JP5609754B2 - Near-infrared cut filter glass - Google Patents
Near-infrared cut filter glass Download PDFInfo
- Publication number
- JP5609754B2 JP5609754B2 JP2011092142A JP2011092142A JP5609754B2 JP 5609754 B2 JP5609754 B2 JP 5609754B2 JP 2011092142 A JP2011092142 A JP 2011092142A JP 2011092142 A JP2011092142 A JP 2011092142A JP 5609754 B2 JP5609754 B2 JP 5609754B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- transmittance
- infrared
- cut filter
- infrared cut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims description 133
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 description 53
- 239000010949 copper Substances 0.000 description 27
- 238000002844 melting Methods 0.000 description 20
- 230000008018 melting Effects 0.000 description 20
- 239000010408 film Substances 0.000 description 19
- 230000001965 increasing effect Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 14
- 230000003595 spectral effect Effects 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000005365 phosphate glass Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000031700 light absorption Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 238000004031 devitrification Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 1
- 239000005303 fluorophosphate glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Glass Compositions (AREA)
Description
本発明は、固体撮像装置の視感度補正フィルタに使用される近赤外線カットフィルタガラスに関するものである。 The present invention relates to a near-infrared cut filter glass used for a visibility correction filter of a solid-state imaging device.
デジタルスチルカメラやビデオカメラには、イメージセンサであるCCDやCMOS等の固体撮像素子が用いられている。近年、これらのカメラは、高画素化に伴う画像解像度の向上が進展しているが、その反面、固体撮像素子の受光面積を大きくすることなく高画素化を行うと、単位画素サイズの面積縮小に伴う入射光の絶対量の減少により、出力信号の元になる画素毎の電子数が減少し、センサ感度が低下するという問題が生じる。 Digital still cameras and video cameras use solid-state image sensors such as CCDs and CMOSs as image sensors. In recent years, these cameras have improved the image resolution accompanying the increase in the number of pixels. On the other hand, if the number of pixels is increased without increasing the light receiving area of the solid-state imaging device, the area of the unit pixel size is reduced. Due to the decrease in the absolute amount of incident light, the number of electrons for each pixel that is the source of the output signal decreases, causing a problem that the sensor sensitivity decreases.
これに対して、固体撮像素子の感度を向上するためのいくつかの手法が提案されており、そのひとつに素子の半導体層の膜厚を厚くする方法が知られている(特許文献1:段落0006)。これによれば、半導体層の膜厚が厚いほど光の吸収量が多くなり、光量に応じた電流の出力が増加するとされている。
しかし、半導体層の膜厚を増加すると、長波長成分(赤外領域の光)の感度が上がるという別の問題が生じる。これは、特許文献2(段落0018、0094)等に詳細に説明されているが、要約すると、半導体層による電磁波の吸収係数は、長波長側の成分の方が、短波長側の成分よりも小さいという特性がある。このことは、半導体層に入射した電磁波の内の短波長側の成分は、半導体層での吸収の割合が大きく、半導体層の表面で吸収されてしまう度合いが大きいのに対して、長波長側の成分は、半導体層での吸収の割合が小さいので、半導体層の表面で吸収されてしまう度合いが小さく、より深いところまで達することを意味する。このため、半導体層の膜厚を増加することにより固体撮像素子の感度を向上する場合、固体撮像素子への入射光における長波長の成分を従来以上に確実にカットする必要がある。
On the other hand, several methods for improving the sensitivity of the solid-state imaging device have been proposed, and one of them is a method of increasing the thickness of the semiconductor layer of the device (Patent Document 1: Paragraph). 0006). According to this, the thicker the semiconductor layer is, the more light is absorbed, and the current output corresponding to the amount of light is increased.
However, when the film thickness of the semiconductor layer is increased, another problem arises that the sensitivity of the long wavelength component (light in the infrared region) increases. This is described in detail in Patent Document 2 (paragraphs 0018 and 0094), but in summary, the absorption coefficient of electromagnetic waves by the semiconductor layer is longer in the longer wavelength component than in the shorter wavelength component. There is a characteristic that it is small. This means that the component on the short wavelength side of the electromagnetic wave incident on the semiconductor layer has a large proportion of absorption in the semiconductor layer and is largely absorbed on the surface of the semiconductor layer, whereas on the long wavelength side This component means that since the absorption ratio in the semiconductor layer is small, the degree of absorption at the surface of the semiconductor layer is small and it reaches a deeper place. For this reason, when the sensitivity of the solid-state imaging device is improved by increasing the film thickness of the semiconductor layer, it is necessary to cut the long wavelength component in the incident light to the solid-state imaging device more reliably than before.
他方、固体撮像素子は、可視領域から1100nm付近の近赤外域にわたる分光感度を有しているため、そのままでは良好な色再現性を得ることができない。そのため、赤外線を吸収する特定の物質が添加された近赤外線カットフィルタガラスを用いて視感度を補正している。この近赤外線カットフィルタガラスは、近赤外域の光を選択的に吸収し、かつ高い耐候性を有するように、アルミノリン酸塩系ガラスやフツリン酸塩系ガラスにCuOを添加した光学ガラスが提案されている(特許文献3、4)。 On the other hand, since the solid-state imaging device has spectral sensitivity ranging from the visible region to the near infrared region in the vicinity of 1100 nm, good color reproducibility cannot be obtained as it is. Therefore, the visibility is corrected using a near-infrared cut filter glass to which a specific substance that absorbs infrared rays is added. This near-infrared cut filter glass has been proposed as an optical glass in which CuO is added to an aluminophosphate-based glass or fluorophosphate-based glass so as to selectively absorb light in the near-infrared region and to have high weather resistance. (Patent Documents 3 and 4).
しかしながら、従来の近赤外線カットフィルタガラスの分光特性は、特に600〜700nm付近の波長域において、急峻なカットオフ特性を実現できないという問題がある。そのため、可視域透過率を高く維持しつつ、近赤外域の光を選択的にカットすることができる分光特性を備えるガラスが求められている。
近赤外線カットフィルタガラスにおける近赤外域の光のカット性能を向上する方法としては、以下に述べる方法が知られている。
1つの方法として、近赤外域の光を吸収するCu2+成分を含むCuOのガラスへの添加量を増やすことである。しかしながら、CuOの添加量を単に増やすだけでは近赤外域の透過率は低く抑えられるものの、可視域透過率も併せて低下するという弊害が生じる。
However, the spectral characteristics of the conventional near-infrared cut filter glass have a problem that a steep cut-off characteristic cannot be realized particularly in a wavelength region near 600 to 700 nm. Therefore, there is a demand for a glass having spectral characteristics that can selectively cut light in the near infrared region while maintaining high visible region transmittance.
As a method for improving the near-infrared light cutting performance of the near-infrared cut filter glass, the following methods are known.
One method is to increase the amount of CuO added to the glass containing a Cu 2+ component that absorbs light in the near infrared region. However, simply increasing the amount of CuO added can reduce the near-infrared transmittance, but also has a negative effect of reducing the visible transmittance.
他の方法として、屈折率差のある2種類以上の誘電体薄膜を数十層にも交互積層した誘電体多層膜(近赤外線カット膜)を近赤外線カットフィルタガラスの光学作用面に形成することで、ガラスの近赤外線カット性を補うことが行われている。誘電体多層膜により近赤外域の光をカットするしくみは、ガラス中のCu2+成分による光の吸収作用とは異なり、屈折率差を有する物質の干渉による光の反射作用によるものであり、急峻なカットオフ特性を実現できる。しかしながら、誘電体多層膜に入射した近赤外域の光は、誘電体多層膜により反射されるものの減衰することなく固体撮像装置内で迷光となり、この迷光が再度誘電体多層膜に斜入射することで、誘電体多層膜では十分にカットできずに固体撮像素子に到達し、ノイズとして認識される可能性がある。また、この方法は近赤外線カットフィルタガラスの製造コストが高くなるという問題がある。
本発明は、このような背景に基づいてなされたものであり、可視域透過率を高くすることおよび近赤外域透過率を低く抑えることとの両立ができ、かつ高い耐候性を備えた近赤外線カットフィルタガラスを低コストで提供することを目的とする。
As another method, a dielectric multilayer film (near infrared cut film) in which several tens of dielectric thin films having different refractive indexes are alternately laminated is formed on the optical action surface of the near infrared cut filter glass. In order to compensate for the near-infrared cutting property of glass. Unlike the light absorption effect by the Cu 2+ component in the glass, the mechanism for cutting light in the near-infrared region by the dielectric multilayer film is based on the light reflection effect due to the interference of substances having a refractive index difference. Cut-off characteristics can be realized. However, near-infrared light incident on the dielectric multilayer film is reflected by the dielectric multilayer film but becomes stray light in the solid-state imaging device without being attenuated, and this stray light is incident on the dielectric multilayer film again obliquely. Therefore, there is a possibility that the dielectric multilayer film cannot be sufficiently cut and reaches the solid-state imaging device and is recognized as noise. In addition, this method has a problem that the manufacturing cost of the near infrared cut filter glass is increased.
The present invention has been made on the basis of such a background, and it is possible to achieve both high transmittance in the visible region and low transmittance in the near infrared region, and a near infrared ray having high weather resistance. It aims at providing cut filter glass at low cost.
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、リン酸塩系ガラス組成を特定範囲とすることで、リン酸塩系ガラスやフツリン酸塩系ガラスからなる従来の近赤外線カットフィルタガラスに比べ、可視域透過率を高くすることおよび近赤外域透過率を低くすることとの両立が可能な近赤外線カットフィルタガラスが得られることを見出した。
具体的には、ガラス成分中の銅イオンについて、紫外域に吸収を持ち可視域の透過率を低くする要因となるCu+成分よりも近赤外域に吸収を持つCu2+成分の比率が極力多く存在するようにした。
また、ガラス中のCu2+の構造の歪みが小さい場合、Cu2+の近赤外域の光の吸収性が上がることに着目し、ガラス中の修飾酸化物のフィールドストレングスが弱い方が非架橋酸素を配位させやすく、Cu2+周りの歪みが小さくなると考えた。これは、Cu2+周りの歪みが小さくなると、2Eg→2T2gのバンド間のエネルギー差が小さくなり、Cu2+の吸収ピークが長波長側へ移動するためである。
これらにより、ガラス中のCu2+の存在比率が高く、かつCu2+による近赤外域の光の吸収を一層高く機能させることができる近赤外線カットフィルタガラスとして好適なリン酸塩系ガラス組成を見出した。
As a result of intensive studies to achieve the above object, the present inventor made a conventional near-infrared cut made of phosphate glass or fluorophosphate glass by making the phosphate glass composition into a specific range. It has been found that a near-infrared cut filter glass capable of coexistence of increasing the visible region transmittance and decreasing the near-infrared region transmittance is obtained compared to the filter glass.
Specifically, for the copper ions in the glass component, the ratio of the Cu 2+ component having absorption in the near infrared region as much as possible is higher than the Cu + component that causes absorption in the ultraviolet region and lowers the transmittance in the visible region. To exist.
In addition, when the distortion of the structure of Cu 2+ in the glass is small, attention is paid to the fact that the absorption of light in the near infrared region of Cu 2+ increases. It was thought that it was easy to coordinate and the distortion around Cu 2+ was reduced. This is because when the strain around Cu 2+ decreases, the energy difference between the bands of 2 E g → 2 T 2g decreases, and the absorption peak of Cu 2+ moves to the longer wavelength side.
As a result, the present inventors have found a phosphate glass composition suitable as a near-infrared cut filter glass that has a high abundance ratio of Cu 2+ in the glass and can make the absorption of light in the near-infrared region by Cu 2+ higher. .
本発明の近赤外線カットフィルタガラスは、
下記酸化物換算の質量%表示で、
P2O5 65〜74%、
Al2O3 5〜10%、
B2O3 0.5〜3%、
Li2O 0〜10%、
Na2O 3〜10%、
Li2O+Na2O 3〜15%、
MgO 0〜2%、
CaO 0〜2%、
SrO 0〜5%、
BaO 3〜9%、
MgO+CaO+SrO+BaO 3〜15%、
CuO 0.5〜20%、
を含み、K2Oを実質的に含まず、
Na2O/(Li2O+MgO+CaO+SrO+BaO) 0.5〜3、
であることを特徴とする。
The near infrared cut filter glass of the present invention is
In mass% display of the following oxide conversion,
P 2 O 5 65-74%,
Al 2 O 3 5-10%,
B 2 O 3 0.5~3%,
Li 2 O 0-10%,
Na 2 O 3-10%,
Li 2 O + Na 2 O 3-15%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 3-9%,
MgO + CaO + SrO + BaO 3-15%,
CuO 0.5-20%,
And substantially free of K 2 O,
Na 2 O / (Li 2 O + MgO + CaO + SrO + BaO) 0.5-3,
It is characterized by being.
また、本発明の近赤外線カットフィルタガラスは、
P2O5/Al2O3 6.5〜10、
(BaO+B2O3)/Al2O3 0.3〜2.4、
であることを特徴とする。
また、本発明の近赤外線カットフィルタガラスは、実質的にF、PbO、As2O3、Sb2O3、CeO2、V2O5、SiO2、希土類元素を含まないことを特徴とする。
The near infrared cut filter glass of the present invention is
P 2 O 5 / Al 2 O 3 6.5~10,
(BaO + B 2 O 3 ) / Al 2 O 3 0.3-2.4,
It is characterized by being.
Further, the near-infrared cut filter glass of the present invention is characterized by substantially not containing F, PbO, As 2 O 3 , Sb 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 , or a rare earth element. .
本発明によれば、リン酸塩系ガラス組成を特定範囲とすることで、ガラス中のCuOの含有量を増やしたり、誘電体多層膜(近赤外線カット膜)を設けることなく、可視域透過率を高く維持しつつ、近赤外域の光の透過率を低く抑えることができる近赤外線カットフィルタガラスを低コストで提供することが可能となる。 According to the present invention, by setting the phosphate glass composition to a specific range, the visible light transmittance can be increased without increasing the CuO content in the glass or providing a dielectric multilayer film (near infrared cut film). It is possible to provide a near-infrared cut filter glass that can keep the transmittance of light in the near-infrared region low while maintaining a high value at low cost.
本発明は、上記構成により目的を達成したものであり、本発明の近赤外線カットフィルタガラスを構成する各成分の含有量(質量%表示)を上記のように限定した理由を以下に説明する。 The object of the present invention is achieved by the above configuration, and the reason why the contents (mass% display) of the respective components constituting the near infrared cut filter glass of the present invention are limited as described above will be described below.
P2O5は、ガラスを形成する主成分(ガラス形成酸化物)であり、近赤外線カット性を高めるための必須成分であるが、65%未満ではその効果が十分得られず、74%を超えると溶融温度が上がり、可視域の透過率が低下するため好ましくない。好ましくは67〜73%であり、より好ましくは68〜72%である。 P 2 O 5 is a main component (glass-forming oxide) that forms glass, and is an essential component for enhancing near-infrared cutting properties. However, if it is less than 65%, the effect cannot be obtained sufficiently, and 74% If it exceeds, the melting temperature rises and the transmittance in the visible region is lowered, which is not preferable. Preferably it is 67 to 73%, more preferably 68 to 72%.
Al2O3は、耐候性を高めるための必須成分であるが、5%未満ではその効果が十分得られず、10%を超えるとガラスの溶融温度が高くなり、近赤外線カット性および可視域透過性が低下するため好ましくない。好ましくは6〜10%であり、より好ましくは7〜9%である。 Al 2 O 3 is an essential component for enhancing the weather resistance, but if it is less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 10%, the melting temperature of the glass becomes high, the near-infrared cutting property and the visible range. This is not preferable because the permeability is lowered. Preferably it is 6-10%, More preferably, it is 7-9%.
B2O3は、ガラスの溶融温度を低くするための必須成分であるが、0.5%未満ではその効果が十分得られず、3%を超えると近赤外線カット性が低下するため好ましくない。好ましくは0.7〜2.5%以下であり、より好ましくは0.8〜2.0%である。 B 2 O 3 is an essential component for lowering the melting temperature of the glass, but if it is less than 0.5%, the effect cannot be sufficiently obtained, and if it exceeds 3%, the near-infrared cutting property is lowered, which is not preferable. . Preferably it is 0.7 to 2.5% or less, More preferably, it is 0.8 to 2.0%.
Li2Oは、必須成分ではないものの、ガラスの溶融温度を低くする効果があるが、10%を超えるとガラスが不安定になるため好ましくない。好ましくは0〜5%であり、より好ましくは0〜3%である。 Although Li 2 O is not an essential component, it has an effect of lowering the melting temperature of the glass. However, if it exceeds 10%, the glass becomes unstable, which is not preferable. Preferably it is 0 to 5%, more preferably 0 to 3%.
Na2Oは、ガラスの溶融温度を低くするための必須成分であるが、3%未満ではその効果が十分得られず、10%を超えるとガラスが不安定になるため好ましくない。好ましくは4〜9%であり、より好ましくは5〜9%である。 Na 2 O is an essential component for lowering the melting temperature of the glass, but if it is less than 3%, the effect cannot be sufficiently obtained, and if it exceeds 10%, the glass becomes unstable. Preferably it is 4-9%, More preferably, it is 5-9%.
Li2O+Na2Oは、ガラスの溶融温度を低くするための必須成分であるが、3%未満ではその効果が十分ではなく、15%を超えるとガラスが不安定になるため好ましくない。好ましくは4〜13%であり、より好ましくは5〜10%である。 Li 2 O + Na 2 O is an essential component for lowering the melting temperature of the glass, but if it is less than 3%, the effect is not sufficient, and if it exceeds 15%, the glass becomes unstable, which is not preferable. Preferably it is 4-13%, More preferably, it is 5-10%.
K2Oは、本発明のガラスにおいては実質的に含有しない。K2Oはガラスの溶融温度を下げる効果が知られている。しかしながら、本発明者が確認したところ、リン酸ガラスにおいてK2OとNa2Oとの両者を含有すると、K2Oを含有せずNa2Oのみ含有する場合と比較し、ガラスの溶融温度が高くなる結果となった。その理由としては、以下が考えられる。P2O5とNa2Oとを等モル混合した場合の液相温度は2成分系の相図から約628℃である。これに対し、P2O5とK2Oを等モル混合した場合の液相温度は2成分系の相図から800℃を超える。これは、リン酸ガラスにおいて、Na2Oの一部をK2Oに置換すると、液相温度は上がる方向となり、溶融温度も上昇することを示唆している。なお、本発明における実質的に含有しないとは、原料として意図して用いないことを意味しており、原料成分や製造工程から混入する不可避不純物については実質的に含有していないとみなす。また、前記不可避不純物を考慮し、実質的に含有しないこととは含有量が0.05%以下であることを意味する。 K 2 O is not substantially contained in the glass of the present invention. K 2 O is known to have an effect of lowering the melting temperature of glass. However, the present inventors have confirmed that when the phosphoric acid glass contains both K 2 O and Na 2 O, the melting temperature of the glass is lower than when K 2 O is not contained but only Na 2 O is contained. The result became higher. The reason can be considered as follows. The liquidus temperature in the case of equimolar mixing of P 2 O 5 and Na 2 O is about 628 ° C. from the two-component phase diagram. On the other hand, the liquidus temperature in the case of equimolar mixing of P 2 O 5 and K 2 O exceeds 800 ° C. from the phase diagram of the two-component system. This suggests that in the phosphate glass, when a part of Na 2 O is replaced with K 2 O, the liquidus temperature increases and the melting temperature also increases. In addition, in the present invention, “not containing substantially” means not intentionally using as a raw material, and it is regarded as substantially free of raw material components and inevitable impurities mixed in from the manufacturing process. Further, considering the inevitable impurities, the fact that it does not contain substantially means that the content is 0.05% or less.
