WO2011046155A1 - Near-infrared ray cut filter glass - Google Patents
Near-infrared ray cut filter glass Download PDFInfo
- Publication number
- WO2011046155A1 WO2011046155A1 PCT/JP2010/067983 JP2010067983W WO2011046155A1 WO 2011046155 A1 WO2011046155 A1 WO 2011046155A1 JP 2010067983 W JP2010067983 W JP 2010067983W WO 2011046155 A1 WO2011046155 A1 WO 2011046155A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- cut filter
- infrared cut
- infrared
- transmittance
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 116
- 238000002834 transmittance Methods 0.000 claims abstract description 43
- 230000003595 spectral effect Effects 0.000 claims description 21
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 3
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 abstract 1
- 239000010408 film Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 16
- 238000005520 cutting process Methods 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000004031 devitrification Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000005365 phosphate glass Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 241001460678 Napo <wasp> Species 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 1
- 239000005303 fluorophosphate glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/17—Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/19—Silica-free oxide glass compositions containing phosphorus containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
Definitions
- the present invention relates to a near-infrared cut filter glass used for a visibility correction filter of a solid-state imaging device.
- Digital still cameras and video cameras use solid-state image sensors such as CCD and CMOS as image sensors. In recent years, these cameras have improved the image resolution accompanying the increase in the number of pixels. On the other hand, if the number of pixels is increased without increasing the light receiving area of the solid-state imaging device, the area of the unit pixel size is reduced. Due to the decrease in the absolute amount of incident light, the number of electrons for each pixel that is the source of the output signal decreases, resulting in a problem that the sensor sensitivity decreases.
- the component on the short wavelength side of the electromagnetic wave incident on the semiconductor layer has a large proportion of absorption in the semiconductor layer and is largely absorbed on the surface of the semiconductor layer, whereas on the long wavelength side
- This component means that since the absorption ratio in the semiconductor layer is small, the degree of absorption at the surface of the semiconductor layer is small and it reaches a deeper place. For this reason, when the sensitivity of the solid-state imaging device is improved by increasing the film thickness of the semiconductor layer, it is necessary to cut the long wavelength component in the incident light to the solid-state imaging device more reliably than before.
- the solid-state imaging device since the solid-state imaging device has spectral sensitivity ranging from the visible region to the near infrared region near 1100 nm, it is not possible to obtain good color reproducibility as it is. Therefore, the visibility is corrected using a near-infrared cut filter glass to which a specific substance that absorbs infrared rays is added.
- This near-infrared cut filter glass has been proposed as an optical glass in which CuO is added to an aluminophosphate-based glass or fluorophosphate-based glass so as to selectively absorb light in the near-infrared region and to have high weather resistance. (See Patent Documents 3 and 4).
- the spectral characteristics of the conventional near-infrared cut filter glass have a problem that a steep cut-off characteristic cannot be realized particularly in the wavelength region near 600 to 700 nm. Therefore, there is a demand for a glass having spectral characteristics that can selectively cut light in the near infrared region while maintaining high visible region transmittance.
- a method for improving the near-infrared light cutting performance of the near-infrared cut filter glass the following methods are known.
- One method is to increase the amount of CuO added to the glass containing a Cu 2+ component that absorbs light in the near infrared region.
- the amount of CuO added is increased, the transmittance in the near infrared region can be kept low, but there is a disadvantage that the visible region transmittance is also lowered.
- a dielectric multilayer film in which several tens of dielectric thin films having different refractive indexes are alternately laminated is formed on the optical action surface of the near infrared cut filter glass.
- the mechanism for cutting light in the near-infrared region by the dielectric multilayer film is based on the light reflection effect due to the interference of substances having a refractive index difference. Cut-off characteristics can be realized.
- the present invention has been made on the basis of such a background, and provides a near-infrared cut filter glass capable of keeping the near-infrared transmittance low while maintaining high visible-range transmittance at a low cost. With the goal.
- the present inventor made a conventional near-infrared cut made of phosphate glass or fluorophosphate glass by making the phosphate glass composition into a specific range. It has been found that a near-infrared cut filter glass capable of further reducing the near-infrared region transmittance while maintaining the visible region transmittance high as compared with the filter glass is obtained.
- a near-infrared cut filter glass capable of further reducing the near-infrared region transmittance while maintaining the visible region transmittance high as compared with the filter glass is obtained.
- the distortion of the structure of Cu 2+ in the glass is small, paying attention to the light absorption of Cu 2+ in the near infrared region, the weaker the field strength of the modified oxide in the glass, It was thought that it was easy to coordinate and the distortion around Cu 2+ was reduced.
- the phosphate glass composition suitable as a near-infrared cut filter glass which can make the absorption of the light of the near-infrared region by Cu ⁇ 2+> in glass function more highly was discovered.
- the near infrared cut filter glass of the present invention is In mass% display of the following oxide conversion, P 2 O 5 65-85%, Al 2 O 3 1-20%, B 2 O 3 0-1.5%, Li 2 O 0-2%, Na 2 O 0.5-15%, K 2 O 0-20%, Li 2 O + Na 2 O + K 2 O 1-20%, MgO 0-2%, CaO 0-2%, SrO 0-5%, BaO 0-10%, MgO + CaO + SrO + BaO 0.5-10%, CuO 0.5-20%, Sb 2 O 3 0-5%, And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15, (Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 1.5 to 15, It is characterized by being.
- the near infrared cut filter glass of the present invention is In mass% display of the following oxide conversion, P 2 O 5 65-85%, Al 2 O 3 1-20%, B 2 O 3 0-1%, Li 2 O 0-2%, Na 2 O 1-15%, K 2 O 0-20%, Li 2 O + Na 2 O + K 2 O 1-20%, MgO 0-2%, CaO 0-2%, SrO 0-5%, BaO 0-10%, MgO + CaO + SrO + BaO 1-10%, CuO 0.5-20%, Sb 2 O 3 0-5% And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15, (Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 2-15, It is characterized by being.
- the near-infrared cut filter glass of the present invention has a spectral transmittance of 2.5% at a wavelength of 900 nm when converted so that the wavelength showing a transmittance of 50% at a spectral transmittance of 600 to 700 nm is 650 nm.
- the spectral transmittance at a wavelength of 1000 nm is 3.5% or less, and the spectral transmittance at a wavelength of 1100 nm is 7% or less.
- the near-infrared cut filter glass of the present invention is characterized by substantially not containing F, PbO, As 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 , ZnO, and / or rare earth elements. .
- the visible light transmittance can be increased without increasing the CuO content in the glass or providing a dielectric multilayer film (near infrared cut film). It is possible to provide a near-infrared cut filter glass that can keep the transmittance of light in the near-infrared region low while maintaining a high value at low cost.
- a steep cut-off characteristic can be realized in the wavelength region near 600 to 700 nm.
- the present invention achieves the object by the above-described configuration, and the reason why the content (indicated by mass%) of each component constituting the near-infrared cut filter glass of the present invention is limited as described above will be described below. .
- P 2 O 5 is a main component (glass-forming oxide) that forms glass, and is an essential component for improving near-infrared cutting properties. However, if it is less than 65%, the effect cannot be obtained sufficiently, and 85% If it exceeds, the weather resistance is lowered, which is not preferable. Preferably it is 70 to 80%, more preferably 73 to 77%.
- Al 2 O 3 is an essential component for improving the weather resistance, but if it is less than 1%, the effect cannot be sufficiently obtained, and if it exceeds 20%, the glass becomes unstable and the near-infrared cut property is reduced. It is not preferable. Preferably it is 4 to 17%, more preferably 7 to 11%.
- B 2 O 3 is not an essential component, it has the effect of lowering the liquidus temperature of the glass. However, if it exceeds 1.5%, the near-infrared cutting property is deteriorated, which is not preferable. Preferably it is 1% or less, More preferably, it is 0.5% or less, and it is most preferable not to contain.
- Li 2 O is not an essential component, it has an effect of enhancing near-infrared cutability and softening the glass. However, if it exceeds 2%, the glass becomes unstable, which is not preferable. Preferably it is 0.3 to 1.5%, more preferably 0.6 to 1%.
- Na 2 O is an essential component for enhancing the near-infrared cutting property and softening the glass. However, if it is less than 0.5%, the effect cannot be sufficiently obtained, and if it exceeds 15%, the glass becomes unstable. It is not preferable. Preferably it is 1 to 15%, more preferably 3 to 10%, and most preferably 5 to 9%.
- K 2 O has an effect of enhancing near-infrared cutability and softening the glass, but if over 20%, the glass becomes unstable, which is not preferable. Preferably it is 1 to 15%, more preferably 2 to 10%. Most preferred is 3-5%.
- Li 2 O + Na 2 O + K 2 O is an essential component for improving near-infrared cutability and improving meltability, but if it is less than 1%, the effect is not sufficient, and if it exceeds 20%, the glass becomes unstable. Therefore, it is not preferable. Preferably it is 3 to 15%, more preferably 5 to 12%. 7-10% is most preferred.
- MgO is not an essential component, it has the effect of increasing the fracture toughness of the glass, but if it exceeds 2%, it is not preferable because the near-infrared cutting property is lowered. Preferably it is 1% or less, and it is more preferable not to contain.
- CaO is not an essential component, it has the effect of increasing the fracture toughness of the glass. However, if it exceeds 2%, the near-infrared cutting property is lowered, which is not preferable. Preferably it is 1.5% or less, and it is more preferable not to contain.
- SrO is not an essential component, it has the effect of lowering the liquidus temperature of the glass, but if it exceeds 5%, the near-infrared cutting property is lowered, which is not preferable.
- it is 1 to 4%, more preferably 2 to 3%.
- BaO is not an essential component, it has the effect of lowering the liquidus temperature of the glass, but if it exceeds 10%, it is not preferable because the near-infrared cut property is lowered. Preferably it is 1 to 5%, more preferably 2 to 3%.
- MgO + CaO + SrO + BaO is an essential component for increasing the fracture toughness of the glass and lowering the liquidus temperature of the glass. However, if it is less than 0.5%, the effect is not sufficient, and if it exceeds 10%, the glass is unstable. This is not preferable. Preferably it is 1 to 10%, more preferably 1.5 to 5%, and most preferably 2 to 3%.
- CuO is an essential component for improving the near-infrared cutting property, but if it is less than 0.5%, the effect cannot be sufficiently obtained, and if it exceeds 20%, the visible region transmittance is lowered, which is not preferable. Preferably it is 1 to 15%, more preferably 2 to 10%. Most preferably, it is 3 to 7%.
- Sb 2 O 3 is not an essential component, it can be contained as a fining agent or an oxidizing agent.
- Sb 2 O 3 When Sb 2 O 3 is contained, the effect is not sufficiently obtained if it is less than 0.1%, and if it exceeds 5%, the glass becomes unstable, which is not preferable.
- the content is 0.2 to 1%.
- the near-infrared cut filter glass of the present invention in order to obtain spectral characteristics with high visible region transmittance and low near-infrared region light transmittance, specifically, a steep cut-off property of light in the vicinity of 600 to 700 nm. Reduces the distortion of the Cu 2+ 6-coordinate structure in the glass and shifts the absorption peak of Cu 2+ to the longer wavelength side, that is, makes the absorption of light in the near infrared region by Cu 2+ in the glass more functional. This is very important.
- the field strength is the valence Z
- Z / r 2 which represents the degree of strength with which the cation attracts oxygen
- the glass of the present invention preferably contains substantially no F, PbO, As 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 , ZnO, and / or rare earth elements.
- F, As 2 O 3 , CeO 2 and the like are used in conventional glasses as excellent fining agents capable of generating a fining gas in a wide temperature range.
- PbO is used as a component that lowers the viscosity of the glass and improves manufacturing workability.
- F, PbO, As 2 O 3 and the like are environmentally hazardous substances, it is desirable that they are not contained as much as possible.
- CeO 2 , V 2 O 5, etc. when contained in glass, decreases the transmittance in the visible region of the glass, so in the near-infrared cut filter glass of the present invention that requires high transmittance in the visible region. It is desirable that it is not contained as much as possible. Moreover, since SiO 2 , ZnO, rare earth elements and the like are contained in the glass, the near-infrared cut property of the glass is lowered, so that it is preferably not contained in the near-infrared cut filter glass of the present invention. Note that “substantially not contained” means that it is not intended to be used as a raw material, and it is regarded as substantially free of raw material components and inevitable impurities mixed in from the manufacturing process. Further, considering the inevitable impurities, the fact that it does not contain substantially means that the content is 0.05% or less.
- the spectral characteristics of the near-infrared cut filter glass of the present invention are as follows.
- the spectral transmittance at a wavelength of 600 to 700 nm is converted so that the wavelength showing a transmittance of 50% is 650 nm
- the spectral transmittance at a wavelength of 900 nm is 2. It is preferably 5% or less, more preferably 2% or less, and even more preferably 1.5% or less. 1% or less is extremely preferable, and 0.5% or less is most preferable.
- the spectral transmittance at a wavelength of 1000 nm is preferably 3.5% or less, more preferably 3% or less, and even more preferably 2% or less.
- the spectral transmittance at a wavelength of 1100 nm is preferably 7% or less, more preferably 5% or less, and even more preferably 4% or less. It is extremely preferably 2% or less, and most preferably 1% or less.
- the spectral characteristics of the glass are the transmittance characteristics converted so that the wavelength at which the transmittance is 50% is 650 nm. This is because the transmittance of the glass varies depending on the thickness, but if it is a homogeneous glass, the transmittance of a predetermined thickness can be obtained by calculation if the thickness and transmittance of the glass in the direction of light transmission are known. This is because it can.
- the near infrared cut filter glass of the present invention can be produced as follows. First, the raw materials are weighed and mixed so that the obtained glass has the above composition range. This raw material mixture is placed in a platinum crucible and heated and melted at a temperature of 900 to 1400 ° C. in an electric furnace. After sufficiently stirring and clarifying, it is cast into a mold, slowly cooled, then cut and polished to form a flat plate having a predetermined inner thickness.
- the near-infrared cut filter glass of the present invention is also characterized in that the glass is stable by having the above glass configuration.
- “Stable glass” includes two things: stability in the temperature range near the liquidus temperature and stability in the temperature range near the glass transition point Tg. Specifically, the stability in the temperature range near the liquidus temperature is that the liquidus temperature is low and the growth of devitrification is slow near the liquidus temperature, and the temperature range near the glass transition point Tg.
- the stability at is that the crystallization temperature Tc and the crystallization start temperature Tx are high, and the growth of devitrification is slow in the vicinity of Tc ⁇ Tx. Thereby, it is possible to make the glass easy to manufacture, which is less likely to cause devitrification in the glass melt molding process, has a high yield.
- the near-infrared cut filter glass of the present invention is excellent in near-infrared cutability as described above, and is excellent in devitrification resistance because it is a stable glass. For this reason, it can be suitably used as a visibility correction filter for a solid-state imaging device. And without increasing the content of CuO in the glass or providing a dielectric multilayer film (near infrared cut film), the near infrared cut filter glass cuts light in the near infrared range while maintaining a high visible range transmittance. It is possible to improve the property.
- the near infrared cut filter glass of the present invention In order to obtain desired spectral characteristics, it is naturally possible to provide a dielectric multilayer film (near infrared cut film) in the near infrared cut filter glass of the present invention, but it is provided because the near infrared cut property of the glass is high. It is possible to reduce the number of layers of the dielectric multilayer film. Moreover, even when the dielectric multilayer film is provided on the glass, the manufacturing cost of the near-infrared cut filter glass can be reduced as compared with the conventional case.
- a dielectric multilayer film near infrared cut film
- Examples and comparative examples of the present invention are shown in Tables 1 and 2.
- Examples 1 to 14 are Examples, and Examples 15 to 17 are Comparative Examples.
- the blank of each component means that the content is 0% by mass.
- .SIGMA.R 2 O is Li 2 O, it refers to the total amount of the content of Na 2 O, and K 2 O, ⁇ RO means MgO, CaO, SrO, and the total amount of the content of BaO .
- the transmittance was evaluated by the following method.
- the transmittance was evaluated using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Perkin Elmer, trade name: LAMBDA 950). Specifically, a glass sample having a length of 20 mm ⁇ width of 20 mm ⁇ thickness of 0.3 mm and optically polished on both sides was prepared and measured.
- LAMBDA 950 ultraviolet-visible-near-infrared spectrophotometer
- each glass of the comparative example has a poor light cutting property in the near-infrared region of 650 to 1200 nm compared to each glass of the example.
- each glass of the Example which concerns on this invention has high near-infrared cut property.
- the cut-off properties of light in the wavelength region near 600 to 700 nm are compared, it can be seen that the glass of the example is steeper than the glass of the comparative example.
- the near-infrared cut filter glass of the present invention eliminates the need to provide a near-infrared cut film (dielectric multilayer film) on the glass surface to supplement the near-infrared cut ability, or even if a near-infrared cut film is provided. Since the number of film layers can be reduced and the film thickness can be reduced, defects due to film forming can be suppressed. Thereby, it becomes possible to manufacture a near-infrared cut filter glass at low cost. Moreover, since the visible region transmittance of the glass is high and the near-infrared cut property is high, it can be suitably used as a near-infrared cut filter glass for a solid-state imaging device.
- the near-infrared light absorption by Cu 2+ in the glass is reduced by reducing the field strength of the modified oxide. Since it can function even higher, it is possible to provide a near-infrared cut filter glass that can keep the transmittance of light in the near infrared region low while maintaining high transmittance in the visible region. It is useful above. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-23393 filed on October 16, 2009 are cited herein as the disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Glass Compositions (AREA)
Abstract
Disclosed is a near-infrared ray cut filter glass which can have a high visible light transmittance for a long period, also can have a reduced near-infrared ray transmittance, and can be produced at a low cost.
The near-infrared ray cut filter glass is characterized by containing, in mass% in terms of oxide content, 65 to 85% of P2O5, 1 to 20% of Al2O3, 0 to 1.5% of B2O3, 0 to 2% of Li2O, 0.5 to 15% of Na2O, 0 to 20% of K2O, 1 to 20% of Li2O+Na2O+K2O, 0 to 2% of MgO, 0 to 2% of CaO, 0 to 5% of SrO, 0 to 10% of BaO, 0.5 to 10% of MgO+CaO+SrO+BaO, 0.5 to 20% of CuO, and 0 to 5% of Sb2O3, and having a P2O5/(Al2O3+B2O3) ratio of 5 to 15 and a (Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO) ratio of 1.5 to 15.
Description
本発明は、固体撮像装置の視感度補正フィルタに使用される近赤外線カットフィルタガラスに関するものである。
The present invention relates to a near-infrared cut filter glass used for a visibility correction filter of a solid-state imaging device.
デジタルスチルカメラやビデオカメラには、イメージセンサであるCCDやCMOS等の固体撮像素子が用いられている。近年、これらのカメラは、高画素化に伴う画像解像度の向上が進展しているが、その反面、固体撮像素子の受光面積を大きくすることなく高画素化を行うと、単位画素サイズの面積縮小に伴う入射光の絶対量の減少により、出力信号の元になる画素毎の電子数が減少し、センサ感度が低下するという問題が生じる。
Digital still cameras and video cameras use solid-state image sensors such as CCD and CMOS as image sensors. In recent years, these cameras have improved the image resolution accompanying the increase in the number of pixels. On the other hand, if the number of pixels is increased without increasing the light receiving area of the solid-state imaging device, the area of the unit pixel size is reduced. Due to the decrease in the absolute amount of incident light, the number of electrons for each pixel that is the source of the output signal decreases, resulting in a problem that the sensor sensitivity decreases.
これに対して、固体撮像素子の感度を向上するためのいくつかの手法が提案されており、そのひとつに素子の半導体層の膜厚を厚くする方法が知られている(特許文献1参照)。これによれば、半導体層の膜厚が厚いほど光の吸収量が多くなり、光量に応じた電流の出力が増加するとされている。
しかし、半導体層の膜厚を増加すると、長波長成分(赤外領域の光)の感度が上がるという別の問題が生じる。これは、特許文献2等に詳細に説明されているが、要約すると、半導体層による電磁波の吸収係数は、長波長側の成分の方が、短波長側の成分よりも小さいという特性がある。このことは、半導体層に入射した電磁波の内の短波長側の成分は、半導体層での吸収の割合が大きく、半導体層の表面で吸収されてしまう度合いが大きいのに対して、長波長側の成分は、半導体層での吸収の割合が小さいので、半導体層の表面で吸収されてしまう度合いが小さく、より深いところまで達することを意味する。このため、半導体層の膜厚を増加することにより固体撮像素子の感度を向上する場合、固体撮像素子への入射光における長波長の成分を従来以上に確実にカットする必要がある。 On the other hand, several methods for improving the sensitivity of the solid-state imaging device have been proposed, and one of them is a method of increasing the thickness of the semiconductor layer of the device (see Patent Document 1). . According to this, the thicker the semiconductor layer is, the more light is absorbed, and the current output corresponding to the amount of light is increased.
However, when the film thickness of the semiconductor layer is increased, another problem arises that the sensitivity of the long wavelength component (light in the infrared region) increases. This is described in detail inPatent Document 2 and the like. In summary, the absorption coefficient of electromagnetic waves by the semiconductor layer has a characteristic that the component on the long wavelength side is smaller than the component on the short wavelength side. This means that the component on the short wavelength side of the electromagnetic wave incident on the semiconductor layer has a large proportion of absorption in the semiconductor layer and is largely absorbed on the surface of the semiconductor layer, whereas on the long wavelength side This component means that since the absorption ratio in the semiconductor layer is small, the degree of absorption at the surface of the semiconductor layer is small and it reaches a deeper place. For this reason, when the sensitivity of the solid-state imaging device is improved by increasing the film thickness of the semiconductor layer, it is necessary to cut the long wavelength component in the incident light to the solid-state imaging device more reliably than before.
しかし、半導体層の膜厚を増加すると、長波長成分(赤外領域の光)の感度が上がるという別の問題が生じる。これは、特許文献2等に詳細に説明されているが、要約すると、半導体層による電磁波の吸収係数は、長波長側の成分の方が、短波長側の成分よりも小さいという特性がある。このことは、半導体層に入射した電磁波の内の短波長側の成分は、半導体層での吸収の割合が大きく、半導体層の表面で吸収されてしまう度合いが大きいのに対して、長波長側の成分は、半導体層での吸収の割合が小さいので、半導体層の表面で吸収されてしまう度合いが小さく、より深いところまで達することを意味する。このため、半導体層の膜厚を増加することにより固体撮像素子の感度を向上する場合、固体撮像素子への入射光における長波長の成分を従来以上に確実にカットする必要がある。 On the other hand, several methods for improving the sensitivity of the solid-state imaging device have been proposed, and one of them is a method of increasing the thickness of the semiconductor layer of the device (see Patent Document 1). . According to this, the thicker the semiconductor layer is, the more light is absorbed, and the current output corresponding to the amount of light is increased.
However, when the film thickness of the semiconductor layer is increased, another problem arises that the sensitivity of the long wavelength component (light in the infrared region) increases. This is described in detail in
他方、固体撮像素子は、可視領域から1100nm付近の近赤外域にわたる分光感度を有しているため、そのままでは良好な色再現性を得ることができない。そのため、赤外線を吸収する特定の物質が添加された近赤外線カットフィルタガラスを用いて視感度を補正している。この近赤外線カットフィルタガラスは、近赤外域の光を選択的に吸収し、かつ高い耐候性を有するように、アルミノリン酸塩系ガラスやフツリン酸塩系ガラスにCuOを添加した光学ガラスが提案されている(特許文献3、及び4参照)。
On the other hand, since the solid-state imaging device has spectral sensitivity ranging from the visible region to the near infrared region near 1100 nm, it is not possible to obtain good color reproducibility as it is. Therefore, the visibility is corrected using a near-infrared cut filter glass to which a specific substance that absorbs infrared rays is added. This near-infrared cut filter glass has been proposed as an optical glass in which CuO is added to an aluminophosphate-based glass or fluorophosphate-based glass so as to selectively absorb light in the near-infrared region and to have high weather resistance. (See Patent Documents 3 and 4).
しかしながら、従来の近赤外線カットフィルタガラスの分光特性は、特に600~700nm付近の波長域において、急峻なカットオフ特性を実現できないという問題がある。そのため、可視域透過率を高く維持しつつ、近赤外域の光を選択的にカットすることができる分光特性を備えるガラスが求められている。
近赤外線カットフィルタガラスにおける近赤外域の光のカット性能を向上する方法としては、以下に述べる方法が知られている。
1つの方法として、近赤外域の光を吸収するCu2+成分を含むCuOのガラスへの添加量を増やすことである。しかしながら、CuOの添加量を増やすと近赤外域の透過率は低く抑えられるものの、可視域透過率も併せて低下するという弊害が生じる。 However, the spectral characteristics of the conventional near-infrared cut filter glass have a problem that a steep cut-off characteristic cannot be realized particularly in the wavelength region near 600 to 700 nm. Therefore, there is a demand for a glass having spectral characteristics that can selectively cut light in the near infrared region while maintaining high visible region transmittance.
As a method for improving the near-infrared light cutting performance of the near-infrared cut filter glass, the following methods are known.
One method is to increase the amount of CuO added to the glass containing a Cu 2+ component that absorbs light in the near infrared region. However, when the amount of CuO added is increased, the transmittance in the near infrared region can be kept low, but there is a disadvantage that the visible region transmittance is also lowered.
近赤外線カットフィルタガラスにおける近赤外域の光のカット性能を向上する方法としては、以下に述べる方法が知られている。
1つの方法として、近赤外域の光を吸収するCu2+成分を含むCuOのガラスへの添加量を増やすことである。しかしながら、CuOの添加量を増やすと近赤外域の透過率は低く抑えられるものの、可視域透過率も併せて低下するという弊害が生じる。 However, the spectral characteristics of the conventional near-infrared cut filter glass have a problem that a steep cut-off characteristic cannot be realized particularly in the wavelength region near 600 to 700 nm. Therefore, there is a demand for a glass having spectral characteristics that can selectively cut light in the near infrared region while maintaining high visible region transmittance.
As a method for improving the near-infrared light cutting performance of the near-infrared cut filter glass, the following methods are known.
One method is to increase the amount of CuO added to the glass containing a Cu 2+ component that absorbs light in the near infrared region. However, when the amount of CuO added is increased, the transmittance in the near infrared region can be kept low, but there is a disadvantage that the visible region transmittance is also lowered.
他の方法として、屈折率差のある2種類以上の誘電体薄膜を数十層にも交互積層した誘電体多層膜(近赤外線カット膜)を近赤外線カットフィルタガラスの光学作用面に形成することで、ガラスの近赤外線カット性を補うことが行われている。
誘電体多層膜により近赤外域の光をカットするしくみは、ガラス中のCu2+成分による光の吸収作用とは異なり、屈折率差を有する物質の干渉による光の反射作用によるものであり、急峻なカットオフ特性を実現できる。しかしながら、誘電体多層膜に入射した近赤外域の光は、誘電体多層膜により反射されるものの減衰することなく固体撮像装置内で迷光となり、この迷光が再度誘電体多層膜に斜入射することで、誘電体多層膜では十分にカットできずに固体撮像素子に到達し、ノイズとして認識される可能性がある。また、この方法は近赤外線カットフィルタガラスの製造コストが高くなるという問題がある。
本発明は、このような背景に基づいてなされたものであり、可視域透過率を高く維持しつつ、近赤外域透過率を低く抑えることができる近赤外線カットフィルタガラスを低コストで提供することを目的とする。 As another method, a dielectric multilayer film (near infrared cut film) in which several tens of dielectric thin films having different refractive indexes are alternately laminated is formed on the optical action surface of the near infrared cut filter glass. In order to compensate for the near-infrared cutting property of glass.
Unlike the light absorption effect by the Cu 2+ component in the glass, the mechanism for cutting light in the near-infrared region by the dielectric multilayer film is based on the light reflection effect due to the interference of substances having a refractive index difference. Cut-off characteristics can be realized. However, near-infrared light incident on the dielectric multilayer film is reflected by the dielectric multilayer film but becomes stray light in the solid-state imaging device without being attenuated, and this stray light is incident on the dielectric multilayer film again obliquely. Therefore, there is a possibility that the dielectric multilayer film cannot be sufficiently cut and reaches the solid-state imaging device and is recognized as noise. In addition, this method has a problem that the manufacturing cost of the near infrared cut filter glass is increased.
The present invention has been made on the basis of such a background, and provides a near-infrared cut filter glass capable of keeping the near-infrared transmittance low while maintaining high visible-range transmittance at a low cost. With the goal.
誘電体多層膜により近赤外域の光をカットするしくみは、ガラス中のCu2+成分による光の吸収作用とは異なり、屈折率差を有する物質の干渉による光の反射作用によるものであり、急峻なカットオフ特性を実現できる。しかしながら、誘電体多層膜に入射した近赤外域の光は、誘電体多層膜により反射されるものの減衰することなく固体撮像装置内で迷光となり、この迷光が再度誘電体多層膜に斜入射することで、誘電体多層膜では十分にカットできずに固体撮像素子に到達し、ノイズとして認識される可能性がある。また、この方法は近赤外線カットフィルタガラスの製造コストが高くなるという問題がある。
本発明は、このような背景に基づいてなされたものであり、可視域透過率を高く維持しつつ、近赤外域透過率を低く抑えることができる近赤外線カットフィルタガラスを低コストで提供することを目的とする。 As another method, a dielectric multilayer film (near infrared cut film) in which several tens of dielectric thin films having different refractive indexes are alternately laminated is formed on the optical action surface of the near infrared cut filter glass. In order to compensate for the near-infrared cutting property of glass.
Unlike the light absorption effect by the Cu 2+ component in the glass, the mechanism for cutting light in the near-infrared region by the dielectric multilayer film is based on the light reflection effect due to the interference of substances having a refractive index difference. Cut-off characteristics can be realized. However, near-infrared light incident on the dielectric multilayer film is reflected by the dielectric multilayer film but becomes stray light in the solid-state imaging device without being attenuated, and this stray light is incident on the dielectric multilayer film again obliquely. Therefore, there is a possibility that the dielectric multilayer film cannot be sufficiently cut and reaches the solid-state imaging device and is recognized as noise. In addition, this method has a problem that the manufacturing cost of the near infrared cut filter glass is increased.
The present invention has been made on the basis of such a background, and provides a near-infrared cut filter glass capable of keeping the near-infrared transmittance low while maintaining high visible-range transmittance at a low cost. With the goal.
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、リン酸塩系ガラス組成を特定範囲とすることで、リン酸塩系ガラスやフツリン酸塩系ガラスからなる従来の近赤外線カットフィルタガラスに比べ、可視域透過率を高く維持しつつ近赤外域透過率を一層低くすることが可能な近赤外線カットフィルタガラスが得られることを見出した。
特に、ガラス中のCu2+の構造の歪みが小さい場合、Cu2+の近赤外域の光の吸収性が上がることに着目し、ガラス中の修飾酸化物のフィールドストレングスが弱い方が非架橋酸素を配位させやすく、Cu2+周りの歪みが小さくなると考えた。これは、Cu2+周りの歪みが小さくなると、2Eg→2T2gのバンド間のエネルギー差が小さくなり、Cu2+の吸収ピークが長波長側へ移動するためである。これにより、ガラス中のCu2+による近赤外域の光の吸収を一層高く機能させることができる近赤外線カットフィルタガラスとして好適なリン酸塩系ガラス組成を見出した。 As a result of intensive studies to achieve the above object, the present inventor made a conventional near-infrared cut made of phosphate glass or fluorophosphate glass by making the phosphate glass composition into a specific range. It has been found that a near-infrared cut filter glass capable of further reducing the near-infrared region transmittance while maintaining the visible region transmittance high as compared with the filter glass is obtained.
In particular, when the distortion of the structure of Cu 2+ in the glass is small, paying attention to the light absorption of Cu 2+ in the near infrared region, the weaker the field strength of the modified oxide in the glass, It was thought that it was easy to coordinate and the distortion around Cu 2+ was reduced. This is because when the strain around Cu 2+ decreases, the energy difference between the bands of 2 E g → 2 T 2g decreases, and the absorption peak of Cu 2+ moves to the longer wavelength side. Thereby, the phosphate glass composition suitable as a near-infrared cut filter glass which can make the absorption of the light of the near-infrared region by Cu <2+> in glass function more highly was discovered.
特に、ガラス中のCu2+の構造の歪みが小さい場合、Cu2+の近赤外域の光の吸収性が上がることに着目し、ガラス中の修飾酸化物のフィールドストレングスが弱い方が非架橋酸素を配位させやすく、Cu2+周りの歪みが小さくなると考えた。これは、Cu2+周りの歪みが小さくなると、2Eg→2T2gのバンド間のエネルギー差が小さくなり、Cu2+の吸収ピークが長波長側へ移動するためである。これにより、ガラス中のCu2+による近赤外域の光の吸収を一層高く機能させることができる近赤外線カットフィルタガラスとして好適なリン酸塩系ガラス組成を見出した。 As a result of intensive studies to achieve the above object, the present inventor made a conventional near-infrared cut made of phosphate glass or fluorophosphate glass by making the phosphate glass composition into a specific range. It has been found that a near-infrared cut filter glass capable of further reducing the near-infrared region transmittance while maintaining the visible region transmittance high as compared with the filter glass is obtained.
In particular, when the distortion of the structure of Cu 2+ in the glass is small, paying attention to the light absorption of Cu 2+ in the near infrared region, the weaker the field strength of the modified oxide in the glass, It was thought that it was easy to coordinate and the distortion around Cu 2+ was reduced. This is because when the strain around Cu 2+ decreases, the energy difference between the bands of 2 E g → 2 T 2g decreases, and the absorption peak of Cu 2+ moves to the longer wavelength side. Thereby, the phosphate glass composition suitable as a near-infrared cut filter glass which can make the absorption of the light of the near-infrared region by Cu <2+> in glass function more highly was discovered.
本発明の近赤外線カットフィルタガラスは、
下記酸化物換算の質量%表示で、
P2O5 65~85%、
Al2O3 1~20%、
B2O3 0~1.5%、
Li2O 0~2%、
Na2O 0.5~15%、
K2O 0~20%、
Li2O+Na2O+K2O 1~20%、
MgO 0~2%、
CaO 0~2%、
SrO 0~5%、
BaO 0~10%、
MgO+CaO+SrO+BaO 0.5~10%、
CuO 0.5~20%、
Sb2O3 0~5%、
を含み、かつ
P2O5/(Al2O3+B2O3) 5~15、
(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO) 1.5~15、
であることを特徴とする。 The near infrared cut filter glass of the present invention is
In mass% display of the following oxide conversion,
P 2 O 5 65-85%,
Al 2 O 3 1-20%,
B 2 O 3 0-1.5%,
Li 2 O 0-2%,
Na 2 O 0.5-15%,
K 2 O 0-20%,
Li 2 O + Na 2 O + K 2 O 1-20%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 0-10%,
MgO + CaO + SrO + BaO 0.5-10%,
CuO 0.5-20%,
Sb 2 O 3 0-5%,
And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15,
(Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 1.5 to 15,
It is characterized by being.
下記酸化物換算の質量%表示で、
P2O5 65~85%、
Al2O3 1~20%、
B2O3 0~1.5%、
Li2O 0~2%、
Na2O 0.5~15%、
K2O 0~20%、
Li2O+Na2O+K2O 1~20%、
MgO 0~2%、
CaO 0~2%、
SrO 0~5%、
BaO 0~10%、
MgO+CaO+SrO+BaO 0.5~10%、
CuO 0.5~20%、
Sb2O3 0~5%、
を含み、かつ
P2O5/(Al2O3+B2O3) 5~15、
(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO) 1.5~15、
であることを特徴とする。 The near infrared cut filter glass of the present invention is
In mass% display of the following oxide conversion,
P 2 O 5 65-85%,
Al 2 O 3 1-20%,
B 2 O 3 0-1.5%,
Li 2 O 0-2%,
Na 2 O 0.5-15%,
K 2 O 0-20%,
Li 2 O + Na 2 O + K 2 O 1-20%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 0-10%,
MgO + CaO + SrO + BaO 0.5-10%,
CuO 0.5-20%,
Sb 2 O 3 0-5%,
And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15,
(Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 1.5 to 15,
It is characterized by being.
本発明の近赤外線カットフィルタガラスは、
下記酸化物換算の質量%表示で、
P2O5 65~85%、
Al2O3 1~20%、
B2O3 0~1%、
Li2O 0~2%、
Na2O 1~15%、
K2O 0~20%、
Li2O+Na2O+K2O 1~20%、
MgO 0~2%、
CaO 0~2%、
SrO 0~5%、
BaO 0~10%、
MgO+CaO+SrO+BaO 1~10%、
CuO 0.5~20%、
Sb2O3 0~5%
を含み、かつ
P2O5/(Al2O3+B2O3) 5~15、
(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO) 2~15、
であることを特徴とする。 The near infrared cut filter glass of the present invention is
In mass% display of the following oxide conversion,
P 2 O 5 65-85%,
Al 2 O 3 1-20%,
B 2 O 3 0-1%,
Li 2 O 0-2%,
Na 2 O 1-15%,
K 2 O 0-20%,
Li 2 O + Na 2 O + K 2 O 1-20%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 0-10%,
MgO + CaO + SrO + BaO 1-10%,
CuO 0.5-20%,
Sb 2 O 3 0-5%
And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15,
(Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 2-15,
It is characterized by being.
下記酸化物換算の質量%表示で、
P2O5 65~85%、
Al2O3 1~20%、
B2O3 0~1%、
Li2O 0~2%、
Na2O 1~15%、
K2O 0~20%、
Li2O+Na2O+K2O 1~20%、
MgO 0~2%、
CaO 0~2%、
SrO 0~5%、
BaO 0~10%、
MgO+CaO+SrO+BaO 1~10%、
CuO 0.5~20%、
Sb2O3 0~5%
を含み、かつ
P2O5/(Al2O3+B2O3) 5~15、
(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO) 2~15、
であることを特徴とする。 The near infrared cut filter glass of the present invention is
In mass% display of the following oxide conversion,
P 2 O 5 65-85%,
Al 2 O 3 1-20%,
B 2 O 3 0-1%,
Li 2 O 0-2%,
Na 2 O 1-15%,
K 2 O 0-20%,
Li 2 O + Na 2 O + K 2 O 1-20%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 0-10%,
MgO + CaO + SrO + BaO 1-10%,
CuO 0.5-20%,
Sb 2 O 3 0-5%
And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15,
(Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 2-15,
It is characterized by being.
また、本発明の近赤外線カットフィルタガラスは、波長600~700nmの分光透過率において透過率50%を示す波長が650nmとなるように換算した場合に、波長900nmにおける分光透過率が2.5%以下であり、波長1000nmにおける分光透過率が3.5%以下であり、波長1100nmにおける分光透過率が7%以下であることを特徴とする。
また、本発明の近赤外線カットフィルタガラスは、実質的にF、PbO、As2O3、CeO2、V2O5、SiO2、ZnO、および/または希土類元素を含まないことを特徴とする。 The near-infrared cut filter glass of the present invention has a spectral transmittance of 2.5% at a wavelength of 900 nm when converted so that the wavelength showing a transmittance of 50% at a spectral transmittance of 600 to 700 nm is 650 nm. The spectral transmittance at a wavelength of 1000 nm is 3.5% or less, and the spectral transmittance at a wavelength of 1100 nm is 7% or less.
Further, the near-infrared cut filter glass of the present invention is characterized by substantially not containing F, PbO, As 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 , ZnO, and / or rare earth elements. .
また、本発明の近赤外線カットフィルタガラスは、実質的にF、PbO、As2O3、CeO2、V2O5、SiO2、ZnO、および/または希土類元素を含まないことを特徴とする。 The near-infrared cut filter glass of the present invention has a spectral transmittance of 2.5% at a wavelength of 900 nm when converted so that the wavelength showing a transmittance of 50% at a spectral transmittance of 600 to 700 nm is 650 nm. The spectral transmittance at a wavelength of 1000 nm is 3.5% or less, and the spectral transmittance at a wavelength of 1100 nm is 7% or less.
Further, the near-infrared cut filter glass of the present invention is characterized by substantially not containing F, PbO, As 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 , ZnO, and / or rare earth elements. .
本発明によれば、リン酸塩系ガラス組成を特定範囲とすることで、ガラス中のCuOの含有量を増やしたり、誘電体多層膜(近赤外線カット膜)を設けることなく、可視域透過率を高く維持しつつ、近赤外域の光の透過率を低く抑えることができる近赤外線カットフィルタガラスを低コストで提供することが可能となる。
特に、本発明によれば、600~700nm付近の波長域において急峻なカットオフ特性を実現できる。 According to the present invention, by setting the phosphate glass composition to a specific range, the visible light transmittance can be increased without increasing the CuO content in the glass or providing a dielectric multilayer film (near infrared cut film). It is possible to provide a near-infrared cut filter glass that can keep the transmittance of light in the near-infrared region low while maintaining a high value at low cost.
In particular, according to the present invention, a steep cut-off characteristic can be realized in the wavelength region near 600 to 700 nm.
特に、本発明によれば、600~700nm付近の波長域において急峻なカットオフ特性を実現できる。 According to the present invention, by setting the phosphate glass composition to a specific range, the visible light transmittance can be increased without increasing the CuO content in the glass or providing a dielectric multilayer film (near infrared cut film). It is possible to provide a near-infrared cut filter glass that can keep the transmittance of light in the near-infrared region low while maintaining a high value at low cost.
In particular, according to the present invention, a steep cut-off characteristic can be realized in the wavelength region near 600 to 700 nm.
本発明は、上記構成により目的を達成したものであり、本発明の近赤外線カットフィルタガラスを構成する各成分の含有量(質量%で表示)を上記のように限定した理由を以下に説明する。
The present invention achieves the object by the above-described configuration, and the reason why the content (indicated by mass%) of each component constituting the near-infrared cut filter glass of the present invention is limited as described above will be described below. .
P2O5は、ガラスを形成する主成分(ガラス形成酸化物)であり、近赤外線カット性を高めるための必須成分であるが、65%未満ではその効果が十分得られず、85%を超えると耐候性が低下するため好ましくない。好ましくは70~80%であり、より好ましくは73~77%である。
P 2 O 5 is a main component (glass-forming oxide) that forms glass, and is an essential component for improving near-infrared cutting properties. However, if it is less than 65%, the effect cannot be obtained sufficiently, and 85% If it exceeds, the weather resistance is lowered, which is not preferable. Preferably it is 70 to 80%, more preferably 73 to 77%.
Al2O3は、耐候性を高めるための必須成分であるが、1%未満ではその効果が十分得られず、20%を超えるとガラスが不安定になり、近赤外線カット性が低下するため好ましくない。好ましくは4~17%であり、より好ましくは7~11%である。
Al 2 O 3 is an essential component for improving the weather resistance, but if it is less than 1%, the effect cannot be sufficiently obtained, and if it exceeds 20%, the glass becomes unstable and the near-infrared cut property is reduced. It is not preferable. Preferably it is 4 to 17%, more preferably 7 to 11%.
B2O3は、必須成分ではないものの、ガラスの液相温度を低くする効果があるが、1.5%を超えると近赤外線カット性が低下するため好ましくない。好ましくは1%以下であり、より好ましくは0.5%以下であり、含有しないことがもっとも好ましい。
Although B 2 O 3 is not an essential component, it has the effect of lowering the liquidus temperature of the glass. However, if it exceeds 1.5%, the near-infrared cutting property is deteriorated, which is not preferable. Preferably it is 1% or less, More preferably, it is 0.5% or less, and it is most preferable not to contain.
Li2Oは、必須成分ではないものの、近赤外線カット性を高め、ガラスを軟化させる効果があるが、2%を超えるとガラスが不安定になるため好ましくない。好ましくは0.3~1.5%であり、より好ましくは0.6~1%である。
Although Li 2 O is not an essential component, it has an effect of enhancing near-infrared cutability and softening the glass. However, if it exceeds 2%, the glass becomes unstable, which is not preferable. Preferably it is 0.3 to 1.5%, more preferably 0.6 to 1%.
Na2Oは、近赤外線カット性を高め、ガラスを軟化させるための必須成分であるが、0.5%未満ではその効果が十分得られず、15%を超えるとガラスが不安定になるため好ましくない。好ましくは1~15%であり、より好ましくは3~10%であり、5~9%がもっとも好ましい。
Na 2 O is an essential component for enhancing the near-infrared cutting property and softening the glass. However, if it is less than 0.5%, the effect cannot be sufficiently obtained, and if it exceeds 15%, the glass becomes unstable. It is not preferable. Preferably it is 1 to 15%, more preferably 3 to 10%, and most preferably 5 to 9%.
K2Oは、近赤外線カット性を高め、ガラスを軟化させる効果があるが、20%を超えるとガラスが不安定になるため好ましくない。好ましくは1~15%であり、より好ましくは2~10%である。3~5%がもっとも好ましい。
K 2 O has an effect of enhancing near-infrared cutability and softening the glass, but if over 20%, the glass becomes unstable, which is not preferable. Preferably it is 1 to 15%, more preferably 2 to 10%. Most preferred is 3-5%.
Li2O+Na2O+K2Oは、近赤外線カット性を高めると共に、溶融性を高めるための必須成分であるが、1%未満ではその効果が十分ではなく、20%を超えるとガラスが不安定になるため好ましくない。好ましくは3~15%であり、より好ましくは5~12%である。7~10%がもっとも好ましい。
Li 2 O + Na 2 O + K 2 O is an essential component for improving near-infrared cutability and improving meltability, but if it is less than 1%, the effect is not sufficient, and if it exceeds 20%, the glass becomes unstable. Therefore, it is not preferable. Preferably it is 3 to 15%, more preferably 5 to 12%. 7-10% is most preferred.
MgOは、必須成分ではないものの、ガラスの破壊靭性を高める効果があるが、2%を超えると近赤外線カット性が低下するため好ましくない。好ましくは1%以下であり、含有しないことがより好ましい。
Although MgO is not an essential component, it has the effect of increasing the fracture toughness of the glass, but if it exceeds 2%, it is not preferable because the near-infrared cutting property is lowered. Preferably it is 1% or less, and it is more preferable not to contain.
CaOは、必須成分ではないものの、ガラスの破壊靭性を高める効果があるが、2%を超えると近赤外線カット性が低下するため好ましくない。好ましくは1.5%以下であり、含有しないことがより好ましい。
Although CaO is not an essential component, it has the effect of increasing the fracture toughness of the glass. However, if it exceeds 2%, the near-infrared cutting property is lowered, which is not preferable. Preferably it is 1.5% or less, and it is more preferable not to contain.
SrOは、必須成分ではないものの、ガラスの液相温度を低くする効果があるが、5%を超えると近赤外線カット性が低下するため好ましくない。好ましくは1~4%であり、より好ましくは2~3%である。
Although SrO is not an essential component, it has the effect of lowering the liquidus temperature of the glass, but if it exceeds 5%, the near-infrared cutting property is lowered, which is not preferable. Preferably it is 1 to 4%, more preferably 2 to 3%.
BaOは、必須成分ではないものの、ガラスの液相温度を低くする効果があるが、10%を超えると近赤外線カット性が低下するため好ましくない。好ましくは1~5%であり、より好ましくは2~3%である。
Although BaO is not an essential component, it has the effect of lowering the liquidus temperature of the glass, but if it exceeds 10%, it is not preferable because the near-infrared cut property is lowered. Preferably it is 1 to 5%, more preferably 2 to 3%.
MgO+CaO+SrO+BaOは、ガラスの破壊靭性を高め、ガラスの液相温度を低くするために必須成分であるが、0.5%未満であるとその効果が十分ではなく、10%を超えるとガラスが不安定になるため好ましくない。好ましくは1~10%であり、より好ましくは1.5~5%であり、2~3%がもっとも好ましい。
MgO + CaO + SrO + BaO is an essential component for increasing the fracture toughness of the glass and lowering the liquidus temperature of the glass. However, if it is less than 0.5%, the effect is not sufficient, and if it exceeds 10%, the glass is unstable. This is not preferable. Preferably it is 1 to 10%, more preferably 1.5 to 5%, and most preferably 2 to 3%.
CuOは、近赤外線カット性を高めるための必須成分であるが、0.5%未満であるとその効果が十分に得られず、20%を超えると可視域透過率が低下するため好ましくない。好ましくは1~15%であり、より好ましくは2~10%である。もっとも好ましくは3~7%である。
CuO is an essential component for improving the near-infrared cutting property, but if it is less than 0.5%, the effect cannot be sufficiently obtained, and if it exceeds 20%, the visible region transmittance is lowered, which is not preferable. Preferably it is 1 to 15%, more preferably 2 to 10%. Most preferably, it is 3 to 7%.
Sb2O3は、必須成分ではないものの、清澄剤として、あるいは、酸化剤として含有させることができる。Sb2O3を含有させる場合には、0.1%未満であるとその効果が十分得られず、5%を超えるとガラスが不安定となるため好ましくない。好ましくは0.2~1%である。
Although Sb 2 O 3 is not an essential component, it can be contained as a fining agent or an oxidizing agent. When Sb 2 O 3 is contained, the effect is not sufficiently obtained if it is less than 0.1%, and if it exceeds 5%, the glass becomes unstable, which is not preferable. Preferably, the content is 0.2 to 1%.
本発明の近赤外線カットフィルタガラスにおいて、可視域透過率が高く、近赤外域の光の透過率が低い分光特性、具体的には600~700nm付近の光の急峻なカットオフ特性を得るためには、ガラス中のCu2+の6配位構造の歪みを小さくし、Cu2+の吸収ピークを長波長側に移動させる、つまりガラス中のCu2+による近赤外域の光の吸収を一層高く機能させることが重要である。
そのため、ガラス中のCu2+の6配位構造の歪みを小さくするには、ガラス中に非架橋酸素の数が多く、かつ、修飾酸化物のフィールドストレングス(フィールドストレングスは、価数Zをイオン半径rの2乗で割った値:Z/r2であり、カチオンが酸素を引き付ける強さの程度を表す)が小さいことが必要であると考えた。 In the near-infrared cut filter glass of the present invention, in order to obtain spectral characteristics with high visible region transmittance and low near-infrared region light transmittance, specifically, a steep cut-off property of light in the vicinity of 600 to 700 nm. Reduces the distortion of the Cu 2+ 6-coordinate structure in the glass and shifts the absorption peak of Cu 2+ to the longer wavelength side, that is, makes the absorption of light in the near infrared region by Cu 2+ in the glass more functional. This is very important.
Therefore, in order to reduce the distortion of the Cu 2+ hexacoordinate structure in the glass, the number of non-bridging oxygens in the glass is large, and the field strength of the modified oxide (the field strength is the valence Z The value divided by the square of r: Z / r 2 , which represents the degree of strength with which the cation attracts oxygen, was thought to be small.
そのため、ガラス中のCu2+の6配位構造の歪みを小さくするには、ガラス中に非架橋酸素の数が多く、かつ、修飾酸化物のフィールドストレングス(フィールドストレングスは、価数Zをイオン半径rの2乗で割った値:Z/r2であり、カチオンが酸素を引き付ける強さの程度を表す)が小さいことが必要であると考えた。 In the near-infrared cut filter glass of the present invention, in order to obtain spectral characteristics with high visible region transmittance and low near-infrared region light transmittance, specifically, a steep cut-off property of light in the vicinity of 600 to 700 nm. Reduces the distortion of the Cu 2+ 6-coordinate structure in the glass and shifts the absorption peak of Cu 2+ to the longer wavelength side, that is, makes the absorption of light in the near infrared region by Cu 2+ in the glass more functional. This is very important.
Therefore, in order to reduce the distortion of the Cu 2+ hexacoordinate structure in the glass, the number of non-bridging oxygens in the glass is large, and the field strength of the modified oxide (the field strength is the valence Z The value divided by the square of r: Z / r 2 , which represents the degree of strength with which the cation attracts oxygen, was thought to be small.
ガラス中の非架橋酸素の数を多くするためには、ガラスのネットワークを形成する網目状酸化物におけるP2O5を他の網目状酸化物に比べて多くする必要がある。P2O5は、Al2O3やB2O3と比べて分子中に酸素を多く含有するため、Cu2+は非架橋酸素を配位しやすくなり、Cu2+周りの歪みが小さくなる。
そのため、ガラスに含有する網目状酸化物のバランスは、P2O5/(Al2O3+B2O3)を大きくすればよいが、大きすぎる場合、耐候性の低下につながるため、これらの比は5~15の範囲である。さらにこれらの比は、7~13が好ましく、9~11がより好ましい。 In order to increase the number of non-bridging oxygen in the glass, it is necessary to increase the amount of P 2 O 5 in the network oxide forming the glass network compared to other network oxides. Since P 2 O 5 contains more oxygen in the molecule than Al 2 O 3 or B 2 O 3 , Cu 2+ easily coordinates non-bridging oxygen, and strain around Cu 2+ is reduced.
Therefore, the balance of the network oxide contained in the glass may be increased by increasing P 2 O 5 / (Al 2 O 3 + B 2 O 3 ), but if it is too large, the weather resistance will be lowered. The ratio is in the range of 5-15. Further, these ratios are preferably 7 to 13, and more preferably 9 to 11.
そのため、ガラスに含有する網目状酸化物のバランスは、P2O5/(Al2O3+B2O3)を大きくすればよいが、大きすぎる場合、耐候性の低下につながるため、これらの比は5~15の範囲である。さらにこれらの比は、7~13が好ましく、9~11がより好ましい。 In order to increase the number of non-bridging oxygen in the glass, it is necessary to increase the amount of P 2 O 5 in the network oxide forming the glass network compared to other network oxides. Since P 2 O 5 contains more oxygen in the molecule than Al 2 O 3 or B 2 O 3 , Cu 2+ easily coordinates non-bridging oxygen, and strain around Cu 2+ is reduced.
Therefore, the balance of the network oxide contained in the glass may be increased by increasing P 2 O 5 / (Al 2 O 3 + B 2 O 3 ), but if it is too large, the weather resistance will be lowered. The ratio is in the range of 5-15. Further, these ratios are preferably 7 to 13, and more preferably 9 to 11.
ガラス中の修飾酸化物のフィールドストレングスについて、P2O5:70%、Al2O3:10%、CuO:4%、XnO(XはLi、Na、K、Ba、Sr、Ca、Zn、またはMgを表し、XがLi、Na,Kの場合には、nは2を表わし、Ba、Sr、Ca、Zn、Mgの場合には、nは1を表わす。):20%(全てモル数を示す。P2O5、Al2O3及びXnOの合計100%に対し、CuOを外掛けで4%添加する。)のリン酸塩系ガラスにおいて修飾酸化物であるXnOの種類を変えた場合のCu2+の吸収ピークの波数と各元素のフィールドストレングスとの関係を図2に示す。修飾酸化物のフィールドストレングスが小さいほど、吸収ピークの波数が小さくなり、Cu2+の近赤外域の光の吸収性が上がることがわかる。
これらより、ガラス中の修飾酸化物のフィールドストレングスの平均値を小さくするためには、フィールドストレングスが相対的に小さいNa2OやK2Oを、他の修飾酸化物と比較し多く含有することが効果的であることがわかる。
そのため、ガラスに含有する修飾酸化物のバランスは、(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO)を大きくすればよいが、大きすぎる場合、耐候性の低下につながるため、これらの比は1.5~15の範囲である。さらにこれらの比は、2~15が好ましく、2.5~11がより好ましく、3~9がもっとも好ましい。 Regarding the field strength of the modified oxide in the glass, P 2 O 5 : 70%, Al 2 O 3 : 10%, CuO: 4%, X n O (X is Li, Na, K, Ba, Sr, Ca, Zn represents Mg or Mg. When X is Li, Na, or K, n represents 2, and when Ba, Sr, Ca, Zn, or Mg, n represents 1.): 20% ( X is a modified oxide in a phosphate-based glass in which all of the mole numbers are shown, and CuO is added as an outer coating to 100% of P 2 O 5 , Al 2 O 3 and X n O in total. FIG. 2 shows the relationship between the wave number of the absorption peak of Cu 2+ and the field strength of each element when the type of n 2 O is changed. It can be seen that the smaller the field strength of the modified oxide, the smaller the wave number of the absorption peak and the higher the light absorption of Cu 2+ in the near infrared region.
Therefore, in order to reduce the average value of field strength of the modified oxide in the glass, Na 2 O and K 2 O having relatively small field strength should be contained in comparison with other modified oxides. Is effective.
For this reason, the balance of the modified oxide contained in the glass may be (Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO). In the range of 5-15. Further, these ratios are preferably 2 to 15, more preferably 2.5 to 11, and most preferably 3 to 9.
これらより、ガラス中の修飾酸化物のフィールドストレングスの平均値を小さくするためには、フィールドストレングスが相対的に小さいNa2OやK2Oを、他の修飾酸化物と比較し多く含有することが効果的であることがわかる。
そのため、ガラスに含有する修飾酸化物のバランスは、(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO)を大きくすればよいが、大きすぎる場合、耐候性の低下につながるため、これらの比は1.5~15の範囲である。さらにこれらの比は、2~15が好ましく、2.5~11がより好ましく、3~9がもっとも好ましい。 Regarding the field strength of the modified oxide in the glass, P 2 O 5 : 70%, Al 2 O 3 : 10%, CuO: 4%, X n O (X is Li, Na, K, Ba, Sr, Ca, Zn represents Mg or Mg. When X is Li, Na, or K, n represents 2, and when Ba, Sr, Ca, Zn, or Mg, n represents 1.): 20% ( X is a modified oxide in a phosphate-based glass in which all of the mole numbers are shown, and CuO is added as an outer coating to 100% of P 2 O 5 , Al 2 O 3 and X n O in total. FIG. 2 shows the relationship between the wave number of the absorption peak of Cu 2+ and the field strength of each element when the type of n 2 O is changed. It can be seen that the smaller the field strength of the modified oxide, the smaller the wave number of the absorption peak and the higher the light absorption of Cu 2+ in the near infrared region.
Therefore, in order to reduce the average value of field strength of the modified oxide in the glass, Na 2 O and K 2 O having relatively small field strength should be contained in comparison with other modified oxides. Is effective.
For this reason, the balance of the modified oxide contained in the glass may be (Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO). In the range of 5-15. Further, these ratios are preferably 2 to 15, more preferably 2.5 to 11, and most preferably 3 to 9.
本発明のガラスは、F、PbO、As2O3、CeO2、V2O5、SiO2、ZnO、および/または希土類元素を実質的に含有しないことが好ましい。F、As2O3、CeO2などは、幅広い温度域で清澄ガスを発生できる優れた清澄剤として従来のガラスに用いられている。また、PbOはガラスの粘度を下げ、製造作業性を向上させる成分として用いられている。しかし、F、PbO、As2O3などは環境負荷物質であるため、できるだけ含有しないことが望ましい。また、CeO2、V2O5などは、ガラスに含有するとガラスの可視領域の透過率が低下するため、可視領域の透過率が高いことが要求される本発明の近赤外線カットフィルタガラスにおいては、できるだけ含有しないことが望ましい。また、SiO2、ZnO、希土類元素などは、ガラスに含有するとガラスの近赤外領域のカット性が低下するため、本発明の近赤外線カットフィルタガラスにおいては、含有しないことが好ましい。なお、実質的に含有しないとは、原料として意図して用いないことを意味しており、原料成分や製造工程から混入する不可避不純物については実質的に含有していないとみなす。また、前記不可避不純物を考慮し、実質的に含有しないこととは含有量が0.05%以下であることを意味する。
The glass of the present invention preferably contains substantially no F, PbO, As 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 , ZnO, and / or rare earth elements. F, As 2 O 3 , CeO 2 and the like are used in conventional glasses as excellent fining agents capable of generating a fining gas in a wide temperature range. PbO is used as a component that lowers the viscosity of the glass and improves manufacturing workability. However, since F, PbO, As 2 O 3 and the like are environmentally hazardous substances, it is desirable that they are not contained as much as possible. In addition, CeO 2 , V 2 O 5, etc., when contained in glass, decreases the transmittance in the visible region of the glass, so in the near-infrared cut filter glass of the present invention that requires high transmittance in the visible region. It is desirable that it is not contained as much as possible. Moreover, since SiO 2 , ZnO, rare earth elements and the like are contained in the glass, the near-infrared cut property of the glass is lowered, so that it is preferably not contained in the near-infrared cut filter glass of the present invention. Note that “substantially not contained” means that it is not intended to be used as a raw material, and it is regarded as substantially free of raw material components and inevitable impurities mixed in from the manufacturing process. Further, considering the inevitable impurities, the fact that it does not contain substantially means that the content is 0.05% or less.
本発明の近赤外線カットフィルタガラスの分光特性は、波長600~700nmの分光透過率において、透過率50%を示す波長が650nmとなるように換算したときに、波長900nmにおける分光透過率が、2.5%以下であることが好ましく、2%以下であるとより好ましく、1.5%以下であるとさらに好ましい。1%以下であると極めて好ましく、0.5%以下であるともっとも好ましい。同様に、波長1000nmにおける分光透過率が、3.5%以下であることが好ましく、3%以下であるとより好ましく、2%以下であるとさらに好ましい。1%以下であると極めて好ましく、0.5%以下であるともっとも好ましい。同様に、波長1100nmにおける分光透過率が、7%以下であることが好ましく、5%以下であるとより好ましく、4%以下であるとさらに好ましい。2%以下であると極めて好ましく、1%以下であるともっとも好ましい。なお、上記において、ガラスの分光特性は、透過率50%を示す波長が650nmとなるように換算した透過率特性を用いている。これは、ガラスの透過率は厚みによって変化するが、均質なガラスであれば、光の透過する方向におけるガラスの厚さと透過率がわかれば、所定の厚さの透過率を計算によって求めることができるためである。
The spectral characteristics of the near-infrared cut filter glass of the present invention are as follows. When the spectral transmittance at a wavelength of 600 to 700 nm is converted so that the wavelength showing a transmittance of 50% is 650 nm, the spectral transmittance at a wavelength of 900 nm is 2. It is preferably 5% or less, more preferably 2% or less, and even more preferably 1.5% or less. 1% or less is extremely preferable, and 0.5% or less is most preferable. Similarly, the spectral transmittance at a wavelength of 1000 nm is preferably 3.5% or less, more preferably 3% or less, and even more preferably 2% or less. 1% or less is extremely preferable, and 0.5% or less is most preferable. Similarly, the spectral transmittance at a wavelength of 1100 nm is preferably 7% or less, more preferably 5% or less, and even more preferably 4% or less. It is extremely preferably 2% or less, and most preferably 1% or less. In the above, the spectral characteristics of the glass are the transmittance characteristics converted so that the wavelength at which the transmittance is 50% is 650 nm. This is because the transmittance of the glass varies depending on the thickness, but if it is a homogeneous glass, the transmittance of a predetermined thickness can be obtained by calculation if the thickness and transmittance of the glass in the direction of light transmission are known. This is because it can.
本発明の近赤外線カットフィルタガラスは、次のようにして作製することができる。まず得られるガラスが上記組成範囲になるように原料を秤量、混合する。この原料混合物を白金ルツボに収容し、電気炉内において900~1400℃の温度で加熱溶融する。十分に撹拌・清澄した後、金型内に鋳込み、徐冷した後、切断・研磨して所定の内厚の平板状に成形する。
The near infrared cut filter glass of the present invention can be produced as follows. First, the raw materials are weighed and mixed so that the obtained glass has the above composition range. This raw material mixture is placed in a platinum crucible and heated and melted at a temperature of 900 to 1400 ° C. in an electric furnace. After sufficiently stirring and clarifying, it is cast into a mold, slowly cooled, then cut and polished to form a flat plate having a predetermined inner thickness.
本発明の近赤外線カットフィルタガラスは、上記のガラス構成を備えることにより、ガラスが安定であることも特徴である。ガラスが安定であるとは、液相温度付近の温度域での安定性とガラス転移点Tg付近の温度域での安定性の2つが挙げられる。具体的には、液相温度付近の温度域での安定性は、液相温度が低いこと、また、液相温度付近で失透の成長が遅いことであり、ガラス転移点Tg付近の温度域での安定性は、結晶化温度Tcや結晶化開始温度Txが高いこと、Tc・Tx付近で失透の成長が遅いことである。これにより、ガラスの溶融成形工程において失透が発生しにくく、歩留まりが高い、製造し易いガラスとすることが可能である。
The near-infrared cut filter glass of the present invention is also characterized in that the glass is stable by having the above glass configuration. “Stable glass” includes two things: stability in the temperature range near the liquidus temperature and stability in the temperature range near the glass transition point Tg. Specifically, the stability in the temperature range near the liquidus temperature is that the liquidus temperature is low and the growth of devitrification is slow near the liquidus temperature, and the temperature range near the glass transition point Tg. The stability at is that the crystallization temperature Tc and the crystallization start temperature Tx are high, and the growth of devitrification is slow in the vicinity of Tc · Tx. Thereby, it is possible to make the glass easy to manufacture, which is less likely to cause devitrification in the glass melt molding process, has a high yield.
本発明の近赤外線カットフィルタガラスは、上記のとおり近赤外線カット性に優れ、さらに安定したガラスであるため耐失透性に優れている。このため、固体撮像素子の視感度補正フィルタとして好適に用いることが可能である。
そして、ガラス中のCuOの含有量を増やしたり、誘電体多層膜(近赤外線カット膜)を設けることなく、近赤外線カットフィルタガラスの可視域透過率を高く維持しつつ近赤外域の光のカット性を向上することが可能である。なお、所望の分光特性を得るために本発明の近赤外線カットフィルタガラスに誘電体多層膜(近赤外線カット膜)を設けることは当然可能であるが、ガラスの近赤外線カット性が高いため、設ける誘電体多層膜の層数を少なくすることが可能である。
また、ガラスに誘電体多層膜を設ける場合であっても近赤外線カットフィルタガラスの製造コストを従来と比べて低くすることができる。 The near-infrared cut filter glass of the present invention is excellent in near-infrared cutability as described above, and is excellent in devitrification resistance because it is a stable glass. For this reason, it can be suitably used as a visibility correction filter for a solid-state imaging device.
And without increasing the content of CuO in the glass or providing a dielectric multilayer film (near infrared cut film), the near infrared cut filter glass cuts light in the near infrared range while maintaining a high visible range transmittance. It is possible to improve the property. In order to obtain desired spectral characteristics, it is naturally possible to provide a dielectric multilayer film (near infrared cut film) in the near infrared cut filter glass of the present invention, but it is provided because the near infrared cut property of the glass is high. It is possible to reduce the number of layers of the dielectric multilayer film.
Moreover, even when the dielectric multilayer film is provided on the glass, the manufacturing cost of the near-infrared cut filter glass can be reduced as compared with the conventional case.
そして、ガラス中のCuOの含有量を増やしたり、誘電体多層膜(近赤外線カット膜)を設けることなく、近赤外線カットフィルタガラスの可視域透過率を高く維持しつつ近赤外域の光のカット性を向上することが可能である。なお、所望の分光特性を得るために本発明の近赤外線カットフィルタガラスに誘電体多層膜(近赤外線カット膜)を設けることは当然可能であるが、ガラスの近赤外線カット性が高いため、設ける誘電体多層膜の層数を少なくすることが可能である。
また、ガラスに誘電体多層膜を設ける場合であっても近赤外線カットフィルタガラスの製造コストを従来と比べて低くすることができる。 The near-infrared cut filter glass of the present invention is excellent in near-infrared cutability as described above, and is excellent in devitrification resistance because it is a stable glass. For this reason, it can be suitably used as a visibility correction filter for a solid-state imaging device.
And without increasing the content of CuO in the glass or providing a dielectric multilayer film (near infrared cut film), the near infrared cut filter glass cuts light in the near infrared range while maintaining a high visible range transmittance. It is possible to improve the property. In order to obtain desired spectral characteristics, it is naturally possible to provide a dielectric multilayer film (near infrared cut film) in the near infrared cut filter glass of the present invention, but it is provided because the near infrared cut property of the glass is high. It is possible to reduce the number of layers of the dielectric multilayer film.
Moreover, even when the dielectric multilayer film is provided on the glass, the manufacturing cost of the near-infrared cut filter glass can be reduced as compared with the conventional case.
以下本発明の実施例によりさらに詳細に説明するが、これらに限定して解釈されるものではない。
本発明の実施例及び比較例を表1及び表2に示す。なお、本明細書において、例1~例14は実施例であり、例15~例17は比較例である。
表中、各成分の空欄は、含有量が0質量%であることを意味する。
また、表中、ΣR2OはLi2O、Na2O、およびK2Oの含有量の合計量を意味し、ΣROはMgO、CaO、SrO、およびBaOの含有量の合計量を意味する。
これらガラスは、酸化物換算の質量%表示で、表に示す組成となるよう原料を秤量・混合し、内容積約300ccの白金ルツボ内に入れて、900~1400℃で1~3時間溶融、撹拌、清澄後、およそ400~600℃に予熱した縦50mm×横50mm×高さ20mmの長方形のモールドに鋳込み後、約1℃/分で徐冷してサンプルとした。
ガラスの溶解性等については、上記サンプル作製時に目視で観察し、得られたガラスサンプルには泡や脈理のないことを確認した。
なお、各ガラスの原料は、P2O5の場合はH3PO4またはメタリン酸塩原料を、Al2O3の場合はAl(PO3)3またはAl2O3を、B2O3の場合はH3BO3を、Li2Oの場合はLiPO3を、Na2Oの場合はNaPO3を、K2Oの場合はKPO3を、MgOの場合はMgOを、CaOの場合はCaCO3を、SrOの場合はSrCO3を、BaOの場合はBaPO3を、ZnOの場合はZnOを、CuOの場合はCuOを、Sb2O3の場合はSb2O3を、それぞれ使用した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention should not be construed as being limited thereto.
Examples and comparative examples of the present invention are shown in Tables 1 and 2. In this specification, Examples 1 to 14 are Examples, and Examples 15 to 17 are Comparative Examples.
In the table, the blank of each component means that the content is 0% by mass.
Further, in Table, .SIGMA.R 2 O is Li 2 O, it refers to the total amount of the content of Na 2 O, and K 2 O, ΣRO means MgO, CaO, SrO, and the total amount of the content of BaO .
These glasses are weighed and mixed so that the composition shown in the table is expressed in terms of mass% in terms of oxides, put in a platinum crucible having an internal volume of about 300 cc, and melted at 900 to 1400 ° C. for 1 to 3 hours. After stirring and clarification, the sample was cast into a rectangular mold having a length of 50 mm × width 50 mm × height 20 mm preheated to about 400 to 600 ° C., and then slowly cooled at about 1 ° C./min to prepare a sample.
About the solubility of glass, etc., it observed visually at the time of the said sample preparation, and it confirmed that the obtained glass sample did not have a bubble and a striae.
The starting of each glass,P 2 O 5 and H 3 PO 4 or metaphosphate raw material in the case of the Al 2 Al (PO 3) in the case of O 3 3 or Al 2 O 3, B 2 O 3 the H 3 BO 3 in the case of the LiPO 3 for Li 2 O, the NaPO 3 for Na 2 O, the KPO 3 for K 2 O, in the case of MgO and MgO, if the CaO is CaCO 3 was used, SrCO 3 was used for SrO, BaPO 3 was used for BaO, ZnO was used for ZnO, CuO was used for CuO, and Sb 2 O 3 was used for Sb 2 O 3 . .
本発明の実施例及び比較例を表1及び表2に示す。なお、本明細書において、例1~例14は実施例であり、例15~例17は比較例である。
表中、各成分の空欄は、含有量が0質量%であることを意味する。
また、表中、ΣR2OはLi2O、Na2O、およびK2Oの含有量の合計量を意味し、ΣROはMgO、CaO、SrO、およびBaOの含有量の合計量を意味する。
これらガラスは、酸化物換算の質量%表示で、表に示す組成となるよう原料を秤量・混合し、内容積約300ccの白金ルツボ内に入れて、900~1400℃で1~3時間溶融、撹拌、清澄後、およそ400~600℃に予熱した縦50mm×横50mm×高さ20mmの長方形のモールドに鋳込み後、約1℃/分で徐冷してサンプルとした。
ガラスの溶解性等については、上記サンプル作製時に目視で観察し、得られたガラスサンプルには泡や脈理のないことを確認した。
なお、各ガラスの原料は、P2O5の場合はH3PO4またはメタリン酸塩原料を、Al2O3の場合はAl(PO3)3またはAl2O3を、B2O3の場合はH3BO3を、Li2Oの場合はLiPO3を、Na2Oの場合はNaPO3を、K2Oの場合はKPO3を、MgOの場合はMgOを、CaOの場合はCaCO3を、SrOの場合はSrCO3を、BaOの場合はBaPO3を、ZnOの場合はZnOを、CuOの場合はCuOを、Sb2O3の場合はSb2O3を、それぞれ使用した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention should not be construed as being limited thereto.
Examples and comparative examples of the present invention are shown in Tables 1 and 2. In this specification, Examples 1 to 14 are Examples, and Examples 15 to 17 are Comparative Examples.
In the table, the blank of each component means that the content is 0% by mass.
Further, in Table, .SIGMA.R 2 O is Li 2 O, it refers to the total amount of the content of Na 2 O, and K 2 O, ΣRO means MgO, CaO, SrO, and the total amount of the content of BaO .
These glasses are weighed and mixed so that the composition shown in the table is expressed in terms of mass% in terms of oxides, put in a platinum crucible having an internal volume of about 300 cc, and melted at 900 to 1400 ° C. for 1 to 3 hours. After stirring and clarification, the sample was cast into a rectangular mold having a length of 50 mm × width 50 mm × height 20 mm preheated to about 400 to 600 ° C., and then slowly cooled at about 1 ° C./min to prepare a sample.
About the solubility of glass, etc., it observed visually at the time of the said sample preparation, and it confirmed that the obtained glass sample did not have a bubble and a striae.
The starting of each glass,
以上のようにして作製したガラスについて、透過率について以下の方法により評価を行った。
For the glass produced as described above, the transmittance was evaluated by the following method.
透過率は、紫外可視近赤外分光光度計(Perkin Elmer社製、商品名:LAMBDA 950)を用いて評価した。具体的には、縦20mm×横20mm×厚さ0.3mmの、両面を光学研磨したガラスサンプルを準備し、測定を行った。
The transmittance was evaluated using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Perkin Elmer, trade name: LAMBDA 950). Specifically, a glass sample having a length of 20 mm × width of 20 mm × thickness of 0.3 mm and optically polished on both sides was prepared and measured.
図1に示す実施例及び比較例のガラスの分光透過率より、比較例の各ガラスは、実施例の各ガラスと比較し、特に650~1200nmの近赤外域の光のカット性が悪く、これに対し、本発明に係る実施例の各ガラスは、近赤外線カット性が高いことがわかる。また、600~700nm付近の波長域の光のカットオフ性を比較すると、実施例のガラスの方が比較例のガラスに比べ急峻であることがわかる。
このため、本発明の近赤外線カットフィルタガラスは、近赤外線カット能を補うための近赤外線カット膜(誘電体多層膜)をガラス表面に設ける必要がなくなるため、もしくは近赤外線カット膜を設けるとしても膜層数を少なく、膜厚を薄くできるため、膜成形に起因する不良を抑制することができる。これにより、近赤外線カットフィルタガラスを低コストで製造することが可能となる。また、ガラスの可視域透過率が高く、近赤外線カット性が高いため、固体撮像素子用の近赤外線カットフィルタ用ガラスとして好適に用いることができる。 From the spectral transmittances of the glass of the example and the comparative example shown in FIG. 1, each glass of the comparative example has a poor light cutting property in the near-infrared region of 650 to 1200 nm compared to each glass of the example. On the other hand, it turns out that each glass of the Example which concerns on this invention has high near-infrared cut property. Further, when the cut-off properties of light in the wavelength region near 600 to 700 nm are compared, it can be seen that the glass of the example is steeper than the glass of the comparative example.
For this reason, the near-infrared cut filter glass of the present invention eliminates the need to provide a near-infrared cut film (dielectric multilayer film) on the glass surface to supplement the near-infrared cut ability, or even if a near-infrared cut film is provided. Since the number of film layers can be reduced and the film thickness can be reduced, defects due to film forming can be suppressed. Thereby, it becomes possible to manufacture a near-infrared cut filter glass at low cost. Moreover, since the visible region transmittance of the glass is high and the near-infrared cut property is high, it can be suitably used as a near-infrared cut filter glass for a solid-state imaging device.
このため、本発明の近赤外線カットフィルタガラスは、近赤外線カット能を補うための近赤外線カット膜(誘電体多層膜)をガラス表面に設ける必要がなくなるため、もしくは近赤外線カット膜を設けるとしても膜層数を少なく、膜厚を薄くできるため、膜成形に起因する不良を抑制することができる。これにより、近赤外線カットフィルタガラスを低コストで製造することが可能となる。また、ガラスの可視域透過率が高く、近赤外線カット性が高いため、固体撮像素子用の近赤外線カットフィルタ用ガラスとして好適に用いることができる。 From the spectral transmittances of the glass of the example and the comparative example shown in FIG. 1, each glass of the comparative example has a poor light cutting property in the near-infrared region of 650 to 1200 nm compared to each glass of the example. On the other hand, it turns out that each glass of the Example which concerns on this invention has high near-infrared cut property. Further, when the cut-off properties of light in the wavelength region near 600 to 700 nm are compared, it can be seen that the glass of the example is steeper than the glass of the comparative example.
For this reason, the near-infrared cut filter glass of the present invention eliminates the need to provide a near-infrared cut film (dielectric multilayer film) on the glass surface to supplement the near-infrared cut ability, or even if a near-infrared cut film is provided. Since the number of film layers can be reduced and the film thickness can be reduced, defects due to film forming can be suppressed. Thereby, it becomes possible to manufacture a near-infrared cut filter glass at low cost. Moreover, since the visible region transmittance of the glass is high and the near-infrared cut property is high, it can be suitably used as a near-infrared cut filter glass for a solid-state imaging device.
本発明によれば、リン酸塩系ガラスのガラス組成を特定範囲とする際、修飾酸化物のフィールドストレングスが小さくなるようにすることで、ガラス中のCu2+による近赤外域の光の吸収を一層高く機能させることができるため、可視域透過率を高く維持しつつ、近赤外域の光の透過率を低く抑えることができる近赤外線カットフィルタガラスを低コストで提供することが可能となり、産業上有用である。
なお、2009年10月16日に出願された日本特許出願2009-239312号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 According to the present invention, when the glass composition of the phosphate-based glass is in a specific range, the near-infrared light absorption by Cu 2+ in the glass is reduced by reducing the field strength of the modified oxide. Since it can function even higher, it is possible to provide a near-infrared cut filter glass that can keep the transmittance of light in the near infrared region low while maintaining high transmittance in the visible region. It is useful above.
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-23393 filed on October 16, 2009 are cited herein as the disclosure of the specification of the present invention. Incorporated.
なお、2009年10月16日に出願された日本特許出願2009-239312号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 According to the present invention, when the glass composition of the phosphate-based glass is in a specific range, the near-infrared light absorption by Cu 2+ in the glass is reduced by reducing the field strength of the modified oxide. Since it can function even higher, it is possible to provide a near-infrared cut filter glass that can keep the transmittance of light in the near infrared region low while maintaining high transmittance in the visible region. It is useful above.
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-23393 filed on October 16, 2009 are cited herein as the disclosure of the specification of the present invention. Incorporated.
Claims (4)
- 下記酸化物換算の質量%表示で、
P2O5 65~85%、
Al2O3 1~20%、
B2O3 0~1.5%、
Li2O 0~2%、
Na2O 0.5~15%、
K2O 0~20%、
Li2O+Na2O+K2O 1~20%、
MgO 0~2%、
CaO 0~2%、
SrO 0~5%、
BaO 0~10%、
MgO+CaO+SrO+BaO 0.5~10%、
CuO 0.5~20%、
Sb2O3 0~5%、
を含み、かつ
P2O5/(Al2O3+B2O3) 5~15、
(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO) 1.5~15、
であることを特徴とする近赤外線カットフィルタガラス。 In mass% display of the following oxide conversion,
P 2 O 5 65-85%,
Al 2 O 3 1-20%,
B 2 O 3 0-1.5%,
Li 2 O 0-2%,
Na 2 O 0.5-15%,
K 2 O 0-20%,
Li 2 O + Na 2 O + K 2 O 1-20%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 0-10%,
MgO + CaO + SrO + BaO 0.5-10%,
CuO 0.5-20%,
Sb 2 O 3 0-5%,
And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15,
(Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 1.5 to 15,
Near-infrared cut filter glass characterized by being. - 下記酸化物換算の質量%表示で、
P2O5 65~85%、
Al2O3 1~20%、
B2O3 0~1%、
Li2O 0~2%、
Na2O 1~15%、
K2O 0~20%、
Li2O+Na2O+K2O 1~20%、
MgO 0~2%、
CaO 0~2%、
SrO 0~5%、
BaO 0~10%、
MgO+CaO+SrO+BaO 1~10%、
CuO 0.5~20%、
Sb2O3 0~5%、
を含み、かつ
P2O5/(Al2O3+B2O3) 5~15、
(Na2O+K2O)/(Li2O+MgO+CaO+SrO+BaO) 2~15、
であることを特徴とする近赤外線カットフィルタガラス。 In mass% display of the following oxide conversion,
P 2 O 5 65-85%,
Al 2 O 3 1-20%,
B 2 O 3 0-1%,
Li 2 O 0-2%,
Na 2 O 1-15%,
K 2 O 0-20%,
Li 2 O + Na 2 O + K 2 O 1-20%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 0-10%,
MgO + CaO + SrO + BaO 1-10%,
CuO 0.5-20%,
Sb 2 O 3 0-5%,
And P 2 O 5 / (Al 2 O 3 + B 2 O 3 ) 5-15,
(Na 2 O + K 2 O) / (Li 2 O + MgO + CaO + SrO + BaO) 2-15,
A near-infrared cut filter glass characterized by - 波長600~700nmの分光透過率において透過率50%を示す波長が650nmとなるように換算した場合に、波長900nmにおける分光透過率が2.5%以下であり、波長1000nmにおける分光透過率が3.5%以下であり、波長1100nmにおける分光透過率が7%以下であることを特徴とする請求項1又は2に記載の近赤外線カットフィルタガラス。 When the spectral transmittance at a wavelength of 600 to 700 nm is converted so that the wavelength showing a transmittance of 50% is 650 nm, the spectral transmittance at a wavelength of 900 nm is 2.5% or less, and the spectral transmittance at a wavelength of 1000 nm is 3%. The near-infrared cut filter glass according to claim 1 or 2, wherein the near-infrared cut filter glass has a spectral transmittance at a wavelength of 1100 nm of 7% or less.
- 実質的にF、PbO、As2O3、CeO2、V2O5、SiO2、ZnO、および/または希土類元素を含まないことを特徴とする請求項1又は2に記載の近赤外線カットフィルタガラス。 The near-infrared cut filter according to claim 1 or 2, substantially free of F, PbO, As 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 , ZnO, and / or rare earth elements. Glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011536160A JP5842613B2 (en) | 2009-10-16 | 2010-10-13 | Near-infrared cut filter glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009239312 | 2009-10-16 | ||
JP2009-239312 | 2009-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011046155A1 true WO2011046155A1 (en) | 2011-04-21 |
Family
ID=43876204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/067983 WO2011046155A1 (en) | 2009-10-16 | 2010-10-13 | Near-infrared ray cut filter glass |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5842613B2 (en) |
WO (1) | WO2011046155A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012224491A (en) * | 2011-04-18 | 2012-11-15 | Asahi Glass Co Ltd | Near-infrared ray cut filter glass |
CN104788020A (en) * | 2014-01-16 | 2015-07-22 | 成都光明光电股份有限公司 | Glass composition |
WO2017208679A1 (en) * | 2016-06-01 | 2017-12-07 | 日本電気硝子株式会社 | Method and device for manufacturing near infrared absorbing glass |
JP2018049250A (en) * | 2016-06-01 | 2018-03-29 | 日本電気硝子株式会社 | Method and device for manufacturing near infrared absorbing glass |
JP2019038719A (en) * | 2017-08-25 | 2019-03-14 | 日本電気硝子株式会社 | Near-infrared radiation absorption glass |
US10703669B2 (en) | 2017-04-28 | 2020-07-07 | Schott Ag | Filter gas |
TWI732564B (en) * | 2019-06-25 | 2021-07-01 | 大陸商成都光明光電股份有限公司 | Glass, glass product, glass element, filter, equipment and manufacturing method thereof |
WO2022260037A1 (en) * | 2021-06-11 | 2022-12-15 | Hoya株式会社 | Near-infrared absorbing glass and near-infrared blocking filter |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110194592B (en) * | 2019-06-25 | 2022-04-15 | 成都光明光电股份有限公司 | Glass, glass element and optical filter |
CN110194589B (en) * | 2019-06-25 | 2022-02-01 | 成都光明光电股份有限公司 | Near-infrared light absorbing glass, glass product, element and optical filter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55121924A (en) * | 1979-03-07 | 1980-09-19 | Toshiba Glass Co Ltd | Near infrared-screening filter glass |
JPS6325245A (en) * | 1986-07-17 | 1988-02-02 | Toshiba Glass Co Ltd | Filter glass for cutting near-infrared rays |
JPH01167257A (en) * | 1987-12-24 | 1989-06-30 | Toshiba Glass Co Ltd | Near infrared cutting filter glass |
JPH03137037A (en) * | 1989-10-18 | 1991-06-11 | Matsunami Glass Kogyo Kk | Near-infrared cut-off filter glass |
JPH04104918A (en) * | 1990-08-23 | 1992-04-07 | Asahi Glass Co Ltd | Near infrared absorbing glass |
JPH06234546A (en) * | 1993-02-08 | 1994-08-23 | Toshiba Glass Co Ltd | Near infrared-ray cutting filter glass |
-
2010
- 2010-10-13 JP JP2011536160A patent/JP5842613B2/en active Active
- 2010-10-13 WO PCT/JP2010/067983 patent/WO2011046155A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55121924A (en) * | 1979-03-07 | 1980-09-19 | Toshiba Glass Co Ltd | Near infrared-screening filter glass |
JPS6325245A (en) * | 1986-07-17 | 1988-02-02 | Toshiba Glass Co Ltd | Filter glass for cutting near-infrared rays |
JPH01167257A (en) * | 1987-12-24 | 1989-06-30 | Toshiba Glass Co Ltd | Near infrared cutting filter glass |
JPH03137037A (en) * | 1989-10-18 | 1991-06-11 | Matsunami Glass Kogyo Kk | Near-infrared cut-off filter glass |
JPH04104918A (en) * | 1990-08-23 | 1992-04-07 | Asahi Glass Co Ltd | Near infrared absorbing glass |
JPH06234546A (en) * | 1993-02-08 | 1994-08-23 | Toshiba Glass Co Ltd | Near infrared-ray cutting filter glass |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012224491A (en) * | 2011-04-18 | 2012-11-15 | Asahi Glass Co Ltd | Near-infrared ray cut filter glass |
CN104788020A (en) * | 2014-01-16 | 2015-07-22 | 成都光明光电股份有限公司 | Glass composition |
CN104788020B (en) * | 2014-01-16 | 2019-01-29 | 成都光明光电股份有限公司 | Glass composition |
WO2017208679A1 (en) * | 2016-06-01 | 2017-12-07 | 日本電気硝子株式会社 | Method and device for manufacturing near infrared absorbing glass |
JP2018049250A (en) * | 2016-06-01 | 2018-03-29 | 日本電気硝子株式会社 | Method and device for manufacturing near infrared absorbing glass |
CN109195926A (en) * | 2016-06-01 | 2019-01-11 | 日本电气硝子株式会社 | The manufacturing method and manufacturing device of near-infrared ray absorption glass |
US10703669B2 (en) | 2017-04-28 | 2020-07-07 | Schott Ag | Filter gas |
JP2019038719A (en) * | 2017-08-25 | 2019-03-14 | 日本電気硝子株式会社 | Near-infrared radiation absorption glass |
JP7071608B2 (en) | 2017-08-25 | 2022-05-19 | 日本電気硝子株式会社 | Near infrared absorber glass |
TWI732564B (en) * | 2019-06-25 | 2021-07-01 | 大陸商成都光明光電股份有限公司 | Glass, glass product, glass element, filter, equipment and manufacturing method thereof |
WO2022260037A1 (en) * | 2021-06-11 | 2022-12-15 | Hoya株式会社 | Near-infrared absorbing glass and near-infrared blocking filter |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011046155A1 (en) | 2013-03-07 |
JP5842613B2 (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5842613B2 (en) | Near-infrared cut filter glass | |
JP6332916B2 (en) | Colored glass | |
EP1714948A2 (en) | Alumninophosphate glass containing copper (II) oxide and uses thereof for light filtering | |
TWI612019B (en) | Optical glass, preforms and optical components | |
JP2018010275A (en) | Uv transmitting filter | |
JP5659499B2 (en) | Near-infrared cut filter glass | |
TW201803821A (en) | Optical glass and optical element | |
JP5609754B2 (en) | Near-infrared cut filter glass | |
JP2009263190A (en) | Infrared absorption glass | |
JP7024711B2 (en) | Optical glass and near infrared cut filter | |
WO2011118724A1 (en) | Process for production of near infrared ray cut filter glass | |
JP2011121792A (en) | Near infrared ray cutting filter glass | |
JP5051817B2 (en) | Visibility correction filter glass and visibility correction filter | |
JP5036229B2 (en) | Visibility correction filter glass and visibility correction filter | |
JP4953347B2 (en) | Visibility correction filter glass and visibility correction filter | |
JP2008001545A (en) | Method of manufacturing visibility correction filter glass | |
WO2009107612A1 (en) | Optical glass | |
TWI704117B (en) | Near infrared absorption glass | |
TW201509861A (en) | Glass for ir-cut filter | |
KR101266431B1 (en) | Glass composition for near infrared ray filter and method of manufacuring glass for near infrared ray filter using thereof | |
JP2017109887A (en) | Near-infrared absorbing glass | |
JP5270973B2 (en) | Near infrared absorption filter glass | |
JP2018106171A (en) | Near-infrared cut filter glass and near-infrared cut filter | |
JPS62128943A (en) | Phosphate glass | |
JP6962322B2 (en) | Near infrared cut filter glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10823423 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011536160 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10823423 Country of ref document: EP Kind code of ref document: A1 |