JP3766628B2 - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
JP3766628B2
JP3766628B2 JP2001363238A JP2001363238A JP3766628B2 JP 3766628 B2 JP3766628 B2 JP 3766628B2 JP 2001363238 A JP2001363238 A JP 2001363238A JP 2001363238 A JP2001363238 A JP 2001363238A JP 3766628 B2 JP3766628 B2 JP 3766628B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
optical
thin film
translucent lid
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001363238A
Other languages
Japanese (ja)
Other versions
JP2003163297A (en
Inventor
直行 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001363238A priority Critical patent/JP3766628B2/en
Publication of JP2003163297A publication Critical patent/JP2003163297A/en
Application granted granted Critical
Publication of JP3766628B2 publication Critical patent/JP3766628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサ等の受光素子である光半導体素子またはこれらの受光部を有する光半導体素子を具備した光半導体装置に関する。
【0002】
【従来の技術】
従来のCCDやCMOSセンサ等の受光素子である光半導体素子またはこれらの受光部を有する光半導体素子を具備した光半導体装置において、入力映像はレンズを介して集光され、所定の波長領域の光を遮断するための光学薄膜が被着された透光性部材(以下、光学フィルタという)を経た後に、透光性蓋体を介し光半導体素子の受光部に入力される。
【0003】
また、近年、光半導体素子用パッケージを気密封止するための透光性蓋体に光学薄膜を被着させることにより、透光性蓋体に光学フィルタ機能を持たせて光半導体装置を小型化、低背化する構造が益々要求されており、その従来例を図3に示す。図3において、101は、基体104、光半導体素子102、および光学薄膜103aが被着された透光性蓋体103から主に構成される光半導体装置である。104aは基体104の上面に形成された凹部である。また、107は基体104の凹部104aの底面の外周部に設けられた電極パッド、106はボンディングワイヤ、105は基体104の上面の凹部104aの周囲の略全周に設けられた熱硬化型樹脂から成る樹脂層、103はガラス等から成るとともに光学薄膜103aが被着された透光性蓋体である。
【0004】
光半導体素子102は、セラミックス等からなる基体104の上面に形成された凹部104aの底面に接着固定されており、凹部104aの底面で光半導体素子102の周囲に配置された電極パッド107から、Au,Alから成るボンディングワイヤ106によって、外部電気回路等に接続されるメタライズ配線等から成る基体104の電極に電気的に接続される。
【0005】
透光性蓋体103は、所定の波長領域の光を遮断する光学薄膜103aが被着されたガラス等からなる透光性部材であり、基体104の上面の凹部104aの周囲の略全周に設けられた樹脂層105により基体104に取り付けられている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の光半導体装置においては、透光性蓋体103は所定の波長領域の光を遮断する光学フィルタとしての役割を有するが、その光学フィルタは赤外線領域を遮断するとともに紫外線領域も遮断するため、透光性蓋体103の取り付けには紫外線硬化型樹脂を使用できなかった。このため、熱硬化型樹脂105を用いなければならない。その結果、光半導体素子102の上面に形成された受光部上に設けられたカラー光学フィルタおよびマイクロレンズ等が熱硬化型樹脂105の硬化時の熱により機能しなくなるという問題点があった。
【0007】
そこで、紫外線硬化型樹脂を使用できるようにするために、光学薄膜103aをマスク蒸着法やフォトリソグラフィ法等により、透光性蓋体103が接着される部位に光学薄膜103aを被着しなかったり、透光性蓋体103が接着される部位の光学薄膜103aをエッチング法で除去する方法が考えられる。しかし、この場合、一般にガラス等から成る透光性蓋体103の表面は鏡面状になっており、その算術平均粗さRaは0.01μm以下であるため、透光性蓋体103の接着部である下面の外周部で、透光性蓋体103にその主面の面方向に略平行な外力が加わった際等には透光性蓋体103が基体104から剥離する場合があった。即ち、透光性蓋体103の接着強度が不十分であり、外力や機械的衝撃に弱いという問題点があった。また、上記のような方法で光学薄膜103aを設けた透光性蓋体103を作製すると、マスクおよびマスクを取り付けるための治工具等が必要であり、製造コストが高くなるという問題点があった。
【0008】
従って、本発明は上記従来技術における問題点に鑑みて完成されたものであり、その目的は、光学フィルタ機能を有する透光性蓋体と基体との接着強度を向上させるとともに、低コストで作製できる透光性蓋体を有する小型化された高信頼性の光半導体装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の光半導体装置は、上面に凹部が形成された基体と、前記凹部の底面に載置された光半導体素子と、前記基体の上面の前記凹部の周囲に紫外線硬化型樹脂を介して取着された板状の透光性蓋体とを具備して成り、該透光性蓋体の前記凹部側の主面に所定の波長領域の光を遮断するための光学薄膜が被着されているとともに、前記光学薄膜のうち前記基体の上面の前記凹部の周囲に取着される領域が機械的加工により除去されていることを特徴とする。
【0010】