MgOは、必須成分ではないものの、ガラスの安定性を高める効果があるが、2%を超えると近赤外線カット性が低下するため好ましくない。好ましくは1%以下であり、含有しないことがより好ましい。 Although MgO is not an essential component, it has the effect of increasing the stability of the glass. However, if it exceeds 2%, the near-infrared cutting property is deteriorated, which is not preferable. Preferably it is 1% or less, and it is more preferable not to contain.
CaOは、必須成分ではないものの、ガラスの安定性を高める効果があるが、2%を超えると近赤外線カット性が低下するため好ましくない。好ましくは1.5%以下であり、含有しないことがより好ましい。 Although CaO is not an essential component, it has the effect of increasing the stability of the glass. However, if it exceeds 2%, the near-infrared cutting property is deteriorated, which is not preferable. Preferably it is 1.5% or less, and it is more preferable not to contain.
SrOは、必須成分ではないものの、ガラスの安定性を高める効果があるが、5%を超えると近赤外線カット性が低下するため好ましくない。好ましくは0〜4%であり、より好ましくは0〜3%である。 Although SrO is not an essential component, it has an effect of increasing the stability of the glass. However, if it exceeds 5%, the near-infrared cutting property is lowered, which is not preferable. Preferably it is 0 to 4%, more preferably 0 to 3%.
BaOは、ガラスの溶融温度を低くするための必須成分であるが、3%未満ではその効果が十分得られず、9%を超えるとガラスが不安定になるため好ましくない。好ましくは3〜8%であり、より好ましくは4〜8%である。 BaO is an essential component for lowering the melting temperature of glass, but if it is less than 3%, the effect cannot be sufficiently obtained, and if it exceeds 9%, the glass becomes unstable, which is not preferable. Preferably it is 3-8%, More preferably, it is 4-8%.
MgO+CaO+SrO+BaOは、ガラスの安定性を高め、ガラスの溶融温度を低くするための必須成分であるが、3%未満であるとその効果が十分ではなく、15%を超えるとガラスが不安定になるため好ましくない。好ましくは3〜12%であり、より好ましくは4〜10%である。 MgO + CaO + SrO + BaO is an essential component for increasing the stability of the glass and lowering the melting temperature of the glass. However, if it is less than 3%, the effect is not sufficient, and if it exceeds 15%, the glass becomes unstable. It is not preferable. Preferably it is 3-12%, More preferably, it is 4-10%.
CuOは、近赤外線カット性を高めるための必須成分であるが、0.5%未満であるとその効果が十分に得られず、20%を超えると可視域透過率が低下するため好ましくない。好ましくは1〜15%であり、より好ましくは2〜10%である。もっとも好ましくは3〜9%である。 CuO is an essential component for improving the near-infrared cutting property, but if it is less than 0.5%, the effect cannot be sufficiently obtained, and if it exceeds 20%, the visible region transmittance is lowered, which is not preferable. Preferably it is 1 to 15%, more preferably 2 to 10%. Most preferably, it is 3 to 9%.
本発明の近赤外線カットフィルタガラスにおいて、可視域透過率が高く、近赤外域の光の透過率が低い分光特性を得るには、ガラス成分中の銅イオンについて、紫外域に吸収を持ち可視域透過率を低くする要因となるCu+よりも近赤外域に吸収をもつCu2+を極力多く存在させることが重要である。
ガラス成分中の銅は、ガラスの溶融温度が高いほど還元される、つまりCu2+が還元されてCu+になる、傾向にある。よって、Cu2+を多く存在させるためには、ガラスの溶融温度を極力低くすることが有効である。なお、本発明の近赤外線カットフィルタガラスの溶融温度は、1150℃以下が好ましく、1100℃以下がより好ましく、1080℃以下がさらに好ましい。
そのため、ガラスの溶融温度を高くする効果があるAl2O3に対してガラスの溶融温度を低くする効果があるBaO、B2O3の比率を大きくする。これらのガラス成分中のバランスは、(BaO+B2O3)/Al2O3を大きくすればいいが、大きすぎる場合、耐候性の低下につながるため、これらの比は0.3〜2.4の範囲である。さらにこれらの比は、0.3〜2.0が好ましく、0.5〜1.5がより好ましい。
In the near-infrared cut filter glass of the present invention, in order to obtain a spectral characteristic having a high visible region transmittance and a low near-infrared region light transmittance, the copper ion in the glass component has absorption in the ultraviolet region and is visible region. It is important that Cu 2+ having absorption in the near-infrared region is present as much as possible as compared to Cu + that causes a decrease in transmittance.
Copper in the glass component tends to be reduced as the melting temperature of the glass increases, that is, Cu 2+ is reduced to Cu + . Therefore, in order to make much Cu 2+ exist, it is effective to make the melting temperature of the glass as low as possible. In addition, the melting temperature of the near-infrared cut filter glass of the present invention is preferably 1150 ° C. or lower, more preferably 1100 ° C. or lower, and further preferably 1080 ° C. or lower.
Therefore, the ratio of BaO and B 2 O 3 having the effect of lowering the glass melting temperature is increased with respect to Al 2 O 3 having the effect of increasing the glass melting temperature. The balance in these glass components may be (BaO + B 2 O 3 ) / Al 2 O 3 , but if it is too large, the weather resistance will be lowered, so these ratios are 0.3 to 2.4. Range. Furthermore, these ratios are preferably 0.3 to 2.0, and more preferably 0.5 to 1.5.
本発明の近赤外線カットフィルタガラスにおいて、可視域透過率が高く、近赤外域の光の透過率が低い分光特性、具体的には600〜700nm付近の光の急峻なカットオフ特性を得るためには、ガラス中のCu2+の6配位構造の歪みを小さくし、Cu2+の吸収ピークを長波長側に移動させる、つまりガラス中のCu2+による近赤外域の光の吸収を一層高く機能させることが重要である。
そのため、ガラス中のCu2+の6配位構造の歪みを小さくするには、ガラス中に非架橋酸素の数が多く、かつ、修飾酸化物のフィールドストレングス(フィールドストレングスは、価数Zをイオン半径rの2乗で割った値:Z/r2であり、カチオンが酸素を引き付ける強さの程度を表す)が小さいことが必要であると考えた。
In the near-infrared cut filter glass of the present invention, in order to obtain a spectral characteristic having a high visible region transmittance and a low near-infrared region light transmittance, specifically, a steep cut-off property of light in the vicinity of 600 to 700 nm. Reduces the distortion of the Cu 2+ 6-coordinate structure in the glass and shifts the absorption peak of Cu 2+ to the longer wavelength side, that is, makes the absorption of light in the near infrared region by Cu 2+ in the glass more functional. This is very important.
Therefore, in order to reduce the distortion of the Cu 2+ hexacoordinate structure in the glass, the number of non-bridging oxygens in the glass is large, and the field strength of the modified oxide (the field strength is the valence Z The value divided by the square of r: Z / r 2 , which represents the degree of strength with which the cation attracts oxygen, was thought to be small.
ガラス中の非架橋酸素の数を多くするためには、ガラスのネットワークを形成する網目状酸化物におけるP2O5を他の網目状酸化物に比べて多くする必要がある。P2O5は、Al2O3やB2O3と比べて分子中に酸素を多く含有するため、Cu2+は非架橋酸素を配位しやすくなり、Cu2+周りの歪みが小さくなる。他方、ガラスの耐候性を高めるには、耐候性に影響があるAl2O3をP2O5との比率において高くすることが有効である。
そのため、ガラスに含有する網目状酸化物のバランスは、P2O5/Al2O3が6.5〜10の範囲である。さらにこれらの比は、7〜10が好ましく、7〜9.5がより好ましい。
In order to increase the number of non-bridging oxygen in the glass, it is necessary to increase the amount of P 2 O 5 in the network oxide forming the glass network compared to other network oxides. Since P 2 O 5 contains more oxygen in the molecule than Al 2 O 3 or B 2 O 3 , Cu 2+ easily coordinates non-bridging oxygen, and strain around Cu 2+ is reduced. On the other hand, in order to increase the weather resistance of the glass, it is effective to increase the ratio of Al 2 O 3 having an influence on the weather resistance in the ratio with P 2 O 5 .
Therefore, the balance of the network oxide contained in the glass is such that P 2 O 5 / Al 2 O 3 is in the range of 6.5 to 10. Furthermore, these ratios are preferably 7 to 10, and more preferably 7 to 9.5.
ガラス中の修飾酸化物のフィールドストレングスについて、P2O5:70%、Al2O3:10%、CuO:4%、XnO(XはLi、Na、K、Ba、Sr、Ca、Zn、またはMgを表し、XがLi、Na、Kの場合には、nは2を表し、XがBa、Sr、Ca、Zn、Mgの場合には、nは1を表す。):20%(全てモル数を示す。P2O5、Al2O3およびXnOの合計100%に対し、CuOを外掛けで4%添加する。)のリン酸塩系ガラスにおいて修飾酸化物であるXnOの種類を変えた場合のCu2+の吸収ピークの波数と各元素のフィールドストレングスとの関係を図2に示す。修飾酸化物のフィールドストレングスが小さいほど、吸収ピークの波数が小さくなり、Cu2+の近赤外域の光の吸収性が上がることがわかる。
これらより、ガラス中の修飾酸化物のフィールドストレングスの平均値を小さくするためには、フィールドストレングスが相対的に小さいNa2Oを他の修飾酸化物と比較し多く含有することが効果的であることがわかる。
そのため、ガラスに含有する修飾酸化物のバランスは、Na2O/(Li2O+MgO+CaO+SrO+BaO)を大きくすればよいが、大きすぎる場合、耐候性の低下につながるため、これらの比は0.5〜3の範囲である。さらにこれらの比は、0.5〜2.5が好ましく、0.7〜2がより好ましい。
Regarding the field strength of the modified oxide in the glass, P 2 O 5 : 70%, Al 2 O 3 : 10%, CuO: 4%, X n O (X is Li, Na, K, Ba, Sr, Ca, Zn represents Mg or Mg. When X is Li, Na, or K, n represents 2, and when X is Ba, Sr, Ca, Zn, or Mg, n represents 1.): 20 % (All moles are shown. 4% of CuO is added as an outer layer to 100% of P 2 O 5 , Al 2 O 3 and X n O in total). FIG. 2 shows the relationship between the wave number of the absorption peak of Cu 2+ and the field strength of each element when the kind of certain X n O is changed. It can be seen that the smaller the field strength of the modified oxide, the smaller the wave number of the absorption peak and the higher the light absorption of Cu 2+ in the near infrared region.
Accordingly, in order to reduce the average value of the field strength of the modified oxide in the glass, it is effective to contain more Na 2 O having a relatively small field strength than other modified oxides. I understand that.
Therefore, the balance of the modified oxide contained in the glass may be Na 2 O / (Li 2 O + MgO + CaO + SrO + BaO), but if it is too large, the weather resistance will be lowered, so these ratios are 0.5-3. Range. Furthermore, these ratios are preferably 0.5 to 2.5, and more preferably 0.7 to 2.
本発明のガラスは、F、PbO、As2O3、Sb2O3、CeO2、V2O5、SiO2、希土類元素を実質的に含有しないことが好ましい。F、As2O3、Sb2O3、CeO2は、幅広い温度域で清澄ガスを発生できる優れた清澄剤として従来のガラスに用いられている。また、PbOはガラスの粘度を下げ、製造作業性を向上させる成分として用いられている。しかし、F、PbO、As2O3、Sb2O3は環境負荷物質であるため、できるだけ含有しないことが望ましい。また、CeO2、V2O5は、ガラスに含有するとガラスの可視領域の透過率が低下するため、可視領域の透過率が高いことが要求される本発明の近赤外線カットフィルタガラスにおいては、できるだけ含有しないことが望ましい。また、SiO2、希土類元素は、ガラスに含有するとガラスの近赤外領域のカット性が低下するため、本発明の近赤外線カットフィルタガラスにおいては、含有しないことが好ましい。 The glass of the present invention preferably contains substantially no F, PbO, As 2 O 3 , Sb 2 O 3 , CeO 2 , V 2 O 5 , SiO 2 or rare earth elements. F, As 2 O 3 , Sb 2 O 3 , and CeO 2 are used in conventional glasses as excellent fining agents capable of generating a fining gas in a wide temperature range. PbO is used as a component that lowers the viscosity of the glass and improves manufacturing workability. However, since F, PbO, As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances, it is desirable that they are not contained as much as possible. Further, CeO 2 , V 2 O 5 , when contained in the glass, the transmittance in the visible region of the glass is lowered, so in the near infrared cut filter glass of the present invention that is required to have a high visible region transmittance, It is desirable not to contain as much as possible. Further, when SiO 2 and rare earth elements are contained in the glass, the near-infrared cut property of the glass is lowered, so that it is preferably not contained in the near-infrared cut filter glass of the present invention.
本発明の近赤外線カットフィルタガラスの分光特性は、波長600〜700nmの分光透過率において、透過率50%を示す波長が631nmとなるように換算したときに、波長430〜565nmの平均透過率が87.2%以上であることが好ましく、87.5%以上であるとより好ましく、88.0%以上であるとさらに好ましい。同様に、波長700〜725nmの平均透過率が10%以下であることが好ましく、9.5%以下であるとより好ましく、9%以下であるとさらに好ましい。同様に、波長1000〜1200nmの平均透過率が3%以下であることが好ましく、2.5%以下であるとより好ましく、2%以下であるとさらに好ましい。 The spectral characteristics of the near-infrared cut filter glass of the present invention are as follows. When the spectral transmittance at a wavelength of 600 to 700 nm is converted so that the wavelength at which the transmittance is 50% is 631 nm, the average transmittance at a wavelength of 430 to 565 nm is It is preferably 87.2% or more, more preferably 87.5% or more, and further preferably 88.0% or more. Similarly, the average transmittance at a wavelength of 700 to 725 nm is preferably 10% or less, more preferably 9.5% or less, and further preferably 9% or less. Similarly, the average transmittance at a wavelength of 1000 to 1200 nm is preferably 3% or less, more preferably 2.5% or less, and further preferably 2% or less.
本発明の近赤外線カットフィルタガラスは、次のようにして作製することができる。まず得られるガラスが上記組成範囲になるように原料を秤量、混合する。この原料混合物を白金ルツボに収容し、電気炉内において900〜1200℃の温度で加熱溶融する。十分に撹拌・清澄した後、金型内に鋳込み、徐冷した後、切断・研磨して所定の内厚の平板状に成形する。 The near-infrared cut filter glass of the present invention can be produced as follows. First, the raw materials are weighed and mixed so that the obtained glass has the above composition range. This raw material mixture is accommodated in a platinum crucible and heated and melted at a temperature of 900 to 1200 ° C. in an electric furnace. After sufficiently stirring and clarifying, it is cast into a mold, slowly cooled, then cut and polished to form a flat plate having a predetermined inner thickness.
本発明の近赤外線カットフィルタガラスは、上記のガラス構成を備えることにより、ガラスが安定であることも特徴である。ガラスが安定であるとは、液相温度付近の温度域での安定性とガラス転移点Tg付近の温度域での安定性の2つが挙げられる。具体的には、液相温度付近の温度域での安定性は、液相温度が低いこと、また、液相温度付近で失透の成長が遅いことであり、ガラス転移点Tg付近の温度域での安定性は、結晶化温度Tcや結晶化開始温度Txが高いこと、Tc・Tx付近で失透の成長が遅いことある。これにより、ガラスの溶融成形工程において失透が発生しにくく、歩留まりが高い製造し易いガラスとすることが可能である。 The near-infrared cut filter glass of the present invention is also characterized in that the glass is stable by having the above glass configuration. “Stable glass” includes two things: stability in the temperature range near the liquidus temperature and stability in the temperature range near the glass transition point Tg. Specifically, the stability in the temperature range near the liquidus temperature is that the liquidus temperature is low and the growth of devitrification is slow near the liquidus temperature, and the temperature range near the glass transition point Tg. The stability in is that the crystallization temperature Tc and the crystallization start temperature Tx are high, and the growth of devitrification is slow in the vicinity of Tc · Tx. Thereby, it is possible to obtain a glass that is less likely to be devitrified in the glass melt molding process and that is easy to manufacture with a high yield.
本発明の近赤外線カットフィルタガラスは、上記のとおり近赤外線カット性に優れ、さらに安定したガラスであるため耐失透性に優れている。このため、固体撮像素子の視感度補正フィルタとして好適に用いることが可能である。
そして、ガラス中のCuOの含有量を増やしたり、誘電体多層膜(近赤外線カット膜)を設けることなく、近赤外線カットフィルタガラスの可視域透過率を高く維持しつつ近赤外域の光のカット性を向上することが可能である。なお、所望の分光特性を得るために本発明の近赤外線カットフィルタガラスに誘電体多層膜(近赤外線カット膜)を設けることは当然可能であるが、ガラスの近赤外線カット性が高いため、設ける誘電体多層膜の層数を少なくすることが可能であり、ガラスに誘電体多層膜を設ける場合であっても近赤外線カットフィルタガラスの製造コストを従来と比べて低くすることができる。
The near-infrared cut filter glass of the present invention is excellent in near-infrared cutability as described above, and is excellent in devitrification resistance because it is a stable glass. For this reason, it can be suitably used as a visibility correction filter for a solid-state imaging device.
And without increasing the content of CuO in the glass or providing a dielectric multilayer film (near infrared cut film), the near infrared cut filter glass cuts light in the near infrared range while maintaining a high visible range transmittance. It is possible to improve the property. In order to obtain desired spectral characteristics, it is naturally possible to provide a dielectric multilayer film (near infrared cut film) in the near infrared cut filter glass of the present invention, but it is provided because the near infrared cut property of the glass is high. It is possible to reduce the number of layers of the dielectric multilayer film, and even when the dielectric multilayer film is provided on the glass, the manufacturing cost of the near-infrared cut filter glass can be reduced as compared with the conventional case.
本発明の実施例および比較例を表1および表2に示す。なお、本明細書において、例1〜例8は実施例であり、例9〜例11は比較例である。表中、各成分の空欄は、含有量が0質量%であることを意味する。
これらガラスは、表に示す組成(質量%)となるよう原料を秤量・混合し、内容積約1000ccの白金ルツボ内に入れて、900〜1200℃で1〜3時間溶融、清澄、撹拌後、およそ100〜400℃に予熱した縦100mm×横100mm×高さ20mmの長方形のモールドに鋳込み後、約1℃/分で徐冷してサンプルとした。また、上記サンプル作製時に目視で観察し、得られたガラスサンプルには泡や脈理のないことを確認した。なお、各ガラスの原料は、P2O5の場合はH3PO4またはメタリン酸塩原料を、Al2O3の場合はAl(PO3)3またはAl(OH)3を、B2O3の場合はH3BO3を、Li2Oの場合はLiCO3を、Na2Oの場合はNaCO3を、K2Oの場合はKCO3を、MgOの場合はMgOを、CaOの場合はCaCO3を、SrOの場合はSrCO3を、BaOの場合はBaPO3を、CuOの場合はCuOを、それぞれ使用した。
Examples and Comparative Examples of the present invention are shown in Tables 1 and 2. In this specification, Examples 1 to 8 are examples, and Examples 9 to 11 are comparative examples. In the table, the blank of each component means that the content is 0% by mass.
These glasses weigh and mix the raw materials so as to have the composition (mass%) shown in the table, put them in a platinum crucible with an internal volume of about 1000 cc, melt at 900-1200 ° C for 1-3 hours, clarify, and stir, The sample was cast into a rectangular mold having a length of 100 mm × width 100 mm × height 20 mm preheated to about 100 to 400 ° C., and then slowly cooled at about 1 ° C./minute to obtain a sample. Moreover, it observed visually at the time of the said sample preparation, and confirmed that there was no bubble and striae in the obtained glass sample. In addition, the raw material of each glass is H 3 PO 4 or a metaphosphate raw material in the case of P 2 O 5 , Al (PO 3 ) 3 or Al (OH) 3 in the case of Al 2 O 3 , B 2 O 3 H 3 BO 3 in the case of the LiCO 3 for Li 2 O, the NaCO 3 in the case of Na 2 O, the KCO 3 for K 2 O, in the case of MgO and MgO, if the CaO Used CaCO 3 , SrCO 3 for SrO, BaPO 3 for BaO, and CuO for CuO.
以上のようにして作製したガラスについて、分光特性、ガラス溶融温度を以下の方法で評価した。 About the glass produced as mentioned above, spectral characteristics and glass melting temperature were evaluated by the following methods.
分光特性は、紫外可視近赤外分光光度計(日本分光株式会社製、商品名:V−570)を用いて評価した。具体的には、縦30mm×横30mm×厚さ0.3mmの両面を光学研磨したガラスサンプルを準備し、透過率の測定を行った。測定した透過率について、透過率が50%を示す波長が631nmとなるように換算した透過率特性について、波長430nm〜565nmの平均透過率、波長700nm〜725nmの平均透過率、波長1000nm〜1200nmの平均透過率を算出したものを表に示す。
なお、上記において、ガラスの分光特性は、透過率50%を示す波長が631nmとなるように換算(半値補正)した透過率特性を用いている。これは、ガラスの透過率は厚みによって変化するが、均質なガラスであれば、光の透過する方向におけるガラスの厚さと透過率がわかれば、所定の厚さの透過率を計算によって求めることができるためである。半値補正の具体的な方法としては、紫外可視近赤外分光光度計にて測定した透過率と、ガラスの屈折率から算出した反射率とからガラスの吸光係数を求め、波長631nmの透過率が50%となる肉厚を計算し、この肉厚での透過率に換算する。
ガラスの溶融温度は、異なる温度で溶融したガラスブロックを目視観察し、異物の混入が見られない一番低い温度を表に示す。
Spectral characteristics were evaluated using an ultraviolet-visible near-infrared spectrophotometer (trade name: V-570, manufactured by JASCO Corporation). Specifically, a glass sample in which both sides of 30 mm long × 30 mm wide × 0.3 mm thick were optically polished was prepared, and the transmittance was measured. About the measured transmittance, the transmittance characteristic converted so that the wavelength at which the transmittance is 50% is 631 nm, the average transmittance of the wavelength 430 nm to 565 nm, the average transmittance of the
In the above, the spectral characteristic of the glass is a transmittance characteristic that is converted (half-value correction) so that the wavelength at which the transmittance is 50% is 631 nm. This is because the transmittance of the glass varies depending on the thickness, but if it is a homogeneous glass, the transmittance of a predetermined thickness can be obtained by calculation if the thickness and transmittance of the glass in the direction of light transmission are known. This is because it can. As a specific method of half-value correction, the absorption coefficient of glass is obtained from the transmittance measured with an ultraviolet-visible near-infrared spectrophotometer and the reflectance calculated from the refractive index of the glass, and the transmittance at a wavelength of 631 nm is obtained. The wall thickness that is 50% is calculated and converted to the transmittance at this wall thickness.
As for the melting temperature of the glass, the glass block melted at different temperatures is visually observed, and the lowest temperature at which no contamination is observed is shown in the table.
図1、表に示した実施例および比較例のガラスの分光特性より、実施例の各ガラスは比較例の各ガラスと比べて、波長430〜565nmの平均透過率が高く、波長700〜800nmおよび波長1000〜1200nmの平均透過率が低く抑えられており、近赤外域の光のカット性と可視域の高い透過率を両立している。比較例の例9は可視域の透過率は高いが、近赤外域の光のカット性は悪く、例10と例11は近赤外域の光のカット性は良いが、可視域の透過率が低い。このような分光特性となる要因の一つとして、実施例の各ガラスは比較例の各ガラスと比べてガラスの溶融温度が低いことが考えられる。
このため、本発明の近赤外線カットフィルタガラスは、近赤外線カット能を補うための近赤外線カット膜(誘電体多層膜)をガラス表面に設ける必要がなくなるため、近赤外線カットフィルタガラスを低コストで製造することが可能となる。また、ガラスの可視域透過率が高く、近赤外線カット性が高いため、固体撮像素子用の近赤外線カットフィルタ用ガラスとして好適に用いることができる。
From the spectral characteristics of the glass of Example and Comparative Example shown in FIG. 1 and Table, each glass of the Example has a higher average transmittance at wavelengths of 430 to 565 nm than those of Comparative Example, and wavelengths of 700 to 800 nm and The average transmittance at a wavelength of 1000 to 1200 nm is suppressed to a low level, and both the near-infrared light cutting property and the high visible light transmittance are compatible. Example 9 of the comparative example has a high transmittance in the visible region, but the near-infrared region has a poor light-cutting property. Examples 10 and 11 have good near-infrared region light-cutting properties, but the visible-region transmittance is low. Low. As one of the factors that cause such spectral characteristics, it is considered that each glass of the example has a lower melting temperature of the glass than each glass of the comparative example.
For this reason, the near-infrared cut filter glass of the present invention eliminates the need to provide a near-infrared cut film (dielectric multilayer film) on the glass surface to supplement the near-infrared cut ability. It can be manufactured. Moreover, since the visible region transmittance of the glass is high and the near-infrared cut property is high, it can be suitably used as a near-infrared cut filter glass for a solid-state imaging device.
ガラスの耐候性評価として、例1(実施例)、例9(比較例)のガラスについて、可視域透過率の平均透過率劣化度を調査した。調査方法としては、高温高湿に所定時間保持する前後のガラスの透過率をそれぞれ測定し、波長430nm〜565nmの平均透過率が低下した割合を劣化度とした。なお、高温高湿の条件としては、光学研磨したガラスサンプルを温度85℃、相対湿度85%の高温高湿槽中に168時間保持した。結果として、例1のガラスは劣化度が8.7%であり、例10のガラスは劣化度が61.1%であった。よって、本発明のガラスは従来のリン酸ガラスと比較し高い耐候性を備えていることがわかる。 As the weather resistance evaluation of the glass, the average transmittance deterioration degree of the visible region transmittance was investigated for the glasses of Example 1 (Example) and Example 9 (Comparative Example). As an investigation method, the transmittance of the glass before and after being held at a high temperature and high humidity for a predetermined time was measured, and the ratio of the decrease in the average transmittance at wavelengths of 430 nm to 565 nm was defined as the degree of deterioration. In addition, as conditions for high temperature and high humidity, the optically polished glass sample was held in a high temperature and high humidity tank having a temperature of 85 ° C. and a relative humidity of 85% for 168 hours. As a result, the glass of Example 1 had a degree of deterioration of 8.7%, and the glass of Example 10 had a degree of deterioration of 61.1%. Therefore, it turns out that the glass of this invention is equipped with the high weather resistance compared with the conventional phosphate glass.
本発明によれば、リン酸塩系ガラスのガラス組成を特定範囲とする際、ガラスの溶融温度を低くすることで、ガラス中の銅イオンにおけるCu2+の存在比率を高くする。また、修飾酸化物のフィールドストレングスが小さくなるようにすることで、ガラス中のCu2+による近赤外域の光の吸収を一層高く機能させることができる。これらにより、可視域透過率を高く維持しつつ、近赤外域の光の透過率を低く抑えることができる近赤外線カットフィルタガラスを低コストで提供することが可能となる。 According to the present invention, when the glass composition of the phosphate glass is set within a specific range, the abundance ratio of Cu 2+ in the copper ions in the glass is increased by lowering the melting temperature of the glass. Further, by reducing the field strength of the modified oxide, the absorption of light in the near infrared region by Cu 2+ in the glass can be made to function more highly. As a result, it is possible to provide a near-infrared cut filter glass capable of keeping the transmittance of light in the near infrared region low while maintaining the visible region transmittance high, at a low cost.
Claims (3)
P2O5 65〜74%、
Al2O3 5〜10%、
B2O3 0.5〜3%、
Li2O 0〜10%、
Na2O 3〜10%、
Li2O+Na2O 3〜15%、
MgO 0〜2%、
CaO 0〜2%、
SrO 0〜5%、
BaO 3〜9%、
MgO+CaO+SrO+BaO 3〜15%、
CuO 0.5〜20%、
を含み、K2Oを実質的に含まず、
Na2O/(Li2O+MgO+CaO+SrO+BaO) 0.5〜3、
であることを特徴とする近赤外線カットフィルタガラス。 In mass% display of the following oxide conversion,
P 2 O 5 65-74%,
Al 2 O 3 5-10%,
B 2 O 3 0.5~3%,
Li 2 O 0-10%,
Na 2 O 3-10%,
Li 2 O + Na 2 O 3-15%,
MgO 0-2%,
CaO 0-2%,
SrO 0-5%,
BaO 3-9%,
MgO + CaO + SrO + BaO 3-15%,
CuO 0.5-20%,
And substantially free of K 2 O,
Na 2 O / (Li 2 O + MgO + CaO + SrO + BaO) 0.5-3,
Near-infrared cut filter glass characterized by being.
(BaO+B2O3)/Al2O3 0.3〜2.4、
であることを特徴とする請求項1に記載の近赤外線カットフィルタガラス。 P 2 O 5 / Al 2 O 3 6.5~10,
(BaO + B 2 O 3 ) / Al 2 O 3 0.3-2.4,
The near-infrared cut filter glass according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092142A JP5609754B2 (en) | 2011-04-18 | 2011-04-18 | Near-infrared cut filter glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092142A JP5609754B2 (en) | 2011-04-18 | 2011-04-18 | Near-infrared cut filter glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012224491A JP2012224491A (en) | 2012-11-15 |
JP5609754B2 true JP5609754B2 (en) | 2014-10-22 |
Family
ID=47275105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011092142A Active JP5609754B2 (en) | 2011-04-18 | 2011-04-18 | Near-infrared cut filter glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5609754B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9359244B2 (en) | 2013-05-21 | 2016-06-07 | Colorado School Of Mines | Alumina-rich glasses and methods for making the same |
KR20170139010A (en) | 2015-04-24 | 2017-12-18 | 아사히 가라스 가부시키가이샤 | Near infrared cut-off filter glass |
JP6844396B2 (en) * | 2016-06-30 | 2021-03-17 | Agc株式会社 | UV transmission filter |
JP7071608B2 (en) * | 2017-08-25 | 2022-05-19 | 日本電気硝子株式会社 | Near infrared absorber glass |
WO2019171851A1 (en) * | 2018-03-05 | 2019-09-12 | 日本電気硝子株式会社 | Method of manufacturing near infrared ray absorbing glass |
JP7138849B2 (en) * | 2018-03-05 | 2022-09-20 | 日本電気硝子株式会社 | Manufacturing method of near-infrared absorbing glass |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5438311A (en) * | 1977-08-31 | 1979-03-22 | Hoya Glass Works Ltd | Low temperature melting coating glass capable of highly absorbing laser |
JPS5580737A (en) * | 1978-12-11 | 1980-06-18 | Toshiba Glass Co Ltd | Colored glass |
JPS57149845A (en) * | 1981-03-09 | 1982-09-16 | Ohara Inc | Filter glass for absorbing near infrared ray |
JPS6325245A (en) * | 1986-07-17 | 1988-02-02 | Toshiba Glass Co Ltd | Filter glass for cutting near-infrared rays |
JPH04104918A (en) * | 1990-08-23 | 1992-04-07 | Asahi Glass Co Ltd | Near infrared absorbing glass |
JP3110325B2 (en) * | 1996-10-02 | 2000-11-20 | 旭テクノグラス株式会社 | Method for adjusting spectral characteristics of near-infrared cut filter glass |
WO2011046155A1 (en) * | 2009-10-16 | 2011-04-21 | 旭硝子株式会社 | Near-infrared ray cut filter glass |
-
2011
- 2011-04-18 JP JP2011092142A patent/JP5609754B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012224491A (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5842613B2 (en) | Near-infrared cut filter glass | |
US10252936B2 (en) | Near-infrared cut filter glass | |
JP6844396B2 (en) | UV transmission filter | |
JP5609754B2 (en) | Near-infrared cut filter glass | |
JP6332916B2 (en) | Colored glass | |
TWI545098B (en) | Optical glass, prefabricated and optical components | |
CN104583142B (en) | Optical glass, preform and optical element | |
JP2009263190A (en) | Infrared absorption glass | |
TW201803821A (en) | Optical glass and optical element | |
TWI612019B (en) | Optical glass, preforms and optical components | |
JP5609090B2 (en) | Near-infrared cut filter glass | |
JP5659499B2 (en) | Near-infrared cut filter glass | |
KR20110065490A (en) | Optical glass and method for suppressing the deterioration of spectral transmittance | |
JP7024711B2 (en) | Optical glass and near infrared cut filter | |
JP2008001545A (en) | Method of manufacturing visibility correction filter glass | |
JP2006248850A (en) | Glass for near-infrared absorbing filter | |
JP2011051886A (en) | Optical glass | |
CN115259656A (en) | Optical glass, preform, and optical element | |
WO2015156163A1 (en) | Near infrared cut-off filter glass | |
JP7071608B2 (en) | Near infrared absorber glass | |
JP6687027B2 (en) | Near infrared cut filter glass | |
TW201509861A (en) | Glass for ir-cut filter | |
KR101266431B1 (en) | Glass composition for near infrared ray filter and method of manufacuring glass for near infrared ray filter using thereof | |
JPH10101370A (en) | Method for regulating spectral characteristic of near infrared ray cutting filter glass | |
JP5270973B2 (en) | Near infrared absorption filter glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140818 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5609754 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |