JP2020142952A - Near-infrared absorbing glass plate - Google Patents

Near-infrared absorbing glass plate Download PDF

Info

Publication number
JP2020142952A
JP2020142952A JP2019040303A JP2019040303A JP2020142952A JP 2020142952 A JP2020142952 A JP 2020142952A JP 2019040303 A JP2019040303 A JP 2019040303A JP 2019040303 A JP2019040303 A JP 2019040303A JP 2020142952 A JP2020142952 A JP 2020142952A
Authority
JP
Japan
Prior art keywords
glass plate
infrared absorbing
absorbing glass
less
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019040303A
Other languages
Japanese (ja)
Inventor
雄太 永野
Yuta Nagano
雄太 永野
英佑 高尾
Eisuke Takao
英佑 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2019040303A priority Critical patent/JP2020142952A/en
Priority to PCT/JP2020/007201 priority patent/WO2020179516A1/en
Priority to TW109106566A priority patent/TW202037571A/en
Publication of JP2020142952A publication Critical patent/JP2020142952A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

To provide a near-infrared absorbing glass plate which enables size reduction of a solid-state imaging element device.SOLUTION: A near-infrared absorbing glass plate which is characterized in that: the aspect ratio Str of the surface properties is 0.1 or more; and 1-40 mass% of CuO is contained in the composition.SELECTED DRAWING: Figure 1

Description

本発明は、近赤外線吸収ガラス板に関するものである。 The present invention relates to a near-infrared absorbing glass plate.

デジタルカメラやスマートフォンのカメラ等には、CCDやCMOS等の固体撮像デバイスが用いられている。これらの固体撮像素子デバイスは、広範囲の受光感度を有しているので、人間の視感に合わせるため、赤外域の光を除去する必要がある。下記の特許文献1では、赤外域の光を除去するための近赤外線カットフィルタとして、近赤外線吸収ガラス板が開示されている。また、特許文献1では、物理研磨によりガラス板の厚みが薄くされている。 Solid-state image sensors such as CCD and CMOS are used in digital cameras, smartphone cameras, and the like. Since these solid-state image sensor devices have a wide range of light-receiving sensitivities, it is necessary to remove light in the infrared region in order to match the human visual sensation. Patent Document 1 below discloses a near-infrared absorbing glass plate as a near-infrared cut filter for removing light in the infrared region. Further, in Patent Document 1, the thickness of the glass plate is reduced by physical polishing.

特開2007−99604号公報JP-A-2007-99604

近年、固体撮像素子デバイスには、より一層の小型化が求められている。そのため、固体撮像素子デバイスを構成する近赤外線吸収ガラス板にもより一層の薄型化が求められている。しかしながら、特許文献1に記載のガラス板では、厚みを薄くしすぎると、ガラス板に割れが生じる場合があった。そのため、ガラス板を十分に薄くすることができず、固体撮像素子デバイスを十分に小型化することができない場合があった。 In recent years, the solid-state image sensor device is required to be further miniaturized. Therefore, the near-infrared absorbing glass plate constituting the solid-state image sensor device is also required to be further thinned. However, in the glass plate described in Patent Document 1, if the thickness is too thin, the glass plate may be cracked. Therefore, the glass plate cannot be made sufficiently thin, and the solid-state image sensor device may not be sufficiently miniaturized.

本発明の目的は、固体撮像素子デバイスの小型化を図ることを可能とする、近赤外線吸収ガラス板を提供することにある。 An object of the present invention is to provide a near-infrared absorbing glass plate that enables miniaturization of a solid-state image sensor device.

本発明の近赤外線吸収ガラス板は、表面性状のアスペクト比Strが0.1以上であり、組成中に、CuOを1〜40質量%を含むことを特徴とする。本発明者等は種々の実験を行った結果、表面性状のアスペクト比Strが0.1以上であれば、ガラス板の強度が十分に高められ、厚みが薄くても割れ難くなることを見出した。なお、「表面性状のアスペクト比Str」とは、原子間力顕微鏡(AFM)より求めることができるパラメーターであり、表面性状の異方性、等方性の強さを示す指標である。詳述すると、Strは0〜1の値をとり、0に近い場合は表面に研磨痕等の傷が存在し表面性状の異方性が強くなり、1に近い場合は表面が滑らかであり、研磨痕等の傷が少なく表面性状の等方性が強いことを示す。 The near-infrared absorbing glass plate of the present invention is characterized in that the surface texture aspect ratio Str is 0.1 or more, and CuO is contained in the composition in an amount of 1 to 40% by mass. As a result of various experiments, the present inventors have found that if the aspect ratio Str of the surface texture is 0.1 or more, the strength of the glass plate is sufficiently increased and it is difficult to crack even if the thickness is thin. .. The "surface texture aspect ratio Str" is a parameter that can be obtained from an atomic force microscope (AFM), and is an index showing the anisotropy and isotropic strength of the surface texture. More specifically, Str takes a value of 0 to 1, and when it is close to 0, there are scratches such as polishing marks on the surface and the anisotropy of the surface texture becomes strong, and when it is close to 1, the surface is smooth. It shows that there are few scratches such as polishing marks and the surface texture is strongly isotropic.

本発明の近赤外線吸収ガラス板は、質量%で、P 10〜70%、RO(ただし、RはLi、Na及びKから選択される少なくとも1種) 0超〜50%を含有することが好ましい。 The near-infrared absorbing glass plate of the present invention contains P 2 O 5 10 to 70% and R 2 O (where R is at least one selected from Li, Na and K) of more than 0 to 50% by mass. It is preferable to contain it.

本発明の近赤外線吸収ガラス板は、厚みが0.2mm以下であることが好ましい。 The near-infrared absorbing glass plate of the present invention preferably has a thickness of 0.2 mm or less.

本発明の近赤外線吸収ガラス板は、3点曲げ強度が、200N/mm以上であることが好ましい。ここで、3点曲げ強度とは、6mm角の大きさで厚み0.1mmのガラス板(20枚)を距離2.5mmに配置した2支点上に置き、支点間の中央の1点にクロスヘッド速度0.5mm/minで荷重を加えた際に、ガラスが破壊される荷重の平均値である。 The near-infrared absorbing glass plate of the present invention preferably has a three-point bending strength of 200 N / mm 2 or more. Here, the three-point bending strength means that 20 glass plates (20 sheets) having a size of 6 mm square and a thickness of 0.1 mm are placed on two fulcrums arranged at a distance of 2.5 mm and crossed at one point in the center between the fulcrums. This is the average value of the load at which the glass is broken when a load is applied at a head speed of 0.5 mm / min.

本発明の近赤外線吸収ガラス板は、厚み0.05mmにて波長400nmにおける光透過率が80%以上であることが好ましい。 The near-infrared absorbing glass plate of the present invention preferably has a thickness of 0.05 mm and a light transmittance of 80% or more at a wavelength of 400 nm.

本発明の近赤外線吸収ガラス板は、厚み0.05mmにて波長800nmにおける光透過率が50%以下であることが好ましい。 The near-infrared absorbing glass plate of the present invention preferably has a thickness of 0.05 mm and a light transmittance of 50% or less at a wavelength of 800 nm.

本発明によれば、固体撮像素子デバイスの小型化を図ることを可能とする、近赤外線吸収ガラス板を提供することができる。 According to the present invention, it is possible to provide a near-infrared absorbing glass plate that enables miniaturization of a solid-state image sensor device.

実施例1のガラス表面のAFM観察結果を示す写真である。It is a photograph which shows the AFM observation result of the glass surface of Example 1. 比較例のガラス表面のAFM観察結果を示す写真である。It is a photograph which shows the AFM observation result of the glass surface of the comparative example.

本発明の近赤外線吸収ガラス板は、表面性状のアスペクト比Strが0.1以上であり、質量%で、CuO 1〜40%を含有する。 The near-infrared absorbing glass plate of the present invention has a surface texture aspect ratio Str of 0.1 or more, and contains CuO 1 to 40% in mass%.

まず、本発明の近赤外線吸収ガラス板のガラス組成について説明する。 First, the glass composition of the near-infrared absorbing glass plate of the present invention will be described.

本発明の近赤外線吸収ガラス板は、組成中に、CuOを1〜40質量%を含み、好ましくは更に、質量%で、P 10〜70%、RO(ただし、RはLi、Na及びKから選択される少なくとも1種) 0超〜50%を含有する。ガラス組成をこのように規制した理由を以下に説明する。 The near-infrared absorbing glass plate of the present invention contains 1 to 40% by mass of CuO in the composition, preferably further in mass%, P 2 O 5 10 to 70%, R 2 O (where R is Li). , Na and at least one selected from K) Containing more than 0 to 50%. The reason why the glass composition is regulated in this way will be described below.

CuOは近赤外線を吸収するための必須成分である。CuOの含有量は1〜40%であり、2〜35%、3〜30%、4〜25%、5〜20%、特に6〜15%であることが好ましい。CuOの含有量が少なすぎると、所望の近赤外線吸収特性を得るためにガラスを厚くする必要があり、結果として光学デバイスを薄型化しにくくなる。一方、CuOの含有量が多すぎると、液相温度が高くなり、耐失透性が低下しやすくなる。 CuO is an essential component for absorbing near infrared rays. The content of CuO is 1 to 40%, preferably 2 to 35%, 3 to 30%, 4 to 25%, 5 to 20%, and particularly preferably 6 to 15%. If the CuO content is too low, the glass needs to be thickened to obtain the desired near-infrared absorption characteristics, and as a result, it becomes difficult to thin the optical device. On the other hand, if the CuO content is too large, the liquidus temperature rises and the devitrification resistance tends to decrease.

本発明の近赤外線吸収ガラス板には、上記成分以外にも下記の成分を含有させることができる。 The near-infrared absorbing glass plate of the present invention may contain the following components in addition to the above components.

はガラス骨格を形成するための成分である。Pの含有量は10〜70%、15〜65%、16〜64%、17〜63%、18〜62%、19〜61%、20〜60%、31〜56%、41〜55%、45〜54%、特に47〜53%であることが好ましい。Pの含有量が多すぎると、耐候性が低下しやすくなる。 P 2 O 5 is a component for forming a glass skeleton. The content of P 2 O 5 is 10-70%, 15-65%, 16-64%, 17-63%, 18-62%, 19-61%, 20-60%, 31-56%, 41- It is preferably 55%, 45-54%, particularly 47-53%. If the content of P 2 O 5 is too large, the weather resistance tends to decrease.

O(ただし、RはLi、Na及びKから選択される少なくとも1種)は溶融温度を低下させる成分である。ROの含有量は0〜50%、0超〜40%、3〜30%、5〜25%、7〜23%、8〜22%、9〜21%、10〜20%、11〜19%、12〜18%、13〜17%、特に14〜16%であることが好ましい。ROの含有量が多すぎると、溶融温度が上昇しやすくなる。なお、溶融温度が上昇すると、近赤外域に吸収を示すCu2+イオンが還元され、紫外域に吸収を示すCuイオンが生成し、紫外〜可視域の光透過率が低下し、近赤外域の光透過率が上昇しやすくなるため、所望の分光特性が得られにくくなる。 R 2 O (where R is at least one selected from Li, Na and K) is a component that lowers the melting temperature. The content of R 2 O 0 to 50%, greater than 0 to 40%, 3% to 30%, 5-25%, 7-23%, 8-22%, 9-21%, 10-20%, 11 It is preferably 19%, 12-18%, 13-17%, particularly 14-16%. If the content of R 2 O is too large, the melting temperature tends to rise. When the melting temperature rises, Cu 2+ ions that show absorption in the near infrared region are reduced, Cu + ions that show absorption in the ultraviolet region are generated, and the light transmittance in the ultraviolet to visible region decreases, and the near infrared region Since the light transmittance of the infrared ray is likely to increase, it becomes difficult to obtain desired spectral characteristics.

なお、ROの各成分の好ましい範囲は以下の通りである。LiOは紫外〜可視域の光透過率を上昇させる成分である。LiOを含有することにより、紫外〜可視域の光透過率を低下させている酸素と銅イオンの間での電荷移動遷移による吸収を減少させることができる。LiOの含有量は0〜50%、0超〜40%、0.2〜30%、0.3〜20%、0.4〜6%、0.5〜5%、0.6〜4%、0.65〜3%、0.66〜2%、0.67〜1.5%、0.68〜1.2%、0.69〜1.0%、特に0.7〜0.9%であることが好ましい。LiOの含有量が多すぎると液相温度が高くなり、耐失透性が低下しやすくなる。NaOの含有量は0〜50%、0超〜40%、0.5〜30%、0.8〜20%、特に1〜10%であることが好ましい。KOの含有量は0〜50%、0超〜40%、3〜30%、3.3〜28%、4〜25%、5〜20%、6〜19%、6.2〜18.5%、10〜18%、特に14〜17%であることが好ましい。 A preferable range of each component of R 2 O is as follows. Li 2 O is a component that increases the light transmittance in the ultraviolet to visible region. By containing Li 2 O, it is possible to reduce the absorption due to the charge transfer transition between oxygen and copper ions, which reduce the light transmittance in the ultraviolet to visible region. The content of Li 2 O is 0 to 50%, more than 0 to 40%, 0.2 to 30%, 0.3 to 20%, 0.4 to 6%, 0.5 to 5%, 0.6 to 4%, 0.65-3%, 0.66-2%, 0.67-1.5%, 0.68-1.2%, 0.69-1.0%, especially 0.7-0 It is preferably 9.9%. If the content of Li 2 O is too large, the liquidus temperature rises and the devitrification resistance tends to decrease. The content of Na 2 O is preferably 0 to 50%, more than 0 to 40%, 0.5 to 30%, 0.8 to 20%, and particularly preferably 1 to 10%. The content of K 2 O 0-50%, greater than 0 to 40%, 3% to 30%, from 3.3 to 28%, 4-25%, 5-20%, 6-19%, 6.2 to 18 It is preferably 5.5%, 10-18%, particularly 14-17%.

Alは耐候性を大幅に向上させる成分である。また、耐失透性を向上させる成分でもある。Alの含有量は0〜19%、1〜14%、2〜10%、3〜8%、特に4〜6%であることが好ましい。Alの含有量が多すぎると、溶融性が低下して溶融温度が高くなり、結果として所望の分光特性を得にくくなる。 Al 2 O 3 is a component that greatly improves weather resistance. It is also a component that improves devitrification resistance. The content of Al 2 O 3 is preferably 0 to 19%, 1 to 14%, 2 to 10%, 3 to 8%, and particularly preferably 4 to 6%. If the content of Al 2 O 3 is too large, the meltability is lowered and the melting temperature is raised, and as a result, it becomes difficult to obtain desired spectral characteristics.

R’O(ただし、R’はMg、Ca、Sr及びBaから選択される少なくとも1種)は耐候性を改善するとともに、溶融性を向上させる成分である。また、耐失透性を向上させる成分でもある。R’Oの含有量は0〜50%、3〜30%、3.3〜29%、3.4〜28%、3.5〜27%、3.6〜26%、3.7〜25%、3.8〜24%、3.9〜23%、4〜22%、特に5〜20%であることが好ましい。R’Oの含有量が多すぎると、成形時にR’O成分起因の結晶が析出しやすくなる。 R'O (where R'is at least one selected from Mg, Ca, Sr and Ba) is a component that improves weather resistance and meltability. It is also a component that improves devitrification resistance. The content of R'O is 0 to 50%, 3 to 30%, 3.3 to 29%, 3.4 to 28%, 3.5 to 27%, 3.6 to 26%, 3.7 to 25. %, 3.8 to 24%, 3.9 to 23%, 4 to 22%, particularly preferably 5 to 20%. If the content of R'O is too large, crystals due to the R'O component are likely to precipitate during molding.

なお、R’Oの各成分の含有量の好ましい範囲は以下の通りである。 The preferable range of the content of each component of R'O is as follows.

MgOは耐候性を改善する成分である。MgOの含有量は0〜15%、0.2〜7%、0.3〜5%、0.4〜3.7%、0.5〜3.6%、0.6〜3.5%、0.7〜3.4%、0.8〜3.3%、0.9〜3.2%、0.8〜3.1%、特に0.9〜3%であることが好ましい。MgOの含有量が多すぎると、ガラス化しにくくなる。 MgO is a component that improves weather resistance. The content of MgO is 0 to 15%, 0.2 to 7%, 0.3 to 5%, 0.4 to 3.7%, 0.5 to 3.6%, 0.6 to 3.5%. , 0.7 to 3.4%, 0.8 to 3.3%, 0.9 to 3.2%, 0.8 to 3.1%, particularly preferably 0.9 to 3%. If the content of MgO is too large, it becomes difficult to vitrify.

CaOはMgOと同様に耐候性を改善する成分である。CaOの含有量は0〜15%、0.4〜10%、特に1〜7%であることが好ましい。CaOの含有量が多すぎると、ガラス化しにくくなる。 CaO is a component that improves weather resistance like MgO. The CaO content is preferably 0 to 15%, 0.4 to 10%, and particularly preferably 1 to 7%. If the CaO content is too high, it becomes difficult to vitrify.

SrOもMgOと同様に耐候性を改善する成分である。SrOの含有量は0〜12%、0.3〜10%、特に0.5〜5%であることが好ましい。SrOの含有量が多すぎると、ガラス化しにくくなる。 Similar to MgO, SrO is also a component that improves weather resistance. The content of SrO is preferably 0 to 12%, 0.3 to 10%, and particularly preferably 0.5 to 5%. If the content of SrO is too large, it becomes difficult to vitrify.

BaOはガラス化の安定性を高めるとともに、耐候性を向上させる成分である。特にPが少ない場合に、BaOによるガラス化安定性の効果を享受しやすい。BaOの含有量は0〜30%、5〜30%、7〜25%、10〜23%、特に15〜20%であることが好ましい。BaOの含有量が多すぎると、成形中にBaO起因の結晶が析出しやすくなる。 BaO is a component that enhances the stability of vitrification and improves the weather resistance. Especially when P 2 O 5 is small, it is easy to enjoy the effect of vitrification stability by BaO. The content of BaO is preferably 0 to 30%, 5 to 30%, 7 to 25%, 10 to 23%, and particularly preferably 15 to 20%. If the BaO content is too high, crystals due to BaO are likely to precipitate during molding.

なお、本発明の近赤外線吸収ガラス板は、CuOを1%以上含有している。CuOの含有量が多くなると失透しやすくなるが、AlやR’Oを含有させることにより耐失透性を向上させることができる。 The near-infrared absorbing glass plate of the present invention contains 1% or more of CuO. As the content of CuO increases, devitrification is likely to occur, but the devitrification resistance can be improved by containing Al 2 O 3 or R'O.

ZnOはガラス化の安定性及び耐候性を改善する成分である。ZnOの含有量は0〜13%、0.1〜12%、特に1〜10%であることが好ましい。ZnOの含有量が多すぎると、溶融性が低下して溶融温度が高くなり、結果として所望の分光特性を得にくくなる。また、ZnO成分起因の結晶が析出しやすくなる。なお、特にPが少ない場合に、ZnOによるガラス化安定性の効果を享受しやすい。 ZnO is a component that improves the stability and weather resistance of vitrification. The ZnO content is preferably 0 to 13%, 0.1 to 12%, and particularly preferably 1 to 10%. If the ZnO content is too high, the meltability is lowered and the melting temperature is raised, and as a result, it becomes difficult to obtain desired spectral characteristics. In addition, crystals due to the ZnO component are likely to precipitate. In particular, when P 2 O 5 is small, it is easy to enjoy the effect of vitrification stability by ZnO.

Nb及びTaは耐候性を高める成分である。Nb及びTaの各成分の含有量は0〜20%、0.1〜20%、1〜18%、特に2〜15%であることが好ましい。これらの成分の含有量が多すぎると、溶融性が低下して溶融温度が高くなり、結果として所望の分光特性を得にくくなる。なお、Nb及びTaの合量は0〜20%、0.1〜20%、1〜18%、特に2〜15%であることが好ましい。 Nb 2 O 5 and Ta 2 O 5 are components that enhance weather resistance. The content of each component of Nb 2 O 5 and Ta 2 O 5 is preferably 0 to 20%, 0.1 to 20%, 1 to 18%, and particularly preferably 2 to 15%. If the content of these components is too large, the meltability is lowered and the melting temperature is raised, and as a result, it becomes difficult to obtain desired spectral characteristics. The total amount of Nb 2 O 5 and Ta 2 O 5 is preferably 0 to 20%, 0.1 to 20%, 1 to 18%, and particularly preferably 2 to 15%.

GeOは耐候性を高める成分である。GeOの含有量は0〜20%、0.1〜20%、0.3〜17%、特に0.4〜15%であることが好ましい。GeOの含有量が多すぎると、溶融性が低下して溶融温度が高くなり、結果として所望の分光特性を得にくくなる。 GeO 2 is a component that enhances weather resistance. The content of GeO 2 is preferably 0 to 20%, 0.1 to 20%, 0.3 to 17%, and particularly preferably 0.4 to 15%. If the content of GeO 2 is too large, the meltability is lowered and the melting temperature is raised, and as a result, it becomes difficult to obtain desired spectral characteristics.

SiOはガラス骨格を強化する成分である。また、耐候性を向上させる効果がある。SiOの含有量は0〜10%、0.1〜8%、0.6〜7.5%、0.7〜7%、0.8〜6.5%、0.85〜6.4%、0.9〜6.2%、特に1〜6%であることが好ましい。SiOの含有量が多すぎると、かえって耐候性が低下しやすくなる。また、ガラス化が不安定になる傾向がある。 SiO 2 is a component that strengthens the glass skeleton. It also has the effect of improving weather resistance. The content of SiO 2 is 0 to 10%, 0.1 to 8%, 0.6 to 7.5%, 0.7 to 7%, 0.8 to 6.5%, 0.85 to 6.4. %, 0.9 to 6.2%, particularly preferably 1 to 6%. If the content of SiO 2 is too large, the weather resistance tends to decrease. In addition, vitrification tends to be unstable.

また、上記成分以外にも、B、Y、La、CeO、Sb等を本発明の効果を損なわない範囲で含有させても構わない。具体的には、これらの成分の含有量は、各々0〜3%、特に各々0〜2%であることが好ましい。なお、フッ素を含有させることにより化学的耐久性を向上させることが可能であるが、フッ素は環境負荷物質であるため、アニオン%で、15%以下、10%以下、5%以下、1%以下、特に含有しないことが好ましい。 In addition to the above components, B 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Sb 2 O 3, and the like may be contained within a range that does not impair the effects of the present invention. Specifically, the content of each of these components is preferably 0 to 3%, particularly preferably 0 to 2%, respectively. It is possible to improve the chemical durability by containing fluorine, but since fluorine is an environmentally hazardous substance, the anion% is 15% or less, 10% or less, 5% or less, 1% or less. , Especially preferably not contained.

本発明の近赤外線吸収ガラス板は、表面性状のアスペクト比Strが0.1以上であり、0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.75以上、0.8以上、特に0.85以上であることが好ましい。Strが小さすぎると、異方性が強くなる、つまり研磨痕等の傷が多くなる傾向があり、結果として近赤外線吸収ガラス板の強度が低下し割れやすくなる。Strの上限は特に限定されないが、現実的には1未満である。 The near-infrared absorbing glass plate of the present invention has a surface texture aspect ratio Str of 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0. It is preferably 0.7 or more, 0.75 or more, 0.8 or more, and particularly preferably 0.85 or more. If the Str is too small, the anisotropy tends to be strong, that is, the scratches such as polishing marks tend to increase, and as a result, the strength of the near-infrared absorbing glass plate is lowered and the glass plate is easily cracked. The upper limit of Str is not particularly limited, but is practically less than 1.

本発明の近赤外線吸収ガラス板は、厚みが0.2mm以下、0.19mm以下、特に0.16mm以下であることが好ましい。厚みが厚すぎると、固体撮像素子デバイスを小型化しにくくなる。なお、厚みが薄すぎると、近赤外線吸収ガラス板が割れやすくなるため、厚みは、0.01mm以上、特に0.02mm以上であることが好ましい。 The near-infrared absorbing glass plate of the present invention preferably has a thickness of 0.2 mm or less, 0.19 mm or less, and particularly preferably 0.16 mm or less. If the thickness is too thick, it becomes difficult to miniaturize the solid-state image sensor device. If the thickness is too thin, the near-infrared absorbing glass plate is easily broken. Therefore, the thickness is preferably 0.01 mm or more, particularly 0.02 mm or more.

本発明の近赤外線吸収ガラス板は、3点曲げ強度が200N/mm以上、210N/mm以上、220N/mm以上、230N/mm以上、240N/mm以上、250N/mm以上、260N/mm以上、270N/mm以上、特に280N/mm以上であることが好ましい。3点曲げ強度が小さすぎると、近赤外線吸収ガラス板が割れやすくなる。なお、近赤外線吸収ガラス板の3点曲げ強度の上限は、特に限定されないが、材料の性質上450N/mm以下である。 Near infrared absorbing glass plate of the present invention, three-point bending strength 200 N / mm 2 or more, 210N / mm 2 or more, 220 N / mm 2 or more, 230N / mm 2 or more, 240 N / mm 2 or more, 250 N / mm 2 or more , 260 N / mm 2 or more, 270N / mm 2 or more, and particularly preferably 280N / mm 2 or more. If the three-point bending strength is too small, the near-infrared absorbing glass plate is easily broken. The upper limit of the three-point bending strength of the near-infrared absorbing glass plate is not particularly limited, but is 450 N / mm 2 or less due to the nature of the material.

本発明の近赤外線吸収ガラス板の液相温度は900℃以下、890℃以下、880℃以下、870℃以下、860℃以下、特に850℃以下であることが好ましい。液相温度が高すぎると、製造工程において(特に成形時に)失透しやすくなる。 The liquidus temperature of the near-infrared absorbing glass plate of the present invention is preferably 900 ° C. or lower, 890 ° C. or lower, 880 ° C. or lower, 870 ° C. or lower, 860 ° C. or lower, particularly 850 ° C. or lower. If the liquidus temperature is too high, devitrification is likely to occur in the manufacturing process (especially during molding).

本発明の近赤外線吸収ガラス板は、厚み0.05mm換算、波長400nmにおける光透過率が80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、特に87%以上であることが好ましい。一方、波長800nmにおける光透過率は50%以下、40%以下、35%以下、30%以下、29%以下、28%以下、27%以下、26%以下、特に25%以下であることが好ましく、波長1200nmにおける光透過率は70%以下、65%以下、60%以下、59%以下、58%以下、57%以下、56%以下、55%以下、54%以下、53%以下、特に52%以下であることが好ましい。 The near-infrared absorbing glass plate of the present invention has a thickness of 0.05 mm and a light transmittance at a wavelength of 400 nm of 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more. In particular, it is preferably 87% or more. On the other hand, the light transmittance at a wavelength of 800 nm is preferably 50% or less, 40% or less, 35% or less, 30% or less, 29% or less, 28% or less, 27% or less, 26% or less, and particularly preferably 25% or less. The light transmittance at a wavelength of 1200 nm is 70% or less, 65% or less, 60% or less, 59% or less, 58% or less, 57% or less, 56% or less, 55% or less, 54% or less, 53% or less, especially 52. % Or less is preferable.

次に、本発明の近赤外線吸収ガラス板の製造方法について説明する。 Next, the method for manufacturing the near-infrared absorbing glass plate of the present invention will be described.

まず、所望の組成となるように調製した原料粉末バッチを溶融させ、板状に成形することによりガラス母材を得る。 First, a glass base material is obtained by melting a raw material powder batch prepared to have a desired composition and molding it into a plate shape.

溶融温度は、700〜900℃、特に710〜850℃であることが好ましい。溶融温度が低すぎると、均質なガラスを得にくくなる。一方、溶融温度が高すぎると、Cuイオンが還元されてCu2+からCuにシフトしやすくなり、所望の光学特性を得にくくなる。 The melting temperature is preferably 700 to 900 ° C., particularly preferably 71 to 850 ° C. If the melting temperature is too low, it will be difficult to obtain homogeneous glass. On the other hand, if the melting temperature is too high, Cu ions are reduced and it becomes easy to shift from Cu 2+ to Cu + , and it becomes difficult to obtain desired optical characteristics.

なお、成形方法としては、特に限定されないが、例えば、鋳込み法、ロールアウト法、ダウンドロー法、又はリドロー法等の成形方法を用いることができる。 The molding method is not particularly limited, but for example, a molding method such as a casting method, a rollout method, a downdraw method, or a redraw method can be used.

続いて、上記のようにして用意した板状のガラス母材を物理研磨により研磨する。研磨工程においては、物理研磨により、ガラス母材の厚みを0.2mm超〜0.3mmにすることが好ましい。ガラス母材の厚みを物理研磨により薄くしすぎると、ガラス母材が割れる虞がある。また、ガラス母材の厚みが厚すぎると、後述するエッチング工程において十分にガラス板の厚みを薄くし難くなる。 Subsequently, the plate-shaped glass base material prepared as described above is polished by physical polishing. In the polishing step, it is preferable that the thickness of the glass base material is more than 0.2 mm to 0.3 mm by physical polishing. If the thickness of the glass base material is made too thin by physical polishing, the glass base material may crack. Further, if the thickness of the glass base material is too thick, it becomes difficult to sufficiently reduce the thickness of the glass plate in the etching process described later.

研磨工程においては、例えば、ラップ研磨により0.3mm程度の厚みまでガラス母材を研磨し、続いて、光学研磨により、0.2mm超〜0.3mmの厚みまで研磨することにより物理研磨されたガラス母材を得ることができる。 In the polishing step, for example, the glass base material was polished to a thickness of about 0.3 mm by lap polishing, and then physically polished by optical polishing to a thickness of more than 0.2 mm to 0.3 mm. A glass base material can be obtained.

次に、物理研磨されたガラス母材を、垂直に立てた状態でアルカリ洗剤に浸漬することによりエッチングする。エッチングすることにより、厚みが0.2mm以下である近赤外線吸収ガラス板を得ることができる。 Next, the physically polished glass base material is etched by immersing it in an alkaline detergent in a vertically standing state. By etching, a near-infrared absorbing glass plate having a thickness of 0.2 mm or less can be obtained.

アルカリ洗剤としては、例えば、Na、Kなどのアルカリ成分や、トリエタノールアミン、ベンジルアルコール又はグリコール等の界面活性剤や、水又はアルコール等を含有するアルカリ洗剤を用いることができる。 As the alkaline detergent, for example, an alkaline detergent containing an alkaline component such as Na or K, a surfactant such as triethanolamine, benzyl alcohol or glycol, or water or alcohol can be used.

アルカリ洗剤中における浸漬温度は、例えば、20〜40℃とすることができる。 The immersion temperature in the alkaline detergent can be, for example, 20 to 40 ° C.

アルカリ洗剤中における浸漬時間は、例えば、1〜30時間とすることができる。なお、物理研磨されたガラス母材は、垂直に立てた状態で1〜30時間アルカリ洗剤に浸漬させた後に、上下ひっくり返して同時間浸漬させることが好ましい。このようにすれば、厚み分布が均一な近赤外線吸収ガラス板を得ることできる。 The immersion time in the alkaline detergent can be, for example, 1 to 30 hours. It is preferable that the physically polished glass base material is immersed in an alkaline detergent for 1 to 30 hours in a vertically standing state, and then turned upside down and immersed for the same time. In this way, a near-infrared absorbing glass plate having a uniform thickness distribution can be obtained.

このようにアルカリ洗剤でエッチングすることにより、ガラス母材表面が溶かされるため、研磨工程にて生じたガラス母材表面の研磨痕等の傷が除去される。結果として、研磨痕等の傷がなく表面性状の等方性が強い(Strが大きい)近赤外線吸収ガラス板を得ることができる。得られた近赤外線吸収ガラス板は、割れの起点となる研磨痕等の傷がないため強度が高く、厚みが薄くても割れ難くなる。 Since the surface of the glass base material is melted by etching with an alkaline detergent in this way, scratches such as polishing marks on the surface of the glass base material generated in the polishing step are removed. As a result, it is possible to obtain a near-infrared absorbing glass plate having a strong isotropic surface property (large Str) without scratches such as polishing marks. The obtained near-infrared absorbing glass plate has high strength because there are no scratches such as polishing marks that are the starting points of cracking, and it is difficult to crack even if the thickness is thin.

以下、実施例に基づいて本発明を説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples. The present invention is not limited to the following examples.

(実施例1)
質量%で、CuO 6.9%、P 46%、KO 13.9%、Al 6.6%、MgO 2.7%、CaO 3.7%、及びBaO 20.2%の組成となるように調製した原料粉末バッチを、温度850〜1300℃で溶融し、ロールアウト法により板状に成形し、板状のガラス母材を得た。
(Example 1)
By mass%, 6.9% CuO, P 2 O 5 46%, K 2 O 13.9%, Al 2 O 3 6.6%, 2.7% MgO, CaO 3.7%, and BaO 20. A raw material powder batch prepared to have a composition of 2% was melted at a temperature of 850 to 1300 ° C. and molded into a plate shape by a rollout method to obtain a plate-shaped glass base material.

得られたガラス母材を、ダイサーを用いて125.1mm角の大きさに切断し、切断したガラス母材を、両面研磨機の下定盤にセットされたキャリアの孔部に嵌め、その上に上定盤を降ろして圧力をかけ、上定盤、下定盤及びキャリアを回転させつつ、Alを含む研磨液を流しながら両面を研磨し、ガラス母材の厚みを0.3mmとした。続いて、CeOによりガラス母材をさらに研磨し、ガラス母材の厚みを0.25mmとした。 The obtained glass base material is cut to a size of 125.1 mm square using a dicer, and the cut glass base material is fitted into the hole of the carrier set on the lower surface plate of the double-sided polishing machine, and the cut glass base material is placed on the hole. The upper surface plate was lowered and pressure was applied, and while rotating the upper surface plate, the lower surface plate and the carrier, both sides were polished while flowing a polishing liquid containing Al 2 O 3, and the thickness of the glass base material was set to 0.3 mm. .. Subsequently, the glass base material was further polished by CeO 2 to make the thickness of the glass base material 0.25 mm.

次に、研磨されたガラス母材を6mm角の大きさに切断し、質量%で、Naの成分が37%、トリエタノールアミンが20%、及び水が43%の組成を有するアルカリ洗剤に、温度30℃で、120分間浸漬させエッチングし、6mm角の大きさで厚み0.1mmの赤外線吸収ガラス板を得た。 Next, the polished glass base material was cut into a size of 6 mm square, and the alkaline detergent having a composition of 37% Na component, 20% triethanolamine, and 43% water in mass% was added. It was immersed and etched at a temperature of 30 ° C. for 120 minutes to obtain an infrared absorbing glass plate having a size of 6 mm square and a thickness of 0.1 mm.

得られた赤外線吸収ガラス板について、表面性状のアスペクト比Strを測定したところ、Strが0.78と等方性が強かった。なお、アスペクト比Strは、原子間力顕微鏡(AFM)により測定した。また、ガラス表面をAFMで観察した結果を図1に示す。図1から分かる通り、ガラス表面に研磨痕等の傷は確認されず、等方性が強いことが分かった。なお、AFMの詳細な測定条件は下記の通りである。 When the aspect ratio Str of the surface texture of the obtained infrared absorbing glass plate was measured, the Str was 0.78, which was highly isotropic. The aspect ratio Str was measured by an atomic force microscope (AFM). The result of observing the glass surface with AFM is shown in FIG. As can be seen from FIG. 1, no scratches such as polishing marks were confirmed on the glass surface, and it was found that the glass surface was strongly isotropic. The detailed measurement conditions of AFM are as follows.

SPM unit:Dimention Icon(Bruker社製)
Controller unit:Nano Scope(Bruker社製)
Probe:OTESPA−R3(Bruker社製)
解析ソフト:Nano Scope Analysis(Bruker社製)
スキャンサイズ:5×5μm
scan rate: 1Hz
sampling points:512×512
SPM unit: Division Icon (made by Bruker)
Controller unit: Nano Scope (manufactured by Bruker)
Probe: OTESPA-R3 (manufactured by Bruker)
Analysis software: Nano Scope Analysis (made by Bruker)
Scan size: 5 x 5 μm
scan rate: 1Hz
sampling points: 512 x 512

また、得られた赤外線吸収ガラス板(20枚)について、支点間距離2.5mmにおける3点曲げ強度を測定し平均値を算出したところ、280N/mmであり、厚みが0.1mmと薄いにもかかわらず、高い強度を有していた。 Further, for the obtained infrared absorbing glass plates (20 sheets), the bending strength at three points at a distance between fulcrums of 2.5 mm was measured and the average value was calculated. As a result, it was 280 N / mm 2 , and the thickness was as thin as 0.1 mm. Nevertheless, it had high strength.

得られた赤外線吸収ガラス板について、0.05mm厚となるように両面を鏡面研磨した。両面研磨を施した赤外線吸収ガラス板について、分光光度計(島津製作所社製UV−3100PC)を用いて、波長300〜1300nmの範囲で光透過率を測定した。波長400nmにおいて86%、波長800nmにおいて26%、波長1200nmにおいて52%となった。 Both sides of the obtained infrared absorbing glass plate were mirror-polished so as to have a thickness of 0.05 mm. The light transmittance of the infrared absorbing glass plate polished on both sides was measured in the wavelength range of 300 to 1300 nm using a spectrophotometer (UV-3100PC manufactured by Shimadzu Corporation). It was 86% at a wavelength of 400 nm, 26% at a wavelength of 800 nm, and 52% at a wavelength of 1200 nm.

(比較例)
実施例で得られたエッチング前の研磨されたガラス母材を比較例とし、同様に特性評価を行ったところ、Strが0.07と等方性が低く、3点曲げ強度の平均値は90N/mmであり、厚みが0.25mmと厚いにもかかわらず、強度は低かった。また、ガラス表面をAFMで観察した結果を図2に示したが、図2から分かる通り、ガラス表面に研磨痕が確認され、等方性が低いことが分かった。
(Comparison example)
Using the polished glass base material before etching obtained in the examples as a comparative example, the characteristics were evaluated in the same manner. As a result, the isotropic property was as low as 0.07, and the average value of the three-point bending strength was 90 N. Although it was / mm 2 and the thickness was as thick as 0.25 mm, the strength was low. Further, the results of observing the glass surface with AFM are shown in FIG. 2. As can be seen from FIG. 2, polishing marks were confirmed on the glass surface, and it was found that the isotropic property was low.

(実施例2〜45)
組成を表1〜5の通り変更したこと以外は、実施例1と同様にして赤外線吸収ガラス板を作製し、アスペクト比Str、3点曲げ強度、及び光透過率を測定した。結果を表1〜5に示す。なお、3点曲げ強度については、強度が200N/mm以上の場合は「○」とした。
(Examples 2-45)
An infrared absorbing glass plate was prepared in the same manner as in Example 1 except that the composition was changed as shown in Tables 1 to 5, and the aspect ratio Str, 3-point bending strength, and light transmittance were measured. The results are shown in Tables 1-5. The three-point bending strength was set to “◯” when the strength was 200 N / mm 2 or more.

表1〜5から明らかなように、実施例2〜45のアスペクト比Strは0.71以上と等方性が強く、3点曲げ強度も200N/mm以上と高い強度を有していた。また、光透過率も所望の値を有していた。 As is clear from Tables 1 to 5, the aspect ratio Str of Examples 2 to 45 was highly isotropic with 0.71 or more, and the three-point bending strength was also high with 200 N / mm 2 or more. In addition, the light transmittance also had a desired value.

Claims (6)

表面性状のアスペクト比Strが0.1以上であり、組成中に、CuOを1〜40質量%を含むことを特徴とする近赤外線吸収ガラス板。 A near-infrared absorbing glass plate having a surface texture aspect ratio Str of 0.1 or more and containing 1 to 40% by mass of CuO in the composition. 質量%で、P 10〜70%、RO(ただし、RはLi、Na及びKから選択される少なくとも1種) 0超〜50%を含有することを特徴とする請求項1に記載の近赤外線吸収ガラス板。 Claim 1 is characterized by containing P 2 O 5 10 to 70% and R 2 O (where R is at least one selected from Li, Na and K) in an amount of more than 0 to 50% by mass. The near-infrared absorbing glass plate described in. 厚みが0.2mm以下であることを特徴とする請求項1又は2に記載の近赤外線吸収ガラス板。 The near-infrared absorbing glass plate according to claim 1 or 2, wherein the thickness is 0.2 mm or less. 3点曲げ強度が、200N/mm以上であることを特徴とする請求項1〜3のいずれかに記載の近赤外線吸収ガラス板。 The near-infrared absorbing glass plate according to any one of claims 1 to 3, wherein the three-point bending strength is 200 N / mm 2 or more. 厚み0.05mm換算、波長400nmにおける光透過率が80%以上であることを特徴とする請求項1〜4のいずれかに記載の近赤外線吸収ガラス板。 The near-infrared absorbing glass plate according to any one of claims 1 to 4, wherein the light transmittance at a wavelength of 400 nm is 80% or more in terms of a thickness of 0.05 mm. 厚み0.05mm換算、波長800nmにおける光透過率が50%以下であることを特徴とする請求項1〜5のいずれかに記載の近赤外線吸収ガラス板。 The near-infrared absorbing glass plate according to any one of claims 1 to 5, wherein the light transmittance at a wavelength of 800 nm is 50% or less in terms of a thickness of 0.05 mm.
JP2019040303A 2019-03-06 2019-03-06 Near-infrared absorbing glass plate Pending JP2020142952A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019040303A JP2020142952A (en) 2019-03-06 2019-03-06 Near-infrared absorbing glass plate
PCT/JP2020/007201 WO2020179516A1 (en) 2019-03-06 2020-02-21 Near-infrared absorbing glass plate
TW109106566A TW202037571A (en) 2019-03-06 2020-02-27 Near-infrared absorbing glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040303A JP2020142952A (en) 2019-03-06 2019-03-06 Near-infrared absorbing glass plate

Publications (1)

Publication Number Publication Date
JP2020142952A true JP2020142952A (en) 2020-09-10

Family

ID=72338597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040303A Pending JP2020142952A (en) 2019-03-06 2019-03-06 Near-infrared absorbing glass plate

Country Status (3)

Country Link
JP (1) JP2020142952A (en)
TW (1) TW202037571A (en)
WO (1) WO2020179516A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008764A1 (en) * 2013-07-19 2015-01-22 旭硝子株式会社 Chemically strengthened glass and method for manufacturing same
JP2017149628A (en) * 2016-02-26 2017-08-31 旭硝子株式会社 Chemically strengthened glass and method for producing chemically strengthened glass
WO2017179283A1 (en) * 2016-04-11 2017-10-19 日本電気硝子株式会社 Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008764A1 (en) * 2013-07-19 2015-01-22 旭硝子株式会社 Chemically strengthened glass and method for manufacturing same
JP2017149628A (en) * 2016-02-26 2017-08-31 旭硝子株式会社 Chemically strengthened glass and method for producing chemically strengthened glass
WO2017179283A1 (en) * 2016-04-11 2017-10-19 日本電気硝子株式会社 Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device

Also Published As

Publication number Publication date
WO2020179516A1 (en) 2020-09-10
TW202037571A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
JP6922741B2 (en) Optical glass
JP6341836B2 (en) Optical glass and optical element
JPWO2016125787A1 (en) Glass substrate, laminated substrate, and method for manufacturing glass substrate
JPWO2010119964A1 (en) Near-infrared cut filter glass
JP5445197B2 (en) Near-infrared cut filter glass and method for producing near-infrared cut filter glass
JP6992847B2 (en) Glass substrates, laminated substrates, and laminates
KR102657651B1 (en) Infrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device
KR20120004538A (en) Optical glass, optical element, and preform for precision press molding
JP2010248046A (en) Glass
JP2011121792A (en) Near infrared ray cutting filter glass
TWI791530B (en) Infrared-absorbing glass plate, manufacturing method thereof, and solid-state imaging device
TWI753884B (en) Infrared absorbing glass plate, method for manufacturing the same, and solid-state imaging element device
KR102556123B1 (en) Near infrared absorbing glass
JP2012140314A (en) Optical glass
JPWO2018025727A1 (en) Alkali-free glass substrate, laminated substrate, and method of manufacturing glass substrate
TW201912600A (en) Near infrared absorbing glass
WO2020179516A1 (en) Near-infrared absorbing glass plate
JP7092135B2 (en) Glass
JP2004182540A (en) Optical glass
JP7445189B2 (en) Glass plate and its manufacturing method
JP6048403B2 (en) Optical glass and optical element
JP5824922B2 (en) Optical glass
JP2009286674A (en) Optical glass, preform for precision press molding, and optical element
TW201827373A (en) Near infrared ray absorbing glass
JP5249697B2 (en) Optical glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230308