本発明は、上記の構成により、光学薄膜のうち基体の上面の凹部の周囲に取着される領域が切削法等の機械的加工により除去されるので、その領域の表面の算術平均粗さは0.2〜5.0μm程度と粗面になっているため、透光性蓋体の接着強度が大幅に向上する。また、透光性蓋体の取着される領域の光学薄膜は除去されるため、その領域を紫外線が透過することになり、紫外線硬化型樹脂を使用して接着することができる。その結果、光半導体素子の上面の受光部に設けられたカラー光学フィルタやマイクロレンズが接着時の熱で劣化することがないため、信頼性の高い光半導体装置となる。また、透光性蓋体の取着される領域に光学薄膜を形成しないためにマスク蒸着法やフォトリソグラフィ法等を用いる必要がないため、低コストに製造できる。さらに、透光性蓋体は光学フィルタの機能を有しており、別個に光学フィルタを備える必要がないため、光半導体装置の小型化、低背化が可能となる。
【0011】
【発明の実施の形態】
本発明の光半導体装置について以下に詳細に説明する。図1は本発明の光半導体装置について実施の形態の一例を示す断面図であり、図1に示すように、本発明の光半導体装置は、上面に凹部4aが形成された基体と、凹部4aの底面に載置された光半導体素子2と、基体4上面の凹部4aの周囲の略全周に設けられた紫外線硬化型の樹脂層5と、樹脂層5の上部で接着されて光半導体素子2を封止する板状の透光性蓋体3とを具備している。この透光性蓋体3は所定の波長領域の光を遮断するための光学薄膜3aが凹部4a側の主面(下側主面)に被着されており、光学薄膜3aのうち基体4の上面の凹部4aの周囲に取着される領域が機械的加工により除去され、その領域が切削部3bとなっている。なお、図1で1は光半導体素子収納用パッケージである。
【0012】
本発明の基体4はセラミックス,樹脂等の絶縁材料からなり、基体4は底板部と底板部の上面の外周部に接合された別体の枠状の側壁部とから構成されている。また、基体4は底板部と側壁部とが一体的に形成された略直方体のものであってもよい。この基体4の凹部4aの底面の外周部には電極パッド7が設けられており、半導体素子2の上面の電極がその電極パッド7にAu、Al等からなるボンディングワイヤ6によって電気的に接続されている。
【0013】
本発明の基体4は、セラミックスから成る場合、アルミナ(Al23)セラミックス、窒化アルミニウム(AlN)セラミックス、炭化珪素(SiC)セラミックス、窒化珪素(Si34)セラミックス、ガラスセラミックス等のセラミックスから成る。基体4は、外部回路基板等に実装される際の熱で膨張し、半導体素子2にストレスを与える場合があることから、熱膨張係数が5×10-6〜10×10-6/℃程度と小さいアルミナを主成分としたセラミックスが好ましい。
【0014】
また、本発明の透光性蓋体3は、半導体素子2がCCD等の外光を受光する光半導体素子である場合、ガラス,石英,サファイヤ(単結晶アルミナ),透明樹脂等からなる透光性のものがよい。この透光性蓋体3は、その外形寸法が基体4上面の外形寸法より小さく、基体4の凹部4aよりは大きいものが好ましい。
【0015】
また、透光性蓋体3の切削部3bの面積は樹脂層5を介して取着される接着領域の面積の90〜100%がよい。90%未満だと、紫外線硬化樹脂から成る樹脂層5が紫外線(UV)照射されても接着領域の面積に比べてUVの透過領域の面積が小さくなるため硬化が不十分となり、透光性蓋体3と基体4の接着強度が弱くなる。100%より大きくなると、切削部3bは粗面となっているため切削部3aに樹脂層5に覆われない露出した部位が存在することになり、その結果この露出した部位の影響で散乱光が発生し光半導体素子2の受光特性に悪影響を与えることがある。
【0016】
光学薄膜3aは、チタン(Ti)、シリコン(Si)、ジルコニア(Zr)、アルミナ(Al23)、フッ化マグネシウム(MgF2)等を、真空蒸着法、高周波イオンプレーティング法、スパッタリング法等により、多層積層して形成され、その層数や厚みや層構成は要求される光学特性により異なるが、光学薄膜3aの総厚みは0.1〜5.0μmが好ましい。0.1μm未満だと耐スクラッチ性が不十分なため、所定の波長領域における光の透過防止効果が不安定になり易く、5.0μmより大きくなると、膜応力により光学薄膜3a膜が剥離することがある。
【0017】
半導体素子2は、IC,LSI等の半導体集積回路素子、または半導体レーザ(LD),フォトダイオード(PD),ラインセンサ,イメージセンサ,CCD,CMOSセンサ,EPROM(Erasable and Programmable ROM)等の受光用の光半導体素子、またはこれらの受光部を有する光半導体素子である。
【0018】
樹脂層5は、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂、ポリエーテルアミド系樹脂等から成る。また樹脂層5は、余計な外光の入射を遮断するために、黒色、茶色、暗緑色、濃青色等の暗色系の染料、カーボン、酸化鉄等の顔料を混入させても良い。この樹脂層5はディスペンサ装置を用いて基体4の上面に塗布して形成する。透光性蓋体3を接着する際には、基体4上面に樹脂層5を塗布し、透光性蓋体3を加圧した後、UV照射装置を用いて樹脂層5にUV照射を行い硬化させることにより、基体4と透光性蓋体3とを強固に接合できる。
【0019】
図2に本発明の透光性蓋体3を多数個取りで作製するための母基板7の平面図および断面図を示す。図2のように、母基板7において、3bは光学薄膜3aが機械的加工により除去されて、紫外線硬化型樹脂を介して基体4に取着される領域である。8は母基板7を個片に切断するための切断しろである。この透光性蓋体3は、板状の透光性基板の全面に光学薄膜3aを被着した後、ダイシングソー等を用いた機械的加工により切削部3bを容易に形成することができる。切削面の表面の算術平均粗さは0.2〜5.0μmが好ましく、0.2μm未満では、アンカー効果が得られないため接着強度が低下する。5.0μmを超えると、切削部3bに接する樹脂層5中に微小なボイドが発生し易くなるため、接着強度が低下する。また、切削する際に透光性蓋体3の端部に欠けやクラックが発生しやすくなる。
【0020】
透光性蓋体3は以下のようにして作製される。ガラス等の母基板7の全面に光学薄膜3aを被着し、機械的加工で光学薄膜3aと母基板7の一部を除去し、基体4と透光性蓋体3が樹脂層5を介して取着される領域となる切削部3bを形成する。次に、機械的加工によって個片に切断することにより作製される。なお、切削部3bの表面粗さはダイシングソーの砥粒の大きさを変えることにより、容易に制御することができる。
【0021】
上記のようにマスク蒸着法やフォトリソグラフィ法等を用いることなく、透光性蓋体3の基体4に取着される領域の光学薄膜3aを除去して、光学フィルタ機能を有した透光性蓋体3が得られるため、マスク蒸着法やフォトリソグラフィ法等に必要となるマスクおよびマスクを取り付けるための治工具等が不要となる。その結果、光学フィルタ機能を有した透光性蓋体3が低コストで得られる。
【0022】
また、透光性蓋体3は基体4に取着される領域に光学薄膜3aが形成されないため、紫外線硬化型の樹脂層5を使用して基体4に接着することができる。その結果、光半導体素子2の機能が透光性蓋体3接着時の熱により劣化することがなく、信頼性の高い光半導体装置が得られる。
【0023】
【実施例】
本発明の実施例について以下に説明する。
【0024】
(実施例)
まず、外形寸法が縦100mm×横100mm×厚み0.5mmのガラスから成る母基板7の一方主面の全面に、蒸着法を用いて、厚さ0.1μmのSiO2層、2層で厚さ0.1μmのZrO2層とTiO2層、厚さ0.1μmのZrO2層、厚さ0.1μmのSiO2層を順次積層し、総厚み0.4μmの光学薄膜3aを被着した。これにより、紫外線領域である350nm以下の波長領域および赤外線領域である750nm以上の波長領域を90%以上遮断する光学薄膜3aが得られた。次に、光学薄膜3aの被着面に、図2のようなパターンで、スライサーを用いて12.6mmの繰り返し間隔で幅4.0mm、深さ約30μm程度の切削部3bを形成した。その後、切削部3bの幅の中央部(切断しろ8部)をダイシングソーを用いて切断し、光学フィルタ機能を有した透光性蓋体3を作製した。
【0025】
また、比較例として、切削部3bを形成しないこと以外は上記実施例と同様にして、光学フィルタ機能を有した透光性蓋体103(図3)を作製した。
【0026】
次に、CCDから成る光半導体素子2を収容したアルミナセラミックスから成る基体4の上面に、エポキシ樹脂から成る樹脂層5を塗布し、透光性蓋体3を載置した。次に、24500Paの加重で透光性蓋体3を上方より加圧し、約6J/cm2のエネルギーで波長365nmの紫外線を照射することにより樹脂層5を硬化させて、本発明の光半導体装置Aを5個作製した。
【0027】
また、図3に示すように、CCDから成る光半導体素子102を収容したアルミナセラミックから成る基体104の上面に、エポキシ樹脂から成る樹脂層105を塗布し、透光性蓋体103を載置した。次に、24500Paの加重で透光性蓋体103を上方より加圧し、約6J/cm2のエネルギーで波長365nmの紫外線を照射することにより樹脂層105を硬化させて、比較例の光半導体装置Bを5個作製した。
【0028】
そして、光半導体装置A,Bについて、透光性蓋体3,103の接着強度を測定するために、光半導体装置A,Bを固定した状態で透光性蓋体3,103を上方に引張る引張り強度試験を行った。この評価結果を下記表1に示す。
【0029】
【表1】

Figure 0003766628
【0030】
表1より、本発明の光半導体装置Aは比較例の光半導体装置Bに比べて引張り強度が平均値で28%向上したことが判った。
【0031】
なお、本発明は上記実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何ら差し支えない。
【0032】
【発明の効果】
本発明は、上面に凹部が形成された基体と、凹部の底面に載置された光半導体素子と、基体の上面の凹部の周囲に紫外線硬化型樹脂を介して取着された板状の透光性蓋体とを具備して成り、透光性蓋体の凹部側の主面に所定の波長領域の光を遮断するための光学薄膜が被着されているとともに、光学薄膜のうち基体の上面の凹部の周囲に取着される領域が機械的加工により除去されていることにより、光学薄膜のうち基体の上面の凹部の周囲に取着される領域が切削法等の機械的加工により除去されるので、その領域の表面の算術平均粗さは0.2〜5.0μm程度と粗面になっているため、透光性蓋体の接着強度が大幅に向上する。
【0033】
また、透光性蓋体の取着される領域の光学薄膜は除去されるため、その領域を紫外線が透過することになり、紫外線硬化型樹脂を使用して接着することができる。その結果、光半導体素子の上面の受光部に設けられたカラー光学フィルタやマイクロレンズが接着時の熱で劣化することがないため、信頼性の高い光半導体装置となる。また、透光性蓋体の取着される領域に光学薄膜を形成しないためにマスク蒸着法やフォトリソグラフィ法等を用いる必要がなく、低コストに製造できる。さらに、透光性蓋体は光学フィルタの機能を有しており、別個に光学フィルタを備える必要がないため、光半導体装置の小型化、低背化が可能となる。
【図面の簡単な説明】
【図1】本発明の光半導体装置について実施の形態の一例を示す断面図である。
【図2】本発明の光半導体装置における透光性蓋体を作製するための母基板の平面図および断面図である。
【図3】従来の光半導体装置の断面図である。
【符号の説明】
1:光半導体素子収納用パッケージ
2:光半導体素子
3:透光性蓋体
3a:光学薄膜
3b:切削部
4:基体
4a:凹部
5:紫外線硬化型の樹脂層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor device including an optical semiconductor element which is a light receiving element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) sensor or an optical semiconductor element having these light receiving portions.
[0002]
[Prior art]
In an optical semiconductor device having a conventional optical semiconductor element that is a light receiving element such as a CCD or CMOS sensor or an optical semiconductor element having these light receiving portions, an input image is condensed through a lens, and light in a predetermined wavelength region. After passing through a translucent member (hereinafter referred to as an optical filter) to which an optical thin film for blocking the light is applied, the light is input to the light receiving portion of the optical semiconductor element through the translucent lid.
[0003]
In recent years, an optical thin film has been attached to a light-transmitting lid for hermetically sealing an optical semiconductor element package, thereby reducing the size of the optical semiconductor device by providing the light-transmitting lid with an optical filter function. There is an ever-increasing demand for a structure with a low profile, and a conventional example is shown in FIG. In FIG. 3, reference numeral 101 denotes an optical semiconductor device mainly composed of a base 104, an optical semiconductor element 102, and a translucent lid 103 on which an optical thin film 103a is attached. Reference numeral 104 a denotes a recess formed on the upper surface of the substrate 104. Reference numeral 107 denotes an electrode pad provided on the outer peripheral portion of the bottom surface of the concave portion 104a of the base 104, 106 denotes a bonding wire, and 105 denotes a thermosetting resin provided on substantially the entire periphery around the concave portion 104a on the top surface of the base 104. The resin layer 103, which is made of glass or the like, is a translucent lid body on which an optical thin film 103a is attached.
[0004]
The optical semiconductor element 102 is bonded and fixed to the bottom surface of the recess 104a formed on the upper surface of the base body 104 made of ceramic or the like. From the electrode pad 107 disposed around the optical semiconductor element 102 on the bottom surface of the recess 104a, Au , Al are electrically connected to the electrodes of the substrate 104 made of metallized wiring or the like connected to an external electric circuit or the like by bonding wires 106 made of Al.
[0005]
The translucent lid 103 is a translucent member made of glass or the like on which an optical thin film 103a that blocks light in a predetermined wavelength region is attached, and is disposed around substantially the periphery of the recess 104a on the upper surface of the substrate 104. It is attached to the base body 104 by the provided resin layer 105.
[0006]
[Problems to be solved by the invention]
However, in the above conventional optical semiconductor device, the translucent cover 103 serves as an optical filter that blocks light in a predetermined wavelength region, but the optical filter blocks the infrared region and also blocks the ultraviolet region. Therefore, an ultraviolet curable resin cannot be used for attaching the translucent lid 103. For this reason, the thermosetting resin 105 must be used. As a result, there has been a problem that the color optical filter, the microlens, and the like provided on the light receiving portion formed on the upper surface of the optical semiconductor element 102 do not function due to heat when the thermosetting resin 105 is cured.
[0007]
Therefore, in order to make it possible to use an ultraviolet curable resin, the optical thin film 103a is not deposited on the portion to which the translucent lid 103 is bonded by a mask vapor deposition method, a photolithography method, or the like. A method of removing the optical thin film 103a at the portion where the translucent lid 103 is bonded by an etching method is conceivable. However, in this case, the surface of the translucent lid 103 generally made of glass or the like is mirror-like, and its arithmetic average roughness Ra is 0.01 μm or less. When the external force substantially parallel to the surface direction of the main surface is applied to the translucent lid 103 at the outer peripheral portion of the lower surface, the translucent lid 103 may be peeled off from the base body 104 in some cases. That is, there is a problem that the adhesive strength of the translucent lid 103 is insufficient and it is weak against external force and mechanical shock. Further, when the translucent cover 103 provided with the optical thin film 103a by the above-described method is produced, there is a problem that a mask and a jig for attaching the mask are necessary, and the manufacturing cost is increased. .
[0008]
Accordingly, the present invention has been completed in view of the above-mentioned problems in the prior art, and its purpose is to improve the adhesive strength between the translucent lid having the optical filter function and the substrate, and to produce at a low cost. An object of the present invention is to provide a miniaturized and highly reliable optical semiconductor device having a translucent lid.
[0009]
[Means for Solving the Problems]
The optical semiconductor device of the present invention includes a base having a recess formed on the top surface, an optical semiconductor element placed on the bottom surface of the recess, and an ultraviolet curable resin around the recess on the top surface of the base. An optical thin film for blocking light in a predetermined wavelength region is attached to the main surface of the translucent lid on the concave side. In addition, a region of the optical thin film attached to the periphery of the concave portion on the upper surface of the substrate is removed by mechanical processing.
[0010]
In the present invention, since the region attached around the concave portion on the upper surface of the substrate is removed by mechanical processing such as a cutting method in the optical thin film, the arithmetic average roughness of the surface of the region is Since it has a rough surface of about 0.2 to 5.0 μm, the adhesive strength of the translucent lid is greatly improved. In addition, since the optical thin film in the region where the translucent lid is attached is removed, ultraviolet rays pass through the region, and can be bonded using an ultraviolet curable resin. As a result, since the color optical filter and the microlens provided in the light receiving portion on the upper surface of the optical semiconductor element are not deteriorated by the heat at the time of bonding, an optical semiconductor device with high reliability is obtained. In addition, since an optical thin film is not formed in the region where the translucent lid is attached, it is not necessary to use a mask vapor deposition method, a photolithography method, or the like. Furthermore, since the translucent lid has a function of an optical filter and does not require a separate optical filter, the optical semiconductor device can be reduced in size and height.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The optical semiconductor device of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of the optical semiconductor device of the present invention. As shown in FIG. 1, the optical semiconductor device of the present invention includes a base having a recess 4a formed on the upper surface, and a recess 4a. The optical semiconductor element 2 placed on the bottom surface of the substrate, the ultraviolet curable resin layer 5 provided on substantially the entire periphery of the recess 4a on the upper surface of the base 4, and the optical semiconductor element bonded to the upper part of the resin layer 5 And a plate-like translucent lid 3 for sealing 2. The translucent cover 3 has an optical thin film 3a for blocking light in a predetermined wavelength region attached to the main surface (lower main surface) on the concave portion 4a side. A region attached around the recess 4a on the upper surface is removed by mechanical processing, and the region is a cutting portion 3b. In FIG. 1, reference numeral 1 denotes an optical semiconductor element storage package.
[0012]
The substrate 4 of the present invention is made of an insulating material such as ceramics or resin, and the substrate 4 is composed of a bottom plate portion and a separate frame-like side wall portion joined to the outer peripheral portion of the upper surface of the bottom plate portion. The base 4 may be a substantially rectangular parallelepiped in which a bottom plate portion and a side wall portion are integrally formed. An electrode pad 7 is provided on the outer periphery of the bottom surface of the recess 4 a of the base 4, and the electrode on the upper surface of the semiconductor element 2 is electrically connected to the electrode pad 7 by a bonding wire 6 made of Au, Al or the like. ing.
[0013]
When the substrate 4 of the present invention is made of ceramics, ceramics such as alumina (Al 2 O 3 ) ceramics, aluminum nitride (AlN) ceramics, silicon carbide (SiC) ceramics, silicon nitride (Si 3 N 4 ) ceramics, and glass ceramics. Consists of. Since the base body 4 expands due to heat when mounted on an external circuit board or the like and may give stress to the semiconductor element 2, the thermal expansion coefficient is about 5 × 10 −6 to 10 × 10 −6 / ° C. Ceramics mainly composed of small alumina are preferable.
[0014]
Further, the translucent cover 3 of the present invention has a translucent structure made of glass, quartz, sapphire (single crystal alumina), transparent resin or the like when the semiconductor element 2 is an optical semiconductor element that receives external light such as a CCD. Sexual things are good. The translucent lid 3 preferably has an outer dimension smaller than the outer dimension of the upper surface of the base 4 and larger than the recess 4 a of the base 4.
[0015]
Further, the area of the cutting part 3 b of the translucent lid 3 is preferably 90 to 100% of the area of the adhesion region attached via the resin layer 5. If it is less than 90%, even if the resin layer 5 made of ultraviolet curable resin is irradiated with ultraviolet rays (UV), the area of the UV transmission region is smaller than the area of the adhesion region, so that the curing becomes insufficient, and the translucent lid The bonding strength between the body 3 and the substrate 4 is weakened. If it exceeds 100%, the cutting portion 3b has a rough surface, and therefore there is an exposed portion that is not covered with the resin layer 5 in the cutting portion 3a. As a result, the scattered light is affected by the exposed portion. It may occur and adversely affect the light receiving characteristics of the optical semiconductor element 2.
[0016]
The optical thin film 3a is made of titanium (Ti), silicon (Si), zirconia (Zr), alumina (Al 2 O 3 ), magnesium fluoride (MgF 2 ), vacuum deposition method, high-frequency ion plating method, sputtering method. The total thickness of the optical thin film 3a is preferably 0.1 to 5.0 μm, although the number of layers, the thickness, and the layer configuration vary depending on the required optical characteristics. If it is less than 0.1 μm, the scratch resistance is insufficient, so that the light transmission preventing effect in a predetermined wavelength region tends to become unstable, and if it exceeds 5.0 μm, the optical thin film 3a peels off due to film stress. There is.
[0017]
The semiconductor element 2 is for receiving light from a semiconductor integrated circuit element such as an IC or LSI, or a semiconductor laser (LD), photodiode (PD), line sensor, image sensor, CCD, CMOS sensor, EPROM (Erasable and Programmable ROM), etc. Or an optical semiconductor element having these light receiving portions.
[0018]
The resin layer 5 is made of an acrylic resin, an epoxy resin, a silicone resin, a polyetheramide resin, or the like. The resin layer 5 may be mixed with dark dyes such as black, brown, dark green, and dark blue, and pigments such as carbon and iron oxide in order to block the extraneous light from entering. The resin layer 5 is formed by applying on the upper surface of the substrate 4 using a dispenser device. When the translucent lid 3 is bonded, the resin layer 5 is applied to the upper surface of the substrate 4 and the translucent lid 3 is pressurized. Then, the resin layer 5 is irradiated with UV using a UV irradiation apparatus. By curing, the substrate 4 and the translucent lid 3 can be firmly bonded.
[0019]
FIG. 2 shows a plan view and a cross-sectional view of a mother substrate 7 for producing a large number of translucent lids 3 according to the present invention. As shown in FIG. 2, in the mother substrate 7, reference numeral 3b denotes an area where the optical thin film 3a is removed by mechanical processing and attached to the base 4 via an ultraviolet curable resin. Reference numeral 8 denotes a cutting margin for cutting the mother substrate 7 into individual pieces. The translucent lid 3 can easily form the cutting portion 3b by mechanical processing using a dicing saw or the like after the optical thin film 3a is deposited on the entire surface of the plate-shaped translucent substrate. The arithmetic average roughness of the surface of the cutting surface is preferably 0.2 to 5.0 μm, and if it is less than 0.2 μm, the anchor effect cannot be obtained, so that the adhesive strength is lowered. If it exceeds 5.0 μm, minute voids are likely to be generated in the resin layer 5 in contact with the cutting portion 3b, and the adhesive strength is reduced. In addition, chipping and cracks are likely to occur at the end of the translucent lid 3 when cutting.
[0020]
The translucent lid 3 is produced as follows. The optical thin film 3a is deposited on the entire surface of the mother substrate 7 such as glass, the optical thin film 3a and a part of the mother substrate 7 are removed by mechanical processing, and the base 4 and the translucent lid 3 are interposed via the resin layer 5. The cutting part 3b used as the area | region attached by attaching is formed. Next, it is produced by cutting into individual pieces by mechanical processing. In addition, the surface roughness of the cutting part 3b can be easily controlled by changing the size of the abrasive grains of the dicing saw.
[0021]
As described above, without using a mask vapor deposition method, a photolithography method, or the like, the optical thin film 3a in the region attached to the base 4 of the translucent lid 3 is removed, and the translucency having an optical filter function Since the lid 3 is obtained, a mask necessary for mask vapor deposition, photolithography, and the like, and a jig for attaching the mask are not required. As a result, the translucent lid 3 having an optical filter function can be obtained at low cost.
[0022]
Further, since the optical thin film 3 a is not formed in the region where the translucent lid 3 is attached to the base body 4, it can be adhered to the base body 4 using an ultraviolet curable resin layer 5. As a result, the function of the optical semiconductor element 2 is not deteriorated by heat when the translucent lid 3 is adhered, and an optical semiconductor device with high reliability is obtained.
[0023]
【Example】
Examples of the present invention will be described below.
[0024]
(Example)
First, an SiO 2 layer having a thickness of 0.1 μm and two layers are formed on the entire surface of one main surface of the mother substrate 7 made of glass having an outer dimension of 100 mm in length, 100 mm in width, and 0.5 mm in thickness by vapor deposition. A 0.1 μm thick ZrO 2 layer, a TiO 2 layer, a 0.1 μm thick ZrO 2 layer, and a 0.1 μm thick SiO 2 layer were sequentially laminated, and an optical thin film 3a having a total thickness of 0.4 μm was deposited. . As a result, an optical thin film 3a that blocks 90% or more of the wavelength region of 350 nm or less that is an ultraviolet region and the wavelength region of 750 nm or more that is an infrared region is obtained. Next, a cutting part 3b having a width of about 4.0 mm and a depth of about 30 μm was formed on the surface of the optical thin film 3a in a pattern as shown in FIG. Then, the center part (8 parts of cutting margin) of the width of the cutting part 3b was cut | disconnected using the dicing saw, and the translucent cover body 3 which has an optical filter function was produced.
[0025]
Further, as a comparative example, a translucent cover 103 (FIG. 3) having an optical filter function was produced in the same manner as in the above example except that the cutting part 3b was not formed.
[0026]
Next, a resin layer 5 made of epoxy resin was applied to the upper surface of a substrate 4 made of alumina ceramics that accommodated an optical semiconductor element 2 made of CCD, and the translucent lid 3 was placed. Next, the translucent lid 3 is pressurized from above with a load of 24500 Pa, and the resin layer 5 is cured by irradiating with ultraviolet light having a wavelength of 365 nm with an energy of about 6 J / cm 2 , so that the optical semiconductor device of the present invention is used. Five A were prepared.
[0027]
Further, as shown in FIG. 3, a resin layer 105 made of epoxy resin is applied to the upper surface of a substrate 104 made of alumina ceramic that accommodates an optical semiconductor element 102 made of CCD, and a translucent lid 103 is placed thereon. . Next, the translucent lid 103 is pressurized from above with a load of 24500 Pa, and the resin layer 105 is cured by irradiating ultraviolet light having a wavelength of 365 nm with an energy of about 6 J / cm 2 , so that an optical semiconductor device of a comparative example Five pieces of B were produced.
[0028]
Then, for the optical semiconductor devices A and B, in order to measure the adhesive strength of the translucent lids 3 and 103, the translucent lids 3 and 103 are pulled upward while the optical semiconductor devices A and B are fixed. A tensile strength test was performed. The evaluation results are shown in Table 1 below.
[0029]
[Table 1]
Figure 0003766628
[0030]
From Table 1, it was found that the tensile strength of the optical semiconductor device A of the present invention was improved by 28% in average value as compared with the optical semiconductor device B of the comparative example.
[0031]
In addition, this invention is not limited to the said embodiment and Example, A various change may be performed within the range which does not deviate from the summary of this invention.
[0032]
【The invention's effect】
The present invention includes a base having a recess formed on the top surface, an optical semiconductor element mounted on the bottom surface of the recess, and a plate-like transparent member attached via an ultraviolet curable resin around the recess on the top surface of the base. And an optical thin film for blocking light in a predetermined wavelength region is attached to the main surface of the light-transmitting lid on the concave portion side. The area attached around the recess on the top surface of the optical film is removed by mechanical processing, so that the area attached around the recess on the top surface of the substrate is removed by mechanical processing such as a cutting method. Therefore, since the arithmetic average roughness of the surface of the region is a rough surface of about 0.2 to 5.0 μm, the adhesive strength of the translucent lid is greatly improved.
[0033]
In addition, since the optical thin film in the region where the translucent lid is attached is removed, ultraviolet rays pass through the region, and can be bonded using an ultraviolet curable resin. As a result, since the color optical filter and the microlens provided in the light receiving portion on the upper surface of the optical semiconductor element are not deteriorated by the heat at the time of bonding, an optical semiconductor device with high reliability is obtained. Further, since an optical thin film is not formed in the region where the translucent lid is attached, it is not necessary to use a mask vapor deposition method, a photolithography method, or the like, and it can be manufactured at a low cost. Furthermore, since the translucent lid has a function of an optical filter and does not require a separate optical filter, the optical semiconductor device can be reduced in size and height.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical semiconductor device of the present invention.
FIGS. 2A and 2B are a plan view and a cross-sectional view of a mother substrate for producing a translucent lid in the optical semiconductor device of the present invention. FIGS.
FIG. 3 is a cross-sectional view of a conventional optical semiconductor device.
[Explanation of symbols]
1: Optical semiconductor element storage package 2: Optical semiconductor element 3: Translucent lid 3a: Optical thin film 3b: Cutting part 4: Base 4a: Recessed part 5: UV curable resin layer

Claims (1)

上面に凹部が形成された基体と、前記凹部の底面に載置された光半導体素子と、前記基体の上面の前記凹部の周囲に紫外線硬化型樹脂を介して取着された板状の透光性蓋体とを具備して成り、該透光性蓋体の前記凹部側の主面に所定の波長領域の光を遮断するための光学薄膜が被着されているとともに、前記光学薄膜のうち前記基体の上面の前記凹部の周囲に取着される領域が機械的加工により除去されていることを特徴とする光半導体装置。A base having a recess formed on the top surface, an optical semiconductor element placed on the bottom surface of the recess, and a plate-like light-transmitting material attached to the periphery of the recess on the top surface of the base via an ultraviolet curable resin An optical thin film for blocking light in a predetermined wavelength region is attached to a main surface of the translucent lid on the concave portion side, and the optical thin film An optical semiconductor device, wherein a region attached to the periphery of the concave portion on the upper surface of the substrate is removed by mechanical processing.
JP2001363238A 2001-11-28 2001-11-28 Optical semiconductor device Expired - Fee Related JP3766628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363238A JP3766628B2 (en) 2001-11-28 2001-11-28 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363238A JP3766628B2 (en) 2001-11-28 2001-11-28 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2003163297A JP2003163297A (en) 2003-06-06
JP3766628B2 true JP3766628B2 (en) 2006-04-12

Family

ID=19173613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363238A Expired - Fee Related JP3766628B2 (en) 2001-11-28 2001-11-28 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP3766628B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236146A (en) * 2004-02-20 2005-09-02 Hamamatsu Photonics Kk Optical semiconductor device, and manufacturing method thereof
JP4614733B2 (en) * 2004-10-27 2011-01-19 京セラ株式会社 Solid-state imaging device
JP2007115905A (en) * 2005-10-20 2007-05-10 Fujifilm Corp Apparatus and method of manufacturing imaging element package
CN101405872B (en) 2006-03-22 2011-04-20 株式会社村田制作所 Infrared sensor and method for manufacturing infrared sensor
JP5161807B2 (en) * 2009-02-06 2013-03-13 敏雄 奥野 Probe substrate for flat display panel inspection
JP5126111B2 (en) * 2009-02-24 2013-01-23 旭硝子株式会社 Near-infrared cut filter glass and manufacturing method thereof
JP2013218245A (en) * 2012-04-12 2013-10-24 Seiko Epson Corp Optical element, imaging device, camera, and manufacturing method of optical element
JP6354297B2 (en) * 2014-04-30 2018-07-11 旭硝子株式会社 Cover glass and manufacturing method thereof
JP6724777B2 (en) * 2014-04-30 2020-07-15 Agc株式会社 Cover glass and manufacturing method thereof
JP6297935B2 (en) * 2014-06-19 2018-03-20 京セラ株式会社 Light emitting device
JP7098242B2 (en) * 2018-09-12 2022-07-11 株式会社ディスコ Manufacturing method and storage method of storage container

Also Published As

Publication number Publication date
JP2003163297A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3880278B2 (en) Solid-state imaging device and manufacturing method thereof
US7001797B2 (en) Optical device and method of manufacturing the same, optical module, circuit board, and electronic instrument
JP6395600B2 (en) Imaging device manufacturing method and semiconductor device manufacturing method
JP3766628B2 (en) Optical semiconductor device
JP4542768B2 (en) Solid-state imaging device and manufacturing method thereof
JP3684233B2 (en) Fingerprint input device and manufacturing method thereof
JP4846910B2 (en) Solid-state imaging device
JP6147250B2 (en) Imaging device manufacturing method and semiconductor device manufacturing method
JPWO2013179766A1 (en) Imaging device, semiconductor device, and imaging unit
JP2003197885A (en) Optical device and its manufacturing method, optical module, circuit board and electronic equipment
JP2002329850A (en) Chip size package and its manufacturing method
JP6776764B2 (en) Manufacturing method of light emitting device
JP2002231921A (en) Solid-state image pickup device and its manufacturing method
US20070120041A1 (en) Sealed Package With Glass Window for Optoelectronic Components, and Assemblies Incorporating the Same
JP6166112B2 (en) Lid for imaging device and imaging device provided with the same
WO2010082464A1 (en) Semiconductor device and method for manufacturing same
JP2003243673A (en) Optical semiconductor device
JP4632680B2 (en) Optical filter member and solid-state imaging device using the same
JP2010273087A (en) Semiconductor device and method for manufacturing the same
JP2003142621A (en) Semiconductor device
JP3674777B2 (en) Solid-state imaging device
JP2002359314A (en) Package for housing image pickup device
KR102017730B1 (en) Method of manufacturing preformed sealant for semiconductor light emitting device
KR102022460B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP3872404B2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees