cut filter and imaging device
KR101913482B1 (en) 2015-01-14 2018-10-30 에이지씨 가부시키가이샤 Near-infrared cut filter and imaging device
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device

Also Published As

Publication number Publication date
JP2004083290A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4169545B2 (en) Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body
US7192897B2 (en) Near-infrared light-absorbing glass, near-infrared light-absorbing element, near-infrared light-absorbing filter, and method of manufacturing near-infrared light-absorbing formed glass article, and copper-containing glass
JP4322217B2 (en) Optical glass, glass gob for press molding, optical component, method for manufacturing glass molded body, and method for manufacturing optical component
JP3965352B2 (en) Copper-containing glass, near infrared light absorption element, and near infrared light absorption filter
JP4286652B2 (en) Optical glass, glass gob for press molding, and optical element
JP4744795B2 (en) Preform for precision press molding and manufacturing method thereof, optical element and manufacturing method thereof
JP5004202B2 (en) Optical glass, precision press-molding preform and optical element
JP2011132077A (en) Near-infrared light absorbing glass, near-infrared light absorbing filter, and imaging device
JP4562041B2 (en) Optical glass, glass gob for press molding, and optical element
JP5926479B2 (en) Optical glass, glass gob for press molding, and optical element
KR102265764B1 (en) Optical glass, optical element blank, glass material for press forming, optical element, and processes for producing these
US20070051930A1 (en) Near-infrared-absorbing glass, near-infrared-absorbing element having the same and image-sensing device
JP5813926B2 (en) Optical glass, precision press-molding preform, optical element, manufacturing method thereof, and imaging apparatus
CN111892297B (en) Phosphate optical glass, glass material for press molding, and optical element
JP5116616B2 (en) Fluorophosphate glass, glass material for press molding, optical element blank, optical element, and production method thereof
JP6738243B2 (en) Glass, glass material for press molding, optical element blank and optical element
JP2004161506A (en) Optical glass, glass molded product for press molding and optical element
JP5224979B2 (en) Preform lot and optical element manufacturing method
US9550698B2 (en) Optical glass and use thereof
EP3858796B1 (en) Fluorophosphate optical glass, and optical preform, element and instrument
JP7194551B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP6961547B2 (en) Optical glass and optical elements
WO2021132645A1 (en) Near-infrared absorbing glass and near-infrared cut filter
JP7378985B2 (en) Optical glass, preforms and optical elements
JP7234454B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080428

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees