JP5672680B2 - Window material for solid-state image pickup device package and image pickup apparatus - Google Patents

Window material for solid-state image pickup device package and image pickup apparatus Download PDF

Info

Publication number
JP5672680B2
JP5672680B2 JP2009195270A JP2009195270A JP5672680B2 JP 5672680 B2 JP5672680 B2 JP 5672680B2 JP 2009195270 A JP2009195270 A JP 2009195270A JP 2009195270 A JP2009195270 A JP 2009195270A JP 5672680 B2 JP5672680 B2 JP 5672680B2
Authority
JP
Japan
Prior art keywords
window material
solid
glass
package
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009195270A
Other languages
Japanese (ja)
Other versions
JP2011049275A (en
Inventor
大澤 光生
光生 大澤
鈴木 英俊
英俊 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009195270A priority Critical patent/JP5672680B2/en
Publication of JP2011049275A publication Critical patent/JP2011049275A/en
Application granted granted Critical
Publication of JP5672680B2 publication Critical patent/JP5672680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、固体撮像素子を収納するパッケージの受光側開口部に取り付けられ、固体撮像素子を保護すると共に透光窓として使用され、かつ収差補正機能を備える固体撮像素子パッケージ用窓材、並びに該固体撮像素子パッケージ用窓材を用いた撮像装置に関するものである。   The present invention is attached to a light-receiving side opening of a package that houses a solid-state image pickup device, protects the solid-state image pickup device, is used as a light-transmitting window, and has an aberration correction function. The present invention relates to an imaging device using a window material for a solid-state imaging device package.

近年、CCDやCMOS等の固体撮像素子を搭載するデジタルスチルカメラやビデオカメラの小型化が進展し、これに伴って搭載される撮像装置や光学機能部品も小型化が要求されている。   In recent years, miniaturization of digital still cameras and video cameras equipped with solid-state imaging devices such as CCDs and CMOSs has progressed, and along with this, imaging devices and optical functional parts mounted have been required to be miniaturized.

撮像装置を小型化する方法として、色補正フィルタと光学的ローパスフィルタの各フィルタリング機能を1枚のガラス板で実現することが提案されている(特許文献1)。これによれば、部品点数が削減でき、構造・形状が簡素になり、これを撮像装置に組み込むことで、撮像装置の小型化が達成できるとされている。   As a method for reducing the size of an imaging apparatus, it has been proposed to implement each filtering function of a color correction filter and an optical low-pass filter with a single glass plate (Patent Document 1). According to this, the number of parts can be reduced, the structure and shape are simplified, and it is said that the downsizing of the imaging device can be achieved by incorporating this into the imaging device.

特開平4−110903号公報JP 4-110903 A

一方、固体撮像素子の高画素化が年々進んでおり、レンズに起因する色ズレや歪みといった収差を補正するため、レンズの枚数が増加しレンズ群の全長が長くなる傾向がある。しかし、これら傾向はサイズの観点からみると上記デジタルスチルカメラ等の小型化とは相反するものである。また、特許文献1に記載の光学フィルタは、色補正フィルタと光学的ローパスフィルタの各フィルタリング機能を兼用することで光学機能部品の部品点数を削減するものであるが、レンズ機能とは無関係であり、高画素対応のレンズ群の小型化には寄与しない。このような背景により、カメラの小型化及び高画素化に対応できる光学機能部品及び撮像装置が求められている。
本発明は、上記課題に鑑みてなされたものであり、その目的は撮像装置を搭載するカメラの小型化及び高画質化に対応するための光学機能部品及び撮像装置を提供することを目的とする。
On the other hand, the number of pixels in a solid-state imaging device has been increasing year by year, and in order to correct aberrations such as color shift and distortion caused by the lens, the number of lenses tends to increase and the total length of the lens group tends to increase. However, these trends are contrary to the downsizing of the digital still camera and the like from the viewpoint of size. In addition, the optical filter described in Patent Document 1 reduces the number of optical functional parts by combining the filtering functions of the color correction filter and the optical low-pass filter, but is not related to the lens function. It does not contribute to the downsizing of the lens group for high pixels. With such a background, there is a demand for an optical functional component and an imaging apparatus that can cope with downsizing and high pixel size of a camera.
The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical functional component and an imaging apparatus for coping with downsizing and high image quality of a camera equipped with an imaging apparatus. .

本発明者は、上記目的を達成するため鋭意検討を重ねた結果、固体撮像素子パッケージ用窓材に収差補正機能を付与することで、固体撮像素子の高画素化に対応しつつ、カメラの小型化に対応する光学機能部品を提供できることを見出した。
すなわち、本発明の固体撮像素子パッケージ用窓材は、少なくとも一方の透光面が、凹凸形状であり、α線放出量が0.005c/cm・hr以下であることを特徴とする。
また、前記窓材は、屈伏点が580℃以下のガラスからなることを特徴とする。
また、前記窓材は、50〜250℃の平均熱膨張係数が100〜150×10−7−1であるリン酸塩ガラスからなり、樹脂製の固体撮像素子パッケージに取り付けられることを特徴とする。
また、前記窓材は、モル%で、
12〜42%、
Al 13〜32%、
SiO 0〜17%、
0〜22%、
LiO 0〜17%、
NaO 0〜27%、
O 0〜27%、
ただし、LiO+NaO+KO 18〜42%、
MgO+CaO+SrO+ZnO 1〜37%、
を含有することを特徴とする。
また、前記窓材は、Cuを実質的に含まないことを特徴とする。
また、前記窓材は、透光面の外周が平坦であることを特徴とする。
また、本発明の撮像装置は、前記固体撮像素子パッケージ用窓材と、レンズ群と、該固体撮像素子パッケージ用窓材及び該レンズ群を透過した光を受光する固体撮像素子とを備えることを特徴とする。
As a result of intensive studies to achieve the above object, the present inventor has provided an aberration correction function to the window material for the solid-state image pickup device package, so that the size of the camera can be reduced while supporting the increase in the number of pixels of the solid-state image pickup device. We have found that we can provide optical functional parts that meet the requirements
That is, the window material for a solid-state imaging device package according to the present invention is characterized in that at least one light-transmitting surface has an uneven shape and an α-ray emission amount is 0.005 c / cm 2 · hr or less.
The window material is made of glass having a yield point of 580 ° C. or lower.
The window material is made of phosphate glass having an average coefficient of thermal expansion of 50 to 250 ° C. of 100 to 150 × 10 −7 K −1 , and is attached to a resin-made solid-state imaging device package. To do.
Further, the window material is mol%,
P 2 O 5 12~42%,
Al 2 O 3 13-32%,
SiO 2 0~17%,
B 2 O 3 0-22%,
Li 2 O 0-17%,
Na 2 O 0-27%,
K 2 O 0~27%,
However, Li 2 O + Na 2 O + K 2 O 18~42%,
MgO + CaO + SrO + ZnO 1-37%,
It is characterized by containing.
Further, the window material is substantially free of Cu.
Further, the window material is characterized in that the outer periphery of the translucent surface is flat.
The imaging device of the present invention includes the solid-state imaging device package window material, a lens group, and the solid-state imaging device package window material and a solid-state imaging device that receives light transmitted through the lens group. Features.

本発明によれば、固体撮像素子パッケージ用窓材に収差補正機能を付与することでレンズの光学設計の自由度があがるため、レンズ群の小型化及び固体撮像素子の高画素化への対応が可能となり、これによりカメラ等の小型化に寄与する撮像装置を提供することが可能となる。   According to the present invention, the aberration correction function is added to the window material for the solid-state image pickup device package to increase the degree of freedom in optical design of the lens. Therefore, it is possible to cope with the downsizing of the lens group and the increase in the number of pixels of the solid-state image pickup device. Accordingly, it is possible to provide an imaging apparatus that contributes to downsizing of a camera or the like.

本発明の固体撮像素子パッケージ用窓材及び撮像装置の実施形態の一例を示す側方断面図である。It is a side sectional view showing an example of an embodiment of a window material for a solid-state image sensing device package and an imaging device of the present invention. 本発明の固体撮像素子パッケージ用窓材の実施形態の他の例を示す側方断面図及び平面図である。It is the side sectional view and top view showing other examples of the embodiment of the window material for solid-state image sensing device packages of the present invention. 図2の実施形態における固体撮像素子パッケージ用窓材の固体撮像素子側の平面図である。It is a top view by the side of the solid-state image sensor of the window material for solid-state image sensor packages in embodiment of FIG. 図2の実施形態における固体撮像素子パッケージ用窓材と窓枠材との接着部分の断面拡大図である。It is a cross-sectional enlarged view of the adhesion part of the window material for solid-state image sensor packages and window frame material in embodiment of FIG. 本発明の固体撮像素子パッケージ用窓材の製造方法における一例を示す概念図である。It is a conceptual diagram which shows an example in the manufacturing method of the window material for solid-state image sensor packages of this invention. 本発明の固体撮像素子パッケージ用窓材の実施形態の他の例を示す側方断面図である。It is side sectional drawing which shows the other example of embodiment of the window material for solid-state image sensor packages of this invention.

本発明にかかる固体撮像素子パッケージ用窓材の実施形態について説明する。図1は、本発明の固体撮像素子パッケージ用窓材4及び撮像装置100の実施形態の一例を示す側方断面図である。図1に示すとおり、CCDやCMOSの固体撮像素子3は、基板1及び窓枠材2からなる固体撮像素子パッケージ(以下、パッケージと称する)の凹部底面に設けられ、固体撮像素子パッケージ用窓材4(以下、窓材と称する)は、固体撮像素子3が収められている凹部空間を気密封止するため、パッケージの開口部に接着されている。窓材4の被写体側(固体撮像素子に対向する面の裏面側)には、被写体からの光を屈折する複数枚のレンズ群10が設けられる。また、図示はしていないが、窓材4とレンズ群10との間に色調を補正するための近赤外線カットフィルタや、モアレや偽色を低減するためのローパスフィルタを設置してもよい。   An embodiment of a window member for a solid-state imaging device package according to the present invention will be described. FIG. 1 is a side sectional view showing an example of an embodiment of a window member 4 for a solid-state image pickup device package and an image pickup apparatus 100 according to the present invention. As shown in FIG. 1, a CCD or CMOS solid-state image pickup device 3 is provided on the bottom surface of a recess of a solid-state image pickup device package (hereinafter referred to as a package) composed of a substrate 1 and a window frame member 2. 4 (hereinafter referred to as a window material) is bonded to the opening of the package in order to hermetically seal the recessed space in which the solid-state imaging device 3 is housed. A plurality of lens groups 10 that refract light from the subject are provided on the subject side of the window material 4 (the back side of the surface facing the solid-state imaging device). Although not shown, a near-infrared cut filter for correcting the color tone and a low-pass filter for reducing moire and false colors may be installed between the window material 4 and the lens group 10.

パッケージは、アルミナセラミックパッケージや樹脂製パッケージを用いることができるが、撮像装置100の軽量化に寄与でき、生産性が良く安価である点で樹脂製パッケージを用いることが好ましい。樹脂製パッケージは、特に制限なく各種の樹脂材料を用いることができる。具体的には、エポキシ樹脂、イミド樹脂、ポリイミド樹脂、シリコーン樹脂、アクリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂やポリフェニレンサルファイド樹脂やポリスルホン樹脂等の熱可塑性樹脂を用いることができ、これら樹脂に硬化剤や離型剤、充填剤などを適宜配合することも可能である。
窓材4は、パッケージに貼り付けて使用する際に割れや歪みが生じないようパッケージの熱膨張係数と同程度の熱膨張係数の材料を用いる必要がある。アルミナセラミックパッケージを用いる場合、アルミナセラミックの熱膨張係数は通常60〜75×10−7−1の範囲にあり、窓材4の熱膨張係数は、これと同等か、若干小さな45〜75×10−7−1の範囲であることが望ましい。また、樹脂製パッケージを用いる場合、樹脂材の熱膨張係数は、110〜180×10−7−1であり、窓材4の熱膨張係数は、これと同等か、若干小さな100〜170×10−7−1の範囲であることが望ましい。
また、パッケージは、図1の実施形態の他に、固体撮像素子3を設けた基板1と窓枠材2とが一体で形成されたものであってもよい。
As the package, an alumina ceramic package or a resin package can be used. However, it is preferable to use a resin package because it can contribute to weight reduction of the image pickup apparatus 100 and has high productivity and low cost. Various resin materials can be used for the resin package without particular limitation. Specifically, thermosetting resins such as epoxy resins, imide resins, polyimide resins, silicone resins, acrylic resins, phenol resins, and unsaturated polyester resins, and thermoplastic resins such as polyphenylene sulfide resins and polysulfone resins can be used. These resins can be appropriately mixed with a curing agent, a release agent, a filler and the like.
The window material 4 needs to use a material having a thermal expansion coefficient comparable to the thermal expansion coefficient of the package so that cracks and distortion do not occur when the window material 4 is attached to the package. When the alumina ceramic package is used, the thermal expansion coefficient of the alumina ceramic is usually in the range of 60 to 75 × 10 −7 K −1 , and the thermal expansion coefficient of the window material 4 is equal to or slightly smaller than 45 to 75 × The range of 10 −7 K −1 is desirable. When a resin package is used, the thermal expansion coefficient of the resin material is 110 to 180 × 10 −7 K −1 , and the thermal expansion coefficient of the window material 4 is the same as or slightly smaller than 100 to 170 ×. The range of 10 −7 K −1 is desirable.
In addition to the embodiment of FIG. 1, the package may be one in which the substrate 1 provided with the solid-state imaging device 3 and the window frame member 2 are integrally formed.

窓材4は、固体撮像素子3を気密封止するため、パッケージの開口部に接着される。固体撮像素子3を気密封止する理由は、パッケージ内に設けられた固体撮像素子3の受光面に大気中のホコリ等が付着し画像ノイズとなることを防ぐためである。従来、窓材4には固体撮像素子3の気密封止機能以外は特段求められていなかったことから、平板状で用いられることがほとんどであった。これに対し、固体撮像素子3の高画素化に伴い、撮像装置100のレンズ群10の全長が長くなる傾向がある一方で、撮像装置100の小型化も要求されていることから、光学機能部品及び撮像装置として高画素化に対応しつつ小型化をする必要が生じた。そこで、本発明者は、従来平板であった窓材の少なくとも一方の透光面に収差補正機能を備えた凹凸形状を形成し、これによりレンズ群10による結像、収差補正機能の一部を窓材4に付与し、これら課題を解決することを見出した。   The window material 4 is bonded to the opening of the package in order to hermetically seal the solid-state imaging device 3. The reason why the solid-state imaging device 3 is hermetically sealed is to prevent dust and the like in the atmosphere from adhering to the light receiving surface of the solid-state imaging device 3 provided in the package and causing image noise. Conventionally, since the window material 4 has not been particularly required except for the hermetic sealing function of the solid-state imaging device 3, it is almost always used in a flat plate shape. On the other hand, along with the increase in the number of pixels of the solid-state imaging device 3, the total length of the lens group 10 of the imaging device 100 tends to be long, while the downsizing of the imaging device 100 is also required. In addition, it has become necessary to reduce the size of the imaging apparatus while supporting the increase in the number of pixels. Therefore, the present inventor forms a concavo-convex shape having an aberration correction function on at least one light-transmitting surface of a window material that has been a flat plate, thereby forming a part of image formation and aberration correction functions by the lens group 10. It gave to the window material 4 and discovered that these subjects were solved.

窓材4の透光面に形成する凹凸形状に特に制約はないが、レンズ群10の光軸を中心として、光軸に直交する面内方向の光軸からの距離に一様な形状とし、倍率・球面収差を補正する形状、もしくは非点収差を補正する形状にすることが好ましい。倍率・球面収差を補正する形状にすることにより、レンズ群10による結像機能の一部を窓材4に付加し、レンズ群10の全長を短くすることができるため大変好ましい。特に5次以上の高次の球面収差を補正する形状を窓材4に付加することは、レンズ群10の組み付け時の各レンズ位置調整では取りきれない収差を補正することが可能となり、結像性能を向上させることができ好ましい。また、レンズ群10にプラスチックレンズを使用した場合、特にその成型方法が射出成型であるとレンズ中の屈折率の分布が発生し非点収差を発生しやすくなるが、窓材4にそれを補正する非点収差の形状を設けることで、これら課題を解決することができる。具体的には、窓材4に収差補正機能を付与することで、レンズ群10の組み付け時にレンズ群10を回転して窓材4との位置調整を行い、レンズ群10に起因する収差を低減し結像性能を向上することができる。窓材4の透光面に形成する凹凸形状は、レンズ群10側もしくは固体撮像素子3側のどちらか一方の透光面のみ凹凸形状とし、他方の透光面を平坦面としてもよいし、両方の透光面を凹凸形状としてもよい。なお、図2は、両方の透光面を凹凸形状とした実施形態の窓材4の(a)側方断面図及び(b)平面図である。また、凹凸形状は、光学設計により適宜最適な形状が用いられるが、例えば球面、非球面形状の凹レンズ、凸レンズやフレネルレンズ、シリンドリカルレンズ、フライアイレンズ、凹凸を組み合わせたレンズなど、収差補正機能が得られる形状であれば、どのような凹凸形状であっても適用できる。なお、窓材4の透光面とは、窓材4が板状の場合、板厚方向に相対向する外表面をそれぞれ透光面という。   There is no particular restriction on the uneven shape formed on the light-transmitting surface of the window material 4, but the shape is uniform at a distance from the optical axis in the in-plane direction perpendicular to the optical axis, with the optical axis of the lens group 10 as the center, It is preferable to have a shape that corrects magnification and spherical aberration, or a shape that corrects astigmatism. By making the shape to correct the magnification and spherical aberration, a part of the imaging function of the lens group 10 can be added to the window member 4 and the entire length of the lens group 10 can be shortened, which is very preferable. In particular, adding a shape for correcting higher-order spherical aberration of the fifth or higher order to the window member 4 makes it possible to correct aberrations that cannot be removed by adjusting each lens position when the lens group 10 is assembled. The performance can be improved, which is preferable. Further, when a plastic lens is used for the lens group 10, particularly when the molding method is injection molding, the refractive index distribution in the lens is generated and astigmatism is likely to occur. By providing the shape of astigmatism to be performed, these problems can be solved. Specifically, by providing an aberration correction function to the window member 4, the lens group 10 is rotated when the lens group 10 is assembled to adjust the position with the window member 4, thereby reducing aberration caused by the lens group 10. The imaging performance can be improved. The concavo-convex shape formed on the translucent surface of the window material 4 may be a concavo-convex shape only on one of the translucent surfaces on the lens group 10 side or the solid-state imaging device 3 side, and the other translucent surface may be a flat surface. Both light-transmitting surfaces may be uneven. FIGS. 2A and 2B are (a) a side sectional view and (b) a plan view of the window member 4 according to the embodiment in which both light-transmitting surfaces are uneven. The concave / convex shape is appropriately optimized depending on the optical design.For example, spherical, aspherical concave lenses, convex lenses, Fresnel lenses, cylindrical lenses, fly-eye lenses, and lenses with a combination of concave and convex, etc. have an aberration correction function. Any uneven shape can be applied as long as the shape is obtained. In addition, when the window material 4 is plate shape, the outer surface which opposes the plate | board thickness direction is called the translucent surface, respectively.

窓材4は、α線放出性元素を一定量以上含有しα線粒子を放出する場合、固体撮像素子3に一過性の誤動作を引き起こしノイズとなることから、窓材4からのα線放出量は0.005c/cm・hr以下である必要がある。α線粒子は、天然に存在するウラン(U)、トリウム(Th)、ラジウム(Ra)など放射性同位元素がα崩壊する際に放出される荷電粒子である。α線粒子に起因するノイズをなくすためには、材料中に不純物として含まれるこれら放射性同位元素を除去すればよい。このためにはできるだけ高純度に精製された原料を使用し、また溶融工程における不純物の混入を防止して窓材4を製造する必要がある。例えば、窓材4をガラスにて形成する場合、ガラス中の不純物をUの含有量が10ppb以下、かつThの含有量が20ppb以下に制御することが好ましい。なお、α線放出量が0.005c/cm・hrを超えると、固体撮像素子3のノイズが多くなることから好ましくない。 When the window material 4 contains an α-ray emitting element in a certain amount or more and emits α-ray particles, it causes a transient malfunction in the solid-state imaging device 3 and becomes noise. Therefore, the window material 4 emits α-rays. The amount needs to be 0.005 c / cm 2 · hr or less. The α-ray particles are charged particles that are released when a radioactive isotope such as uranium (U), thorium (Th), and radium (Ra) that exist in nature undergoes α decay. In order to eliminate noise caused by α-ray particles, these radioisotopes contained as impurities in the material may be removed. For this purpose, it is necessary to manufacture the window material 4 by using a raw material refined as highly as possible and preventing impurities from being mixed in the melting step. For example, when the window material 4 is formed of glass, it is preferable to control impurities in the glass so that the U content is 10 ppb or less and the Th content is 20 ppb or less. Note that it is not preferable that the α-ray emission amount exceeds 0.005 c / cm 2 · hr because noise of the solid-state imaging device 3 increases.

窓材4の透光面の凹凸形状を形成する方法は、一例として軟化状態のガラス塊をプレス用金型にてプレス成型する方法が好適に用いられる。ガラスのプレス用金型としては超硬や炭化ケイ素などからなるものが使用できる。また、窒素など不活性ガス中でのプレス成型や、真空に減圧した状態でのプレス成型など雰囲気調整を行った状態下での成型が好適に用いられる。特に成形する凹凸形状が複数の変極点を持つ場合は、プレス時にガスを巻き込む場合があるため、真空に減圧した状態でのプレス成型が好ましい。また、プレス成型後に外周をカットして形状を整えても良い。プレス成型後の窓材の角部や稜線部を曲面状に加工することで、窓材4の破壊強度が向上し、コーナーの欠け等による異物の発生が抑制されるため好ましい。なお、窓材4の透光面に平坦部を形成する場合は、上記プレス成型時に同時に形成するのが好ましいが、別途プレス成型後に研磨加工を行ってもよい。   As a method for forming the uneven shape of the light-transmitting surface of the window material 4, for example, a method of press-molding a softened glass lump with a pressing mold is suitably used. As a glass pressing mold, one made of carbide or silicon carbide can be used. In addition, molding under conditions in which the atmosphere is adjusted, such as press molding in an inert gas such as nitrogen, or press molding in a state where the pressure is reduced to a vacuum, is preferably used. In particular, when the concavo-convex shape to be molded has a plurality of inflection points, gas may be involved during pressing, so press molding in a state where the pressure is reduced to a vacuum is preferable. Moreover, the outer periphery may be cut after press molding to adjust the shape. By processing the corners and ridges of the window material after press molding into a curved surface, the breaking strength of the window material 4 is improved, and the generation of foreign matter due to chipping of the corners is suppressed, which is preferable. In addition, when forming a flat part in the translucent surface of the window material 4, it is preferable to form simultaneously with the said press molding, but you may grind | polish separately after press molding.

プレス成型方法における成型条件は、成型対象であるガラスの熱的特性(例えば、軟化点や屈伏点)に応じて調整する。この際、成型時の温度が低いほど、プレス用金型の使用可能回数が多く、金型交換頻度が低くなるため、プレス成型の生産性を向上することが可能となる。このようにプレス用金型に配慮したガラス材料として、屈伏点が580℃以下のガラスを用いることが好ましい。これにより、比較的低温でプレス成型が可能となるため、プレス用金型の使用可能回数を多くすることができ、プレス成型の生産性が向上する。なお、ガラス材料の屈伏点は、490℃以下であることがより好ましい。   The molding conditions in the press molding method are adjusted according to the thermal characteristics (for example, softening point and yield point) of the glass to be molded. At this time, as the molding temperature is lower, the press mold can be used more frequently and the mold replacement frequency is lower, so that the productivity of press molding can be improved. As described above, it is preferable to use a glass having a yield point of 580 ° C. or lower as a glass material in consideration of a press mold. Thereby, since press molding is possible at a relatively low temperature, the number of times the press mold can be used can be increased, and the productivity of press molding is improved. The yield point of the glass material is more preferably 490 ° C. or lower.

窓材4に用いられる材料としては、上記のとおりα線放出量が一定値以下となるよう材料中の放射性同位元素の含有量が規制された以外は特に制限なく、被写体からの光を透過する光の透過率が高い材料であればどのようなものでも使用できる。例えば、従来から窓材4に用いられているα線放出量が低くなるよう調整されたホウケイ酸ガラスなどが好適に使用できる。   The material used for the window material 4 transmits light from the subject without any limitation, except that the content of the radioisotope in the material is regulated so that the α-ray emission amount becomes a certain value or less as described above. Any material having a high light transmittance can be used. For example, borosilicate glass that has been adjusted so that the amount of α-ray emission conventionally used for the window material 4 is low can be suitably used.

また、窓材4に用いられる材料としては、パッケージと熱膨張係数が同程度であるガラスを用いることで、窓材4の割れや歪みが発生することなく長期間安定して用いることが可能となる。アルミナセラミックパッケージとの接着に好適なガラスとして、0〜300℃の熱膨脹係数が48〜75×10−7−1のホウケイ酸ガラスを用いることが好ましい。また、樹脂製パッケージとの接着に好適なガラスとして、50〜250℃の熱膨張係数が100〜150×10−7−1と樹脂製パッケージと熱膨張係数が同程度であるリン酸塩ガラスを用いることが好ましい。また、樹脂製パッケージと熱膨張係数が同程度のアクリル樹脂などの樹脂材も好適に使用できる。
リン酸塩ガラスは、例えばフツリン酸ガラスと比較し強度が高く、光学研磨を行う際に端部に微小な欠けが生じる割合が少ない。そのため、ガラスに外力が作用した場合に端部を起点として破損に至る可能性が低く強度が高い。また、同じリン酸塩ガラスであってもP成分とAl成分とアルカリ金属成分とを特定範囲とすることで、ガラスの強度をより高くすることができる。
具体的には、モル%で、
13〜42%、
Al 13〜32%、
SiO 0〜17%、
0〜22%、
LiO 0〜17%、
NaO 0〜27%、
O 0〜27%、
ただし、LiO+NaO+KO 18〜42%、
MgO+CaO+SrO+ZnO 1〜37%、
を含有するリン酸塩ガラスを用いることが好ましい。各成分の含有量(モル%表示)の好ましい範囲を上記のとおりに設定している理由を以下に説明する。
Moreover, as a material used for the window material 4, it is possible to use the window material 4 stably for a long period of time without causing cracks or distortion of the window material 4 by using glass having a thermal expansion coefficient similar to that of the package. Become. It is preferable to use a borosilicate glass having a thermal expansion coefficient of 48 to 75 × 10 −7 K −1 as a glass suitable for bonding with an alumina ceramic package. Moreover, as glass suitable for adhesion | attachment with resin packages, the thermal expansion coefficient of 50-250 degreeC is 100-150 * 10 <-7> K < -1 >, and the phosphate glass which has a thermal expansion coefficient comparable as a resin package. Is preferably used. A resin material such as an acrylic resin having the same thermal expansion coefficient as that of the resin package can also be suitably used.
Phosphate glass has a higher strength than, for example, fluorophosphate glass, and has a small proportion of occurrence of minute chips at the end when optical polishing is performed. For this reason, when an external force is applied to the glass, the possibility of breakage starting from the end portion is low and the strength is high. Moreover, even with the same phosphate glass by a specific range and P 2 O 5 component and Al 2 O 3 component and an alkali metal component, it is possible to increase the strength of the glass.
Specifically, in mol%,
P 2 O 5 13~42%,
Al 2 O 3 13-32%,
SiO 2 0~17%,
B 2 O 3 0-22%,
Li 2 O 0-17%,
Na 2 O 0-27%,
K 2 O 0~27%,
However, Li 2 O + Na 2 O + K 2 O 18~42%,
MgO + CaO + SrO + ZnO 1-37%,
It is preferable to use phosphate glass containing The reason why the preferable range of the content (in mol%) of each component is set as described above will be described below.

は、ガラスの網目構造を形成する必須成分であるが、13%未満ではガラスの安定性が悪くなり、42%を超えると強度及び耐候性が低下する。好ましい範囲は25〜35%である。 P 2 O 5 is an essential component for forming a glass network structure, but if it is less than 13%, the stability of the glass deteriorates, and if it exceeds 42%, the strength and weather resistance deteriorate. A preferred range is 25-35%.

Alは、ガラスの強度及び耐候性を向上させる必須成分であるが、13%未満ではその効果は得られず、32%を超えると失透性が強くなり、ガラス化が困難となる。好ましい範囲は17〜27%であり、より好ましい範囲は、20〜27%である。 Al 2 O 3 is an essential component for improving the strength and weather resistance of glass, but if it is less than 13%, the effect cannot be obtained, and if it exceeds 32%, devitrification becomes strong and vitrification becomes difficult. . A preferable range is 17 to 27%, and a more preferable range is 20 to 27%.

SiOは、ガラスの網目構造を形成する成分であり、耐候性を向上させる効果がある。その場合、17%を超えるとガラス化が困難となる。好ましい範囲は12%以下である。 SiO 2 is a component that forms a glass network structure, and has an effect of improving weather resistance. In that case, if it exceeds 17%, vitrification becomes difficult. A preferable range is 12% or less.

は、ガラスの構造を補強し、ガラス化を容易にする成分であるが、22%を超えると耐候性が低下する。好ましい範囲は15%以下である。 B 2 O 3 is a component that reinforces the glass structure and facilitates vitrification, but if it exceeds 22%, the weather resistance decreases. A preferred range is 15% or less.

LiO、NaO、KOは、溶解性を向上させ、膨張率を主に調整する成分であり、いずれかを含有する必要がある。LiOは17%を超えると耐候性が低下する。好ましい範囲は12%以下である。NaOは27%を超えると耐候性が低下する。好ましい範囲は20%以下である。KOは27%を超えると耐候性が低下する。好ましい範囲は20%以下である。LiO、NaO、KOの合量は18%未満および42%を超えると所望の膨張率が得られず好ましくない。好ましい範囲は25〜35%である。 Li 2 O, Na 2 O, and K 2 O are components that improve solubility and mainly adjust the expansion coefficient, and need to contain any of them. When Li 2 O exceeds 17%, the weather resistance decreases. A preferable range is 12% or less. When Na 2 O exceeds 27%, the weather resistance decreases. A preferable range is 20% or less. When K 2 O exceeds 27%, the weather resistance decreases. A preferable range is 20% or less. When the total amount of Li 2 O, Na 2 O, and K 2 O is less than 18% and exceeds 42%, a desired expansion coefficient cannot be obtained, which is not preferable. A preferred range is 25-35%.

MgO、CaO、SrO、ZnOは、溶解性を向上させる成分であるが、これらの合量が1%未満ではその効果がなく、37%を超えると失透傾向が強まるため好ましくない。好ましい範囲は10〜25%である。   MgO, CaO, SrO, and ZnO are components that improve the solubility. However, when the total amount of these is less than 1%, the effect is not obtained, and when it exceeds 37%, the tendency of devitrification increases, which is not preferable. A preferred range is 10-25%.

また、その他の成分として、La、Y、Gd、Ta、Yb、TiOなどを含有することもできる。 Further, as other components, La 2 O 3, Y 2 O 3, Gd 2 O 3, Ta 2 O 5, Yb 2 O 3, may also contain such TiO 2.

窓材4を構成する成分としては、Ba及びZrを実質的に含有しないことが好ましい。放射線同位元素は、ガラス原料中に不純物として微量含有するが、特にBa及びZrの化合物原料に多く含まれる。Ba及びZrの化合物原料から放射性同位元素を分離することは不可能ではないものの、原料コストが非常に高くなり実質的には困難である。そのため窓材4として構成する成分として、Ba及びZrは実質的に含有しないことにより、放射性同位元素の混入を未然に防止し、よって、窓材4からのα線放出量を低く抑えることができる。   As a component which comprises the window material 4, it is preferable not to contain Ba and Zr substantially. Radioisotopes are contained in trace amounts as impurities in the glass raw material, but are particularly abundant in compound raw materials of Ba and Zr. Although it is not impossible to separate radioisotopes from Ba and Zr compound raw materials, the raw material costs are very high and are substantially difficult. Therefore, Ba and Zr are not substantially contained as components constituting the window material 4, thereby preventing radioisotopes from being mixed in, and thus reducing the amount of α rays emitted from the window material 4. .

これら組成範囲のリン酸塩ガラスは、屈伏点が450〜490℃であるため、プレス成型により凹凸形状を成型する際に金型の耐久性を長くすることができ、本発明の窓材4のガラスとして好適である。また、LiO、NaO、KOのアルカリ金属成分は、ガラスの屈服点を下げるのに有効な成分であり、リン酸塩ガラスにおけるこれら成分の合量の好ましい範囲は、25〜40%である。 Since the phosphate glass having these composition ranges has a yield point of 450 to 490 ° C., the durability of the mold can be increased when the concavo-convex shape is formed by press molding. Suitable as glass. Further, Li 2 O, Na 2 O , an alkali metal component K 2 O is an effective component to lower the deformation point of the glass, the preferred range of the total amount of these components in the phosphate glass is 25 40%.

窓材4は、固体撮像素子3が収納されたパッケージに接着剤6により気密封着されるが、その接着剤6の硬化時間短縮を目的として紫外線硬化型接着剤が使用されることがある。紫外線硬化型接着剤には様々な種類があり、一例として250〜350nmの波長の紫外線にて硬化する。他方、ガラスにCuを含有すると、近赤外線波長及び紫外線波長を吸収するため、紫外線が十分に紫外線硬化型接着剤に到達せず、硬化に長時間を要することになり、固体撮像素子パッケージの組立工程における生産性が悪化する。またガラスにCuを含有すると、可視光も若干吸収するため、固体撮像素子3に届く可視光の量が減ることで固体撮像素子3の感度が落ちるという問題もある。これらの理由により、紫外線硬化型接着剤を用いてパッケージに接着される場合は、窓材4にはCuを実質的に含有しないことが好ましい。
また、接着剤6として熱硬化型接着剤を用いる場合は、窓材4の紫外線透過は関係ないため、窓材4に近赤外線カット機能を付与する目的で、Cuを含有させてもよい。これにより、窓材4とは別に用いていた近赤外線カットフィルタが不要となるため、撮像装置100のコストダウンに寄与できる。なお、上記リン酸塩ガラスの組成範囲にCuを含有する場合は、CuO換算で0.1〜15質量%を含有させることが好ましい。
The window member 4 is hermetically sealed with an adhesive 6 to a package in which the solid-state imaging device 3 is housed. An ultraviolet curable adhesive may be used for the purpose of shortening the curing time of the adhesive 6. There are various types of ultraviolet curable adhesives, and as an example, the adhesive is cured with ultraviolet rays having a wavelength of 250 to 350 nm. On the other hand, if the glass contains Cu, it absorbs near-infrared and ultraviolet wavelengths, so that the ultraviolet rays do not reach the ultraviolet curable adhesive sufficiently, and it takes a long time to cure. Productivity in the process deteriorates. Further, when Cu is contained in the glass, visible light is also slightly absorbed. Therefore, there is a problem that the sensitivity of the solid-state image pickup device 3 is lowered by reducing the amount of visible light reaching the solid-state image pickup device 3. For these reasons, it is preferable that the window material 4 does not substantially contain Cu when it is bonded to the package using an ultraviolet curable adhesive.
Further, when a thermosetting adhesive is used as the adhesive 6, since the ultraviolet ray transmission of the window material 4 is irrelevant, Cu may be contained for the purpose of providing the window material 4 with a near infrared cut function. Thereby, since the near-infrared cut filter used separately from the window material 4 becomes unnecessary, it can contribute to the cost reduction of the imaging device 100. In addition, when it contains Cu in the composition range of the said phosphate glass, it is preferable to contain 0.1-15 mass% in conversion of CuO.

窓材4の透光面には、誘電体多層膜等からなる反射防止膜や400nm以下の紫外線を反射する紫外線カット膜、700〜1200nmの近赤外線を反射する近赤外線カット膜を形成してもよい。   An antireflection film made of a dielectric multilayer film or the like, an ultraviolet cut film that reflects ultraviolet rays of 400 nm or less, or a near infrared cut film that reflects near infrared rays of 700 to 1200 nm may be formed on the light transmitting surface of the window material 4. Good.

窓材4は、透光面の外周が平坦であることが好ましい。図3に示したように窓材4の被写体像の光が通過する部分でない透光面の外周(図3中ハッチング部分)を平坦面5とする。パッケージにおける窓材4の接着部分は同じく平坦な形状となっており、接着する際に接着剤6の厚みを均一にすることができる。そのため、接着時のそりや接着後のプロセス、例えば基板実装の際のリフロープロセスなどでのはがれやひずみの発生を抑えることができる。
また、窓材4の透光面の凹凸形状は異なる撮像装置100によって変えることができるが、コスト削減のため部品の共通化を図るため窓枠材2は共通形状にすることがよい。その場合、窓材4の縁の部分は平坦になっていると部品共通化がしやすくなり好ましい。なお、窓材4の平坦面は、図2に示す実施形態のように固体撮像素子3と対向する透光面の外周に形成してもよいし、図6に示す実施形態のようにレンズ群10と対向する透光面の外周に形成してもよい。
図4に図2に記載の実施形態の窓材4とパッケージの窓枠材2との接着部を拡大した拡大断面図を示す。窓枠材2と窓材4とは接着剤6にて接着されており、接着剤6の接合面からのはみ出しが窓材4の平坦面5よりも大きくなり窓材4の凹凸部分にはみ出さないようにし、またはみ出し量をほぼ均一になるようにすることが好ましい。これにより接着時の接着剤6の収縮などによる応力が均一になり、窓材4の凹凸形状にひずみを与え所望の凹凸形状が変化することを低減できる。接着剤6については、特に制約がなくアクリル系やエポキシ系の接着剤や耐熱性のガラスフリットなど使用できる。
また、窓材4は、複数個を同時にプレス成型可能なプレス用金型を用い、複数個を一体でプレス成型した後、切断して小片を取り出すようにしてもよい。このようにすることで、窓材4の製造コストを大幅に削減することが可能である。なお、図5は、窓材4を25個同時にプレス成型したものを、切断ライン20に沿って切り出す製造方法を示す概念図である。
As for window material 4, it is preferred that the perimeter of a translucent surface is flat. As shown in FIG. 3, the outer periphery (hatched portion in FIG. 3) of the translucent surface that is not the portion through which the light of the subject image of the window material 4 passes is defined as the flat surface 5. The bonding portion of the window material 4 in the package is also a flat shape, and the thickness of the adhesive 6 can be made uniform when bonding. For this reason, it is possible to suppress the occurrence of peeling or distortion during warpage during bonding or a process after bonding, for example, a reflow process during substrate mounting.
Moreover, although the uneven shape of the light-transmitting surface of the window material 4 can be changed by different imaging devices 100, the window frame material 2 is preferably formed in a common shape in order to share parts for cost reduction. In that case, it is preferable that the edge portion of the window member 4 is flat because it is easy to share parts. The flat surface of the window member 4 may be formed on the outer periphery of the light transmitting surface facing the solid-state imaging device 3 as in the embodiment shown in FIG. 2, or the lens group as in the embodiment shown in FIG. You may form in the outer periphery of the translucent surface facing 10.
FIG. 4 shows an enlarged cross-sectional view in which the bonding portion between the window material 4 of the embodiment shown in FIG. 2 and the window frame material 2 of the package is enlarged. The window frame material 2 and the window material 4 are bonded with an adhesive 6, and the protrusion of the adhesive 6 from the joint surface is larger than the flat surface 5 of the window material 4 and protrudes into the uneven portion of the window material 4. It is preferable that the amount of protrusion is substantially uniform. As a result, the stress due to the shrinkage of the adhesive 6 at the time of bonding becomes uniform, so that the uneven shape of the window material 4 is distorted and the desired uneven shape can be reduced. The adhesive 6 is not particularly limited, and an acrylic or epoxy adhesive, a heat resistant glass frit, or the like can be used.
Further, the window material 4 may be formed by using a pressing mold capable of simultaneously press-molding a plurality of windows, and then integrally cutting the plurality of windows and cutting them to take out small pieces. By doing in this way, the manufacturing cost of the window material 4 can be reduced significantly. FIG. 5 is a conceptual diagram showing a manufacturing method in which 25 window members 4 that are simultaneously press-molded are cut along the cutting line 20.

本発明の窓材4は、一例として次のようにして作製することができる。まず得られるガラスが上記リン酸塩ガラスの組成範囲となるように原料を秤量、混合する。この原料混合物を白金ルツボに収容し、電気炉内において1100〜1350℃の温度で加熱溶解する。十分に撹拌・清澄した後、プレス成型可能な温度まで冷却する。そして、所定重量の軟化状態のガラス塊をプレス用金型内に供給し、プレス成型する。そして、プレス用金型からガラスを取り出し、徐冷した後、外周の不要部分を切断して、所定形状の窓材4を得る。また、板状のガラスをプレス金型内で再加熱した後、プレス成型してもよい。   The window material 4 of the present invention can be manufactured as follows as an example. First, the raw materials are weighed and mixed so that the obtained glass has the composition range of the phosphate glass. This raw material mixture is accommodated in a platinum crucible and heated and melted at a temperature of 1100 to 1350 ° C. in an electric furnace. After thorough stirring and clarification, cool to a temperature that allows press molding. Then, a softened glass lump having a predetermined weight is supplied into a press mold and press-molded. And after taking out glass from the metal mold | die for press and annealing, the unnecessary part of an outer periphery is cut | disconnected and the window material 4 of a predetermined shape is obtained. Alternatively, the plate-like glass may be press-molded after being reheated in a press mold.

本発明の実施例1〜12と比較例1〜4を表1、表2に示す。なお、表中のガラス組成はモル%で示す。これらガラスは、表に示す組成となるよう原料を秤量・混合し、内容積約300ccの白金ルツボ内に入れて、1100〜1350℃で1〜3時間溶融、清澄、撹拌後、およそ300〜500℃に予熱した縦50mm×横50mm×高さ20mmの長方形のモールドに鋳込み後、約1℃/分で徐冷してサンプルとした。ガラスは、サンプル作製時に目視で観察し、泡や脈理のないことを確認した。耐候性、α線放出量について以下の方法により評価を行った。   Tables 1 and 2 show Examples 1 to 12 and Comparative Examples 1 to 4 of the present invention. In addition, the glass composition in a table | surface is shown by mol%. These glasses are weighed and mixed so as to have the composition shown in the table, placed in a platinum crucible having an internal volume of about 300 cc, melted at 1100 to 1350 ° C. for 1 to 3 hours, clarified and stirred, and then about 300 to 500 The sample was cast into a rectangular mold having a length of 50 mm, a width of 50 mm and a height of 20 mm preheated to ° C., and then slowly cooled at about 1 ° C./min to prepare a sample. The glass was visually observed at the time of sample preparation, and it was confirmed that there were no bubbles or striae. The weather resistance and α-ray emission amount were evaluated by the following methods.

耐候性は、厚さが1mmとなるよう両面光学研磨加工した所定形状(25mm×25mm×1mm)のガラスについて、温度60℃、相対湿度90%の条件下に保持し、ガラスの表面に変質が表れるまでの時間を示した。α線放出量は、低レベルα線測定装置(住友化学社製、LACS−4000M)を使用して測定した。   As for weather resistance, glass having a predetermined shape (25 mm × 25 mm × 1 mm) subjected to double-sided optical polishing so as to have a thickness of 1 mm is maintained at a temperature of 60 ° C. and a relative humidity of 90%. Time to appear is shown. The α-ray emission amount was measured using a low-level α-ray measuring device (LACS-4000M, manufactured by Sumitomo Chemical Co., Ltd.).

Figure 0005672680
Figure 0005672680

Figure 0005672680
Figure 0005672680

表1及び表2から明らかなように比較例のガラスは、実施例のガラスと比べて、耐候性が800時間未満と悪いことがわかる。これは、ガラスのAl成分が少ないことがその理由として考えられる。また、比較例3、4はP成分が多いこともその理由として考えられる。また、比較例のガラスは、ガラスにBaやZrを含有するため、ガラスからのα線放出量が実施例のガラスと比べて多いことがわかる。 As is clear from Tables 1 and 2, it can be seen that the glass of the comparative example has a bad weather resistance of less than 800 hours compared to the glass of the example. The reason for this is considered to be that there are few Al 2 O 3 components in the glass. Also, Comparative Examples 3 and 4 are considered as also reasons that P 2 O 5 component is great. Moreover, since the glass of a comparative example contains Ba and Zr in glass, it turns out that there are many alpha rays discharge | release amounts from glass compared with the glass of an Example.

次に、実施例3に記載のリン酸塩ガラスを用いてプレス成型を行う。実施例3のガラスを縦7mm、横10mm、厚さ0.5mmに形状を整えた上、これをプレス金型を用いて500℃でプレスし、一方の面に深さ280μm、もう一方の面に深さ20μmの同心円状の凹凸形状を形成する。次いで、室温に冷却した後、外周をダイシングにより切断し縦6mm、横8mmの矩形状に整え窓材を作製する。プレス成型後の窓材を確認したところ、プレス用金型の形状は良好に転写されており、ガラス表面に曇り等の不具合は見られない。
次に、この窓材を、エポキシ樹脂を主成分とする樹脂製パッケージに接着する。接着剤として、アクリル系の紫外線硬化型接着剤を用い、パッケージに窓材を載置したのち、紫外線を所定時間照射して接着剤を硬化させる。また、レンズ群をレンズホルダ(図示しない)に挿入固定し、レンズホルダとパッケージとを接着固定することで、光軸方向の厚さが約8mmの撮像装置を得る。
Next, press molding is performed using the phosphate glass described in Example 3. The glass of Example 3 was adjusted to a length of 7 mm, a width of 10 mm, and a thickness of 0.5 mm, and this was pressed at 500 ° C. using a press mold, with a depth of 280 μm on one side and the other side. A concentric concavo-convex shape having a depth of 20 μm is formed. Subsequently, after cooling to room temperature, the outer periphery is cut by dicing to prepare a window material having a rectangular shape of 6 mm in length and 8 mm in width. When the window material after press molding was confirmed, the shape of the press mold was well transferred, and no defects such as cloudiness were observed on the glass surface.
Next, this window material is bonded to a resin package mainly composed of an epoxy resin. An acrylic ultraviolet curable adhesive is used as the adhesive, and after placing the window material on the package, the adhesive is cured by irradiation with ultraviolet rays for a predetermined time. Further, the lens group is inserted and fixed in a lens holder (not shown), and the lens holder and the package are bonded and fixed, thereby obtaining an imaging device having a thickness in the optical axis direction of about 8 mm.

本発明によれば、固体撮像素子パッケージ用窓材4に収差補正機能を付与することでレンズの光学設計の自由度があがるため、レンズ群10の小型化及び固体撮像素子3の高画素化への対応が可能となり、これによりカメラ等の小型化に寄与する撮像装置100を提供することが可能となる。   According to the present invention, the aberration correction function is added to the window member 4 for the solid-state image pickup device package to increase the degree of freedom in lens optical design. Therefore, the lens group 10 can be downsized and the solid-state image pickup device 3 can have a higher pixel count. Accordingly, it is possible to provide the imaging apparatus 100 that contributes to downsizing of a camera or the like.

1…基板、2…窓枠材、3…固体撮像素子、4…固体撮像素子パッケージ用窓材、5…平坦面、6…接着剤、10…レンズ群、20…切断ライン、100…撮像素子。   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Window frame material, 3 ... Solid-state image sensor, 4 ... Window material for solid-state image sensor package, 5 ... Flat surface, 6 ... Adhesive, 10 ... Lens group, 20 ... Cutting line, 100 ... Image sensor .

Claims (5)

少なくとも一方の透光面が凹凸形状であり、α線放出量が0.005c/cm・hr以下であり、
モル%で、
13〜42%、
Al 17〜32%、
SiO 0〜17%、
0〜22%、
LiO 0〜17%、
NaO 0〜27%、
2.0〜27%、
ただし、LiO+NaO+KO 18〜42%、
MgO+CaO+SrO+ZnO 1〜37%、
を含有し、Ba及びCuを実質的に含有しないリン酸塩ガラスからなることを特徴とする固体撮像素子パッケージ用窓材。
At least one of the light-transmitting surfaces has an uneven shape, and the α-ray emission amount is 0.005 c / cm 2 · hr or less
In mol%
P 2 O 5 13~42%,
Al 2 O 3 17-32%,
SiO 2 0~17%,
B 2 O 3 0-22%,
Li 2 O 0-17%,
Na 2 O 0-27%,
K 2 O 2.0 ~27%,
However, Li 2 O + Na 2 O + K 2 O 18~42%,
MgO + CaO + SrO + ZnO 1-37%,
A window material for a solid-state imaging device package, comprising a phosphate glass containing substantially no Ba and Cu .
前記窓材は、屈伏点が580℃以下のガラスからなることを特徴とする請求項1に記載の固体撮像素子パッケージ用窓材。   The window material for a solid-state imaging device package according to claim 1, wherein the window material is made of glass having a yield point of 580 ° C. or less. 前記窓材は、50〜250℃の平均熱膨張係数が100〜150×10−7−1であるリン酸塩ガラスからなり、樹脂製の固体撮像素子パッケージに取り付けられることを特徴とする請求項1もしくは請求項2に記載の固体撮像素子パッケージ用窓材。 The said window material consists of phosphate glass whose average thermal expansion coefficient of 50-250 degreeC is 100-150 * 10 <-7> K < -1 >, and is attached to resin-made solid-state image sensor packages, It is characterized by the above-mentioned. Item 3. The window material for a solid-state imaging device package according to Item 1 or 2. 前記窓材は、透光面の外周が平坦であることを特徴とする請求項1〜のいずれか1項に記載の固体撮像素子パッケージ用窓材。 The window material, a solid-state imaging element package window material according to any one of claims 1 to 3, the outer periphery of the light-transmitting surface and wherein the flat. 請求項1〜のいずれか1項に記載の固体撮像素子パッケージ用窓材と、レンズ群と、該固体撮像素子パッケージ用窓材及び該レンズ群を透過した光を受光する固体撮像素子とを備えることを特徴とする撮像装置。 The solid-state image sensor package window material according to any one of claims 1 to 4 , a lens group, the solid-state image sensor package window material, and a solid-state image sensor that receives light transmitted through the lens group. An imaging apparatus comprising:
JP2009195270A 2009-08-26 2009-08-26 Window material for solid-state image pickup device package and image pickup apparatus Active JP5672680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195270A JP5672680B2 (en) 2009-08-26 2009-08-26 Window material for solid-state image pickup device package and image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195270A JP5672680B2 (en) 2009-08-26 2009-08-26 Window material for solid-state image pickup device package and image pickup apparatus

Publications (2)

Publication Number Publication Date
JP2011049275A JP2011049275A (en) 2011-03-10
JP5672680B2 true JP5672680B2 (en) 2015-02-18

Family

ID=43835347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195270A Active JP5672680B2 (en) 2009-08-26 2009-08-26 Window material for solid-state image pickup device package and image pickup apparatus

Country Status (1)

Country Link
JP (1) JP5672680B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133225A1 (en) * 2012-03-07 2013-09-12 旭硝子株式会社 Microlens array and imaging element package
JP6056186B2 (en) * 2012-05-08 2017-01-11 株式会社ニコン Image sensor
CN106164731B (en) * 2014-04-04 2019-08-20 夏普株式会社 Lens element and photographic device
JP7431884B2 (en) * 2022-05-02 2024-02-15 維沃移動通信有限公司 Solid-state image sensor and electronic equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215734A (en) * 1994-01-28 1995-08-15 Nippon Electric Glass Co Ltd Cover glass for solid-state image pickup element
JP3283722B2 (en) * 1995-04-28 2002-05-20 ホーヤ株式会社 Window glass for semiconductor package and method of manufacturing the same
JP3361270B2 (en) * 1997-04-04 2003-01-07 ホーヤ株式会社 Manufacturing method and filter for glassware
JPH1197659A (en) * 1997-09-22 1999-04-09 Casio Comput Co Ltd Image-pickup device unit
JP4433391B2 (en) * 2003-04-09 2010-03-17 Hoya株式会社 Glass for semiconductor package window, glass window for semiconductor package and semiconductor package
EP1555247A1 (en) * 2004-01-16 2005-07-20 Schott AG Optical glass in particular for press-moulded optical elements
JP2006124209A (en) * 2004-10-27 2006-05-18 Kyocera Corp Glass sheet for electronic instrument, its manufacturing method, and electronic device
JP2006182585A (en) * 2004-12-27 2006-07-13 Asahi Techno Glass Corp Filter glass for cutting near-infrared ray
JP2007099604A (en) * 2005-09-06 2007-04-19 Hoya Corp Near infrared ray absorbing glass, near infrared ray absorbing element provided with the same and imaging device
JP5016826B2 (en) * 2006-01-30 2012-09-05 Hoya株式会社 Manufacturing method of glass material for molding, glass material, and manufacturing method of glass optical element
JP5601319B2 (en) * 2009-05-13 2014-10-08 旭硝子株式会社 Cover glass for solid-state image sensor package

Also Published As

Publication number Publication date
JP2011049275A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US10683233B2 (en) Light selective transmission type glass and laminated substrate
CN106990463B (en) Near infrared cut-off filter
JP5659499B2 (en) Near-infrared cut filter glass
JP4459184B2 (en) Aspherical lens and manufacturing method thereof
TWI393687B (en) Glass cover for solid state image sensor and method for manufacturing the same
US8211816B2 (en) Cover glass for solid-state imaging element package
JP5909937B2 (en) Cover glass for semiconductor package and manufacturing method thereof
JP5672680B2 (en) Window material for solid-state image pickup device package and image pickup apparatus
JP5378158B2 (en) Cover glass for semiconductor packages
KR102657651B1 (en) Infrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device
JP4493417B2 (en) Glass for semiconductor package window, glass window for semiconductor package and semiconductor package
JP2011049274A (en) Window material for solid-state imaging element package, and imaging apparatus
KR20190054068A (en) Glass substrate and laminated substrate
JP6354297B2 (en) Cover glass and manufacturing method thereof
WO2019058858A1 (en) Infrared ray absorbent glass plate and method for producing same, and solid-state imaging element device
JP4433391B2 (en) Glass for semiconductor package window, glass window for semiconductor package and semiconductor package
KR101156984B1 (en) Cover glass for semiconductor package
TW201802052A (en) Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device
US20040212060A1 (en) Glass for window of semiconductor package, glass window for semiconductor package, process for production of glass window, and semiconductor package
JP2989739B2 (en) Near-infrared absorbing glass, filter for protecting solid-state imaging device using this glass, and solid-state imaging device using this filter
JP2018188336A (en) Laminate glass, laminate substrate and method for producing laminate substrate
TWI388529B (en) Near-infrared absorbing filter
JPWO2015166897A1 (en) Cover glass and manufacturing method thereof
JP7001999B2 (en) Manufacturing method of optical element
JP2024020138A (en) Optical glass, optical element, glass preform for press molding, and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5672680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250