WO2015166897A1 - Cover glass and method for manufacturing same - Google Patents

Cover glass and method for manufacturing same Download PDF

Info

Publication number
WO2015166897A1
WO2015166897A1 PCT/JP2015/062653 JP2015062653W WO2015166897A1 WO 2015166897 A1 WO2015166897 A1 WO 2015166897A1 JP 2015062653 W JP2015062653 W JP 2015062653W WO 2015166897 A1 WO2015166897 A1 WO 2015166897A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cover glass
adhesion
adhesive
glass
Prior art date
Application number
PCT/JP2015/062653
Other languages
French (fr)
Japanese (ja)
Inventor
明 柴田
和史 中野
格良 木村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016516364A priority Critical patent/JP6724777B2/en
Publication of WO2015166897A1 publication Critical patent/WO2015166897A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a cover glass and a manufacturing method thereof.
  • the present invention relates to a cover glass that is bonded to a package that accommodates a solid-state image pickup device and transmits light incident on a light-receiving surface of the solid-state image pickup device, and a method for manufacturing the same.
  • Solid-state image sensors such as CCD (Charge Coupled Device) image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors are installed in imaging devices such as digital cameras and digital videos.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the solid-state imaging device is accommodated in the internal space of the package.
  • a cover glass is installed in the package in order to protect the solid-state image sensor and prevent foreign matters such as dust from adhering to the light receiving surface of the solid-state image sensor.
  • the cover glass is bonded to the package via an adhesive layer so as to seal the internal space of the package, and light incident on the light receiving surface of the solid-state imaging device accommodated in the internal space is transmitted.
  • an optical element such as a near-infrared cut filter is installed in the imaging apparatus in order to improve the color reproducibility of the captured image.
  • the near-infrared cut filter is, for example, a glass such as phosphate glass or fluorophosphate glass, and contains CuO (see, for example, Patent Documents 1 and 2).
  • the imaging device is required to reduce the number of parts in order to realize downsizing and cost reduction. For this reason, for example, using an optical element such as a near-infrared cut filter as a cover glass has been proposed (see, for example, Patent Documents 3 and 4).
  • JP 62-128943 A Japanese Patent Laid-Open No. 1-219037 Japanese Patent Laid-Open No. 7-281021 JP-A-8-306894
  • the cover glass may be peeled off from the package housing the solid-state imaging device.
  • the adhesiveness may deteriorate at the interface between the cover glass and the adhesive layer, and the cover glass may peel from the package. Due to this, the reliability of the imaging device may be reduced.
  • an object of the present invention is to provide a cover glass capable of improving the adhesiveness with a package that houses a solid-state imaging device, and a manufacturing method thereof.
  • the cover glass of the present invention is installed in a package that accommodates a solid-state image sensor.
  • the cover glass has an adhesive surface that is adhered to the package via an adhesive layer.
  • the adhesion surface is covered with an adhesion reinforcement layer, and the adhesion layer is provided via the adhesion reinforcement layer.
  • a cover glass capable of improving the adhesiveness with a package containing a solid-state imaging device, and a manufacturing method thereof.
  • FIG. 1 is a cross-sectional view of an imaging apparatus having a cover glass according to the first embodiment.
  • FIG. 2 is a diagram illustrating the cover glass according to the first embodiment.
  • FIG. 3 is a diagram illustrating the cover glass according to the first embodiment.
  • FIG. 4 is a flowchart showing the method for manufacturing the cover glass according to the first embodiment.
  • FIG. 5 is a view showing a cover glass according to the second embodiment.
  • FIG. 6 is a diagram showing a state when the adhesive strength (shear strength) is measured by the first adhesive strength measurement method.
  • FIG. 7 is a diagram showing a state when the adhesive strength (shear strength) is measured by the second adhesive strength measurement method.
  • FIG. 1 is a cross-sectional view of an imaging device having a cover glass according to the first embodiment.
  • FIG. 1 shows a surface (xz surface) perpendicular to the surface (xy surface) along the light receiving surface S11.
  • the imaging device 1 includes a solid-state imaging device 10, a package 20, a cover glass 30, and an adhesive layer 40.
  • the imaging apparatus 1 In the imaging apparatus 1, light (subject image) enters through a lens (not shown) and passes through the cover glass 30 bonded to the package 20. In the imaging device 1, the light (subject image) that has passed through the cover glass 30 is received by the solid-state imaging device 10 accommodated in the package 20.
  • Each part which comprises the imaging device 1 is demonstrated sequentially.
  • Solid-state image sensor 10 The solid-state image sensor 10 is, for example, a CCD image sensor or a CMOS image sensor.
  • the solid-state imaging device 10 includes a light receiving surface S11 and receives incident light (subject image) on the light receiving surface S11.
  • a plurality of photoelectric conversion elements are arranged in one direction x and a direction y perpendicular to the one direction x.
  • a some photoelectric conversion element is comprised so that photoelectric conversion may be performed and an electrical signal may be output.
  • the package 20 includes an internal space SP20, and the solid-state imaging device 10 is accommodated in the internal space SP20.
  • the package 20 includes a bottom plate portion 21 and a side plate portion 22, and both the bottom plate portion 21 and the side plate portion 22 are integrally formed.
  • the bottom plate portion 21 has a plate shape
  • the side plate portion 22 stands along the direction z perpendicular to the bottom plate portion 21 at the peripheral edge portion of the bottom plate portion 21, and surrounds the internal space SP20. Yes. That is, the package 20 is formed so as to have a concave cross section.
  • the package 20 accommodates the solid-state imaging device 10 in an internal space SP20 surrounded by the bottom plate portion 21 and the side plate portion 22.
  • the solid-state imaging device 10 is installed such that a surface S ⁇ b> 12 located on the opposite side to the light receiving surface S ⁇ b> 11 in the solid-state imaging device 10 is in contact with the upper surface S ⁇ b> 21 of the bottom plate portion 21.
  • the package 20 is formed using an insulating material such as a ceramic material (alumina (Al 2 O 3 )) or a plastic material, for example.
  • a ceramic material alumina (Al 2 O 3 )
  • a plastic material for example.
  • thermosetting resins and thermoplastic resins can be used as the plastic material.
  • an epoxy resin, an unsaturated polyester resin, a polyimide resin, a phenol resin, or a silicone resin can be used as the thermosetting resin.
  • the thermoplastic resin for example, a polyphenylene sulfide resin or a polysulfone resin can be used.
  • additives such as a hardening
  • cover glass 30 As shown in FIG. 1, the cover glass 30 has a plate shape and is installed in the package 20. In the cover glass 30, light incident on the light receiving surface S ⁇ b> 11 of the solid-state imaging device 10 accommodated in the package 20 is transmitted through the central portion. And the cover glass 30 is adhere
  • FIG. 1 the cover glass 30 has a plate shape and is installed in the package 20.
  • light incident on the light receiving surface S ⁇ b> 11 of the solid-state imaging device 10 accommodated in the package 20 is transmitted through the central portion. And the cover glass 30 is adhere
  • the cover glass 30 includes a pair of main surfaces S31 and S32 opposed to each other, and one main surface S31 (lower surface) of the pair of main surfaces S31 and S32 is housed in the internal space SP20 of the package 20. It faces the light receiving surface S11 of the element 10.
  • the cover glass 30 is formed of a glass material that transmits light (subject image).
  • the cover glass 30 is preferably formed of a fluorophosphate glass or a phosphate glass containing elemental fluorine.
  • Fluorophosphate-based glass is suitable because it is excellent in weather resistance and has a thermal expansion coefficient close to that of the package 20 made of a plastic material.
  • Phosphate-based glass is preferable because it has high hardness and a thermal expansion coefficient close to that of the package 20 formed of a ceramic material (such as alumina (Al 2 O 3 )).
  • the cover glass 30 may be configured to cut near infrared rays.
  • the fluorophosphate glass has a P 2 O 5 content of 23 to 70% and a MgF 2 content of 0 to 25 when the glass composition in terms of oxide is expressed by mass%. %,
  • the content ratio of CaF 2 is 0 to 25%
  • the content ratio of SrF 2 is 0 to 25%
  • the content ratio of LiF is 0 to 20%
  • the content ratio of NaF is 0 to 10%.
  • the content ratio of KF is 0 to 10%
  • the content ratio of AlF 3 is 0.2 to 20%
  • the content ratio of ZnF 2 is 0 to 15%
  • LiF, NaF, and KF A total value of 1 to 30% is preferable.
  • P 2 O 5 is a main component that forms a glass network structure in a fluorophosphate glass.
  • the content ratio of P 2 O 5 is smaller than the above lower limit, the stability of the glass is lowered, the thermal expansion coefficient is increased, and the thermal shock resistance may be lowered.
  • the content ratio of P 2 O 5 is larger than the above upper limit value, chemical durability may be lowered.
  • the content ratio of P 2 O 5 is preferably 25 to 65%.
  • AlF 3 is a component that improves the chemical durability and increases the viscosity of the glass in the fluorophosphate glass.
  • the content ratio of AlF 3 is preferably 2 to 15%.
  • MgF 2 , CaF 2 , SrF 2 , and BaF 2 are components that stabilize glass without reducing chemical durability in fluorophosphate glasses.
  • the melting temperature becomes high and devitrification may occur.
  • the MgF 2 content is preferably 15% or less.
  • the CaF 2 content is preferably 5 to 20%.
  • the content ratio of SrF 2 is preferably 10% or less.
  • LiF, NaF, and KF are effective components for lowering the melting temperature in the fluorophosphate glass.
  • each content rate of LiF, NaF, and KF is larger than the above-mentioned upper limit, chemical durability may fall and thermal shock resistance may fall.
  • the value which totaled the content rate of LiF, NaF, and KF is smaller than the lower limit mentioned above, it is not easy to lower melting temperature.
  • chemical durability may be significantly reduced.
  • the content ratio of LiF is preferably 4 to 15%.
  • the content ratio of NaF is preferably 5% or less.
  • the content ratio of KF is preferably 5% or less.
  • the total content of LiF, NaF and KF is preferably 5 to 20%.
  • ZnF 2 is a component that improves the chemical durability and lowers the thermal expansion coefficient in the fluorophosphate glass.
  • the content ratio of ZnF 2 is preferably 2 to 10%.
  • fluorophosphate glass 50% or less of all the above-mentioned fluorides may be substituted with oxides.
  • the oxygen element can improve the thermal shock resistance.
  • the melting temperature may increase.
  • the fluorophosphate glass does not substantially contain BaF 2 or PbF 2 in order to reduce the amount of ⁇ -rays emitted.
  • the phosphate glass has a P 2 O 5 content ratio of 25 to 85% and an Al 2 O 3 content ratio of 5 when the glass composition in terms of oxide is expressed in mass%. 17%, the content ratio of B 2 O 3 is 0-10%, the content ratio of Li 2 O is 0-20%, the content ratio of Na 2 O is 0-20%, The content ratio of 2 O is 0 to 20%, the content ratio of SiO 2 is 0 to 3%, and the total content ratio of Li 2 O, Na 2 O, and K 2 O is 0.1 to What is 40% is preferable.
  • P 2 O 5 is a main component constituting a glass network in phosphate glass.
  • the meltability may not be sufficient.
  • the content ratio of P 2 O 5 is larger than the above-described upper limit value, devitrification may occur.
  • Al 2 O 3 is a component that improves chemical durability in phosphate glass.
  • the content ratio of Al 2 O 3 is smaller than the lower limit value described above, it may be difficult to sufficiently improve chemical durability.
  • the content ratio of Al 2 O 3 is larger than the above-described upper limit value, the meltability may not be sufficient.
  • B 2 O 3 is a component that improves the chemical durability and improves the stability of the glass in phosphate glass.
  • the content ratio of B 2 O 3 is smaller than the lower limit value described above, it may be difficult to sufficiently improve chemical durability.
  • the content ratio of B 2 O 3 is larger than the upper limit value described above, devitrification may occur.
  • Li 2 O, Na 2 O, and K 2 O are components that improve the meltability of the glass in the phosphate glass, and are added to prevent devitrification.
  • the total content of Li 2 O, Na 2 O, and K 2 O is smaller than the lower limit value described above, the glass meltability cannot be sufficiently improved, and devitrification is sufficiently prevented. Can be difficult.
  • the total content of Li 2 O, Na 2 O, and K 2 O is greater than the above-described upper limit, chemical durability may be reduced.
  • SiO 2 is a component that improves chemical durability in phosphate glass.
  • the content ratio of SiO 2 is larger than the upper limit value described above, chemical durability may be extremely lowered.
  • the cover glass 30 is configured to cut near infrared rays
  • CuO As a glass component of the cover glass 30, it is preferable to contain CuO as a glass component of the cover glass 30.
  • the total amount of the basic glass components constituting the fluorophosphate glass or phosphate glass is 100 parts by mass as described above, 0.1 to 10 parts by mass of CuO is added separately. Is preferred.
  • the content of CuO is smaller than the lower limit value described above, the near infrared rays may not be cut sufficiently.
  • the stability of the glass may be lowered.
  • the radioisotope contained in the cover glass 30 it is preferable that U (uranium) is 10 ppb or less and Th (thorium) is 30 ppb or less.
  • the amount of ⁇ rays emitted from the cover glass 30 alone is preferably 0.002 to 0.02 c / cm 2 ⁇ h.
  • the cover glass 30 may be a glass other than a fluorophosphate glass or a phosphate glass.
  • the cover glass 30 may be silicate glass (such as soda lime glass), non-silicate glass (such as borate glass), or non-oxide glass.
  • one main surface S31 (lower surface) includes an optically effective surface S31a and an adhesive surface S31b.
  • light (subject image) that enters the light receiving surface S11 from the other main surface S32 (upper surface) passes through the optically effective surface S31a.
  • the adhesive surface S31b is bonded to the upper end surface S22 of the package 20 via the adhesive layer 40.
  • the bonding surface S31b is bonded to the upper end surface S22 located on the opposite side of the side plate portion 22 of the package 20 to the side on which the bottom plate portion 21 is provided.
  • the adhesion surface S31b is covered with an adhesion reinforcing layer 31.
  • the adhesive layer 40 is provided on the adhesive surface S31b via the adhesion reinforcing layer 31.
  • FIG. 2 and 3 are views showing the cover glass according to the first embodiment.
  • FIG. 2 shows one main surface S31 of the cover glass 30 among the surfaces (xy surfaces) along the light receiving surface S11.
  • FIG. 3 a part of the cross section shown in FIG. 1 is enlarged and schematically shown.
  • the optically effective surface S31a is located at the center.
  • the adhesive surface S31b is located at the peripheral edge of one main surface S31 and surrounds the optical effective surface S31a.
  • the adhesion reinforcing layer 31 is formed so as to cover the entire adhesive surface S ⁇ b> 31 b located at the peripheral edge in one main surface S ⁇ b> 31 of the cover glass 30. .
  • the adhesion reinforcing layer 31 can improve the adhesive strength between the cover glass 30 and the package 20 by the following action.
  • the adhesion reinforcing layer 31 preferably contains a silicon element component.
  • the adhesion reinforcing layer 31 is preferably formed by depositing silicon oxide.
  • silicon oxide when moisture is interposed between the cover glass 30 and the adhesion reinforcing layer 31, hydrogen bonds are formed between the OH groups contained in the cover glass 30 and the silicon element contained in the adhesion reinforcing layer 31. Since it is formed, the bond between the cover glass 30 and the adhesion reinforcing layer 31 is strengthened.
  • the adhesion improves between the cover glass 30 and the adhesion reinforcing layer 31 and between the adhesion reinforcing layer 31 and the adhesive layer 40. Conceivable.
  • the cover glass 30 contains a non-crosslinked phosphorus (P) element as a glass component
  • the non-crosslinked phosphorus (P) element passes through the oxygen element to the adhesion strengthening layer 31.
  • Crosslinks with contained silicon element For this reason, the bond between the cover glass 30 and the adhesion reinforcing layer 31 is further strengthened. As a result, it is considered that the adhesion is improved between the adhesion reinforcing layer 31 and the adhesive layer 40 as described above.
  • the adhesion reinforcing layer 31 is formed to have a thickness in the range of 0.1 ⁇ m to 10 ⁇ m, for example.
  • the thickness of the adhesion reinforcing layer 31 is less than 0.1 ⁇ m, the effect of improving the adhesive strength may be reduced.
  • the thickness of the adhesion strengthening layer 31 exceeds 10 ⁇ m, there is a risk that productivity is lowered due to the process for forming the adhesion reinforcing layer 31.
  • Adhesive layer 40 As shown in FIG. 1, the adhesive layer 40 is interposed between the package 20 and the cover glass 30, and adheres between the package 20 and the cover glass 30.
  • the adhesive layer 40 is in contact with both the upper end surface S22 of the package 20 and the adhesive surface S31b of the cover glass 30, and fixes the cover glass 30 to the package 20.
  • the adhesive layer 40 is formed by applying an adhesive to at least one of the package 20 and the cover glass 30, combining the package 20 and the cover glass 30, and then curing the adhesive.
  • the adhesive layer 40 is formed using an organic adhesive including an ultraviolet curable resin (such as an epoxy resin), an organic adhesive including a thermosetting resin, an inorganic adhesive, or the like.
  • FIG. 4 is a flowchart showing the method for manufacturing the cover glass according to the first embodiment.
  • a glass plate (base plate) formed with the glass composition described above is prepared.
  • the adhesion reinforcing layer 31 is formed (ST2).
  • the adhesion reinforcing layer 31 is formed on a portion of the prepared glass plate corresponding to the adhesive surface S31b (see FIG. 1 and the like).
  • the adhesion reinforcing layer 31 is provided by depositing silicon oxide on a glass plate by a film forming method such as vacuum evaporation or sputtering to form a silicon oxide film.
  • cover glass 30 is completed by performing processing such as cutting the glass plate.
  • the adhesion reinforcing layer 31 is coated on the adhesive surface S31b.
  • the adhesive layer 40 is provided on the adhesive surface S31b via the adhesion reinforcing layer 31.
  • the adhesion between the cover glass 30 and the package 20 can be improved.
  • the package 20 may be configured so that members such as a lens and a diaphragm are installed.
  • the adhesion reinforcing layer 31 may be formed so as to cover the optically effective surface S31a together with the adhesive surface S31b. That is, the adhesion reinforcing layer 31 may be formed so as to cover the entire main surface S31 located on the solid-state imaging device 10 side in the cover glass 30. Thereby, the alpha ray emitted from the optically effective surface S31a of the cover glass 30 can be attenuated by the adhesion enhancing film 31. As a result, it is possible to suppress the occurrence of noise in the imaging data output from the solid-state imaging device 10 due to the ⁇ rays.
  • the adhesion reinforcing layer 31 may be formed so as to cover a part of the adhesive surface S31b. Specifically, it is preferable that 50% or more of the adhesion surface S31b of the cover glass 30 is covered with the adhesion reinforcing layer 31. In particular, the ratio of the adhesion reinforcing layer 31 covering the adhesive surface S31b of the cover glass 30 is particularly preferably 60% or more, more preferably 75% or more, and most preferably 85% or more. If the adhesive surface S31b of the cover glass 30 is less than 50%, the adhesion between the cover glass 30 and the adhesive layer 40 may not be sufficient.
  • the adhesion reinforcing layer 31 may be formed on the cover glass 30.
  • FIG. 5 is a view showing a cover glass according to the second embodiment.
  • FIG. 5 like FIG. 3, a part of the cross section shown in FIG. 1 is enlarged and schematically shown.
  • the cover glass 30 is different in the configuration of the adhesion reinforcing layer 31 b from the case of the first embodiment (see FIG. 3 and the like).
  • the present embodiment is the same as the case of the first embodiment except for this point and points related thereto. For this reason, in this embodiment, the description overlapping with the above embodiment is omitted as appropriate.
  • the adhesion reinforcing layer 31b is not a single layer but a laminated body in which a plurality of layers are laminated. Further, the adhesion reinforcing layer 31b is formed on the cover glass 30 so as to cover the optically effective surface S31a together with the adhesive surface S31b. Furthermore, the adhesion reinforcing layer 31b is configured to function as an optical element in a portion covering the optically effective surface S31a.
  • the adhesion reinforcing layer 31b is a dielectric multilayer film, and is formed by sequentially and repeatedly stacking a plurality of types of dielectric layers having different refractive indexes.
  • the adhesion reinforcing layer 31b includes a first dielectric layer 31H and a second dielectric layer 31L, and is formed by alternately and repeatedly laminating the first dielectric layer 31H and the second dielectric layer 31L. Has been.
  • the first dielectric layer 31H is formed of a dielectric having a higher refractive index than the second dielectric layer 31L.
  • the first dielectric layer 31H is made of, for example, titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), or a mixture thereof.
  • the second dielectric layer 31L is formed of a dielectric having a lower refractive index than that of the first dielectric layer 31H.
  • the second dielectric layer 31L is made of, for example, silicon oxide (SiO 2 ).
  • the adhesion enhancing layer 31b is configured to function as, for example, an antireflection layer in a portion covering the optically effective surface S31a. That is, the adhesion enhancing layer 31b is configured to prevent light incident from the light receiving surface S11 side of the solid-state imaging device 10 from being reflected.
  • the adhesion enhancing layer 31b may be configured to function as any one of an infrared cut layer, an ultraviolet cut layer, and an ultraviolet and infrared cut layer in a portion covering the optically effective surface S31a. That is, the adhesion enhancement layer 31b may be configured to selectively reduce at least one of infrared rays and ultraviolet rays among light incident on the light receiving surface S11 of the solid-state imaging device 10 and transmit visible light. Good.
  • the outermost dielectric layer among the plurality of dielectric layers constituting the dielectric multilayer film is formed of silicon oxide (SiO 2 ).
  • the adhesion reinforcing layer 31b is formed (see ST2, FIG. 4).
  • the adhesion reinforcing layer 31b is formed on portions of the prepared glass plate corresponding to the optically effective surface S31a and the adhesive surface S31b (see FIG. 5).
  • the adhesion reinforcing layer is formed by alternately and repeatedly laminating the first dielectric layer 31H and the second dielectric layer 31L by a film deposition method such as a heating vapor deposition method or an ion assisted vapor deposition (IAD) method.
  • a dielectric multilayer film is formed as 31b.
  • the above-described cover glass 30 (see FIG. 5) is completed by performing processing such as cutting the glass plate.
  • the adhesion reinforcing layer 31b is a dielectric multilayer film.
  • the adhesion reinforcing layer 31b covers the optically effective surface S31a located on the same surface as the adhesive surface S31b together with the adhesive surface S31b, and the portion of the adhesion reinforcing layer 31b that covers the optically effective surface S31a functions as an optical element.
  • the adhesion enhancing layer 31 can realize the function of enhancing the adhesion on the adhesive surface S31b and the function as an optical element on the optically effective surface S31a. Therefore, in the present embodiment, the cover glass 30 that functions as an optical element can achieve improved adhesion without increasing the number of manufacturing steps.
  • the adhesion enhancing layer 31b functions as an optical element (infrared cut layer, ultraviolet cut layer, ultraviolet cut infrared layer) on the optically effective surface S31a has been described. Absent.
  • the adhesion enhancing layer 31b may be formed so that the adhesion enhancing layer 31b does not function as an optical element on the optically effective surface S31a.
  • the adhesion reinforcing layer 31b preferably has a physical film thickness of 1 nm to 10 nm.
  • the adhesion enhancing layer 31c does not function as an optical element and has almost no influence on the transmitted visible light.
  • defects there is no possibility that defects (so-called nodules) occur due to foreign matters adhering to the surface of the cover glass 30 and depositing a film on the foreign matters.
  • the physical film thickness of the adhesion reinforcing layer 31b is less than 1 nm, the adhesion reinforcing layer 31b may not be able to cover the adhesive surface S31b.
  • the physical thickness of the adhesion enhancing layer 31b exceeds 10 nm, the physical thickness of the adhesion enhancing layer 31b needs to be strictly controlled because it functions as an optical element. That is, since it is necessary to strictly control the film thickness of each dielectric layer constituting the adhesion reinforcing layer 31b, the manufacturing difficulty level increases.
  • the physical film thickness of the adhesion enhancing layer 31b can be measured using X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy).
  • Example 1 Example 2, Example 4, Example 6, and Example 7 are examples, and Example 3, Example 5, and Example 8 are comparative examples. Details of each example will be described sequentially.
  • Example 1 Production of cover glass [Example 1] (when using fluorophosphate glass)
  • a glass plate of fluorophosphate glass product surface: NF-50, manufactured by AGC Techno Glass Co., Ltd., thickness 0.3 mm
  • an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate.
  • the adhesion reinforcing layer was formed under the conditions shown in Table 1 so as to function as an antireflection film.
  • a TiO 2 layer and a SiO 2 layer were alternately and alternately stacked as a dielectric layer to form a dielectric multilayer film. That is, in this example, the repeating unit of the TiO 2 layer and the SiO 2 layer was repeated three times to form a dielectric multilayer film composed of a total of six dielectric layers. For each of the TiO 2 layer and the SiO 2 layer, so the physical thickness shown in Table 1 was deposited by thermal evaporation method. Thus, the cover glass of this example was produced. Note that a TiO 2 layer having 1 layer is formed on a glass plate, and an SiO 2 layer having 6 layers is on the air side.
  • Example 2 (When using fluorophosphate glass) In Example 2, first, a glass plate formed with the same composition as in Example 1 was prepared.
  • an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate.
  • the adhesion reinforcing layer was formed under the conditions shown in Table 2 so as to function as an infrared cut filter layer.
  • a TiO 2 layer and a SiO 2 layer were sequentially laminated alternately as a dielectric layer to form a dielectric multilayer film.
  • the physical thickness shown in Table 2 was deposited by ion-assisted deposition (IAD) method.
  • IAD ion-assisted deposition
  • a dielectric multilayer film composed of a total of 38 dielectric layers was provided as an adhesion reinforcing layer.
  • the cover glass of this example was produced.
  • a TiO 2 layer having 1 layer is formed on a glass plate, and a SiO 2 layer having 38 layers is on the air side.
  • Example 3 (When using fluorophosphate glass) In Example 3, a glass plate having the same composition as in Example 1 was prepared. In this example, unlike the case of Example 1, the prepared glass plate was used as the cover glass of this example without forming an adhesion reinforcing layer on the adhesive surface on which the adhesive layer is provided in the prepared glass plate.
  • Example 4 (When using phosphate glass) In Example 4, first, a glass plate of phosphate glass was prepared. Here, the content ratio of P 2 O 5 is 70.2%, the content ratio of Al 2 O 3 is 8.4%, and the content ratio of B 2 O 3 is expressed by mass% based on oxide. A phosphate glass having 1.3%, a Na 2 O content of 7.3%, a BaO content of 4.5%, and a CuO content of 8.7% was prepared. .
  • an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate.
  • the adhesion reinforcing layer was formed under the conditions shown in Table 2 in the same manner as in Example 2 so as to function as an infrared cut filter layer.
  • Example 5 (When using phosphate glass) In Example 5, a glass plate having the same composition as in Example 4 was prepared. In this example, unlike the case of Example 4, the prepared glass plate was used as the cover glass of this example without forming an adhesion reinforcing layer on the adhesive surface on which the adhesive layer was provided in the prepared glass plate.
  • Example 6 (When using fluorophosphate glass) In Example 6, first, a glass plate formed with the same composition as in Example 1 was prepared.
  • the adhesion reinforcement layer was formed in the adhesion surface in which the adhesion layer is provided in the prepared glass plate.
  • an Al 2 O 3 layer was formed by a thermal evaporation method so as to have a physical film thickness shown in Table 3.
  • Example 7 (When using fluorophosphate glass) In Example 7, first, a glass plate formed with the same composition as in Example 1 was prepared.
  • an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate.
  • the adhesion reinforcing layer was formed under the conditions shown in Table 4.
  • a TiO 2 layer and a SiO 2 layer were alternately and alternately stacked as a dielectric layer to form a dielectric multilayer film.
  • Each of the TiO 2 layer and the SiO 2 layer was formed by a heating vapor deposition method so that the total physical film thickness was 1 nm to 5 nm.
  • a dielectric multilayer film composed of a total of six dielectric layers was provided as an adhesion reinforcing layer.
  • the cover glass of this example was produced. Note that a TiO 2 layer having 1 layer is formed on a glass plate, and an SiO 2 layer having 6 layers is on the air side.
  • Example 8 (When using fluorophosphate glass) In Example 8, first, a glass plate formed with the same composition as in Example 1 was prepared.
  • an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate.
  • the adhesion reinforcing layer was formed under the conditions shown in Table 5.
  • a dielectric multilayer film functioning as an antireflection film was formed by a thermal evaporation method so as to have a physical film thickness shown in Table 5.
  • a dielectric multilayer film composed of a total of three dielectric layers is provided as an adhesion enhancing layer.
  • the cover glass of this example was produced. Note that a mixture film layer (a mixture layer of Al 2 O 3 and ZrO 2 ) having a layer number of 1 is formed on a glass plate, and a MgF 2 layer having a layer number of 3 is on the air side.
  • FIG. 6 is a diagram showing a state when the adhesive strength (shear strength) is measured by the first adhesive strength measuring method.
  • FIG. 6 schematically shows a cross section. In FIG. 6, the adhesion reinforcing layer is not shown.
  • the test piece 60 was attached to the adhesive surface S31b of the cover glass 30 produced in each example via the adhesive layer 40.
  • a cubic crystal (1 mm square crystal) having a side length of 1 mm was used as the test piece 60.
  • the adhesive layer 40 was formed using an adhesive (trade name: photo-curable epoxy resin, model number: 3114, manufacturer: manufactured by Three Bond Co.) containing an ultraviolet curable resin.
  • the spring balance (Brand name: Mechanical force gauge, Model number: FB, Manufacturer name: Imada company make) is used so that the adhesive surface S31b of the cover glass 30 may be met.
  • a load F was applied to the side surface of the test piece 60. At this time, the load F when the test piece 60 peeled from the adhesive surface S31b of the cover glass 30 was measured as the adhesive strength.
  • FIG. 7 is a diagram showing a state when the adhesive strength (shear strength) is measured by the second adhesive strength measurement method.
  • FIG. 7 schematically shows a cross section in the same manner as FIG. In FIG. 7, the adhesion reinforcing layer is not shown.
  • the cover glass 30 produced in each example was processed in the same manner as the test piece 60 (see FIG. 6) of the first adhesive strength measurement method. Specifically, the cover glass 30 produced in each example was processed into a rectangular parallelepiped having a square-shaped adhesive surface with a side length of 1 mm and a height of 0.35 to 0.6 mm. Moreover, the glass test plate 61 was prepared. Here, borosilicate glass (product name: FP-01eco, manufactured by AGC Techno Glass) having a side length of 2 cm was used as the glass test plate 61. And the cover glass 30 was affixed on surface S61 of the glass test board 61 via the contact bonding layer 40. FIG. For the adhesive layer 40, an ultraviolet / thermosetting adhesive (acrylic / epoxy) was used.
  • the spring balance (brand name: mechanical force gauge, model number: FB, manufacturer name: made by Imada Co., Ltd.) is used along the surface S61 of the glass test plate 61. Then, a load F was applied to the side surface of the cover glass 30. At this time, the load F when the cover glass 30 peeled from the glass test plate 61 was measured as the adhesive strength.
  • the high temperature and high humidity test was performed on the samples of each example when the high temperature and high humidity test was not performed (test time 0 hours). In each case where the test was completed (test time 250 hours), the adhesive strength was measured after a similar time had elapsed since the completion of the sample.
  • Example 1 the adhesive strength is greater when the high temperature and high humidity test is performed than when the high temperature and high humidity test is not performed.
  • Example 2 the adhesive strength is almost the same between the case where the high temperature and high humidity test is performed and the case where the high temperature and high humidity test is not performed.
  • Example 3 the adhesive strength is lower when the high temperature and high humidity test is performed than when the high temperature and high humidity test is not performed.
  • the adhesion strength layer was not deteriorated by the high-temperature and high-humidity test by interposing the adhesion reinforcing layer on the adhesion surface.
  • Example 5 As shown in Table 6, in Example 5, when the high temperature and high humidity test was performed, the adhesive strength was 0 N, and the adhesion between the cover glass 30 and the test piece 60 was completely lost. On the other hand, in Example 4, the adhesive strength is greater when the high temperature and high humidity test is performed than when the high temperature and high humidity test is not performed. As can be seen from this result, in Example 4, the adhesion strength layer was not deteriorated by the high-temperature and high-humidity test by interposing the adhesion reinforcing layer on the adhesion surface. .
  • Example 6 As shown in Table 6, in Example 8, when the high-temperature and high-humidity test was performed, a decrease in adhesive strength was observed. On the other hand, in Examples 6 and 7, the adhesive strength is almost the same between the case where the high temperature and high humidity test is performed and the case where the high temperature and high humidity test is not performed. Therefore, as can be seen from this result, in Examples 6 and 7, the adhesion strength layer was not deteriorated by the high temperature and high humidity test by interposing the adhesion reinforcing layer on the adhesion surface.
  • SYMBOLS 1 Imaging device, 10 ... Solid-state image sensor, 20 ... Package, 30 ... Cover glass, 31, 31b ... Adhesion reinforcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 Provided is a cover glass, etc., that can adhere more tightly to a package for accommodating a solid-state imaging element. This cover glass is installed in the package for accommodating the solid-state imaging element. The cover glass has an adhesive surface that adheres to the package, interposed by an adhesive layer. The adhesive surface is covered with a bond-strengthening layer, and the adhesive layer is provided with the bond-strengthening layer interposed therebetween.

Description

カバーガラス、および、その製造方法Cover glass and manufacturing method thereof
 本発明は、カバーガラス、および、その製造方法に関する。特に、本発明は、固体撮像素子を収容するパッケージに接着され、その固体撮像素子の受光面に入射する光が透過するカバーガラス、および、その製造方法に関する。 The present invention relates to a cover glass and a manufacturing method thereof. In particular, the present invention relates to a cover glass that is bonded to a package that accommodates a solid-state image pickup device and transmits light incident on a light-receiving surface of the solid-state image pickup device, and a method for manufacturing the same.
 デジタルカメラやデジタルビデオ等の撮像装置には、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像素子が設置されている。 Solid-state image sensors such as CCD (Charge Coupled Device) image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors are installed in imaging devices such as digital cameras and digital videos.
 撮像装置において、固体撮像素子は、パッケージの内部空間に収容されている。そして、固体撮像素子を保護すると共に、固体撮像素子の受光面に埃などの異物が付着することを防止するために、カバーガラスがパッケージに設置されている。カバーガラスは、パッケージの内部空間を密封するように接着層を介してパッケージに接着され、その内部空間に収容された固体撮像素子の受光面に入射する光が透過する。この他に、撮像装置には、撮像した画像の色再現性等を向上するために、近赤外線カットフィルタなどの光学要素が設置されている。近赤外線カットフィルタは、たとえば、リン酸塩ガラス、フツリン酸塩ガラスなどのガラスであって、CuOを含有している(たとえば、特許文献1,2参照)。 In the imaging device, the solid-state imaging device is accommodated in the internal space of the package. A cover glass is installed in the package in order to protect the solid-state image sensor and prevent foreign matters such as dust from adhering to the light receiving surface of the solid-state image sensor. The cover glass is bonded to the package via an adhesive layer so as to seal the internal space of the package, and light incident on the light receiving surface of the solid-state imaging device accommodated in the internal space is transmitted. In addition, an optical element such as a near-infrared cut filter is installed in the imaging apparatus in order to improve the color reproducibility of the captured image. The near-infrared cut filter is, for example, a glass such as phosphate glass or fluorophosphate glass, and contains CuO (see, for example, Patent Documents 1 and 2).
 撮像装置は、小型化、および、低コスト化を実現するために、部品の数を低減することが要求されている。このため、たとえば、近赤外線カットフィルタなどの光学要素をカバーガラスとして用いることが提案されている(たとえば、特許文献3,4参照)。 The imaging device is required to reduce the number of parts in order to realize downsizing and cost reduction. For this reason, for example, using an optical element such as a near-infrared cut filter as a cover glass has been proposed (see, for example, Patent Documents 3 and 4).
特開昭62-128943号公報JP 62-128943 A 特開平1-219037号公報Japanese Patent Laid-Open No. 1-219037 特開平7-281021号公報Japanese Patent Laid-Open No. 7-281021 特開平8-306894号公報JP-A-8-306894
 しかしながら、撮像装置においては、耐候性が十分でないために、固体撮像素子を収容するパッケージからカバーガラスが剥がれる場合がある。たとえば、高温高湿の環境下に長時間曝されたときに、カバーガラスと接着層との界面において接着性が低下して、パッケージからカバーガラスが剥離する場合がある。そして、これに起因して、撮像装置の信頼性が低下する場合がある。 However, in the imaging apparatus, since the weather resistance is not sufficient, the cover glass may be peeled off from the package housing the solid-state imaging device. For example, when exposed to a high-temperature and high-humidity environment for a long time, the adhesiveness may deteriorate at the interface between the cover glass and the adhesive layer, and the cover glass may peel from the package. Due to this, the reliability of the imaging device may be reduced.
 したがって、本発明は、固体撮像素子を収容するパッケージとの接着性を向上可能なカバーガラス、および、その製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a cover glass capable of improving the adhesiveness with a package that houses a solid-state imaging device, and a manufacturing method thereof.
 本発明のカバーガラスは、固体撮像素子を収容するパッケージに設置される。カバーガラスは、接着層を介してパッケージに接着される接着面を有する。接着面は、密着強化層が被覆されており、密着強化層を介して接着層が設けられる。 The cover glass of the present invention is installed in a package that accommodates a solid-state image sensor. The cover glass has an adhesive surface that is adhered to the package via an adhesive layer. The adhesion surface is covered with an adhesion reinforcement layer, and the adhesion layer is provided via the adhesion reinforcement layer.
 本発明によれば、固体撮像素子を収容するパッケージとの接着性を向上可能なカバーガラス、および、その製造方法を提供することができる。 According to the present invention, it is possible to provide a cover glass capable of improving the adhesiveness with a package containing a solid-state imaging device, and a manufacturing method thereof.
図1は、第1実施形態に係るカバーガラスを有する撮像装置の断面図である。FIG. 1 is a cross-sectional view of an imaging apparatus having a cover glass according to the first embodiment. 図2は、第1実施形態に係るカバーガラスを示す図である。FIG. 2 is a diagram illustrating the cover glass according to the first embodiment. 図3は、第1実施形態に係るカバーガラスを示す図である。FIG. 3 is a diagram illustrating the cover glass according to the first embodiment. 図4は、第1実施形態に係るカバーガラスの製造方法を示すフロー図である。FIG. 4 is a flowchart showing the method for manufacturing the cover glass according to the first embodiment. 図5は、第2実施形態に係るカバーガラスを示す図である。FIG. 5 is a view showing a cover glass according to the second embodiment. 図6は、第1の接着強度測定法で接着強度(シェア強度)の測定を行うときの様子を示す図である。FIG. 6 is a diagram showing a state when the adhesive strength (shear strength) is measured by the first adhesive strength measurement method. 図7は、第2の接着強度測定法で接着強度(シェア強度)の測定を行うときの様子を示す図である。FIG. 7 is a diagram showing a state when the adhesive strength (shear strength) is measured by the second adhesive strength measurement method.
<第1実施形態>
[A]撮像装置1の全体構成
 図1は、第1実施形態に係るカバーガラスを有する撮像装置の断面図である。図1では、受光面S11に沿った面(xy面)に対して垂直な面(xz面)について示している。
<First Embodiment>
[A] Overall Configuration of Imaging Device 1 FIG. 1 is a cross-sectional view of an imaging device having a cover glass according to the first embodiment. FIG. 1 shows a surface (xz surface) perpendicular to the surface (xy surface) along the light receiving surface S11.
 図1に示すように、撮像装置1は、固体撮像素子10と、パッケージ20と、カバーガラス30と、接着層40とを有する。 As shown in FIG. 1, the imaging device 1 includes a solid-state imaging device 10, a package 20, a cover glass 30, and an adhesive layer 40.
 撮像装置1では、光(被写体像)が、レンズ(図示省略)を介して入射し、パッケージ20に接着されたカバーガラス30を通過する。そして、撮像装置1では、そのカバーガラス30を通過した光(被写体像)が、パッケージ20に収容された固体撮像素子10で受光される。 In the imaging apparatus 1, light (subject image) enters through a lens (not shown) and passes through the cover glass 30 bonded to the package 20. In the imaging device 1, the light (subject image) that has passed through the cover glass 30 is received by the solid-state imaging device 10 accommodated in the package 20.
 撮像装置1を構成する各部について、順次、説明する。 Each part which comprises the imaging device 1 is demonstrated sequentially.
[A-1]固体撮像素子10
 固体撮像素子10は、たとえば、CCDイメージセンサ、CMOSイメージセンサである。
[A-1] Solid-state image sensor 10
The solid-state image sensor 10 is, for example, a CCD image sensor or a CMOS image sensor.
 固体撮像素子10は、図1に示すように、受光面S11を含み、入射する光(被写体像)を受光面S11で受ける。受光面S11には、たとえば、複数の光電変換素子(図示省略)が、一の方向xと、その一の方向xに対して垂直な方向yとに配列されている。そして、固体撮像素子10では、複数の光電変換素子が光電変換を行って電気信号を出力するように構成されている。 As shown in FIG. 1, the solid-state imaging device 10 includes a light receiving surface S11 and receives incident light (subject image) on the light receiving surface S11. On the light receiving surface S11, for example, a plurality of photoelectric conversion elements (not shown) are arranged in one direction x and a direction y perpendicular to the one direction x. And in the solid-state image sensor 10, a some photoelectric conversion element is comprised so that photoelectric conversion may be performed and an electrical signal may be output.
[A-2]パッケージ20
 パッケージ20は、図1に示すように、内部空間SP20を含み、その内部空間SP20に固体撮像素子10を収容している。
[A-2] Package 20
As shown in FIG. 1, the package 20 includes an internal space SP20, and the solid-state imaging device 10 is accommodated in the internal space SP20.
 具体的には、パッケージ20は、底板部21と側板部22とを有し、底板部21と側板部22との両者が一体で形成されている。パッケージ20において、底板部21は、板状であり、側板部22は、その底板部21の周縁部において底板部21に対して垂直な方向zに沿って立っており、内部空間SP20を囲っている。つまり、パッケージ20は、断面が凹形状になるように形成されている。 Specifically, the package 20 includes a bottom plate portion 21 and a side plate portion 22, and both the bottom plate portion 21 and the side plate portion 22 are integrally formed. In the package 20, the bottom plate portion 21 has a plate shape, and the side plate portion 22 stands along the direction z perpendicular to the bottom plate portion 21 at the peripheral edge portion of the bottom plate portion 21, and surrounds the internal space SP20. Yes. That is, the package 20 is formed so as to have a concave cross section.
 そして、パッケージ20は、底板部21と側板部22とによって囲われた内部空間SP20に固体撮像素子10を収容している。ここでは、パッケージ20は、固体撮像素子10において受光面S11に対して反対側に位置する面S12が、底板部21の上面S21に接するように、固体撮像素子10が設置されている。 The package 20 accommodates the solid-state imaging device 10 in an internal space SP20 surrounded by the bottom plate portion 21 and the side plate portion 22. Here, in the package 20, the solid-state imaging device 10 is installed such that a surface S <b> 12 located on the opposite side to the light receiving surface S <b> 11 in the solid-state imaging device 10 is in contact with the upper surface S <b> 21 of the bottom plate portion 21.
 パッケージ20は、たとえば、セラミック材料(アルミナ(Al)など)、プラスチック材料などの絶縁材料を用いて形成されている。 The package 20 is formed using an insulating material such as a ceramic material (alumina (Al 2 O 3 )) or a plastic material, for example.
 プラスチック材料としては、種々の熱硬化性樹脂および熱可塑性樹脂を用いることができる。たとえば、熱硬化性樹脂として、エポキシ系樹脂、不飽和ポリエステル系樹脂、ポリイミド系樹脂、フェノール系樹脂、シリコーン系樹脂を用いることができる。また、熱可塑性樹脂として、たとえば、ポリフェニレンサルファイド系樹脂、ポリスルホン系樹脂を用いることができる。さらに、上記のプラスチック材料に、適宜、硬化剤、硬化促進剤などの添加剤を添加してもよい。 As the plastic material, various thermosetting resins and thermoplastic resins can be used. For example, an epoxy resin, an unsaturated polyester resin, a polyimide resin, a phenol resin, or a silicone resin can be used as the thermosetting resin. In addition, as the thermoplastic resin, for example, a polyphenylene sulfide resin or a polysulfone resin can be used. Furthermore, you may add additives, such as a hardening | curing agent and a hardening accelerator, to said plastic material suitably.
[A-3]カバーガラス30
 カバーガラス30は、図1に示すように、板状であって、パッケージ20に設置されている。カバーガラス30は、パッケージ20に収容された固体撮像素子10の受光面S11に入射する光が、中央部を透過する。そして、カバーガラス30は、中央部の周囲に位置する周縁部において、パッケージ20に接着されており、パッケージ20の内部空間SP20を密封している。
[A-3] Cover glass 30
As shown in FIG. 1, the cover glass 30 has a plate shape and is installed in the package 20. In the cover glass 30, light incident on the light receiving surface S <b> 11 of the solid-state imaging device 10 accommodated in the package 20 is transmitted through the central portion. And the cover glass 30 is adhere | attached on the package 20 in the peripheral part located in the circumference | surroundings of a center part, and has sealed internal space SP20 of the package 20. FIG.
 カバーガラス30は、互いに対向する一対の主面S31,S32を含み、その一対の主面S31,S32のうち一方の主面S31(下面)が、パッケージ20の内部空間SP20に収容された固体撮像素子10の受光面S11に対面している。 The cover glass 30 includes a pair of main surfaces S31 and S32 opposed to each other, and one main surface S31 (lower surface) of the pair of main surfaces S31 and S32 is housed in the internal space SP20 of the package 20. It faces the light receiving surface S11 of the element 10.
 カバーガラス30は、光(被写体像)が透過するガラス材料で形成されている。 The cover glass 30 is formed of a glass material that transmits light (subject image).
 たとえば、カバーガラス30は、フッ素元素を組成中に含むフツリン酸塩系ガラス、リン酸塩系ガラスで形成されているものが好ましい。フツリン酸塩系ガラスは、耐候性に優れるとともに、プラスチック材料で形成されたパッケージ20に熱膨張係数が近いため、好適である。リン酸塩系ガラスは、硬度が高いと共に、セラミック材料(アルミナ(Al)など)で形成されたパッケージ20に熱膨張係数が近いため、好適である。この他に、カバーガラス30は、近赤外線をカットするように構成されていてもよい。 For example, the cover glass 30 is preferably formed of a fluorophosphate glass or a phosphate glass containing elemental fluorine. Fluorophosphate-based glass is suitable because it is excellent in weather resistance and has a thermal expansion coefficient close to that of the package 20 made of a plastic material. Phosphate-based glass is preferable because it has high hardness and a thermal expansion coefficient close to that of the package 20 formed of a ceramic material (such as alumina (Al 2 O 3 )). In addition, the cover glass 30 may be configured to cut near infrared rays.
 フツリン酸塩系ガラスとしては、酸化物で換算したときのガラス組成を質量%で表示した場合に、Pの含有割合が23~70%であり、MgFの含有割合が0~25%であり、CaFの含有割合が0~25%であり、SrFの含有割合が0~25%であり、LiFの含有割合が0~20%であり、NaFの含有割合が0~10%であり、KFの含有割合が0~10%であり、AlFの含有割合が0.2~20%であり、ZnFの含有割合が0~15%であり、LiFとNaFとKFとの含有割合を合計した値が1~30%であるものが好ましい。 The fluorophosphate glass has a P 2 O 5 content of 23 to 70% and a MgF 2 content of 0 to 25 when the glass composition in terms of oxide is expressed by mass%. %, The content ratio of CaF 2 is 0 to 25%, the content ratio of SrF 2 is 0 to 25%, the content ratio of LiF is 0 to 20%, and the content ratio of NaF is 0 to 10%. %, The content ratio of KF is 0 to 10%, the content ratio of AlF 3 is 0.2 to 20%, the content ratio of ZnF 2 is 0 to 15%, and LiF, NaF, and KF A total value of 1 to 30% is preferable.
 Pは、フツリン酸塩系ガラスにおいて、ガラスの網目構造を形成する主成分である。Pの含有割合が上述の下限値よりも小さいときには、ガラスの安定性が低下し、熱膨張係数が大きくなって、耐熱衝撃性が低下する場合がある。Pの含有割合が上述の上限値よりも大きいときには、化学的耐久性が低下する場合がある。Pの含有割合は、好ましくは、25~65%である。 P 2 O 5 is a main component that forms a glass network structure in a fluorophosphate glass. When the content ratio of P 2 O 5 is smaller than the above lower limit, the stability of the glass is lowered, the thermal expansion coefficient is increased, and the thermal shock resistance may be lowered. When the content ratio of P 2 O 5 is larger than the above upper limit value, chemical durability may be lowered. The content ratio of P 2 O 5 is preferably 25 to 65%.
 AlFは、フツリン酸塩系ガラスにおいて、化学的耐久性を向上させて、ガラスの粘性を高める成分である。AlFの含有割合が上述の下限値よりも小さいときには、化学的耐久性を向上することが容易でなく、ガラスの粘性を高めることが困難になる場合がある。AlFの含有割合が上述の上限値よりも大きいときには、ガラス化が困難になる場合がある。AlFの含有割合は、好ましくは2~15%である。 AlF 3 is a component that improves the chemical durability and increases the viscosity of the glass in the fluorophosphate glass. When the content ratio of AlF 3 is smaller than the above lower limit value, it is not easy to improve the chemical durability, and it may be difficult to increase the viscosity of the glass. When the content ratio of AlF 3 is larger than the above upper limit value, vitrification may be difficult. The content ratio of AlF 3 is preferably 2 to 15%.
 MgF、CaF、SrF、および、BaFは、フツリン酸塩系ガラスにおいて、化学的耐久性を低下させることがなく、ガラスを安定化させる成分である。MgF、CaF、SrF、および、BaFの各含有割合が、上述の上限値よりも大きいときには、溶融温度が高くなって、失透が生じる場合がある。各成分のうち、MgFの含有割合は、15%以下が好ましい。また、CaFの含有割合は、5~20%が好ましい。SrFの含有割合は、10%以下が好ましい。 MgF 2 , CaF 2 , SrF 2 , and BaF 2 are components that stabilize glass without reducing chemical durability in fluorophosphate glasses. When the content ratios of MgF 2 , CaF 2 , SrF 2 , and BaF 2 are larger than the above upper limit value, the melting temperature becomes high and devitrification may occur. Of each component, the MgF 2 content is preferably 15% or less. The CaF 2 content is preferably 5 to 20%. The content ratio of SrF 2 is preferably 10% or less.
 LiF、NaF、および、KFは、フツリン酸塩系ガラスにおいて、溶融温度を下げるために有効な成分である。LiF、NaF、および、KFの各含有割合が、上述の上限値よりも大きいときには、化学的耐久性が低下し、耐熱衝撃性が低下する場合がある。また、LiFとNaFとKFとの含有割合を合計した値が、上述した下限値よりも小さいときには、溶融温度を下げることが容易でない。さらに、LiFとNaFとKFとの含有割合を合計した値が、上述した上限値よりも大きいときには、化学的耐久性が著しく低下する場合がある。LiFの含有割合は、4~15%が好ましい。NaFの含有割合は、5%以下が好ましい。KFの含有割合は、5%以下が好ましい。さらに、LiFとNaFとKFとの含有割合を合計した値は、5~20%が好ましい。 LiF, NaF, and KF are effective components for lowering the melting temperature in the fluorophosphate glass. When each content rate of LiF, NaF, and KF is larger than the above-mentioned upper limit, chemical durability may fall and thermal shock resistance may fall. Moreover, when the value which totaled the content rate of LiF, NaF, and KF is smaller than the lower limit mentioned above, it is not easy to lower melting temperature. Furthermore, when the total content of LiF, NaF, and KF is larger than the above-described upper limit, chemical durability may be significantly reduced. The content ratio of LiF is preferably 4 to 15%. The content ratio of NaF is preferably 5% or less. The content ratio of KF is preferably 5% or less. Further, the total content of LiF, NaF and KF is preferably 5 to 20%.
 ZnFは、フツリン酸塩系ガラスにおいて、化学的耐久性を向上させると共に、熱膨張係数を下げる成分である。ZnFの含有割合が、上述の下限値よりも小さいときには、化学的耐久性を向上させることなどが困難になる場合がある。ZnFの含有割合が、上述の上限値よりも大きいときには、ガラスが不安定になる場合がある。ZnFの含有割合は、2~10%が好ましい。 ZnF 2 is a component that improves the chemical durability and lowers the thermal expansion coefficient in the fluorophosphate glass. When the content ratio of ZnF 2 is smaller than the above lower limit value, it may be difficult to improve chemical durability. When the content ratio of ZnF 2 is larger than the above upper limit value, the glass may become unstable. The content ratio of ZnF 2 is preferably 2 to 10%.
 フツリン酸塩系ガラスについては、上記した全てのフッ化物のうち50%以下を酸化物に置換してもよい。この場合、酸素元素が耐熱衝撃性を高めることができる。50%を超えた割合を置換したときには、溶融温度が高くなる場合がある。 For fluorophosphate glass, 50% or less of all the above-mentioned fluorides may be substituted with oxides. In this case, the oxygen element can improve the thermal shock resistance. When the ratio exceeding 50% is replaced, the melting temperature may increase.
 なお、フツリン酸塩系ガラスにおいては、放射されるα線の量を低減する等のために、BaF、PbFを実質的に含まないことが好ましい。 In addition, it is preferable that the fluorophosphate glass does not substantially contain BaF 2 or PbF 2 in order to reduce the amount of α-rays emitted.
 リン酸塩系ガラスとしては、酸化物で換算したときのガラス組成を質量%で表示した場合に、Pの含有割合が25~85%であり、Alの含有割合が5~17%であり、Bの含有割合が0~10%であり、LiOの含有割合が0~20%であり、NaOの含有割合が0~20%であり、KOの含有割合が0~20%であり、SiOの含有割合が0~3%であり、LiOとNaOとKOとの含有割合を合計した値が0.1~40%であるものが好ましい。 The phosphate glass has a P 2 O 5 content ratio of 25 to 85% and an Al 2 O 3 content ratio of 5 when the glass composition in terms of oxide is expressed in mass%. 17%, the content ratio of B 2 O 3 is 0-10%, the content ratio of Li 2 O is 0-20%, the content ratio of Na 2 O is 0-20%, The content ratio of 2 O is 0 to 20%, the content ratio of SiO 2 is 0 to 3%, and the total content ratio of Li 2 O, Na 2 O, and K 2 O is 0.1 to What is 40% is preferable.
 Pは、リン酸塩系ガラスにおいて、ガラスの網目を構成する主成分である。Pの含有割合が上述した下限値よりも小さいときには、溶融性が十分でなくなる場合がある。Pの含有割合が上述した上限値よりも大きいときには、失透が発生する場合がある。 P 2 O 5 is a main component constituting a glass network in phosphate glass. When the content ratio of P 2 O 5 is smaller than the lower limit value described above, the meltability may not be sufficient. When the content ratio of P 2 O 5 is larger than the above-described upper limit value, devitrification may occur.
 Alは、リン酸塩系ガラスにおいて、化学的耐久性を向上させる成分である。Alの含有割合が上述した下限値よりも小さいときには、化学的耐久性を十分に向上させることが困難な場合がある。Alの含有割合が上述した上限値よりも大きいときには、溶融性が十分でなくなる場合がある。 Al 2 O 3 is a component that improves chemical durability in phosphate glass. When the content ratio of Al 2 O 3 is smaller than the lower limit value described above, it may be difficult to sufficiently improve chemical durability. When the content ratio of Al 2 O 3 is larger than the above-described upper limit value, the meltability may not be sufficient.
 Bは、リン酸塩系ガラスにおいて、化学的耐久性を向上させ、ガラスの安定性を向上させる成分である。Bの含有割合が上述した下限値よりも小さいときには、化学的耐久性を十分に向上させることが困難な場合がある。Bの含有割合が上述した上限値よりも大きいときには、失透が生ずる場合がある。 B 2 O 3 is a component that improves the chemical durability and improves the stability of the glass in phosphate glass. When the content ratio of B 2 O 3 is smaller than the lower limit value described above, it may be difficult to sufficiently improve chemical durability. When the content ratio of B 2 O 3 is larger than the upper limit value described above, devitrification may occur.
 LiO、NaO、および、KOは、リン酸塩系ガラスにおいて、ガラスの溶融性を向上させる成分であって、失透を防止するために添加される。LiOとNaOとKOとの含有割合を合計した値が上述した下限値よりも小さいときには、ガラスの溶融性を十分に向上させることができず、失透を十分に防止することが困難になる場合がある。LiOとNaOとKOとの含有割合を合計した値が上述した上限値よりも大きいときには、化学的耐久性が低下する場合がある。 Li 2 O, Na 2 O, and K 2 O are components that improve the meltability of the glass in the phosphate glass, and are added to prevent devitrification. When the total content of Li 2 O, Na 2 O, and K 2 O is smaller than the lower limit value described above, the glass meltability cannot be sufficiently improved, and devitrification is sufficiently prevented. Can be difficult. When the total content of Li 2 O, Na 2 O, and K 2 O is greater than the above-described upper limit, chemical durability may be reduced.
 SiOは、リン酸塩系ガラスにおいて、化学的耐久性を向上させる成分である。SiOの含有割合が上述した上限値よりも大きいときには、化学的耐久性が極端に低下する場合がある。 SiO 2 is a component that improves chemical durability in phosphate glass. When the content ratio of SiO 2 is larger than the upper limit value described above, chemical durability may be extremely lowered.
 カバーガラス30について近赤外線をカットするように構成する場合には、カバーガラス30のガラス成分としてCuOを含有することが好ましい。たとえば、上記のようにフツリン酸塩系ガラスまたはリン酸塩系ガラスを構成する基礎ガラス成分の合計を100質量部にしたときに、0.1~10質量部のCuOを、別途、添加することが好ましい。CuOの含有量が上述した下限値よりも小さいときには、十分に近赤外線をカットすることができない場合がある。CuOの含有量が上述した上限値よりも大きいときには、ガラスの安定性が低下する場合がある。 When the cover glass 30 is configured to cut near infrared rays, it is preferable to contain CuO as a glass component of the cover glass 30. For example, when the total amount of the basic glass components constituting the fluorophosphate glass or phosphate glass is 100 parts by mass as described above, 0.1 to 10 parts by mass of CuO is added separately. Is preferred. When the content of CuO is smaller than the lower limit value described above, the near infrared rays may not be cut sufficiently. When the content of CuO is larger than the upper limit value described above, the stability of the glass may be lowered.
 また、カバーガラス30に含まれる放射性同位元素の含有量は、U(ウラン)が10ppb以下であって、Th(トリウム)が30ppb以下であることが好ましい。そして、カバーガラス30単体が放出するα線の放出量は、0.002~0.02c/cm・hであることが好ましい。 Moreover, as for content of the radioisotope contained in the cover glass 30, it is preferable that U (uranium) is 10 ppb or less and Th (thorium) is 30 ppb or less. The amount of α rays emitted from the cover glass 30 alone is preferably 0.002 to 0.02 c / cm 2 · h.
 なお、カバーガラス30は、フツリン酸塩系ガラス、リン酸塩系ガラス以外のガラスであってもよい。たとえば、カバーガラス30は、ケイ酸塩ガラス(ソーダライムガラスなど)、非ケイ酸塩ガラス(ホウ酸塩ガラスなど)、非酸化物ガラスであってもよい。 The cover glass 30 may be a glass other than a fluorophosphate glass or a phosphate glass. For example, the cover glass 30 may be silicate glass (such as soda lime glass), non-silicate glass (such as borate glass), or non-oxide glass.
 カバーガラス30において一方の主面S31(下面)は、光学有効面S31aと接着面S31bとを含む。 In the cover glass 30, one main surface S31 (lower surface) includes an optically effective surface S31a and an adhesive surface S31b.
 一方の主面S31(下面)において、光学有効面S31aは、他方の主面S32(上面)から受光面S11へ入射する光(被写体像)が通過する。 In one main surface S31 (lower surface), light (subject image) that enters the light receiving surface S11 from the other main surface S32 (upper surface) passes through the optically effective surface S31a.
 一方の主面S31(下面)において、接着面S31bは、接着層40を介してパッケージ20の上端面S22に接着される。ここでは、パッケージ20の側板部22のうち底板部21が設けられた側に対して反対側に位置する上端面S22に、接着面S31bが接着されている。 In one main surface S31 (lower surface), the adhesive surface S31b is bonded to the upper end surface S22 of the package 20 via the adhesive layer 40. Here, the bonding surface S31b is bonded to the upper end surface S22 located on the opposite side of the side plate portion 22 of the package 20 to the side on which the bottom plate portion 21 is provided.
 本実施形態では、図1に示すように、接着面S31bには、密着強化層31が被覆されている。そして、その密着強化層31を介して接着層40が接着面S31bに設けられている。 In this embodiment, as shown in FIG. 1, the adhesion surface S31b is covered with an adhesion reinforcing layer 31. The adhesive layer 40 is provided on the adhesive surface S31b via the adhesion reinforcing layer 31.
 図2,図3は、第1実施形態に係るカバーガラスを示す図である。図2では、受光面S11に沿った面(xy面)のうち、カバーガラス30の一方の主面S31について示している。これに対して、図3では、図1に示す断面の一部について拡大し、模式的に示している。 2 and 3 are views showing the cover glass according to the first embodiment. FIG. 2 shows one main surface S31 of the cover glass 30 among the surfaces (xy surfaces) along the light receiving surface S11. On the other hand, in FIG. 3, a part of the cross section shown in FIG. 1 is enlarged and schematically shown.
 図2に示すように、カバーガラス30の一方の主面S31において、光学有効面S31aは、中央部に位置している。これに対して、接着面S31bは、一方の主面S31において周縁部に位置しており、光学有効面S31aの周りを囲っている。 As shown in FIG. 2, in one main surface S31 of the cover glass 30, the optically effective surface S31a is located at the center. On the other hand, the adhesive surface S31b is located at the peripheral edge of one main surface S31 and surrounds the optical effective surface S31a.
 ここでは、密着強化層31は、図2,図3に示すように、カバーガラス30の一方の主面S31において周縁部に位置している接着面S31bの全体を被覆するように形成されている。 Here, as shown in FIG. 2 and FIG. 3, the adhesion reinforcing layer 31 is formed so as to cover the entire adhesive surface S <b> 31 b located at the peripheral edge in one main surface S <b> 31 of the cover glass 30. .
 密着強化層31は、以下の作用により、カバーガラス30とパッケージ20との接着強度を向上させることができる。 The adhesion reinforcing layer 31 can improve the adhesive strength between the cover glass 30 and the package 20 by the following action.
 カバーガラス30および接着層40が高温高湿雰囲気下に長時間曝された場合には、カバーガラス30の一部の成分が水分と反応して接着層40が変質し、接着強度が低下する場合がある。しかし、本実施形態では、カバーガラス30と接着層40との間に密着強化層31が介在しているので、カバーガラス30と接着層40との両者は、直接接触しない。このため、本実施形態では、カバーガラス30の成分に起因して接着層40が変質することを抑制可能であるので、接着強度を向上することができる。 When the cover glass 30 and the adhesive layer 40 are exposed to a high-temperature and high-humidity atmosphere for a long time, a part of the components of the cover glass 30 reacts with moisture to change the quality of the adhesive layer 40 and reduce the adhesive strength. There is. However, in this embodiment, since the adhesion reinforcing layer 31 is interposed between the cover glass 30 and the adhesive layer 40, both the cover glass 30 and the adhesive layer 40 are not in direct contact. For this reason, in this embodiment, since it can suppress that the contact bonding layer 40 changes in quality due to the component of the cover glass 30, adhesive strength can be improved.
 したがって、本実施形態では、パッケージ20からカバーガラス30が剥離することを更に効果的に防止することができる。 Therefore, in this embodiment, it is possible to more effectively prevent the cover glass 30 from peeling from the package 20.
 密着強化層31は、シリコン元素成分を含むことが好ましい。たとえば、密着強化層31については、酸化シリコンを堆積させることによって形成することが好ましい。この場合において、カバーガラス30と密着強化層31との間に水分が介在した場合には、カバーガラス30に含まれるOH基と、密着強化層31に含まれるシリコン元素との間に水素結合が形成されるので、カバーガラス30と密着強化層31との結合が強くなる。その結果、上述の結合状態がガラスネットワークのように網目状態になるので、カバーガラス30と密着強化層31との間と共に、密着強化層31と接着層40との間において、密着性が向上すると考えられる。 The adhesion reinforcing layer 31 preferably contains a silicon element component. For example, the adhesion reinforcing layer 31 is preferably formed by depositing silicon oxide. In this case, when moisture is interposed between the cover glass 30 and the adhesion reinforcing layer 31, hydrogen bonds are formed between the OH groups contained in the cover glass 30 and the silicon element contained in the adhesion reinforcing layer 31. Since it is formed, the bond between the cover glass 30 and the adhesion reinforcing layer 31 is strengthened. As a result, since the above-mentioned bonding state becomes a mesh state like a glass network, the adhesion improves between the cover glass 30 and the adhesion reinforcing layer 31 and between the adhesion reinforcing layer 31 and the adhesive layer 40. Conceivable.
 特に、カバーガラス30が非架橋状態のリン(P)元素をガラス成分として含有している場合には、その非架橋状態のリン(P)元素が、酸素元素を介して、密着強化層31に含まれるシリコン元素と架橋する。このため、カバーガラス30と密着強化層31との間の結合が更に強くなる。その結果、上記と同様に、密着強化層31と接着層40との間において密着性が向上すると考えられる。 In particular, when the cover glass 30 contains a non-crosslinked phosphorus (P) element as a glass component, the non-crosslinked phosphorus (P) element passes through the oxygen element to the adhesion strengthening layer 31. Crosslinks with contained silicon element. For this reason, the bond between the cover glass 30 and the adhesion reinforcing layer 31 is further strengthened. As a result, it is considered that the adhesion is improved between the adhesion reinforcing layer 31 and the adhesive layer 40 as described above.
 密着強化層31は、たとえば、厚さが0.1μm~10μmの範囲になるように形成される。密着強化層31の厚さが0.1μm未満の場合には、接着強度を向上させる効果が小さくなる場合がある。密着強化層31の厚さが10μmを超える場合には、密着強化層31を形成するための工程に起因し生産性が低下するおそれがある。 The adhesion reinforcing layer 31 is formed to have a thickness in the range of 0.1 μm to 10 μm, for example. When the thickness of the adhesion reinforcing layer 31 is less than 0.1 μm, the effect of improving the adhesive strength may be reduced. When the thickness of the adhesion strengthening layer 31 exceeds 10 μm, there is a risk that productivity is lowered due to the process for forming the adhesion reinforcing layer 31.
[A-4]接着層40
 接着層40は、図1に示すように、パッケージ20とカバーガラス30との間に介在しており、パッケージ20とカバーガラス30との間を接着している。
[A-4] Adhesive layer 40
As shown in FIG. 1, the adhesive layer 40 is interposed between the package 20 and the cover glass 30, and adheres between the package 20 and the cover glass 30.
 ここでは、接着層40は、パッケージ20の上端面S22とカバーガラス30の接着面S31bとの両者に接しており、カバーガラス30をパッケージ20に固定している。 Here, the adhesive layer 40 is in contact with both the upper end surface S22 of the package 20 and the adhesive surface S31b of the cover glass 30, and fixes the cover glass 30 to the package 20.
 たとえば、接着層40は、接着剤をパッケージ20とカバーガラス30との少なくとも一方に塗布し、パッケージ20とカバーガラス30とを組み合わせた後に、その接着剤を硬化させることによって形成される。たとえば、接着層40は、紫外線硬化性樹脂(エポキシ樹脂など)を含む有機系接着剤、熱硬化性樹脂等を含む有機系接着剤、無機系接着剤等を用いて形成される。 For example, the adhesive layer 40 is formed by applying an adhesive to at least one of the package 20 and the cover glass 30, combining the package 20 and the cover glass 30, and then curing the adhesive. For example, the adhesive layer 40 is formed using an organic adhesive including an ultraviolet curable resin (such as an epoxy resin), an organic adhesive including a thermosetting resin, an inorganic adhesive, or the like.
[B]製造方法
 図4は、第1実施形態に係るカバーガラスの製造方法を示すフロー図である。
[B] Manufacturing Method FIG. 4 is a flowchart showing the method for manufacturing the cover glass according to the first embodiment.
 上述したカバーガラス30を製造する際には、まず、図4に示すように、ガラス板を準備する(ST1)。 When manufacturing the cover glass 30 mentioned above, first, as shown in FIG. 4, a glass plate is prepared (ST1).
 ここでは、上述したガラス組成で形成されたガラス板(素板)を準備する。 Here, a glass plate (base plate) formed with the glass composition described above is prepared.
 つぎに、図4に示すように、密着強化層31の形成を実施する(ST2)。 Next, as shown in FIG. 4, the adhesion reinforcing layer 31 is formed (ST2).
 ここでは、準備したガラス板の面において接着面S31b(図1等を参照)に対応する部分に密着強化層31を形成する。たとえば、真空蒸着法やスパッタリング法などの成膜法で酸化シリコンをガラス板に堆積して酸化シリコン膜を形成することによって、密着強化層31を設ける。 Here, the adhesion reinforcing layer 31 is formed on a portion of the prepared glass plate corresponding to the adhesive surface S31b (see FIG. 1 and the like). For example, the adhesion reinforcing layer 31 is provided by depositing silicon oxide on a glass plate by a film forming method such as vacuum evaporation or sputtering to form a silicon oxide film.
 その後、ガラス板を切断する等の処理を行うことによって、上述したカバーガラス30を完成させる。 Thereafter, the above-described cover glass 30 is completed by performing processing such as cutting the glass plate.
[C]まとめ
 以上のように、本実施形態のカバーガラス30は、接着面S31bに密着強化層31が被覆されている。そして、その密着強化層31を介して接着層40が接着面S31bに設けられる。
[C] Summary As described above, in the cover glass 30 of the present embodiment, the adhesion reinforcing layer 31 is coated on the adhesive surface S31b. The adhesive layer 40 is provided on the adhesive surface S31b via the adhesion reinforcing layer 31.
 したがって、本実施形態では、上述したように、カバーガラス30とパッケージ20との接着性を向上することができる。 Therefore, in this embodiment, as described above, the adhesion between the cover glass 30 and the package 20 can be improved.
[D]変形例
[D-1]変形例1-1
 上記の実施形態では、パッケージ20に固体撮像素子10とカバーガラス30とが設置される場合(図1参照)について説明したが、これに限らない。
[D] Modification [D-1] Modification 1-1
In the above embodiment, the case where the solid-state imaging device 10 and the cover glass 30 are installed in the package 20 (see FIG. 1) has been described, but the present invention is not limited thereto.
 固体撮像素子10とカバーガラス30との他に、レンズ、絞りなどの部材を設置するようにパッケージ20を構成してもよい。 In addition to the solid-state imaging device 10 and the cover glass 30, the package 20 may be configured so that members such as a lens and a diaphragm are installed.
[D-2]変形例1-2
 上記の実施形態では、密着強化層31を接着面S31bに形成する場合について説明したが(図3参照)、これに限らない。
[D-2] Modification 1-2
In the above embodiment, the case where the adhesion reinforcing layer 31 is formed on the adhesion surface S31b has been described (see FIG. 3), but the present invention is not limited thereto.
 密着強化層31については、接着面S31bと共に、光学有効面S31aを被覆するように形成してもよい。つまり、カバーガラス30において固体撮像素子10の側に位置する主面S31の全体を被覆するように、密着強化層31を形成してもよい。これにより、カバーガラス30の光学有効面S31aから放出されるα線を密着強化膜31で減衰することができる。その結果、α線に起因して、固体撮像素子10が出力する撮像データにノイズが発生することを抑制できる。 The adhesion reinforcing layer 31 may be formed so as to cover the optically effective surface S31a together with the adhesive surface S31b. That is, the adhesion reinforcing layer 31 may be formed so as to cover the entire main surface S31 located on the solid-state imaging device 10 side in the cover glass 30. Thereby, the alpha ray emitted from the optically effective surface S31a of the cover glass 30 can be attenuated by the adhesion enhancing film 31. As a result, it is possible to suppress the occurrence of noise in the imaging data output from the solid-state imaging device 10 due to the α rays.
[D-3]変形例1-3
 上記の実施形態では、密着強化層31を接着面S31bの全体に形成する場合について説明したが(図3参照)、これに限らない。
[D-3] Modification 1-3
In the above embodiment, the case where the adhesion reinforcing layer 31 is formed on the entire bonding surface S31b has been described (see FIG. 3), but the present invention is not limited thereto.
 密着強化層31について、接着面S31bの一部を被覆するように形成してもよい。具体的には、カバーガラス30の接着面S31bのうち、50%以上の領域に密着強化層31が被覆していることが好ましい。特に、密着強化層31がカバーガラス30の接着面S31bを被覆する割合は特に、60%以上であることが好ましく、75%以上であることが更に好ましく、85%以上であることが最も好ましい。カバーガラス30の接着面S31bのうち、50%未満である場合には、カバーガラス30と接着層40との間の密着性が十分でないおそれがある。 The adhesion reinforcing layer 31 may be formed so as to cover a part of the adhesive surface S31b. Specifically, it is preferable that 50% or more of the adhesion surface S31b of the cover glass 30 is covered with the adhesion reinforcing layer 31. In particular, the ratio of the adhesion reinforcing layer 31 covering the adhesive surface S31b of the cover glass 30 is particularly preferably 60% or more, more preferably 75% or more, and most preferably 85% or more. If the adhesive surface S31b of the cover glass 30 is less than 50%, the adhesion between the cover glass 30 and the adhesive layer 40 may not be sufficient.
[D-4]変形例1-4
 上記の実施形態では、大盤のガラス板に密着強化層31を形成した後に、そのガラス板を切断することで、カバーガラス30を完成させる場合について説明したが、これに限らない。
[D-4] Modification 1-4
Although said embodiment demonstrated the case where the cover glass 30 was completed by forming the contact | adhesion reinforcement | strengthening layer 31 in the large glass plate, and cut | disconnecting the glass plate, it does not restrict to this.
 ガラス板を切断してカバーガラス30を形成した後に、そのカバーガラス30に密着強化層31を形成してもよい。 After the glass plate is cut to form the cover glass 30, the adhesion reinforcing layer 31 may be formed on the cover glass 30.
<第2実施形態>
[A]カバーガラスの構成
 図5は、第2実施形態に係るカバーガラスを示す図である。図5では、図3と同様に、図1に示す断面の一部について拡大し、模式的に示している。
Second Embodiment
[A] Configuration of Cover Glass FIG. 5 is a view showing a cover glass according to the second embodiment. In FIG. 5, like FIG. 3, a part of the cross section shown in FIG. 1 is enlarged and schematically shown.
 本実施形態において、カバーガラス30は、図5に示すように、密着強化層31bの構成が、第1実施形態の場合(図3などを参照)と異なる。本実施形態は、この点、及び、これに関連する点を除き、第1実施形態の場合と同様である。このため、本実施形態において、上記の実施形態と重複する個所については、適宜、記載を省略する。 In the present embodiment, as shown in FIG. 5, the cover glass 30 is different in the configuration of the adhesion reinforcing layer 31 b from the case of the first embodiment (see FIG. 3 and the like). The present embodiment is the same as the case of the first embodiment except for this point and points related thereto. For this reason, in this embodiment, the description overlapping with the above embodiment is omitted as appropriate.
 図5に示すように、カバーガラス30において、密着強化層31bは、単層でなく、複数の層を積層した積層体である。また、密着強化層31bは、カバーガラス30において接着面S31bと共に光学有効面S31aを被覆するように形成されている。さらに、密着強化層31bは、光学有効面S31aを被覆する部分において光学要素として機能するように構成されている。 As shown in FIG. 5, in the cover glass 30, the adhesion reinforcing layer 31b is not a single layer but a laminated body in which a plurality of layers are laminated. Further, the adhesion reinforcing layer 31b is formed on the cover glass 30 so as to cover the optically effective surface S31a together with the adhesive surface S31b. Furthermore, the adhesion reinforcing layer 31b is configured to function as an optical element in a portion covering the optically effective surface S31a.
 本実施形態では、密着強化層31bは、誘電体多層膜であって、屈折率が異なる複数種の誘電体層が順次繰り返し積層されることによって形成されている。ここでは、密着強化層31bは、第1誘電体層31Hと第2誘電体層31Lとを含み、第1誘電体層31Hと第2誘電体層31Lとが交互に繰り返し積層されることによって形成されている。 In the present embodiment, the adhesion reinforcing layer 31b is a dielectric multilayer film, and is formed by sequentially and repeatedly stacking a plurality of types of dielectric layers having different refractive indexes. Here, the adhesion reinforcing layer 31b includes a first dielectric layer 31H and a second dielectric layer 31L, and is formed by alternately and repeatedly laminating the first dielectric layer 31H and the second dielectric layer 31L. Has been.
 第1誘電体層31Hは、第2誘電体層31Lよりも屈折率が高い誘電体で形成されている。第1誘電体層31Hは、たとえば、酸化チタン(TiO)、酸化ニオブ(Nb)、酸化タンタル(Ta)、または、これらの混合物で形成されている。 The first dielectric layer 31H is formed of a dielectric having a higher refractive index than the second dielectric layer 31L. The first dielectric layer 31H is made of, for example, titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), or a mixture thereof.
 第2誘電体層31Lは、第1誘電体層31Hよりも屈折率が低い誘電体で形成されている。第2誘電体層31Lは、たとえば、酸化シリコン(SiO)で形成されている。 The second dielectric layer 31L is formed of a dielectric having a lower refractive index than that of the first dielectric layer 31H. The second dielectric layer 31L is made of, for example, silicon oxide (SiO 2 ).
 また、密着強化層31bは、光学有効面S31aを被覆する部分において、たとえば、反射防止層として機能するように構成されている。すなわち、密着強化層31bは、固体撮像素子10の受光面S11側から入射する光が反射することを防止するように構成されている。 Further, the adhesion enhancing layer 31b is configured to function as, for example, an antireflection layer in a portion covering the optically effective surface S31a. That is, the adhesion enhancing layer 31b is configured to prevent light incident from the light receiving surface S11 side of the solid-state imaging device 10 from being reflected.
 この他に、密着強化層31bは、光学有効面S31aを被覆する部分において、赤外線カット層、紫外線カット層、および、紫外線赤外線カット層のいずれかとして機能するように構成されていてもよい。つまり、密着強化層31bは、固体撮像素子10の受光面S11へ入射する光のうち、赤外線と紫外線との少なくとも一方を選択的に低減させて、可視光を透過するように構成されていてもよい。 In addition, the adhesion enhancing layer 31b may be configured to function as any one of an infrared cut layer, an ultraviolet cut layer, and an ultraviolet and infrared cut layer in a portion covering the optically effective surface S31a. That is, the adhesion enhancement layer 31b may be configured to selectively reduce at least one of infrared rays and ultraviolet rays among light incident on the light receiving surface S11 of the solid-state imaging device 10 and transmit visible light. Good.
 密着強化層31bは、誘電体多層膜を構成する複数の誘電体層のうち、最も外側に位置する誘電体層が、酸化シリコン(SiO)で形成されていることが好ましい。 In the adhesion reinforcing layer 31b, it is preferable that the outermost dielectric layer among the plurality of dielectric layers constituting the dielectric multilayer film is formed of silicon oxide (SiO 2 ).
[B]製造方法
 本実施形態において、カバーガラス30を製造する際には、まず、第1実施形態の場合と同様に、まず、ガラス板を準備する(ST1,図4参照)。
[B] Manufacturing Method In the present embodiment, when manufacturing the cover glass 30, first, as in the case of the first embodiment, first, a glass plate is prepared (see ST1, FIG. 4).
 そして、密着強化層31bの形成を実施する(ST2,図4参照)。 Then, the adhesion reinforcing layer 31b is formed (see ST2, FIG. 4).
 本実施形態では、準備したガラス板の面において光学有効面S31aおよび接着面S31b(図5を参照)に対応する部分に、密着強化層31bを形成する。たとえば、加熱蒸着法、イオンアシスト蒸着(IAD:Ion Assisted Deposition)法などの成膜法で、第1誘電体層31Hと第2誘電体層31Lとを交互に繰り返し積層することによって、密着強化層31bとして誘電体多層膜を形成する。 In the present embodiment, the adhesion reinforcing layer 31b is formed on portions of the prepared glass plate corresponding to the optically effective surface S31a and the adhesive surface S31b (see FIG. 5). For example, the adhesion reinforcing layer is formed by alternately and repeatedly laminating the first dielectric layer 31H and the second dielectric layer 31L by a film deposition method such as a heating vapor deposition method or an ion assisted vapor deposition (IAD) method. A dielectric multilayer film is formed as 31b.
 その後、第1実施形態の場合と同様に、ガラス板を切断する等の処理を行うことによって、上述したカバーガラス30(図5参照)を完成させる。 Thereafter, similarly to the case of the first embodiment, the above-described cover glass 30 (see FIG. 5) is completed by performing processing such as cutting the glass plate.
[C]まとめ
 以上のように、本実施形態のカバーガラス30において、密着強化層31bは、誘電体多層膜である。密着強化層31bは、接着面S31bと共に、接着面S31bと同じ面に位置する光学有効面S31aを被覆しており、密着強化層31bのうち光学有効面S31aを被覆する部分は、光学要素として機能する。つまり、本実施形態では、接着面S31bにおいて密着性を強化する機能と、光学有効面S31aにおいて光学要素として機能とを、密着強化層31によって実現することができる。したがって、本実施形態では、光学要素として機能するカバーガラス30について、製造工程を増やさずに、接着性の向上を実現することができる。
[C] Summary As described above, in the cover glass 30 of the present embodiment, the adhesion reinforcing layer 31b is a dielectric multilayer film. The adhesion reinforcing layer 31b covers the optically effective surface S31a located on the same surface as the adhesive surface S31b together with the adhesive surface S31b, and the portion of the adhesion reinforcing layer 31b that covers the optically effective surface S31a functions as an optical element. To do. That is, in the present embodiment, the adhesion enhancing layer 31 can realize the function of enhancing the adhesion on the adhesive surface S31b and the function as an optical element on the optically effective surface S31a. Therefore, in the present embodiment, the cover glass 30 that functions as an optical element can achieve improved adhesion without increasing the number of manufacturing steps.
[D]変形例
 上記した本実施形態では、密着強化層31bが光学有効面S31aにおいて光学要素(赤外線カット層、紫外線カット層、紫外線赤外線カット層)として機能する場合について説明したが、これに限らない。密着強化層31bが光学有効面S31aにおいて光学要素として機能しないように、密着強化層31bを形成してもよい。
[D] Modification In the above-described embodiment, the case where the adhesion enhancing layer 31b functions as an optical element (infrared cut layer, ultraviolet cut layer, ultraviolet cut infrared layer) on the optically effective surface S31a has been described. Absent. The adhesion enhancing layer 31b may be formed so that the adhesion enhancing layer 31b does not function as an optical element on the optically effective surface S31a.
 この場合には、密着強化層31bは、物理膜厚が1nm~10nmであることが好ましい。密着強化膜31bの物理膜厚が上記範囲である場合には、密着強化層31cは、光学要素として機能せず、透過する可視光に対してほとんど影響がない。また、カバーガラス30の表面に異物が付着し、その異物上に膜が堆積することで欠点(いわゆるノジュール)が発生するおそれがない。密着強化層31bの物理膜厚が1nm未満である場合には、密着強化層31bが接着面S31bを被覆できないおそれがある。密着強化層31bの物理膜厚が10nmを超える場合には、光学要素として機能するため、密着強化層31bの物理膜厚を厳密に管理する必要がある。つまり、密着強化層31bを構成する各誘電体層の膜厚を厳密に管理する必要があるので、製造の難易度が高くなる。なお、密着強化層31bの物理膜厚は、X線光電子分光分析法(X-ray Photoelectron Spectroscopy)を用いて測定することができる。 In this case, the adhesion reinforcing layer 31b preferably has a physical film thickness of 1 nm to 10 nm. When the physical film thickness of the adhesion enhancing film 31b is in the above range, the adhesion enhancing layer 31c does not function as an optical element and has almost no influence on the transmitted visible light. In addition, there is no possibility that defects (so-called nodules) occur due to foreign matters adhering to the surface of the cover glass 30 and depositing a film on the foreign matters. When the physical film thickness of the adhesion reinforcing layer 31b is less than 1 nm, the adhesion reinforcing layer 31b may not be able to cover the adhesive surface S31b. When the physical thickness of the adhesion enhancing layer 31b exceeds 10 nm, the physical thickness of the adhesion enhancing layer 31b needs to be strictly controlled because it functions as an optical element. That is, since it is necessary to strictly control the film thickness of each dielectric layer constituting the adhesion reinforcing layer 31b, the manufacturing difficulty level increases. The physical film thickness of the adhesion enhancing layer 31b can be measured using X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy).
 以下より、実施例等について説明する。下記に示す各例のうち、例1、例2、例4、例6、例7は、実施例であり、例3、例5、例8は、比較例である。各例の詳細について順次説明する。 Examples will be described below. Of each example shown below, Example 1, Example 2, Example 4, Example 6, and Example 7 are examples, and Example 3, Example 5, and Example 8 are comparative examples. Details of each example will be described sequentially.
[A]カバーガラスの作製
[例1](フツリン酸ガラスを用いる場合)
 例1では、まず、フツリン酸ガラスのガラス板(商品面:NF-50,AGCテクノグラス社製,厚み0.3mm)を準備した。
[A] Production of cover glass [Example 1] (when using fluorophosphate glass)
In Example 1, first, a glass plate of fluorophosphate glass (product surface: NF-50, manufactured by AGC Techno Glass Co., Ltd., thickness 0.3 mm) was prepared.
 つぎに、その準備したガラス板において接着層が設けられる接着面に、密着強化層を形成した。ここでは、反射防止膜として機能するように、表1に示す条件で密着強化層の形成を行った。 Next, an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate. Here, the adhesion reinforcing layer was formed under the conditions shown in Table 1 so as to function as an antireflection film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 具体的には、表1に示すように、TiO層とSiO層とを誘電体層として順次交互に積層し、誘電体多層膜を形成した。つまり、本例では、TiO層とSiO層との繰り返し単位を、3回、繰り返すことによって、合計で6層の誘電体層で構成された誘電体多層膜を形成した。TiO層とSiO層とのそれぞれについては、表1に示す物理膜厚になるように、加熱蒸着法で成膜した。このようにして、本例のカバーガラスを作製した。なお、層数1のTiO層がガラス板の上に形成され、層数6のSiO層が空気側となる。 Specifically, as shown in Table 1, a TiO 2 layer and a SiO 2 layer were alternately and alternately stacked as a dielectric layer to form a dielectric multilayer film. That is, in this example, the repeating unit of the TiO 2 layer and the SiO 2 layer was repeated three times to form a dielectric multilayer film composed of a total of six dielectric layers. For each of the TiO 2 layer and the SiO 2 layer, so the physical thickness shown in Table 1 was deposited by thermal evaporation method. Thus, the cover glass of this example was produced. Note that a TiO 2 layer having 1 layer is formed on a glass plate, and an SiO 2 layer having 6 layers is on the air side.
[例2](フツリン酸ガラスを用いる場合)
 例2では、まず、例1と同様な組成で形成されたガラス板を準備した。
[Example 2] (When using fluorophosphate glass)
In Example 2, first, a glass plate formed with the same composition as in Example 1 was prepared.
 つぎに、その準備したガラス板において接着層が設けられる接着面に、密着強化層を形成した。例2では、赤外線カットフィルタ層として機能するように、表2に示す条件で密着強化層の形成を行った。 Next, an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate. In Example 2, the adhesion reinforcing layer was formed under the conditions shown in Table 2 so as to function as an infrared cut filter layer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 具体的には、表2に示すように、TiO層とSiO層とを誘電体層として順次交互に積層し、誘電体多層膜を形成した。TiO層とSiO層とのそれぞれについては、表2に示す物理膜厚になるように、イオンアシスト蒸着(IAD)法で成膜した。表2に示すように、本例では、合計で38層の誘電体層で構成された誘電体多層膜を、密着強化層として設けた。このようにして、本例のカバーガラスを作製した。なお、層数1のTiO層がガラス板の上に形成され、層数38のSiO層が空気側となる。 Specifically, as shown in Table 2, a TiO 2 layer and a SiO 2 layer were sequentially laminated alternately as a dielectric layer to form a dielectric multilayer film. For each of the TiO 2 layer and the SiO 2 layer, so the physical thickness shown in Table 2 was deposited by ion-assisted deposition (IAD) method. As shown in Table 2, in this example, a dielectric multilayer film composed of a total of 38 dielectric layers was provided as an adhesion reinforcing layer. Thus, the cover glass of this example was produced. In addition, a TiO 2 layer having 1 layer is formed on a glass plate, and a SiO 2 layer having 38 layers is on the air side.
[例3](フツリン酸ガラスを用いる場合)
 例3では、例1の場合と同様な組成のガラス板を準備した。本例では、例1の場合と異なり、その準備したガラス板において接着層が設けられる接着面に密着強化層を形成せずに、その準備したガラス板を本例のカバーガラスとした。
[Example 3] (When using fluorophosphate glass)
In Example 3, a glass plate having the same composition as in Example 1 was prepared. In this example, unlike the case of Example 1, the prepared glass plate was used as the cover glass of this example without forming an adhesion reinforcing layer on the adhesive surface on which the adhesive layer is provided in the prepared glass plate.
[例4](リン酸ガラスを用いる場合)
 例4では、まず、リン酸ガラスのガラス板を準備した。ここでは、酸化物基準の質量%表示で、Pの含有割合が70.2%であり、Alの含有割合が8.4%であり、Bの含有割合が1.3%であり、NaOの含有割合が7.3%であり、BaOの含有割合が4.5%であり、CuOの含有割合が8.7%であるリン酸ガラスを準備した。
[Example 4] (When using phosphate glass)
In Example 4, first, a glass plate of phosphate glass was prepared. Here, the content ratio of P 2 O 5 is 70.2%, the content ratio of Al 2 O 3 is 8.4%, and the content ratio of B 2 O 3 is expressed by mass% based on oxide. A phosphate glass having 1.3%, a Na 2 O content of 7.3%, a BaO content of 4.5%, and a CuO content of 8.7% was prepared. .
 つぎに、その準備したガラス板において接着層が設けられる接着面に、密着強化層を形成した。例4では、赤外線カットフィルタ層として機能するように、例2と同様に表2に示す条件で密着強化層の形成を行った。 Next, an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate. In Example 4, the adhesion reinforcing layer was formed under the conditions shown in Table 2 in the same manner as in Example 2 so as to function as an infrared cut filter layer.
[例5](リン酸ガラスを用いる場合)
 例5では、例4の場合と同様な組成のガラス板を準備した。本例では、例4の場合と異なり、その準備したガラス板において接着層が設けられる接着面に密着強化層を形成せずに、その準備したガラス板を本例のカバーガラスとした。
[Example 5] (When using phosphate glass)
In Example 5, a glass plate having the same composition as in Example 4 was prepared. In this example, unlike the case of Example 4, the prepared glass plate was used as the cover glass of this example without forming an adhesion reinforcing layer on the adhesive surface on which the adhesive layer was provided in the prepared glass plate.
[例6](フツリン酸ガラスを用いる場合)
 例6では、まず、例1と同様な組成で形成されたガラス板を準備した。
[Example 6] (When using fluorophosphate glass)
In Example 6, first, a glass plate formed with the same composition as in Example 1 was prepared.
 つぎに、その準備したガラス板において接着層が設けられる接着面に、密着強化層を形成した。ここでは、表3に示す物理膜厚になるように、Al層を加熱蒸着法で成膜した。 Next, the adhesion reinforcement layer was formed in the adhesion surface in which the adhesion layer is provided in the prepared glass plate. Here, an Al 2 O 3 layer was formed by a thermal evaporation method so as to have a physical film thickness shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[例7](フツリン酸ガラスを用いる場合)
 例7では、まず、例1と同様な組成で形成されたガラス板を準備した。
[Example 7] (When using fluorophosphate glass)
In Example 7, first, a glass plate formed with the same composition as in Example 1 was prepared.
 つぎに、その準備したガラス板において接着層が設けられる接着面に、密着強化層を形成した。ここでは、表4に示す条件で密着強化層の形成を行った。 Next, an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate. Here, the adhesion reinforcing layer was formed under the conditions shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 具体的には、表4に示すように、TiO層とSiO層とを誘電体層として順次交互に積層し、誘電体多層膜を形成した。TiO層とSiO層とのそれぞれについては、合計の物理膜厚が1nm~5nmになるように、加熱蒸着法で成膜した。本例では、合計で6層の誘電体層で構成された誘電体多層膜を、密着強化層として設けた。このようにして、本例のカバーガラスを作製した。なお、層数1のTiO層がガラス板の上に形成され、層数6のSiO層が空気側となる。 Specifically, as shown in Table 4, a TiO 2 layer and a SiO 2 layer were alternately and alternately stacked as a dielectric layer to form a dielectric multilayer film. Each of the TiO 2 layer and the SiO 2 layer was formed by a heating vapor deposition method so that the total physical film thickness was 1 nm to 5 nm. In this example, a dielectric multilayer film composed of a total of six dielectric layers was provided as an adhesion reinforcing layer. Thus, the cover glass of this example was produced. Note that a TiO 2 layer having 1 layer is formed on a glass plate, and an SiO 2 layer having 6 layers is on the air side.
[例8](フツリン酸ガラスを用いる場合)
 例8では、まず、例1と同様な組成で形成されたガラス板を準備した。
[Example 8] (When using fluorophosphate glass)
In Example 8, first, a glass plate formed with the same composition as in Example 1 was prepared.
 つぎに、その準備したガラス板において接着層が設けられる接着面に、密着強化層を形成した。ここでは、表5に示す条件で密着強化層の形成を行った。 Next, an adhesion reinforcing layer was formed on the adhesive surface on which the adhesive layer was provided in the prepared glass plate. Here, the adhesion reinforcing layer was formed under the conditions shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 具体的には、表5に示す物理膜厚になるように、反射防止膜として機能する誘電体多層膜を加熱蒸着法で成膜した。本例では、合計で3層の誘電体層で構成された誘電体多層膜を、密着強化層として設けた。このようにして、本例のカバーガラスを作製した。なお、層数1の混合物膜層(AlとZrOとの混合物層)がガラス板の上に形成され、層数3のMgF層が空気側となる。なお、層数が1であるAlとZrOとの混合物層については、Alの質量が3に対してZrOの質量が7である蒸着材料を用いて形成した(Al:ZrO=3:7)。 Specifically, a dielectric multilayer film functioning as an antireflection film was formed by a thermal evaporation method so as to have a physical film thickness shown in Table 5. In this example, a dielectric multilayer film composed of a total of three dielectric layers is provided as an adhesion enhancing layer. Thus, the cover glass of this example was produced. Note that a mixture film layer (a mixture layer of Al 2 O 3 and ZrO 2 ) having a layer number of 1 is formed on a glass plate, and a MgF 2 layer having a layer number of 3 is on the air side. Note that the mixture layer of Al 2 O 3 and ZrO 2 layer number is 1, ZrO 2 mass relative to the mass of Al 2 O 3 is 3 is formed by using an evaporation material is 7 (Al 2 O 3: ZrO 2 = 3 : 7).
[B]接着強度の測定
 各例において作製したカバーガラスについて、接着強度(シェア強度)の測定を行った。ここでは、「第1の接着強度測定法」と「第2の接着強度測定法」との少なくとも一方の方法で、接着強度(シェア強度)を測定した。以下より、「第1の接着強度測定法」と「第2の接着強度測定法」とのそれぞれについて順次説明する。
[B] Measurement of adhesive strength The cover glass produced in each example was measured for adhesive strength (shear strength). Here, the adhesive strength (shear strength) was measured by at least one of the “first adhesive strength measuring method” and the “second adhesive strength measuring method”. Hereinafter, each of the “first adhesive strength measurement method” and the “second adhesive strength measurement method” will be sequentially described.
[B-1]第1の接着強度測定法
 図6は、第1の接着強度測定法で接着強度(シェア強度)の測定を行うときの様子を示す図である。図6では、断面を模式的に示している。なお、図6においては、密着強化層の図示を省略している。
[B-1] First Adhesive Strength Measuring Method FIG. 6 is a diagram showing a state when the adhesive strength (shear strength) is measured by the first adhesive strength measuring method. FIG. 6 schematically shows a cross section. In FIG. 6, the adhesion reinforcing layer is not shown.
 第1の接着強度測定法では、図6に示すように、まず、各例において作製したカバーガラス30の接着面S31bに、接着層40を介して、試験片60を貼り付けた。ここでは、試験片60として、1辺の長さが1mmである立方体形状の水晶(1mm角の水晶)を用いた。また、接着層40については、紫外線硬化型樹脂を含む接着剤(商品名:光硬化型エポキシ樹脂、型番:3114,メーカー名:スリーボンド社製)を用いて形成した。 In the first adhesive strength measurement method, as shown in FIG. 6, first, the test piece 60 was attached to the adhesive surface S31b of the cover glass 30 produced in each example via the adhesive layer 40. Here, a cubic crystal (1 mm square crystal) having a side length of 1 mm was used as the test piece 60. The adhesive layer 40 was formed using an adhesive (trade name: photo-curable epoxy resin, model number: 3114, manufacturer: manufactured by Three Bond Co.) containing an ultraviolet curable resin.
 接着強度(シェア強度)のサンプルを作製する際には、まず、カバーガラス30以外の面上にある液状の接着剤に、試験片60のうち一の面S60を接触させた。これにより、試験片60のうち一の面S60の全てに接着剤を付着させた。そして、試験片60において接着剤が付着した一の面S60をカバーガラス30の接着面S31bに対面させて、試験片60をカバーガラス30に貼り付けた。そして、接着剤に紫外線を照射することによって、接着剤を硬化させることによって、接着層40を形成した。このようにして、第1の接着強度測定法で接着強度(シェア強度)を測定するサンプルを完成させた。 When preparing a sample of adhesive strength (shear strength), first, one surface S60 of the test piece 60 was brought into contact with a liquid adhesive on the surface other than the cover glass 30. As a result, the adhesive was adhered to all of one surface S60 of the test piece 60. Then, the test piece 60 was attached to the cover glass 30 with the one surface S60 on the test piece 60 to which the adhesive was attached facing the adhesive surface S31b of the cover glass 30. Then, the adhesive layer 40 was formed by curing the adhesive by irradiating the adhesive with ultraviolet rays. In this way, a sample for measuring the adhesive strength (shear strength) by the first adhesive strength measurement method was completed.
 その後、図6に示すように、各例のサンプルについて、カバーガラス30の接着面S31bに沿うように、バネ秤(商品名:メカニカルフォースゲージ、型番:FB,メーカー名:イマダ社製)を用いて試験片60の側面に荷重Fを加えた。このとき、カバーガラス30の接着面S31bから試験片60が剥離したときの荷重Fを、接着強度として測定した。 Then, as shown in FIG. 6, about the sample of each example, the spring balance (Brand name: Mechanical force gauge, Model number: FB, Manufacturer name: Imada company make) is used so that the adhesive surface S31b of the cover glass 30 may be met. A load F was applied to the side surface of the test piece 60. At this time, the load F when the test piece 60 peeled from the adhesive surface S31b of the cover glass 30 was measured as the adhesive strength.
 ここでは、各例のサンプルに関して、高温高湿試験を未実施の場合(試験時間0時間)と、高温高湿試験を実施済みの場合(試験時間250時間)とのそれぞれについて、サンプルの完成から同様な時間が経過した後に、接着強度の測定を行った。 Here, with respect to the samples of each example, from the completion of the sample, when the high temperature and high humidity test has not been performed (test time 0 hours) and when the high temperature and high humidity test has been performed (test time 250 hours) After a similar time had elapsed, the adhesive strength was measured.
 高温高湿試験については、下記の条件で行った。
 ・温度:85℃
 ・相対湿度:85%
The high temperature and high humidity test was performed under the following conditions.
・ Temperature: 85 ℃
・ Relative humidity: 85%
[B-2]第2の接着強度測定法
 図7は、第2の接着強度測定法で接着強度(シェア強度)の測定を行うときの様子を示す図である。図7では、図6と同様に、断面を模式的に示している。なお、図7においては、密着強化層の図示を省略している。
[B-2] Second Adhesive Strength Measurement Method FIG. 7 is a diagram showing a state when the adhesive strength (shear strength) is measured by the second adhesive strength measurement method. FIG. 7 schematically shows a cross section in the same manner as FIG. In FIG. 7, the adhesion reinforcing layer is not shown.
 第2の接着強度測定法では、図7に示すように、まず、各例において作製したカバーガラス30を、第1の接着強度測定法の試験片60(図6参照)と同様に加工した。具体的には、各例において作製したカバーガラス30について、1辺の長さが1mmである正方形形状の接着面であって、高さが0.35~0.6mmである直方体に加工した。また、ガラス試験板61を準備した。ここでは、ガラス試験板61として、1辺の長さが2cmであるホウケイ酸ガラス(製品名:FP-01eco、AGCテクノグラス社製)を用いた。そして、ガラス試験板61の面S61に、接着層40を介して、カバーガラス30を貼り付けた。接着層40については、紫外線・熱硬化併用型接着剤(アクリル・エポキシ系)を用いた。 In the second adhesive strength measurement method, as shown in FIG. 7, first, the cover glass 30 produced in each example was processed in the same manner as the test piece 60 (see FIG. 6) of the first adhesive strength measurement method. Specifically, the cover glass 30 produced in each example was processed into a rectangular parallelepiped having a square-shaped adhesive surface with a side length of 1 mm and a height of 0.35 to 0.6 mm. Moreover, the glass test plate 61 was prepared. Here, borosilicate glass (product name: FP-01eco, manufactured by AGC Techno Glass) having a side length of 2 cm was used as the glass test plate 61. And the cover glass 30 was affixed on surface S61 of the glass test board 61 via the contact bonding layer 40. FIG. For the adhesive layer 40, an ultraviolet / thermosetting adhesive (acrylic / epoxy) was used.
 接着強度(シェア強度)のサンプルを作製する際には、まず、カバーガラス30の接着面S31bに、液状の接着剤を接触させた。これにより、カバーガラス30の接着面S31bの全てに接着剤を付着させた。そして、カバーガラス30において接着剤が付着した接着面S31bをガラス試験板61の面S61に対面させて、カバーガラス30をガラス試験板61に貼り付けた。そして、接着剤に紫外線を照射し、次いで熱処理を行うことによって、接着剤を硬化させることによって、接着層40を形成した。このようにして、第2の接着強度測定法で接着強度(シェア強度)を測定するサンプルを完成させた。 When preparing a sample of adhesive strength (shear strength), first, a liquid adhesive was brought into contact with the adhesive surface S31b of the cover glass 30. As a result, the adhesive was adhered to all of the adhesive surface S31b of the cover glass 30. The cover glass 30 was affixed to the glass test plate 61 with the adhesive surface S31b attached to the adhesive on the cover glass 30 facing the surface S61 of the glass test plate 61. Then, the adhesive layer 40 was formed by curing the adhesive by irradiating the adhesive with ultraviolet rays and then performing a heat treatment. Thus, the sample which measures adhesive strength (shear strength) with the 2nd adhesive strength measuring method was completed.
 その後、図7に示すように、各例のサンプルについて、ガラス試験板61の面S61に沿うように、バネ秤(商品名:メカニカルフォースゲージ、型番:FB,メーカー名:イマダ社製)を用いてカバーガラス30の側面に荷重Fを加えた。このとき、カバーガラス30がガラス試験板61から剥離したときの荷重Fを、接着強度として測定した。 Then, as shown in FIG. 7, about the sample of each example, the spring balance (brand name: mechanical force gauge, model number: FB, manufacturer name: made by Imada Co., Ltd.) is used along the surface S61 of the glass test plate 61. Then, a load F was applied to the side surface of the cover glass 30. At this time, the load F when the cover glass 30 peeled from the glass test plate 61 was measured as the adhesive strength.
 第2の接着強度測定法では、第1の接着強度測定法の場合と同様に、各例のサンプルに関して、高温高湿試験を未実施の場合(試験時間0時間)と、高温高湿試験を実施済みの場合(試験時間250時間)とのそれぞれについて、サンプルの完成から同様な時間が経過した後に、接着強度の測定を行った。 In the second adhesive strength measurement method, as in the case of the first adhesive strength measurement method, the high temperature and high humidity test was performed on the samples of each example when the high temperature and high humidity test was not performed (test time 0 hours). In each case where the test was completed (test time 250 hours), the adhesive strength was measured after a similar time had elapsed since the completion of the sample.
 高温高湿試験については、下記の条件で行った。
 ・温度:85℃
 ・相対湿度:85%
The high temperature and high humidity test was performed under the following conditions.
・ Temperature: 85 ℃
・ Relative humidity: 85%
[B-3]接着強度の測定結果
 表6には、接着強度の測定結果を示している。
[B-3] Measurement result of adhesive strength Table 6 shows the measurement result of adhesive strength.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、例1では、高温高湿試験を行った場合の方が、高温高湿試験を行っていない場合よりも、接着強度が大きい。例2では、高温高湿試験を行った場合と、高温高湿試験を行っていない場合との間において、接着強度がほぼ同等である。これに対して、例3では、高温高湿試験を行った場合の方が、高温高湿試験を行っていない場合よりも、接着強度が小さい。この結果から判るように、例1および例2では、接着面に密着強化層を介在させることで、高温高湿試験による接着強度の劣化が生じていない。 As shown in Table 6, in Example 1, the adhesive strength is greater when the high temperature and high humidity test is performed than when the high temperature and high humidity test is not performed. In Example 2, the adhesive strength is almost the same between the case where the high temperature and high humidity test is performed and the case where the high temperature and high humidity test is not performed. On the other hand, in Example 3, the adhesive strength is lower when the high temperature and high humidity test is performed than when the high temperature and high humidity test is not performed. As can be seen from this result, in Examples 1 and 2, the adhesion strength layer was not deteriorated by the high-temperature and high-humidity test by interposing the adhesion reinforcing layer on the adhesion surface.
 表6に示すように、例5では、高温高湿試験を行った場合、接着強度が0Nであり、カバーガラス30と試験片60との間において密着性が全く失われていた。これに対し、例4では、高温高湿試験を行った場合の方が、高温高湿試験を行っていない場合よりも、接着強度が大きい。この結果から判るように、例4では、接着面に密着強化層を介在させることで、高温高湿試験による接着強度の劣化が生じていない。。 As shown in Table 6, in Example 5, when the high temperature and high humidity test was performed, the adhesive strength was 0 N, and the adhesion between the cover glass 30 and the test piece 60 was completely lost. On the other hand, in Example 4, the adhesive strength is greater when the high temperature and high humidity test is performed than when the high temperature and high humidity test is not performed. As can be seen from this result, in Example 4, the adhesion strength layer was not deteriorated by the high-temperature and high-humidity test by interposing the adhesion reinforcing layer on the adhesion surface. .
 表6に示すように、例8では、高温高湿試験を行った場合、接着強度の低下がみられた。これに対し、例6および例7では、高温高湿試験を行った場合と、高温高湿試験を行っていない場合との間において接着強度はほぼ同等である。よって、この結果から判るように、例6および例7では、接着面に密着強化層を介在させることで、高温高湿試験による接着強度の劣化が生じていない。 As shown in Table 6, in Example 8, when the high-temperature and high-humidity test was performed, a decrease in adhesive strength was observed. On the other hand, in Examples 6 and 7, the adhesive strength is almost the same between the case where the high temperature and high humidity test is performed and the case where the high temperature and high humidity test is not performed. Therefore, as can be seen from this result, in Examples 6 and 7, the adhesion strength layer was not deteriorated by the high temperature and high humidity test by interposing the adhesion reinforcing layer on the adhesion surface.
<その他>
 上記した実施形態等は、例として示したものであり、発明の要旨を逸脱しない範囲において、省略、置き換え、変更などを適宜行うことができる。
<Others>
The above-described embodiments and the like are shown as examples, and can be appropriately omitted, replaced, or changed without departing from the gist of the invention.
 1…撮像装置、10…固体撮像素子、20…パッケージ、30…カバーガラス、31,31b…密着強化層、40…接着層、S31a…光学有効面、S31b…接着面、SP20…内部空間。 DESCRIPTION OF SYMBOLS 1 ... Imaging device, 10 ... Solid-state image sensor, 20 ... Package, 30 ... Cover glass, 31, 31b ... Adhesion reinforcement | strengthening layer, 40 ... Adhesion layer, S31a ... Optical effective surface, S31b ... Adhesion surface, SP20 ... Internal space.

Claims (9)

  1.  固体撮像素子を収容するパッケージに設置されるカバーガラスであって、
     接着層を介して前記パッケージに接着される接着面
     を有し、
     前記接着面は、密着強化層が被覆されており、前記密着強化層を介して前記接着層が設けられることを特徴とする、
    カバーガラス。
    A cover glass installed in a package containing a solid-state image sensor,
    Having an adhesive surface bonded to the package via an adhesive layer;
    The adhesion surface is covered with an adhesion reinforcement layer, and the adhesion layer is provided via the adhesion enhancement layer,
    cover glass.
  2.  前記密着強化層は、シリコン元素成分を含む、
     請求項1に記載のカバーガラス。
    The adhesion reinforcing layer contains a silicon element component,
    The cover glass according to claim 1.
  3.  前記密着強化層は、複数の誘電体層が積層された誘電体多層膜であり、
     前記誘電体多層膜を構成する複数の誘電体層のうち最も外側に位置する誘電体層は、酸化シリコンで形成されている、
    請求項1に記載のカバーガラス。
    The adhesion reinforcing layer is a dielectric multilayer film in which a plurality of dielectric layers are laminated,
    The outermost dielectric layer among the plurality of dielectric layers constituting the dielectric multilayer film is formed of silicon oxide.
    The cover glass according to claim 1.
  4.  前記接着面は、固体撮像素子の受光面に入射する光が透過する光学有効面と同じ面に位置しており、
     前記密着強化層は、前記接着面と共に前記光学有効面を被覆するように形成されており、
     前記密着強化層は、前記光学有効面を被覆する部分において光学要素として機能するように構成されている、
    請求項3に記載のカバーガラス。
    The adhesive surface is located on the same surface as the optically effective surface through which light incident on the light receiving surface of the solid-state imaging device is transmitted,
    The adhesion enhancing layer is formed so as to cover the optically effective surface together with the adhesive surface,
    The adhesion enhancing layer is configured to function as an optical element in a portion covering the optically effective surface.
    The cover glass according to claim 3.
  5.  前記密着強化層は、前記光学有効面を被覆する部分において、反射防止層、赤外線カット層、紫外線カット層、および、紫外線赤外線カット層のいずれかとして機能するように構成されている、
    請求項4に記載のカバーガラス。
    The adhesion enhancing layer is configured to function as any of an antireflection layer, an infrared cut layer, an ultraviolet cut layer, and an ultraviolet and infrared cut layer in a portion covering the optically effective surface.
    The cover glass according to claim 4.
  6.  前記接着面は、周縁部に位置する、
    請求項1から5のいずれかに記載のカバーガラス。
    The adhesive surface is located at a peripheral edge;
    The cover glass according to any one of claims 1 to 5.
  7.  近赤外線をカットするように構成されている、
    請求項1から6のいずれかに記載のカバーガラス。
    Configured to cut near infrared,
    The cover glass according to any one of claims 1 to 6.
  8.  組成中にフッ素元素を含む、
    請求項1から7のいずれかに記載のカバーガラス。
    Including fluorine element in the composition,
    The cover glass according to any one of claims 1 to 7.
  9.  固体撮像素子を収容するパッケージに接着層を介して接着される接着面を有するカバーガラスの製造方法であって、
     前記接着面に密着強化層を形成する密着強化層形成工程と
    を有する、
    カバーガラスの製造方法。
    A method for producing a cover glass having an adhesive surface bonded to a package containing a solid-state imaging device via an adhesive layer,
    An adhesion reinforcing layer forming step of forming an adhesion reinforcing layer on the adhesive surface;
    Manufacturing method of cover glass.
PCT/JP2015/062653 2014-04-30 2015-04-27 Cover glass and method for manufacturing same WO2015166897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016516364A JP6724777B2 (en) 2014-04-30 2015-04-27 Cover glass and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-093736 2014-04-30
JP2014093736 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015166897A1 true WO2015166897A1 (en) 2015-11-05

Family

ID=54358624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062653 WO2015166897A1 (en) 2014-04-30 2015-04-27 Cover glass and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6724777B2 (en)
WO (1) WO2015166897A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211190A (en) * 2014-04-30 2015-11-24 旭硝子株式会社 Cover glass and manufacturing method of the same
WO2023095457A1 (en) * 2021-11-26 2023-06-01 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing solid-state imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434749U (en) * 1990-07-16 1992-03-23
JP2003512751A (en) * 1999-10-21 2003-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Solid-state imaging device
JP2007043063A (en) * 2005-06-28 2007-02-15 Kyocera Corp Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus
WO2011055726A1 (en) * 2009-11-04 2011-05-12 旭硝子株式会社 Near infrared cut-off filters

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217334A (en) * 1989-02-15 1990-08-30 Toshiba Glass Co Ltd Filter glass for cutting near infrared ray
US6384473B1 (en) * 2000-05-16 2002-05-07 Sandia Corporation Microelectronic device package with an integral window
JP4388209B2 (en) * 2000-07-14 2009-12-24 京セラ株式会社 Optical semiconductor element storage package
JP2002359314A (en) * 2001-05-31 2002-12-13 Kyocera Corp Package for housing image pickup device
JP3766628B2 (en) * 2001-11-28 2006-04-12 京セラ株式会社 Optical semiconductor device
JP5378158B2 (en) * 2003-02-19 2013-12-25 日本電気硝子株式会社 Cover glass for semiconductor packages
JP2005175686A (en) * 2003-12-09 2005-06-30 Seiko Epson Corp Method of manufacturing piezoelectric device and lid, portable telephone utilizing piezoelectric device and electronic apparatus utilizing piezoelectric device
JP2006269841A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2008060121A (en) * 2006-08-29 2008-03-13 Kyocera Corp Solid-state imaging element sealing structure, and solid-state imaging apparatus
JP5476692B2 (en) * 2008-09-04 2014-04-23 旭硝子株式会社 Phosphate glass body and near-infrared cut filter using the glass body
JP5126111B2 (en) * 2009-02-24 2013-01-23 旭硝子株式会社 Near-infrared cut filter glass and manufacturing method thereof
WO2011132786A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Uv-transmitting near-infrared cut-off filter glass
WO2012018026A1 (en) * 2010-08-03 2012-02-09 旭硝子株式会社 Near-infrared cut filter glass and process for manufacturing same
JP5741347B2 (en) * 2011-09-21 2015-07-01 旭硝子株式会社 Optical filter and imaging apparatus using the same
JP2013218245A (en) * 2012-04-12 2013-10-24 Seiko Epson Corp Optical element, imaging device, camera, and manufacturing method of optical element
JP2014048402A (en) * 2012-08-30 2014-03-17 Kyocera Corp Optical filter member and imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434749U (en) * 1990-07-16 1992-03-23
JP2003512751A (en) * 1999-10-21 2003-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Solid-state imaging device
JP2007043063A (en) * 2005-06-28 2007-02-15 Kyocera Corp Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus
WO2011055726A1 (en) * 2009-11-04 2011-05-12 旭硝子株式会社 Near infrared cut-off filters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211190A (en) * 2014-04-30 2015-11-24 旭硝子株式会社 Cover glass and manufacturing method of the same
WO2023095457A1 (en) * 2021-11-26 2023-06-01 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing solid-state imaging device

Also Published As

Publication number Publication date
JPWO2015166897A1 (en) 2017-04-20
JP6724777B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US10683233B2 (en) Light selective transmission type glass and laminated substrate
CN106990463B (en) Near infrared cut-off filter
JP6354297B2 (en) Cover glass and manufacturing method thereof
KR101650065B1 (en) Optical filter member and imaging device provided with same
WO2011055726A1 (en) Near infrared cut-off filters
JP5659499B2 (en) Near-infrared cut filter glass
US8211816B2 (en) Cover glass for solid-state imaging element package
JP6552260B2 (en) Optical filter device and method of manufacturing the optical filter device
JP6724777B2 (en) Cover glass and manufacturing method thereof
JP4447393B2 (en) Glass member with optical multilayer film, and optical element using the glass member
JP5672680B2 (en) Window material for solid-state image pickup device package and image pickup apparatus
JP2018188336A (en) Laminate glass, laminate substrate and method for producing laminate substrate
JP2002353352A (en) Package for storing image pickup device
JP4433391B2 (en) Glass for semiconductor package window, glass window for semiconductor package and semiconductor package
US20220179131A1 (en) Cemented lens, optical system including the same, optical device, and method of manufacturing cemented lens
JP6447390B2 (en) Glass laminate and solid-state image sensor device
JP6539995B2 (en) Cover member and solid-state imaging device
JP2019069893A (en) Glass laminated body and solid state imaging device
JP2012113045A (en) Optical multilayer film, optical element, imaging assembly, digital camera and method for manufacturing optical multilayer film
JPH09283731A (en) Cover glass for solid-stage image sensing element
WO2023050321A1 (en) Infrared cut-off filter arrangement for an optical sensing arrangement for a camera or a camera module for an automotive application and/or an electronic device and method for producing an infrared cut-off filter arrangement
US20230367050A1 (en) Near-infrared cut filter and imaging device having same
JP7484935B2 (en) Near-infrared cut filter and imaging device
JP2021162631A (en) Optical filter
JP2003068908A (en) Package for image pickup element storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785741

Country of ref document: EP

Kind code of ref document: A1