JP2019038719A - Near-infrared radiation absorption glass - Google Patents

Near-infrared radiation absorption glass Download PDF

Info

Publication number
JP2019038719A
JP2019038719A JP2017161910A JP2017161910A JP2019038719A JP 2019038719 A JP2019038719 A JP 2019038719A JP 2017161910 A JP2017161910 A JP 2017161910A JP 2017161910 A JP2017161910 A JP 2017161910A JP 2019038719 A JP2019038719 A JP 2019038719A
Authority
JP
Japan
Prior art keywords
content
less
devitrification resistance
component
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017161910A
Other languages
Japanese (ja)
Other versions
JP7071608B2 (en
Inventor
雄太 永野
Yuta Nagano
雄太 永野
哲哉 村田
Tetsuya Murata
哲哉 村田
高山 佳久
Yoshihisa Takayama
佳久 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017161910A priority Critical patent/JP7071608B2/en
Priority to TW107117336A priority patent/TWI704117B/en
Priority to CN201880031895.1A priority patent/CN110621627A/en
Priority to KR1020197031984A priority patent/KR20200043310A/en
Priority to PCT/JP2018/028477 priority patent/WO2019039202A1/en
Publication of JP2019038719A publication Critical patent/JP2019038719A/en
Application granted granted Critical
Publication of JP7071608B2 publication Critical patent/JP7071608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

To provide a near-infrared radiation absorption glass, the use of which enables a reduction in the thickness of an optical device and which demonstrates excellent characteristics such as weather resistance, devitrification resistance, and optical properties even without the inclusion of fluorine.SOLUTION: The near-infrared radiation absorption glass has, in percentage by mass, 20 to 80% of PO, 1 to 50% of RO (where R represents at least one selected from among Mg, Ca, Sr and Ba), 0.1 to 30% of MgO, 0 to 15% of NaO, 0 to less than 14% of KO, and 0.1 to 30% of CuO, and a thickness being 0.25 mm or less.SELECTED DRAWING: None

Description

本発明は、近赤外線を選択的に吸収することが可能な近赤外線吸収ガラスに関するものである。   The present invention relates to a near infrared ray absorbing glass capable of selectively absorbing near infrared rays.

一般に、デジタルカメラやスマートフォン等の光学デバイス内のカメラ部分には、CCDやCMOS等の固体撮像素子の視感度補正を目的として、近赤外線吸収ガラスが用いられている。例えば、特許文献1には、フッ素を含有するリン酸系の近赤外線吸収ガラスが開示されている。フッ素は耐候性向上効果が高いため、特許文献1に記載の近赤外線吸収ガラスは耐候性に優れている。   In general, near-infrared absorbing glass is used in a camera portion in an optical device such as a digital camera or a smartphone for the purpose of correcting the visibility of a solid-state imaging device such as a CCD or CMOS. For example, Patent Document 1 discloses a phosphoric acid-based near-infrared absorbing glass containing fluorine. Since fluorine has a high effect of improving weather resistance, the near-infrared absorbing glass described in Patent Document 1 is excellent in weather resistance.

特開2004−83290号公報JP 2004-83290 A

フッ素成分は環境負荷物質であるため、近年その使用が制限されつつある。しかしながら、フッ素成分を含有しない場合、耐候性を向上させることが困難であり、耐候性を改善しようとすると、耐失透性や光学特性等が低下する等の不具合が発生しやすくなる。また、近年光学デバイスの薄型化が強く望まれており近赤外線吸収ガラスを薄くする必要があるが、薄い近赤外線吸収ガラスを作製するには、より高い耐失透性が要求される。   Since the fluorine component is an environmentally hazardous substance, its use is being restricted in recent years. However, when it does not contain a fluorine component, it is difficult to improve the weather resistance, and when it is attempted to improve the weather resistance, problems such as a decrease in devitrification resistance and optical characteristics tend to occur. In recent years, thinning of optical devices has been strongly desired, and it is necessary to make the near-infrared absorbing glass thin. However, in order to produce a thin near-infrared absorbing glass, higher devitrification resistance is required.

以上に鑑み、本発明は、光学デバイスを薄型化でき、かつ、フッ素を含有させない場合であっても、耐候性、耐失透性及び光学特性の各特性に優れた近赤外線吸収ガラスを提供することを目的とする。   In view of the above, the present invention provides a near-infrared absorptive glass that is excellent in weather resistance, devitrification resistance, and optical characteristics even when the optical device can be thinned and does not contain fluorine. For the purpose.

本発明の近赤外線吸収ガラスは、質量%で、P 20〜80%、RO(ただしRはMg、Ca、Sr及びBaから選択される少なくとも1種) 1〜50%、MgO 0.1〜30%、NaO 0〜15%、KO 0〜14%未満、及びCuO 0.1〜30%を含有し、厚みが0.25mm以下であることを特徴とする。 The near-infrared absorbing glass of the present invention is in mass%, P 2 O 5 20-80%, RO (however, R is at least one selected from Mg, Ca, Sr and Ba) 1-50%, MgO 0. It contains 1 to 30%, Na 2 O 0 to 15%, K 2 O 0 to less than 14%, and CuO 0.1 to 30%, and has a thickness of 0.25 mm or less.

本発明の近赤外線吸収ガラスは、耐失透性を向上させるROを1%以上、耐失透性を低下させるNaOを15%以下、KOを14%未満に規制することにより、高い耐失透性を達成している。そのため、厚みの小さい赤外線吸収ガラスを効率よく製造できるダウンドロー法、リドロー法等の失透を伴いやすい成形方法にも適用することができる。 The near-infrared absorbing glass of the present invention regulates RO for improving devitrification resistance to 1% or more, Na 2 O for reducing devitrification resistance to 15% or less, and K 2 O to less than 14%, High devitrification resistance is achieved. Therefore, the present invention can also be applied to molding methods that are likely to cause devitrification, such as a downdraw method and a redraw method, which can efficiently manufacture a thin infrared absorbing glass.

本発明の近赤外線吸収ガラスは、さらに、質量%で、Al 0〜19%、ZnO 0〜13%を含有することが好ましい。 The near-infrared absorbing glass of the present invention further preferably contains Al 2 O 3 0 to 19% and ZnO 0 to 13% by mass.

本発明の近赤外線吸収ガラスは、フッ素成分を含有しないことが好ましい。ここで、「フッ素成分を含有しない」とは、意図的に含有させないことを意味し、不可避的不純物の混入を排除するものではない。具体的には、フッ素成分の含有量が1000ppm以下であることを意味する。   The near-infrared absorbing glass of the present invention preferably contains no fluorine component. Here, “does not contain a fluorine component” means that it is not intentionally contained, and does not exclude inevitable contamination. Specifically, it means that the content of the fluorine component is 1000 ppm or less.

本発明によれば、光学デバイスを薄型化でき、かつ、フッ素を含有させない場合であっても、耐候性、耐失透性及び光学特性の各特性に優れた近赤外線吸収ガラスを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where an optical device can be made thin and it is a case where it does not contain a fluorine, it is providing the near-infrared absorption glass excellent in each characteristic of a weather resistance, devitrification resistance, and an optical characteristic. It becomes possible.

本発明の近赤外線吸収ガラスは、P 20〜80%、RO(ただしRはMg、Ca、Sr及びBaから選択される少なくとも1種) 1〜50%、MgO 0.1〜30%、NaO 0〜15%、KO 0〜14%未満、及びCuO 0.1〜30%を含有する。ガラス組成を上記のように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「質量%」を意味する。 The near-infrared absorbing glass of the present invention is 20 to 80% P 2 O 5 , RO (where R is at least one selected from Mg, Ca, Sr and Ba) 1 to 50%, MgO 0.1 to 30% , Na 2 O 0~15%, K less than 2 O 0 to 14%, and containing 0.1 to 30% CuO. The reason for limiting the glass composition as described above will be described below. In the following description regarding the content of each component, “%” means “mass%” unless otherwise specified.

はガラス骨格を形成するために欠かせない成分である。Pの含有量は20〜80%であり、31〜73%、特に45〜67%であることが好ましい。Pの含有量が少なすぎると、ガラス化が不安定になる傾向がある。一方、Pの含有量が多すぎると、液相粘度が低くなって耐失透性が低下したり、耐候性が低下しやすくなる。 P 2 O 5 is an essential component for forming a glass skeleton. The content of P 2 O 5 is 20 to 80%, 31 to 73%, and particularly preferably 45 to 67%. If the content of P 2 O 5 is too small, there is a tendency for vitrification tends to be unstable. On the other hand, when the content of P 2 O 5 is too large, lowered resistance to devitrification liquidus viscosity is low, the weather resistance tends to lower.

RO(ただしRはMg、Ca、Sr及びBaから選択される少なくとも1種)は耐失透性、耐候性を向上させる成分である。ROの含有量は合量で1〜50%であり、3〜34%、特に6〜20%であることが好ましい。ROの含有量が少なすぎると、上記効果が得られにくい。一方、ROの含有量が多すぎると、耐失透性が低下し、RO成分起因の結晶が析出しやすくなる。   RO (where R is at least one selected from Mg, Ca, Sr, and Ba) is a component that improves devitrification resistance and weather resistance. The total RO content is 1 to 50%, preferably 3 to 34%, particularly preferably 6 to 20%. If the RO content is too small, the above effects are difficult to obtain. On the other hand, when there is too much content of RO, devitrification resistance will fall and the crystal | crystallization resulting from RO component will precipitate easily.

なお、ROの各成分の含有量の好ましい範囲は以下の通りである。   In addition, the preferable range of content of each component of RO is as follows.

MgOは耐失透性、耐候性を向上させる成分である。MgOの含有量は0.1〜30%、特に0.4〜13%であることが好ましい。MgOの含有量が少なすぎると、上記効果が得られにくい。一方、MgOの含有量が多すぎると、ガラス化の安定性が低下しやすくなる。   MgO is a component that improves devitrification resistance and weather resistance. The content of MgO is preferably 0.1 to 30%, particularly preferably 0.4 to 13%. If the content of MgO is too small, the above effect is difficult to obtain. On the other hand, when there is too much content of MgO, stability of vitrification will fall easily.

CaOはMgOと同様に耐失透性、耐候性を向上させる成分である。CaOの含有量は0〜15%、特に0.4〜7%であることが好ましい。CaOの含有量が多すぎると、ガラス化の安定性が低下しやすくなる。   CaO, like MgO, is a component that improves devitrification resistance and weather resistance. The CaO content is preferably 0 to 15%, particularly preferably 0.4 to 7%. When there is too much content of CaO, stability of vitrification will fall easily.

SrOもMgOと同様に耐失透性、耐候性を向上させる成分である。SrOの含有量は0〜12%、特に0.3〜6%であることが好ましい。SrOの含有量が多すぎると、ガラス化の安定性が低下しやすくなる。   SrO, like MgO, is a component that improves devitrification resistance and weather resistance. The SrO content is preferably 0 to 12%, particularly preferably 0.3 to 6%. When there is too much content of SrO, stability of vitrification will fall easily.

BaOもMgOと同様に耐失透性、耐候性を向上させる成分である。BaOの含有量は0〜30%、1〜25%、特に3〜20%であることが好ましい。BaOの含有量が多すぎると、成形中にBaO起因の結晶が析出しやすくなる。   BaO, like MgO, is a component that improves devitrification resistance and weather resistance. The content of BaO is preferably 0 to 30%, 1 to 25%, particularly 3 to 20%. When there is too much content of BaO, the crystal | crystallization resulting from BaO will precipitate easily during shaping | molding.

以上の通り、ROは耐失透性を向上させる効果があり、特にPが少ない場合に、その効果を享受しやすい。 As described above, RO has an effect of improving devitrification resistance, and when the amount of P 2 O 5 is small, it is easy to enjoy the effect.

NaOは溶融温度を低下させる成分である。NaOの含有量は0〜15%であり、特に0.1〜10%であることが好ましい。NaOの含有量が多すぎると、耐失透性が低下する傾向がある。 Na 2 O is a component that lowers the melting temperature. The content of Na 2 O is 0 to 15%, and particularly preferably 0.1 to 10%. When the content of Na 2 O is too large, the devitrification resistance tends to decrease.

OもNaOと同様に溶融温度を低下させる成分である。KOの含有量は0〜14%未満であり、特に0.1〜12%であることが好ましい。KOの含有量が多すぎると、KO起因の結晶が成形中に析出しやすくなり、耐失透性が低下する傾向がある。 K 2 O is a component that lowers the melting temperature in the same manner as Na 2 O. The content of K 2 O is 0 to less than 14%, particularly preferably 0.1 to 12%. When the content of K 2 O is too large, K 2 O resulting crystal tends to deposit in the molding, the devitrification resistance tends to decrease.

CuOは近赤外線を吸収するための必須成分である。CuOの含有量は0.1〜30%、0.3〜20%、2〜15%、特に3〜13%であることが好ましい。CuOの含有量が少なすぎると、所望の近赤外線吸収特性が得られにくくなる。一方、CuOの含有量が多すぎると、紫外〜可視域の光透過率が低下しやすくなる。また耐失透性が低下する傾向がある。   CuO is an essential component for absorbing near infrared rays. The CuO content is preferably 0.1 to 30%, 0.3 to 20%, 2 to 15%, particularly 3 to 13%. When there is too little content of CuO, it will become difficult to obtain a desired near-infrared absorption characteristic. On the other hand, when there is too much content of CuO, the light transmittance of an ultraviolet-visible range will fall easily. Moreover, there exists a tendency for devitrification resistance to fall.

上記成分以外にも、以下に示す種々の成分を含有させることができる。   In addition to the above components, the following various components can be contained.

Alは耐候性を向上させるとともに、液相粘度を高め、耐失透性を向上させる成分である。Alの含有量は0〜19%、2〜19%、3〜14%、特に3〜9%であることが好ましい。Alの含有量が多すぎると、溶融性が低下して溶融温度が上昇する傾向がある。なお、溶融温度が上昇すると、Cuイオンが還元されてCu2+からCuにシフトしやすくなるため、所望の光学特性が得られにくくなる。具体的には、近紫外〜可視域における光透過率が低下したり、近赤外線吸収特性が低下しやすくなる。 Al 2 O 3 is a component that improves weather resistance, increases liquid phase viscosity, and improves devitrification resistance. The content of Al 2 O 3 is preferably 0 to 19%, 2 to 19%, 3 to 14%, particularly 3 to 9%. When the content of Al 2 O 3 is too large, there is a tendency that the melting temperature fusible reduced increases. Note that when the melting temperature rises, Cu ions are reduced and easily shift from Cu 2+ to Cu + , making it difficult to obtain desired optical characteristics. Specifically, the light transmittance in the near ultraviolet to visible range is lowered, and the near infrared absorption characteristics are liable to be lowered.

ZnOは耐失透性、耐候性を向上させる成分である。ZnOの含有量は0〜13%、0.1〜12%、特に1〜10%であることが好ましい。ZnOの含有量が多すぎると、溶融性が低下して溶融温度が高くなり、結果として所望の光学特性が得られにくくなる。また、ZnO起因の結晶が成形中に析出しやすくなり、耐失透性が低下する傾向がある。   ZnO is a component that improves devitrification resistance and weather resistance. The content of ZnO is preferably 0 to 13%, 0.1 to 12%, particularly preferably 1 to 10%. When there is too much content of ZnO, a meltability will fall and a melting temperature will become high, and it will become difficult to obtain a desired optical characteristic as a result. In addition, crystals derived from ZnO tend to precipitate during molding, and the devitrification resistance tends to decrease.

LiOは溶融温度を低下させる成分である。LiOの含有量は0〜15%であり、特に0.1〜10%であることが好ましい。LiOの含有量が多すぎると、耐失透性が低下する傾向がある。 Li 2 O is a component that lowers the melting temperature. The content of Li 2 O is 0 to 15%, and particularly preferably 0.1 to 10%. The content of Li 2 O is too large, the devitrification resistance tends to decrease.

また、上記成分以外にも、B、Nb、Y、La、Ta、CeO、Sb等を本発明の効果を損なわない範囲で含有させても構わない。具体的には、これらの成分の含有量は、各々0〜3%、特に0〜2%であることが好ましい。なお、フッ素成分は環境負荷物質であるため含有しないことが好ましい。 Further, in addition to the above components, B 2 O 3 , Nb 2 O 5 , Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , CeO 2 , Sb 2 O 3 and the like do not impair the effects of the present invention. You may make it contain. Specifically, the content of these components is preferably 0 to 3%, particularly 0 to 2%. In addition, since a fluorine component is an environmental impact substance, it is preferable not to contain.

本発明の近赤外線吸収ガラスは、通常、板状で用いられる。厚みは0.25mm以下であり、0.2mm以下、0.15mm以下、特に0.1mm以下であることが好ましい。厚みが大きすぎると、光学デバイスの薄型化が困難になる。なお、厚みの下限は特に限定されないが、機械的強度の観点から0.01mm以上であることが好ましい。   The near infrared ray absorbing glass of the present invention is usually used in a plate shape. The thickness is 0.25 mm or less, preferably 0.2 mm or less, 0.15 mm or less, particularly preferably 0.1 mm or less. If the thickness is too large, it is difficult to reduce the thickness of the optical device. In addition, although the minimum of thickness is not specifically limited, From a viewpoint of mechanical strength, it is preferable that it is 0.01 mm or more.

本発明の近赤外線吸収ガラスは上記組成を有することにより、可視域における高い光透過率及び近赤外域における優れた光吸収特性の両者を達成することが可能となる。具体的には、波長500nmにおける光透過率は75%以上、特に77%以上であることが好ましい。一方、波長700nmにおける光透過率は30%以下、特に28%以下であることが好ましく、波長1200nmにおける光透過率は40%以下、特に38%以下であることが好ましい。   By having the above composition, the near-infrared absorbing glass of the present invention can achieve both high light transmittance in the visible range and excellent light absorption characteristics in the near-infrared range. Specifically, the light transmittance at a wavelength of 500 nm is preferably 75% or more, particularly 77% or more. On the other hand, the light transmittance at a wavelength of 700 nm is preferably 30% or less, particularly preferably 28% or less, and the light transmittance at a wavelength of 1200 nm is preferably 40% or less, particularly preferably 38% or less.

本発明の近赤外線吸収ガラスの液相粘度は101.6dPa・s以上、特に101.9dPa・s以上であることが好ましい。液相粘度が低すぎると、成形時に失透しやすくなる。 The near-infrared absorbing glass of the present invention preferably has a liquidus viscosity of 10 1.6 dPa · s or more, particularly 10 1.9 dPa · s or more. If the liquid phase viscosity is too low, it tends to devitrify during molding.

本発明の近赤外線吸収ガラスは、所望の組成となるように調製した原料粉末バッチを溶融、成形することにより製造することができる。溶融温度は900〜1200℃であることが好ましい。溶融温度が低すぎると、均質なガラスが得られにくくなる。一方、溶融温度が高すぎると、Cuイオンが還元されてCu2+からCuにシフトしやすくなるため、所望の光学特性が得られにくくなる。 The near-infrared absorbing glass of the present invention can be produced by melting and molding a raw material powder batch prepared to have a desired composition. The melting temperature is preferably 900 to 1200 ° C. If the melting temperature is too low, it is difficult to obtain a homogeneous glass. On the other hand, if the melting temperature is too high, Cu ions are reduced and it is easy to shift from Cu 2+ to Cu + , so that it becomes difficult to obtain desired optical characteristics.

その後、溶融ガラスを所定の形状に成形し、必要な後加工を施して、各種の用途に供することができる。なお、厚みの小さい近赤外線吸収ガラスを効率良く製造するためには、ダウンドロー法、リドロー法等の成形方法を適用することが好ましい。これらの成形方法は失透を伴いやすいため、耐失透性に優れる本発明の近赤外線吸収ガラスの効果を享受しやすい。   Thereafter, the molten glass can be formed into a predetermined shape, subjected to necessary post-processing, and used for various purposes. In order to efficiently produce a near-infrared absorbing glass having a small thickness, it is preferable to apply a molding method such as a downdraw method or a redraw method. Since these forming methods are easily accompanied by devitrification, it is easy to enjoy the effect of the near-infrared absorbing glass of the present invention, which is excellent in devitrification resistance.

以下、本発明の近赤外線吸収ガラスを実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although the near-infrared absorption glass of this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

表1は本発明の実施例(試料No.1〜8)及び比較例(試料No.9、10)を示す。   Table 1 shows Examples (Sample Nos. 1 to 8) and Comparative Examples (Sample Nos. 9 and 10) of the present invention.

(1)各試料の作製
まず、表1の組成となるように調合したガラス原料を白金ルツボに投入し、1000〜1200℃の温度で溶融した。次に、溶融ガラスをカーボン板上に流し出し、冷却固化した。その後、アニールを行って試料を得た。
(1) Preparation of each sample First, the glass raw material prepared so that it might become the composition of Table 1 was thrown into the platinum crucible, and it fuse | melted at the temperature of 1000-1200 degreeC. Next, the molten glass was poured onto a carbon plate and cooled and solidified. Thereafter, annealing was performed to obtain a sample.

(2)各試料の評価
得られた各試料について、光透過特性、耐候性及び液相粘度を以下の方法によって測定または評価した。結果を表1に示す。
(2) Evaluation of each sample About each obtained sample, the light transmission characteristic, the weather resistance, and the liquid phase viscosity were measured or evaluated with the following method. The results are shown in Table 1.

光透過特性は、両面を鏡面研磨した表1に記載の厚みの試料について、分光分析装置(島津製作所製 UV3100)を用いて、波長500nm、700nm、1200nmにおけるそれぞれの透過率を測定した。なお、波長500nm、700nm、1200nmにおける透過率が、それぞれ77%以上、28%以下、38%以下であれば、光透過特性が良好であると判断できる。   For the light transmission characteristics, the transmittances at wavelengths of 500 nm, 700 nm, and 1200 nm were measured using a spectroscopic analyzer (UV3100, manufactured by Shimadzu Corporation) for the samples having the thicknesses shown in Table 1 whose surfaces were mirror-polished. It should be noted that if the transmittances at wavelengths of 500 nm, 700 nm, and 1200 nm are 77% or more, 28% or less, and 38% or less, respectively, it can be determined that the light transmission characteristics are good.

耐候性は、両面を鏡面研磨した試料について、温度120℃、相対湿度100%の条件下に24時間保持した後、外観上の変化の有無により判定した。具体的には、試験後に外観上の変化が見られなかったものを「○」、白ヤケ等の外観上の変化が見られたものを「×」として評価した。   The weather resistance was determined by the presence or absence of a change in appearance of a sample whose both surfaces were mirror-polished after being held for 24 hours under conditions of a temperature of 120 ° C. and a relative humidity of 100%. Specifically, “◯” indicates that no change in appearance was observed after the test, and “×” indicates change in appearance such as white discoloration.

液相粘度は次のようにして求めた。粒度300〜600μmとなるように粗砕した試料を白金容器に入れ、温度傾斜炉中で24時間保持した。白金容器の底面において界面結晶が析出している最高温度を液相温度とした。そして試料の粘度を測定し、液相温度における粘度を液相粘度とした。   The liquid phase viscosity was determined as follows. A sample crushed so as to have a particle size of 300 to 600 μm was placed in a platinum container and held in a temperature gradient furnace for 24 hours. The maximum temperature at which the interface crystals were precipitated on the bottom surface of the platinum container was defined as the liquidus temperature. The viscosity of the sample was measured, and the viscosity at the liquidus temperature was defined as the liquidus viscosity.

表1から明らかなように、本発明の実施例であるNo.1〜8の試料は可視域での光透過率が高く、近赤外域での吸収が大きかった。また、耐候性評価において試験前後で変化が見られず、液相粘度も101.6dPa・s以上であり耐失透性にも優れていた。なお、厚みが0.23mm以下であるため、光学デバイスを薄型化しやすい。 As is apparent from Table 1, No. 1 as an example of the present invention. Samples 1 to 8 had a high light transmittance in the visible range and a large absorption in the near infrared range. Further, no change was observed before and after the test in the weather resistance evaluation, and the liquid phase viscosity was 10 1.6 dPa · s or more, and the devitrification resistance was excellent. Since the thickness is 0.23 mm or less, the optical device can be easily thinned.

一方、比較例であるNo.9の試料は、耐候性に劣っており、液相粘度が101.2dPa・sであるため耐失透性に劣っていた。No.10の試料は液相粘度が101.3dPa・sであるため耐失透性に劣っていた。 On the other hand, No. which is a comparative example. The sample of 9 was inferior in weather resistance, and was inferior in devitrification resistance because the liquid phase viscosity was 10 1.2 dPa · s. No. The sample No. 10 was inferior in devitrification resistance because the liquid phase viscosity was 10 1.3 dPa · s.

Claims (3)

質量%で、P 20〜80%、RO(ただしRはMg、Ca、Sr及びBaから選択される少なくとも1種) 1〜50%、MgO 0.1〜30%、NaO 0〜15%、KO 0〜14%未満、及びCuO 0.1〜30%を含有し、厚みが0.25mm以下であることを特徴とする近赤外線吸収ガラス。 By mass%, P 2 O 5 20~80% , RO ( provided that at least one R is selected from Mg, Ca, Sr and Ba) 1~50%, 0.1~30% MgO , Na 2 O 0 to 15%, K less than 2 O 0 to 14%, and containing 0.1 to 30% CuO, near-infrared absorbing glass wherein the thickness is 0.25mm or less. さらに、質量%で、Al 0〜19%、ZnO 0〜13%を含有することを特徴とする請求項1に記載の近赤外線吸収ガラス。 Moreover, in mass%, Al 2 O 3 0~19% , near-infrared-absorbing glass as claimed in claim 1, characterized in that it contains 0 to 13% ZnO. フッ素成分を含有しないことを特徴とする請求項1又は2に記載の近赤外線吸収ガラス。   The near-infrared absorbing glass according to claim 1 or 2, which does not contain a fluorine component.
JP2017161910A 2017-08-25 2017-08-25 Near infrared absorber glass Active JP7071608B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017161910A JP7071608B2 (en) 2017-08-25 2017-08-25 Near infrared absorber glass
TW107117336A TWI704117B (en) 2017-08-25 2018-05-22 Near infrared absorption glass
CN201880031895.1A CN110621627A (en) 2017-08-25 2018-07-30 Near infrared ray absorption glass
KR1020197031984A KR20200043310A (en) 2017-08-25 2018-07-30 Near infrared absorbing glass
PCT/JP2018/028477 WO2019039202A1 (en) 2017-08-25 2018-07-30 Near-infrared radiation absorption glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161910A JP7071608B2 (en) 2017-08-25 2017-08-25 Near infrared absorber glass

Publications (2)

Publication Number Publication Date
JP2019038719A true JP2019038719A (en) 2019-03-14
JP7071608B2 JP7071608B2 (en) 2022-05-19

Family

ID=65438838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161910A Active JP7071608B2 (en) 2017-08-25 2017-08-25 Near infrared absorber glass

Country Status (5)

Country Link
JP (1) JP7071608B2 (en)
KR (1) KR20200043310A (en)
CN (1) CN110621627A (en)
TW (1) TWI704117B (en)
WO (1) WO2019039202A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132645A1 (en) * 2019-12-27 2021-07-01 Hoya株式会社 Near-infrared absorbing glass and near-infrared cut filter
KR20240021874A (en) 2021-06-11 2024-02-19 호야 가부시키가이샤 Near-infrared absorbing glass and near-infrared cut filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538772B (en) * 2022-03-24 2022-12-02 成都光明光电股份有限公司 Glass, glass element and optical filter

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104918A (en) * 1990-08-23 1992-04-07 Asahi Glass Co Ltd Near infrared absorbing glass
JPH06191875A (en) * 1992-11-05 1994-07-12 Corning Inc Phosphate glass of alkaline metal and copper
JPH06234546A (en) * 1993-02-08 1994-08-23 Toshiba Glass Co Ltd Near infrared-ray cutting filter glass
JP2002216834A (en) * 2001-01-18 2002-08-02 Toyota Motor Corp Jig for assembling fuel cell
JP2002316834A (en) * 2001-04-20 2002-10-31 Okamoto Glass Co Ltd Blue-colored glass
JP2006076880A (en) * 2004-09-10 2006-03-23 Schott Ag Use of lead-free and phosphate-containing glass in precision molding
JP2007290886A (en) * 2006-04-24 2007-11-08 Schott Corp Aluminophosphate glass containing copper (ii) oxide, and use thereof for optical filtering
JP2009263190A (en) * 2008-04-29 2009-11-12 Ohara Inc Infrared absorption glass
JP2009298634A (en) * 2008-06-12 2009-12-24 Sumita Optical Glass Inc Glass for near-infrared absorbing filter
JP2010008908A (en) * 2008-06-30 2010-01-14 Asahi Glass Co Ltd Glass for near infrared absorption filter, and infrared cut filter using the same
WO2011046155A1 (en) * 2009-10-16 2011-04-21 旭硝子株式会社 Near-infrared ray cut filter glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
JP2011162409A (en) * 2010-02-12 2011-08-25 Asahi Glass Co Ltd Near infrared cut filter glass and method for producing near infrared cut filter glass
JP2012224491A (en) * 2011-04-18 2012-11-15 Asahi Glass Co Ltd Near-infrared ray cut filter glass
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2015089855A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Near-infrared absorbing glass
JP2016020295A (en) * 2014-06-16 2016-02-04 日本電気硝子株式会社 Near infrared ray absorption glass sheet
JP2016108206A (en) * 2014-12-10 2016-06-20 株式会社住田光学ガラス Glass for near infrared absorptive filter
CN105800927A (en) * 2014-12-31 2016-07-27 盈盛科技股份有限公司 Improved near infrared ray filter glass
WO2016171255A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Near infrared cut-off filter glass
JP2016199430A (en) * 2015-04-10 2016-12-01 日本電気硝子株式会社 Near-infrared absorbing glass
WO2017018273A1 (en) * 2015-07-24 2017-02-02 旭硝子株式会社 Near-infrared cutoff filter glass
JP2017109887A (en) * 2015-12-15 2017-06-22 日本電気硝子株式会社 Near-infrared absorbing glass
JP2017120285A (en) * 2015-12-28 2017-07-06 旭硝子株式会社 Near-infrared cut filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169545B2 (en) 2002-07-05 2008-10-22 Hoya株式会社 Near-infrared light absorbing glass, near-infrared light absorbing element, near-infrared light absorbing filter, and method for producing near-infrared light absorbing glass molded body

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104918A (en) * 1990-08-23 1992-04-07 Asahi Glass Co Ltd Near infrared absorbing glass
JPH06191875A (en) * 1992-11-05 1994-07-12 Corning Inc Phosphate glass of alkaline metal and copper
JPH06234546A (en) * 1993-02-08 1994-08-23 Toshiba Glass Co Ltd Near infrared-ray cutting filter glass
JP2002216834A (en) * 2001-01-18 2002-08-02 Toyota Motor Corp Jig for assembling fuel cell
JP2002316834A (en) * 2001-04-20 2002-10-31 Okamoto Glass Co Ltd Blue-colored glass
JP2006076880A (en) * 2004-09-10 2006-03-23 Schott Ag Use of lead-free and phosphate-containing glass in precision molding
JP2007290886A (en) * 2006-04-24 2007-11-08 Schott Corp Aluminophosphate glass containing copper (ii) oxide, and use thereof for optical filtering
JP2009263190A (en) * 2008-04-29 2009-11-12 Ohara Inc Infrared absorption glass
JP2009298634A (en) * 2008-06-12 2009-12-24 Sumita Optical Glass Inc Glass for near-infrared absorbing filter
JP2010008908A (en) * 2008-06-30 2010-01-14 Asahi Glass Co Ltd Glass for near infrared absorption filter, and infrared cut filter using the same
WO2011046155A1 (en) * 2009-10-16 2011-04-21 旭硝子株式会社 Near-infrared ray cut filter glass
JP2011121792A (en) * 2009-12-08 2011-06-23 Asahi Glass Co Ltd Near infrared ray cutting filter glass
JP2011162409A (en) * 2010-02-12 2011-08-25 Asahi Glass Co Ltd Near infrared cut filter glass and method for producing near infrared cut filter glass
JP2012224491A (en) * 2011-04-18 2012-11-15 Asahi Glass Co Ltd Near-infrared ray cut filter glass
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2015089855A (en) * 2013-11-05 2015-05-11 日本電気硝子株式会社 Near-infrared absorbing glass
JP2016020295A (en) * 2014-06-16 2016-02-04 日本電気硝子株式会社 Near infrared ray absorption glass sheet
JP2016108206A (en) * 2014-12-10 2016-06-20 株式会社住田光学ガラス Glass for near infrared absorptive filter
CN105800927A (en) * 2014-12-31 2016-07-27 盈盛科技股份有限公司 Improved near infrared ray filter glass
JP2016199430A (en) * 2015-04-10 2016-12-01 日本電気硝子株式会社 Near-infrared absorbing glass
WO2016171255A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Near infrared cut-off filter glass
WO2017018273A1 (en) * 2015-07-24 2017-02-02 旭硝子株式会社 Near-infrared cutoff filter glass
JP2017109887A (en) * 2015-12-15 2017-06-22 日本電気硝子株式会社 Near-infrared absorbing glass
JP2017120285A (en) * 2015-12-28 2017-07-06 旭硝子株式会社 Near-infrared cut filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132645A1 (en) * 2019-12-27 2021-07-01 Hoya株式会社 Near-infrared absorbing glass and near-infrared cut filter
KR20220110776A (en) 2019-12-27 2022-08-09 호야 가부시키가이샤 Near-infrared absorbing glass and near-infrared cut filter
CN114901606A (en) * 2019-12-27 2022-08-12 豪雅株式会社 Near-infrared absorbing glass and near-infrared cut filter
KR20240021874A (en) 2021-06-11 2024-02-19 호야 가부시키가이샤 Near-infrared absorbing glass and near-infrared cut filter

Also Published As

Publication number Publication date
TWI704117B (en) 2020-09-11
JP7071608B2 (en) 2022-05-19
CN110621627A (en) 2019-12-27
KR20200043310A (en) 2020-04-27
WO2019039202A1 (en) 2019-02-28
TW201912600A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
JP6256857B2 (en) Near infrared absorbing glass
JP6241653B2 (en) Optical glass
JP6583609B2 (en) Near infrared absorbing glass
JP2011121792A (en) Near infrared ray cutting filter glass
JP7071608B2 (en) Near infrared absorber glass
JP6233563B2 (en) Glass for IR cut filter
JP2017109887A (en) Near-infrared absorbing glass
WO2017208679A1 (en) Method and device for manufacturing near infrared absorbing glass
WO2018155105A1 (en) Optical glass
TW201837005A (en) Optical glass
JP2019038732A (en) Near-infrared radiation absorption glass
JP2014125395A (en) Glass
JP2018118898A (en) Near infrared ray absorbing glass
JP2017165641A (en) Near-infrared absorption filter glass
JP6048403B2 (en) Optical glass and optical element
JP2017178632A (en) Near-infrared absorbing glass
WO2016098554A1 (en) Glass for near infrared absorption filter
WO2018138990A1 (en) Near infrared ray absorbing glass
JP2018049250A (en) Method and device for manufacturing near infrared absorbing glass
WO2015194456A1 (en) Near-infrared ray-absorbing glass plate
WO2017154560A1 (en) Near-infrared absorption filter glass
WO2019171851A1 (en) Method of manufacturing near infrared ray absorbing glass
JP2020023425A (en) Manufacturing method of near infrared ray absorption glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211112

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7071608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150