JP4280043B2 - Manufacturing method of multilayer electronic components - Google Patents

Manufacturing method of multilayer electronic components Download PDF

Info

Publication number
JP4280043B2
JP4280043B2 JP2002249811A JP2002249811A JP4280043B2 JP 4280043 B2 JP4280043 B2 JP 4280043B2 JP 2002249811 A JP2002249811 A JP 2002249811A JP 2002249811 A JP2002249811 A JP 2002249811A JP 4280043 B2 JP4280043 B2 JP 4280043B2
Authority
JP
Japan
Prior art keywords
internal electrode
sheet
multilayer electronic
electronic component
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002249811A
Other languages
Japanese (ja)
Other versions
JP2004087993A (en
Inventor
剛 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002249811A priority Critical patent/JP4280043B2/en
Publication of JP2004087993A publication Critical patent/JP2004087993A/en
Application granted granted Critical
Publication of JP4280043B2 publication Critical patent/JP4280043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、積層型電子部品の製法に関し、特にセラミックスと内部電極とが交互に積層された素子本体の対向する側面に、内部電極端が露出する凹溝を交互に形成し、凹溝が形成された側面に、内部電極と交互に接続する外部電極が形成された積層型電子部品の製法に関するものである。
【0002】
【従来技術】
従来、同時焼成タイプの積層型電子部品に製法として、特開平6−151999号公報に記載されるようなものが知られている。
【0003】
この公報に開示された積層型電子部品は、先ず、内部電極パターンが一対のグリーンシートで挟持された複数のシート積層体に貫通孔を形成し、この貫通孔にポリビニルアルコールからなる飛散物質を充填し、ポリビニルアルコールが充填されたシート積層体を交互に位置をずらして積層し、この積層体を貫通孔で切断して、内部に飛散物質が設けられた凹溝を、対向する側面に内部電極パターン一層置きに交互に形成して素子本体成形体を形成する。
【0004】
この後、素子本体成形体を所定温度で脱バインダ処理し、焼成することにより凹溝を有する素子本体を作製し、この素子本体の凹溝内にセラミック製の絶縁材料を充填し、この凹溝が形成された素子本体の側面にAgからなる導電性ペーストを塗布し、焼き付けることにより、積層型電子部品を作製していた。
【0005】
このような製法では、従来のダイシングなどにより一つ一つ溝加工をすることなく、凹溝を一挙に形成することができ、加工時間を短縮でき、また製造工程を簡略化できる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記公報に記載された製法では、脱バインダ時に飛散する物質として、ポリビニルアルコールを単独で用いているため、脱バイ〜焼成(熱処理)における低温状態では、凹溝間のグリーンシートの変形を抑制できるものの、脱バイ〜焼成時における高温状態では、グリーンシートが固化しないうちに凹溝内のポリビニルアルコールが分解飛散し、凹溝を形成するグリーンシートが変形し、クラックが発生したり、寸法通りの凹溝の形成が困難であり、素子本体の製造歩留まりが低いという問題があった。
【0007】
本発明は、寸法通りの凹溝を一挙にかつ確実に形成できる積層型電子部品の製法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の積層型電子部品の製法は、バインダ樹脂を含有する複数のセラミックグリーンシートと複数の内部電極パターンとを積層してなり、前記内部電極パターン端が露出するとともに脱バインダ処理工程から焼成処理工程までの間に飛散する飛散物質が充填された凹溝を、対向する側面に前記内部電極パターン一層置きに交互に形成してなる素子本体成形体を作製する工程と、該素子本体成形体を脱バインダ処理および焼成処理して、セラミックスと内部電極とが交互に積層され、かつ対向する側面に、前記内部電極端が露出する凹溝が交互に形成された素子本体を作製する工程と、前記凹溝が形成された前記素子本体の対向する側面に、前記内部電極と交互に接続する外部電極をそれぞれ形成する工程とを具備する積層型電子部品の製法であって、前記飛散物質が、低温域で分解飛散する低温分解有機物と、前記低温域よりも高温の高温域で分解飛散する高温分解有機物とを含有することを特徴とする。
【0009】
また、本発明の積層型電子部品の製法では、前記素子本体成形体が、前記内部電極パターンを一対の前記セラミックグリーンシートで挟持してなる複数のシート積層体にそれぞれ貫通孔を形成する工程と、該貫通孔に前記飛散物質を充填する工程と、前記貫通孔に前記飛散物質が充填された前記シート積層体を、交互に位置をずらして複数積層して積層体を作製する工程と、該積層体を前記貫通孔部分で積層方向に切断して、対向する側面に、前記飛散物質が充填された前記凹溝を前記内部電極パターン一層置きに形成する工程とを具備して形成されることを特徴とする。
【0010】
このような製法では、素子本体成形体の凹溝内に設けられる飛散物質が、低温域で分解飛散する低温分解有機物と、高温域で分解飛散する高温分解有機物とを含有するため、脱バイ〜焼成(熱処理)工程における低温時においては低温分解有機物と高温分解有機物により、また高温時には高温分解有機物により、凹溝を形成するグリーンシートが固化するまで凹溝形状を保持でき、これにより、凹溝の変形を防止できるとともに、凹溝におけるクラックや積層界面のデラミネショーンなどの欠陥がない寸法通りの凹溝を確実にかつ一挙に形成できる。
【0011】
また、本発明の積層型電子部品の製法では、前記低温分解有機物が高分子樹脂であり、前記高温分解有機物がフェノール粉末、アクリルビーズ、カーボンビーズ、もしくはカーボンファイバーであることを特徴とする。従来の積層型電子部品の製法のように貫通孔(凹溝)内が高分子樹脂で充填される場合、シート積層体を複数積層し、加圧して一体化する場合に、セラミックグリーンシートよりも貫通孔内の高分子樹脂が軟化し、積層方向における収縮(寸法変化)が大きいため、凹溝を形成するセラミックグリーンシートが貫通孔側へ変形し、凹溝底面におけるセラミックグリーンシートにクラックが発生したり、変形が生じ易いが、本発明では、高分子樹脂のみならず、高温で分解するフェノール粉末、アクリルビーズ、カーボンビーズ、もしくはカーボンファイバー(固形物を用いたため、貫通孔内における飛散物質の積層方向における収縮を、貫通孔周辺のシート積層体に近づけることができ、凹溝の変形やクラックの発生をさらに抑制できる。
【0012】
また、本発明の積層型電子部品の製法では、前記低温分解有機物が、前記セラミックグリーンシートに用いられる前記バインダ樹脂と同一であることを特徴とする。これにより、加圧して一体化する場合における飛散物質の積層方向への収縮をセラミックグリーンシートにさらに近づけることができ、また、低温域での脱脂状態をセラミックグリーンシートに近づけることができ、凹溝近傍におけるクラックやデラミネーションを抑制できる。
【0016】
【発明の実施の形態】
図1乃至図7は本発明の積層型電子部品の製法を説明するための工程図で、先ず、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3などの圧電体セラミックスの仮焼粉末と、アクリル樹脂や、ブチラール樹脂などの有機高分子からなる有機バインダーと、可塑剤とを混合したスラリーを作製し、例えばスリップキャステイング法により、厚み50〜250μmのセラミックグリーンシートを作製する。
【0017】
このグリーンシートを所定の寸法に打ち抜いた後、図1(a)に示すようにグリーンシート1の片面に、内部電極となる、例えば銀、銀−パラジウム、Cuを主成分とする導電性ペーストをスクリーン印刷法により1〜10μmの厚みに印刷し、乾燥させて内部電極パターン3を形成する。
【0018】
この後、内部電極パターン3上に、図1(b)に示すように、作製したグリーンシート5を、内部電極パターン3を挟むように重ね、加圧してシート積層体7を作製する。尚、図1(a)のように、広いグリーンシート1の中央部に導電性ペーストを塗布し、この導電性ペーストを覆うようにグリーンシート5を積層し、これをカットして、図1(b)に示すようなシート積層体7を作製する。このようなシート積層体7を多数作製する。
【0019】
次に打ち抜き装置を用いて、図2に示すように、複数のシート積層体7にそれぞれ多数の貫通孔9を規則的に整列した状態で形成する。これらの貫通孔9は、凹溝の大きさによって寸法は異なってくるが、例えば幅2mm、長さ10mm程度の大きさの長方形形状とする。
【0020】
そして、図3(a)に示すように、複数のシート積層体7に形成した多数の貫通孔9に飛散物質11を充填する。この飛散物質11は、脱バイ〜焼成時(熱処理時)に飛散する物質からなるもので、低温域で分解飛散する低温分解有機物と、高温域で分解飛散する高温分解有機物とから構成されている。
【0021】
低温分解有機物としては、アクリル樹脂や、ブチラール樹脂などの有機高分子樹脂等があるが、本発明では、シート積層体7を加熱加圧して一体化する時における飛散物質11の積層方向への収縮をグリーンシート1に近づけることができ、シート積層体7と充填シート(飛散物質11)の収縮差に伴う積層界面の空隙、もしくは変形を防止するために、また、低温域での飛散物質の脱脂時の重量変化をグリーンシート1に近づけることができ、凹溝21近傍におけるクラックやデラミネーションを抑制できるという点から、セラミックグリーンシート1に用いられるバインダ樹脂を、低温分解有機物として用いることが望ましい。
【0022】
特に、低温分解有機物として、シート積層体7同士の加熱圧着時の接着力、及び脱バイ時の易分解性の点からアクリル樹脂が望ましい。尚、本発明では、低温分解有機物とは、600℃までに分解飛散する有機物である。
【0023】
また、高温分解有機物としては、フェノール粉末、アクリルビーズ、カーボンビーズ、もしくはカーボンファイバーがある。焼成温度近くまで、残留するという点、及びアクリル樹脂やブチラール樹脂などの有機高分子樹脂と混合してシート状飛散物質の作製が容易という点から、高温分解有機物としては、カーボンビーズ、もしくはカーボンファイバーが望ましい。尚、本発明においては、750℃でも分解せずに残留する有機物である。
【0024】
低温分解有機物と高温分解有機物の混合比率は、高温分解有機物100重量部に対して低温分解有機物を25〜60重量部であることが望ましく、特に収縮を合致させるという点から、低温分解有機物は35〜45重量部であることが望ましい。
【0025】
貫通孔9に充填される飛散物質11は、低温分解有機物と高温分解有機物を混合したスラリー状のものであっても良く、また、低温分解有機物と高温分解有機物の混合物をシート状に成形し、このシート状飛散物質11を貫通孔9内に収納しても良い。
【0026】
シート状に成形された飛散物質11を貫通孔9内に収納することにより、飛散物質11の貫通孔9からのはみ出しを防止することができる。シート状の飛散物質11を、シート積層体7の貫通孔9内に収容するには、図3(b)に示すように、シート積層体7の表面に飛散物質シート13を積層し、これを、貫通孔9を形成するために作製したプレス型により、押出量を制御して打ち抜き加工し、この後、シート積層体7の表面に積層された飛散物質シート13を剥離することにより、貫通孔9内にシート状の飛散物質11が収容されたシート積層体7を作製できる。
【0027】
シート積層体7の貫通孔9に、シート状の飛散物質11を充填する場合、上記のようにして、貫通孔9内にシート状の飛散物質11を収容したシート積層体7を加圧して、シート積層体7とシート状の飛散物質11との厚み差を小さくすることが望ましい。特に厚み差は5μm以下とすることが望ましい。これにより、加圧一体化する工程において、シート積層体7とシート状飛散物質11の収縮率を同等にすることが可能となり、シート積層体7とシート状飛散物質11の収縮差に伴う積層界面の空隙、もしくは変形を防止することが可能となる。
【0028】
これらのシート状の飛散物質11は、上記した高温分解有機物と、アクリル樹脂や、ブチラール樹脂などの低温分解有機物と、可塑剤とを混合したスラリーを作製し、グリーンシート1と同様に、例えばスリップキャステイング法により、厚み50〜250μmにて作製される。
【0029】
この後、貫通孔9に飛散物質11が充填されたシート積層体7を、交互に位置をずらして積層し、その後、50〜200℃で加熱を行いながら加圧して一体化し、図4に示すような積層体を作製する。
【0030】
この後、積層体を、図4(a)、(b)で示す一点鎖線で、即ち、貫通孔9で切断して、図5に示すように、内部に飛散物質11が充填された凹溝21が、対向する側面に内部電極パターン3一層置きに形成された、素子本体成形体23を作製する。
【0031】
この素子本体成形体23は、対向する側面に内部電極パターン3一層置きに凹溝21が形成されており、これらの凹溝21の底面には内部電極パターン3端が露出し、さらに凹溝21内には熱処理により分解する飛散物質11が充填されている。
【0032】
その後、大気中において400〜800℃で5〜40時間の脱バイを行なう。この際、飛散物質11が分解飛散し、素子本体成形体23の対向する側面に凹溝21が形成される。その後、900〜1200℃で2〜5時間で本焼成が行われ、図6に示すように、圧電体27と内部電極29が交互に積層された素子本体31が作製される。この素子本体31は柱状で、対向する側面には、底面に内部電極29端が露出する凹溝21が、一側面において内部電極29一層おきに形成されている。
【0033】
この後、例えば、素子本体31の凹溝21が形成された側面において、凹溝21以外の素子本体31の側面に露出した内部電極29およびこの内部電極29の近傍の圧電体27表面に、銀ガラス導電性ペーストを塗布乾燥し、この銀ガラス導電性ペーストに金属板33を押圧するように荷重を加えた状態で700〜950℃で熱処理することにより、銀ガラス導電性ペースト中のガラスが溶融し、溶融したガラス中に存在する銀成分が内部電極29の端部に集合し、図7に示すように、素子本体31の側面から突出する突起状導電性端子35が形成されるとともに、該突起状導電性端子35の先端部に金属板からなる外部電極33を接合する。
【0034】
この後、凹溝21内に絶縁樹脂39を充填し、また、内部電極29端が露出している素子本体31の他の側面にも絶縁樹脂39を被覆して、積層型電子部品を作製できる。
【0035】
以上のような積層型電子部品の製法では、素子本体成形体23の凹溝21内に充填された飛散物質11が、低温域で分解飛散する低温分解有機物と、高温域で分解飛散する高温分解有機物とを含有するため、脱バイ〜焼成工程の低温時においては低温分解有機物と高温分解有機物により、また高温時には高温分解有機物により、凹溝21を形成するグリーンシート1、5が固化するまで形状を保持でき、これにより、凹溝21の変形を防止できるとともに、凹溝21におけるクラックや積層界面のデラミネショーンなどの欠陥がない寸法通りの凹溝を確実にかつ一挙に形成できる。本発明の積層型電子部品の製法は、積層型圧電トランス、積層型コンデンサ、積層型圧電アクチュエータ等の積層型電子部品の製法に好適に用いられる。
【0036】
【実施例】
チタン酸ジルコン酸鉛Pb(Zr,Ti)O3からなる圧電体セラミックスの仮焼粉末と、アクリル樹脂からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み150μmのセラミックグリーンシートを作製した。
【0037】
このグリーンシートの片面に内部電極となる銀−パラジウムを主成分とする導電性ペーストをスクリーン印刷法により5μmの厚みに印刷し、導電性ペーストを乾燥して内部電極パターンを形成した後、さらにこの内部電極パターン表面に前記グリーンシートを積層し、図1(b)に示すような、内部電極パターンをグリーンシートで挟持したシート積層体を複数作製した。
【0038】
これらのシート積層体の所定個所に、図2に示すように、長方形形状(幅2mm、長さ10mm)の複数の貫通孔を形成した。その後、表1に示すような低温分解有機物と高温分解有機物を、高温分解有機物100重量部に対して低温分解有機物40重量部となるように混合し、これを表1に示すようにシート状に成形してシート状飛散物質を形成したり、ゾル状の混合体からなる飛散物質を作製し、図3に示すように、これを貫通孔に充填積層した。尚、シート状の飛散物質は厚み150μmとし、図3(b)(c)のようにしてシート状の飛散物質を貫通孔内に収容し、その後、加圧してシート積層体とシート状の飛散物質と加圧一体化し、厚み差が±5μm以上のシート状積層体を除去した。一方、ゾル状の混合体からなる飛散物質は、シート積層体とシート状の飛散物質との差を±5μm以下となるように、貫通孔内に充填した。
【0039】
尚、アクリル樹脂は500℃程度、ポリビニールアルコールは500℃程度で、アクリルビーズは500℃程度で、カーボンビーズは800℃程度で、カーボンファイバーは800℃程度で分解飛散するものである。
【0040】
そして、貫通孔の位置を交互にずらして積層し、その後、150℃で加熱を行いながら加圧して一体化し、図4の一点鎖線で示すように、積層体を貫通孔で切断して、内部に飛散物質が設けられた凹溝を、前記内部電極パターン一層置きに形成した、図5に示すような素子本体成形体を作製した。
【0041】
【表1】

Figure 0004280043
【0042】
素子本体成形体は、対向する側面に内部電極パターン一層置きに凹溝が形成されており、これらの凹溝の底面には内部電極パターン端が露出し、さらに凹溝内に熱処理により分解する飛散物質が充填されていた。これら各素子本体成形体の断面を観察した結果、凹溝の変形はなかった。
【0043】
その後、800℃で5時間の脱バイを行ない、飛散物質を分解飛散させ、図6に示すように、素子本体成形体の対向する2側面に凹溝を形成した。この素子本体成形体の凹溝の形成状態を観察した。その結果、ポリビニルアルコール単体、アクリル樹脂単体で作製した試料No.1、2では、凹溝を形成するグリーンシートが変形し倒れており、脱バイ後にて、クラックが生じているものもあった。これに対して、低温分解有機物と高温分解有機物を飛散物質として用いた本発明の試料では、溝部の変形は全くなかった。
【0044】
その後、1100℃で5時間で本焼成を行い、素子本体を得た。この後、素子本体の対向する側面に外部電極を形成し、積層型電子部品を作製した。素子本体の凹溝の形成状態を観察したところ、本発明の積層型電子部品では、凹溝部の変形がなく、寸法通りの凹溝を確実にかつ一挙に形成できていることを確認した。また、接合界面を観察しても、クラックやデラミネーションも発生していなかった。
【0045】
【発明の効果】
以上詳述した通り、本発明の積層型電子部品の製法では、素子本体成形体の凹溝内に設けられる飛散物質が、低温域で分解飛散する低温分解有機物と、高温域で分解飛散する高温分解有機物とを含有するため、脱バイ〜焼成における低温時においては低温分解有機物と高温分解有機物により、また高温時には高温分解有機物により、凹溝を形成するグリーンシートが固化するまで形状を保持でき、これにより、凹溝の変形を防止できるとともに、凹溝におけるクラックや積層界面のデラミネショーンなどの欠陥がない寸法通りの凹溝を確実にかつ一挙に形成でき、信頼性及び量産性の高い積層型電子部品を得ることができる。
【図面の簡単な説明】
【図1】本発明の積層型電子部品の製法に用いられるシート積層体の工程図であり、(a)はグリーンシート上に内部電極パターンを形成した平面図、(b)は内部電極パターンをグリーンシートで挟持した断面図である。
【図2】シート積層体に多数の貫通孔を規則的に形成した平面図である。
【図3】(a)は貫通孔に飛散物質を充填したシート積層体を示す断面図、(b)(c)はシート状飛散物質を貫通孔に充填する工程図である。
【図4】(a)は飛散物質が充填されたシート積層体を交互に位置をずらして積層した状態を示す断面図、(b)はその平面図である。
【図5】素子本体成形体の断面図である。
【図6】素子本体の断面図である。
【図7】積層型電子部品の断面図である。
【符号の説明】
1、5・・・グリーンシート
3・・・内部電極パターン
7・・・シート積層体
9・・・貫通孔
11・・・飛散物質
21・・・凹溝
23・・・素子本体成形体
27・・・圧電体
29・・・内部電極
31・・・素子本体
33・・・外部電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer electronic component, and in particular, a concave groove is formed by alternately forming a concave groove in which an end of an internal electrode is exposed on an opposing side surface of an element body in which ceramics and internal electrodes are alternately stacked. The present invention relates to a method for manufacturing a multilayer electronic component in which external electrodes alternately connected to internal electrodes are formed on the side surfaces.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a method as described in Japanese Patent Laid-Open No. 6-151999 is known as a manufacturing method for a co-fired multilayer electronic component.
[0003]
In the multilayer electronic component disclosed in this publication, first, through holes are formed in a plurality of sheet laminates in which an internal electrode pattern is sandwiched between a pair of green sheets, and a scattering material made of polyvinyl alcohol is filled in the through holes. Then, the sheet laminates filled with polyvinyl alcohol are alternately laminated at different positions, and this laminate is cut by a through-hole so that a concave groove provided with a scattering substance is provided on the opposite side surface. An element body molded body is formed by alternately forming every other pattern.
[0004]
Thereafter, the element body molded body is subjected to a binder removal treatment at a predetermined temperature and fired to produce an element body having a groove, and the groove of the element body is filled with a ceramic insulating material. A multilayer electronic component was manufactured by applying and baking a conductive paste made of Ag on the side surface of the element main body on which was formed.
[0005]
In such a manufacturing method, it is possible to form concave grooves all at once without performing groove processing one by one by conventional dicing or the like, the processing time can be shortened, and the manufacturing process can be simplified.
[0006]
[Problems to be solved by the invention]
However, in the manufacturing method described in the above publication, since polyvinyl alcohol is used alone as a substance that scatters at the time of debinding, the green sheet between the grooves is not deformed in a low temperature state from debuying to firing (heat treatment). Although it can be suppressed, in a high temperature state at the time of de-buying to firing, the polyvinyl alcohol in the groove is decomposed and scattered before the green sheet is solidified, the green sheet forming the groove is deformed, cracks are generated, dimensions There is a problem in that it is difficult to form a concave groove and a manufacturing yield of the element body is low.
[0007]
An object of this invention is to provide the manufacturing method of the laminated type electronic component which can form the ditch | groove according to a dimension at once and reliably.
[0008]
[Means for Solving the Problems]
The method for producing a multilayer electronic component according to the present invention includes a plurality of ceramic green sheets containing a binder resin and a plurality of internal electrode patterns, and the internal electrode pattern ends are exposed and a baking process is performed from a binder removal processing step. A step of producing an element main body formed by alternately forming concave grooves filled with a scattering material that is scattered before the process on the opposite side surface every other internal electrode pattern ; and debindered and baked, are alternately stacked and a ceramics and the internal electrode, and opposing sides, a step of the inner electrode end making element body groove are alternately formed to expose the on opposite sides of the element body groove is formed, preparation of multilayer electronic component and a step of forming external electrodes connected alternately with the internal electrodes, respectively There are, before Symbol scattering material, characterized in that it contains a low-temperature decomposition organic matter to decompose scattered in a low temperature range, and a high-temperature decomposition organic matter to decompose scatter at a high temperature of the high temperature range than the low temperature range.
[0009]
Further, in the method of the multilayer electronic component of the present invention, the steps of the element body molding body, forming the respective through-hole into a plurality of sheets stacked body formed by sandwiching the internal electrode pattern of a pair of the ceramic green sheet a step of producing a step of filling the scattering material in the through hole, the sheet laminate the scattering material is filled in the through hole, a laminate by stacking a plurality of shifted positions alternately, the the laminate was cut in the stacking direction in the through hole portion, on opposite sides, that the scattering material is formed by a step of forming a concave groove that is filled every the internal electrode pattern more It is characterized by.
[0010]
In such a manufacturing method, the scattering material provided in the concave groove of the element body molded body contains a low-temperature decomposition organic substance that decomposes and scatters in a low-temperature range and a high-temperature decomposition organic substance that decomposes and scatters in a high-temperature range. The groove shape can be maintained until the green sheet forming the groove is solidified by the low temperature decomposition organic substance and the high temperature decomposition organic substance at the low temperature in the baking (heat treatment) process, and by the high temperature decomposition organic substance at the high temperature. In addition, it is possible to prevent the deformation of the groove and to form a groove having a dimension that is free from defects such as a crack in the groove and a delamination at the lamination interface.
[0011]
Further, in the method of the multilayer electronic component of the present invention, the low-temperature cleavage organic material is a polymer resin, wherein the high-temperature cleavage organic material is phenolic powder, acrylic beads, carbon beads or carbon fibers. When the inside of a through-hole (concave groove) is filled with a polymer resin as in the conventional method of manufacturing a laminated electronic component, when stacking a plurality of sheet laminates and integrating them by pressing, the ceramic green sheet The polymer resin in the through hole is softened and the shrinkage (dimensional change) in the stacking direction is large, so the ceramic green sheet that forms the groove is deformed to the through hole side, and a crack occurs in the ceramic green sheet on the bottom of the groove However, in the present invention, not only the polymer resin but also phenol powder, acrylic beads, carbon beads, or carbon fibers ( solid matter ) that decomposes at a high temperature is used. The shrinkage in the laminating direction can be made closer to the sheet laminated body around the through hole, and the deformation of the concave groove and the generation of cracks can be further suppressed.
[0012]
Further, in the method of the multilayer electronic component of the present invention, the low-temperature cleavage organic material, wherein said the same as the binder resin used in the ceramic green sheet. As a result, the shrinkage in the stacking direction of the scattered substances when integrated by pressing can be made closer to the ceramic green sheet, and the degreasing state in the low temperature region can be made closer to the ceramic green sheet, and the groove Cracks and delamination in the vicinity can be suppressed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 to FIG. 7 are process diagrams for explaining a method of manufacturing a multilayer electronic component according to the present invention. First, a calcined powder of piezoelectric ceramics such as lead zirconate titanate Pb (Zr, Ti) O 3 , A slurry in which an organic binder made of an organic polymer such as acrylic resin or butyral resin and a plasticizer are mixed is prepared, and a ceramic green sheet having a thickness of 50 to 250 μm is manufactured by, for example, a slip casting method.
[0017]
After the green sheet is punched to a predetermined size, as shown in FIG. 1 (a), an electrically conductive paste mainly composed of, for example, silver, silver-palladium, or Cu serving as an internal electrode is formed on one side of the green sheet 1. The internal electrode pattern 3 is formed by printing to a thickness of 1 to 10 μm by screen printing and drying.
[0018]
Thereafter, as shown in FIG. 1B, the produced green sheet 5 is overlaid on the internal electrode pattern 3 so as to sandwich the internal electrode pattern 3, and is pressed to produce a sheet laminate 7. As shown in FIG. 1 (a), a conductive paste is applied to the center of a wide green sheet 1, a green sheet 5 is laminated so as to cover the conductive paste, and this is cut. A sheet laminate 7 as shown in b) is produced. A large number of such sheet laminates 7 are produced.
[0019]
Next, using a punching device, as shown in FIG. 2, a plurality of through holes 9 are formed in a plurality of sheet laminates 7 in a regularly aligned state. These through-holes 9 have different dimensions depending on the size of the concave grooves, but are, for example, rectangular shapes having a width of about 2 mm and a length of about 10 mm.
[0020]
And as shown to Fig.3 (a), the scattering material 11 is filled into many through-holes 9 formed in the some sheet | seat laminated body 7. FIG. The scattering material 11 is made of a material that is scattered during debuying and firing (at the time of heat treatment), and is composed of a low-temperature decomposition organic substance that decomposes and scatters in a low-temperature region and a high-temperature decomposition organic material that decomposes and scatters in a high-temperature region. .
[0021]
Examples of the low-temperature decomposition organic substance include an acrylic polymer and an organic polymer resin such as a butyral resin. In the present invention, the shattering substance 11 contracts in the stacking direction when the sheet laminate 7 is integrated by heating and pressing. Can be brought closer to the green sheet 1 to prevent voids or deformation at the lamination interface due to the shrinkage difference between the sheet laminate 7 and the filling sheet (scattering material 11), and also to degrease the scattering material in a low temperature range. It is desirable to use the binder resin used for the ceramic green sheet 1 as the low-temperature decomposition organic substance because the change in weight at the time can be brought close to the green sheet 1 and cracks and delamination in the vicinity of the concave groove 21 can be suppressed.
[0022]
In particular, as a low-temperature decomposition organic substance, an acrylic resin is desirable from the viewpoints of adhesive strength at the time of heat-compression bonding between the sheet laminates 7 and easy decomposability at the time of removal. In the present invention, the low-temperature decomposition organic substance is an organic substance that decomposes and scatters up to 600 ° C.
[0023]
Examples of the high-temperature decomposition organic substance include phenol powder, acrylic beads, carbon beads, and carbon fibers. Carbon beads or carbon fibers are used as high-temperature decomposition organic substances because they remain near to the firing temperature and because it is easy to produce sheet-like scattered materials by mixing with organic polymer resins such as acrylic resins and butyral resins. Is desirable. In the present invention, the organic substance remains without being decomposed even at 750 ° C.
[0024]
The mixing ratio of the low temperature decomposition organic substance and the high temperature decomposition organic substance is preferably 25 to 60 parts by weight of the low temperature decomposition organic substance with respect to 100 parts by weight of the high temperature decomposition organic substance. It is desirable that it is -45 weight part.
[0025]
The scattering material 11 filled in the through holes 9 may be a slurry in which a low-temperature decomposed organic substance and a high-temperature decomposed organic substance are mixed, or a mixture of the low-temperature decomposed organic substance and the high-temperature decomposed organic substance is formed into a sheet shape, The sheet-like scattered material 11 may be stored in the through hole 9.
[0026]
By storing the scattering material 11 formed in a sheet shape in the through hole 9, it is possible to prevent the scattering material 11 from protruding from the through hole 9. In order to accommodate the sheet-like scattered substance 11 in the through hole 9 of the sheet laminate 7, as shown in FIG. 3 (b), a scattered substance sheet 13 is laminated on the surface of the sheet laminate 7, The punching process is carried out by controlling the amount of extrusion by a press die produced to form the through-holes 9, and then the scattering material sheet 13 laminated on the surface of the sheet laminate 7 is peeled off, whereby the through-holes are formed. The sheet laminated body 7 in which the sheet-like scattering material 11 is accommodated in 9 can be produced.
[0027]
When the sheet-like scattered material 11 is filled in the through-holes 9 of the sheet laminated body 7, as described above, the sheet laminated body 7 containing the sheet-like scattered material 11 in the through-holes 9 is pressurized, It is desirable to reduce the thickness difference between the sheet laminate 7 and the sheet-like scattered material 11. In particular, the thickness difference is desirably 5 μm or less. This makes it possible to equalize the shrinkage rate of the sheet laminate 7 and the sheet-like scattered substance 11 in the step of pressure integration, and the lamination interface accompanying the difference in shrinkage between the sheet laminate 7 and the sheet-like scattered substance 11. It is possible to prevent voids or deformations.
[0028]
These sheet-like scattered substances 11 are produced by preparing a slurry in which the above-described high-temperature decomposition organic matter, low-temperature decomposition organic matter such as acrylic resin or butyral resin, and a plasticizer are mixed. It is produced with a thickness of 50 to 250 μm by a casting method.
[0029]
Thereafter, the sheet laminates 7 in which the through-holes 9 are filled with the scattering material 11 are laminated with the positions shifted alternately, and then are pressed and integrated while heating at 50 to 200 ° C., as shown in FIG. Such a laminate is produced.
[0030]
After that, the laminated body is cut by the alternate long and short dash line shown in FIGS. 4 (a) and 4 (b), that is, through the through-hole 9, and as shown in FIG. 21 is formed on the opposing side surface every other three internal electrode patterns.
[0031]
In this element body molded body 23, concave grooves 21 are formed on the opposite side surfaces every three internal electrode patterns 3, and the ends of the internal electrode patterns 3 are exposed on the bottom surfaces of these concave grooves 21. The inside is filled with a scattering material 11 that decomposes by heat treatment.
[0032]
Thereafter, de-bye treatment is performed in the atmosphere at 400 to 800 ° C. for 5 to 40 hours. At this time, the scattering material 11 is decomposed and scattered, and the concave grooves 21 are formed on the opposing side surfaces of the element body molded body 23. Thereafter, the main baking is performed at 900 to 1200 ° C. for 2 to 5 hours, and as shown in FIG. 6, the element body 31 in which the piezoelectric bodies 27 and the internal electrodes 29 are alternately laminated is manufactured. The element body 31 has a columnar shape, and on the opposite side surface, a concave groove 21 in which the end of the internal electrode 29 is exposed on the bottom surface is formed every other internal electrode 29 on one side surface.
[0033]
Thereafter, for example, on the side surface of the element main body 31 where the concave groove 21 is formed, the internal electrode 29 exposed on the side surface of the element main body 31 other than the concave groove 21 and the surface of the piezoelectric body 27 in the vicinity of the internal electrode 29 are exposed to silver. The glass in the silver glass conductive paste is melted by applying and drying the glass conductive paste and heat-treating the silver glass conductive paste at a temperature of 700 to 950 ° C. while applying a load so as to press the metal plate 33. The silver component present in the molten glass collects at the end of the internal electrode 29, and as shown in FIG. 7, a protruding conductive terminal 35 protruding from the side surface of the element body 31 is formed, and the An external electrode 33 made of a metal plate is joined to the tip of the protruding conductive terminal 35.
[0034]
After that, the insulating resin 39 is filled in the concave groove 21, and the other side surface of the element body 31 where the end of the internal electrode 29 is exposed is covered with the insulating resin 39, so that a multilayer electronic component can be manufactured. .
[0035]
In the manufacturing method of the multilayer electronic component as described above, the scattering material 11 filled in the concave groove 21 of the element body molded body 23 decomposes and scatters in a low temperature region, and the high temperature decomposition decomposes and scatters in a high temperature region. Since it contains an organic substance, it is shaped until the green sheets 1 and 5 forming the concave grooves 21 are solidified by a low-temperature decomposed organic substance and a high-temperature decomposed organic substance at a low temperature in the debuying and firing steps, and at a high temperature by a high-temperature decomposed organic substance. Thus, deformation of the concave groove 21 can be prevented, and a concave groove having a dimension free from defects such as cracks in the concave groove 21 and delamination at the lamination interface can be surely formed all at once. The method for producing a multilayer electronic component of the present invention is suitably used for a method of producing a multilayer electronic component such as a multilayer piezoelectric transformer, a multilayer capacitor, or a multilayer piezoelectric actuator.
[0036]
【Example】
A slurry obtained by mixing a calcined powder of piezoelectric ceramic made of lead zirconate titanate Pb (Zr, Ti) O 3, a binder made of acrylic resin, and a plasticizer was prepared, and a thickness of 150 μm was formed by a slip casting method. A ceramic green sheet was prepared.
[0037]
A conductive paste mainly composed of silver-palladium as an internal electrode is printed on one side of the green sheet to a thickness of 5 μm by a screen printing method, and the conductive paste is dried to form an internal electrode pattern. The green sheet was laminated on the surface of the internal electrode pattern, and a plurality of sheet laminates in which the internal electrode pattern was sandwiched between the green sheets as shown in FIG.
[0038]
As shown in FIG. 2, a plurality of through holes having a rectangular shape (width 2 mm, length 10 mm) were formed at predetermined positions of these sheet laminates. Then, the low temperature decomposition organic substance and the high temperature decomposition organic substance as shown in Table 1 are mixed so that the low temperature decomposition organic substance is 40 parts by weight with respect to 100 parts by weight of the high temperature decomposition organic substance. A sheet-like scattering material was formed by molding, or a scattering material consisting of a sol-like mixture was prepared, and this was filled in a through-hole as shown in FIG. The sheet-like scattering material is 150 μm in thickness, and the sheet-like scattering material is accommodated in the through-holes as shown in FIGS. 3B and 3C, and then pressurized to apply the sheet laminate and the sheet-like scattering material. The material was pressurized and integrated, and the sheet-like laminate having a thickness difference of ± 5 μm or more was removed. On the other hand, the scattering material composed of the sol-like mixture was filled in the through holes so that the difference between the sheet laminate and the sheet-like scattering material was ± 5 μm or less.
[0039]
The acrylic resin is about 500 ° C., the polyvinyl alcohol is about 500 ° C., the acrylic beads are about 500 ° C., the carbon beads are about 800 ° C., and the carbon fibers are decomposed and scattered at about 800 ° C.
[0040]
Then, the positions of the through holes are alternately shifted and laminated, and then the pressure is integrated while heating at 150 ° C., and the laminated body is cut at the through holes as shown by the one-dot chain line in FIG. An element body molded body as shown in FIG. 5 was produced, in which concave grooves provided with scattering materials were formed every other internal electrode pattern.
[0041]
[Table 1]
Figure 0004280043
[0042]
The element body molded body has concave grooves formed on the opposite side surfaces every other internal electrode pattern, and the ends of the internal electrode patterns are exposed on the bottom surfaces of these concave grooves, and the inner grooves are further decomposed by heat treatment in the concave grooves. The material was filled. As a result of observing the cross section of each element body molded body, the groove was not deformed.
[0043]
Thereafter, de-buying was performed at 800 ° C. for 5 hours to decompose and disperse the scattered substances, and as shown in FIG. 6, concave grooves were formed on the two opposite side surfaces of the element body molded body. The formation state of the groove in the element body molded body was observed. As a result, sample Nos. Made with polyvinyl alcohol alone and acrylic resin alone. In Nos. 1 and 2, the green sheet forming the concave groove was deformed and collapsed, and some had cracks after de-buying. On the other hand, in the sample of the present invention using the low temperature decomposition organic substance and the high temperature decomposition organic substance as the scattering substance, there was no deformation of the groove.
[0044]
Then, main baking was performed at 1100 ° C. for 5 hours to obtain an element body. Thereafter, external electrodes were formed on the opposing side surfaces of the element body to produce a multilayer electronic component. When the formation state of the groove in the element body was observed, it was confirmed that in the multilayer electronic component of the present invention, the groove was not deformed, and the groove having the dimensions was surely formed at once. Moreover, even when the bonding interface was observed, no cracks or delamination occurred.
[0045]
【The invention's effect】
As described above in detail, in the manufacturing method of the multilayer electronic component of the present invention, the scattering material provided in the concave groove of the element body molded body includes a low-temperature decomposition organic substance that decomposes and scatters in a low temperature region and a high temperature that decomposes and scatters in a high temperature region. Because it contains a decomposed organic substance, the shape can be maintained until the green sheet forming the ditch is solidified by the low temperature decomposed organic substance and the high temperature decomposed organic substance at a low temperature during de-buying to firing, and at a high temperature by the high temperature decomposed organic substance. As a result, deformation of the groove can be prevented, and a groove having a dimension without defects such as cracks in the groove and delamination at the lamination interface can be formed reliably and at once, and the lamination with high reliability and mass productivity. A mold electronic component can be obtained.
[Brief description of the drawings]
FIG. 1 is a process diagram of a sheet laminate used in a method for producing a multilayer electronic component according to the present invention, wherein (a) is a plan view in which an internal electrode pattern is formed on a green sheet, and (b) is an internal electrode pattern. It is sectional drawing clamped with the green sheet.
FIG. 2 is a plan view in which a large number of through holes are regularly formed in a sheet laminate.
FIGS. 3A and 3B are cross-sectional views showing a sheet laminate in which a through-hole is filled with a scattering material, and FIGS. 3B and 3C are process diagrams of filling the through-hole with a sheet-like scattering material.
FIG. 4A is a cross-sectional view showing a state in which sheet laminates filled with scattering substances are stacked alternately with different positions, and FIG. 4B is a plan view thereof.
FIG. 5 is a cross-sectional view of an element body molded body.
FIG. 6 is a cross-sectional view of an element body.
FIG. 7 is a cross-sectional view of a multilayer electronic component.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 5 ... Green sheet 3 ... Internal electrode pattern 7 ... Sheet laminated body 9 ... Through-hole 11 ... Spattering substance 21 ... Groove 23 ... Element main body molded object 27- ..Piezoelectric body 29 ... Internal electrode 31 ... Element body 33 ... External electrode

Claims (4)

バインダ樹脂を含有する複数のセラミックグリーンシートと複数の内部電極パターンとを積層してなり、前記内部電極パターン端が露出するとともに脱バインダ処理工程から焼成処理工程までの間に飛散する飛散物質が充填された凹溝を、対向する側面に前記内部電極パターン一層置きに交互に形成してなる素子本体成形体を作製する工程と、該素子本体成形体を脱バインダ処理および焼成処理して、セラミックスと内部電極とが交互に積層され、かつ対向する側面に、前記内部電極端が露出する凹溝が交互に形成された素子本体を作製する工程と、前記凹溝が形成された前記素子本体の対向する側面に、前記内部電極と交互に接続する外部電極をそれぞれ形成する工程とを具備する積層型電子部品の製法であって、前記飛散物質が、低温域で分解飛散する低温分解有機物と、前記低温域よりも高温の高温域で分解飛散する高温分解有機物とを含有することを特徴とする積層型電子部品の製法。 A plurality of ceramic green sheets containing a binder resin and a plurality of internal electrode patterns are laminated, and the internal electrode pattern ends are exposed and filled with scattered substances scattered from the binder removal process to the firing process. A step of producing an element main body formed by alternately forming the internal electrode patterns on every opposite side surface on opposite side surfaces, and removing the binder and firing the element main body, and internal electrodes are alternately laminated, and on opposite sides, a step of the inner electrode end making element body groove are alternately formed to be exposed, opposite the element body said groove is formed the side surfaces, a method of the multilayer electronic component and forming an external electrode connected to alternate with the internal electrode, respectively, the previous SL scattering material, a low temperature range And low temperature decomposition organic matter to decompose scatter, preparation of multilayer electronic components which is characterized by containing a high-temperature decomposition organic matter to decompose scatter at a high temperature of the high temperature range than the low temperature range. 前記素子本体成形体が、前記内部電極パターンを一対の前記セラミックグリーンシートで挟持してなる複数のシート積層体にそれぞれ貫通孔を形成する工程と、該貫通孔に前記飛散物質を充填する工程と、前記貫通孔に前記飛散物質が充填された前記シート積層体を、交互に位置をずらして複数積層して積層体を作製する工程と、該積層体を前記貫通孔部分で積層方向に切断して、対向する側面に、前記飛散物質が充填された前記凹溝を前記内部電極パターン一層置きに形成する工程とを具備して形成されることを特徴とする請求項1記載の積層型電子部品の製法。 The element body molding body, a step of forming a respective through hole in a plurality of sheets stacked body formed by sandwiching the internal electrode pattern of a pair of the ceramic green sheet, a step of filling the scattering material in the through hole , the sheet laminate the scattering material is filled in the through hole, a process of forming a laminate by stacking a plurality of shifted positions alternately, the laminate is cut in the stacking direction in the through hole portion Te, on opposite sides, the multilayer electronic component of claim 1, wherein the scattering material is characterized in that it is formed by a step of forming a concave groove that is filled every the internal electrode pattern more The manufacturing method. 前記低温分解有機物が高分子樹脂であり、前記高温分解有機物がフェノール粉末、アクリルビーズ、カーボンビーズ、もしくはカーボンファイバーであることを特徴とする請求項1又は2記載の積層型電子部品の製法。 The low-temperature cleavage organic material is a polymer resin, the high-temperature cleavage organic phenolic powder, acrylic beads, carbon beads or preparation of a multilayer electronic component according to claim 1 or 2, wherein it is a carbon fiber. 前記低温分解有機物が、前記セラミックグリーンシートに用いられる前記バインダ樹脂と同一であることを特徴とする請求項1乃至3のうちいずれかに記載の積層型電子部品の製法。 The low-temperature cleavage organic material, the multilayer electronic component manufacturing method according to any one of claims 1 to 3, wherein the the same as the binder resin used in the ceramic green sheet.
JP2002249811A 2002-08-28 2002-08-28 Manufacturing method of multilayer electronic components Expired - Fee Related JP4280043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249811A JP4280043B2 (en) 2002-08-28 2002-08-28 Manufacturing method of multilayer electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249811A JP4280043B2 (en) 2002-08-28 2002-08-28 Manufacturing method of multilayer electronic components

Publications (2)

Publication Number Publication Date
JP2004087993A JP2004087993A (en) 2004-03-18
JP4280043B2 true JP4280043B2 (en) 2009-06-17

Family

ID=32056796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249811A Expired - Fee Related JP4280043B2 (en) 2002-08-28 2002-08-28 Manufacturing method of multilayer electronic components

Country Status (1)

Country Link
JP (1) JP4280043B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659368B2 (en) * 2004-01-28 2011-03-30 京セラ株式会社 Manufacturing method of multilayer electronic components

Also Published As

Publication number Publication date
JP2004087993A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US6260248B1 (en) Method for producing a monolithic multilayer piezo actuator
JP5971447B2 (en) Manufacturing method of ceramic substrate and module component
JP2008192696A (en) Manufacturing method of multilayer electronic component
US8062460B2 (en) Laminated piezoelectric ceramic element manufacturing method
KR101823369B1 (en) Method of manufacturing multilayer ceramic electronic component
JP4280043B2 (en) Manufacturing method of multilayer electronic components
JP4275914B2 (en) Manufacturing method of multilayer electronic components
JP4659368B2 (en) Manufacturing method of multilayer electronic components
JP4349820B2 (en) Manufacturing method of multilayer electronic components
JP2004034448A (en) Method for manufacturing multi-layer ceramic substrate
JPH11502677A (en) Composite piezoelectric multilayer device and method for manufacturing such device
JPH10112417A (en) Laminated electronic component and its manufacture
JP2002270459A (en) Manufacturing method for laminated ceramic electronic component
JP3746475B2 (en) Manufacturing method of multilayer electronic components
JP3912153B2 (en) Manufacturing method of ceramic multilayer substrate
JP2000332312A (en) Manufacture of laminated piezoelectric ceramic part
JP4539148B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4419372B2 (en) Method for manufacturing thin ceramic plate
JP3870812B2 (en) Manufacturing method of multilayer piezoelectric element
JP2996049B2 (en) Manufacturing method of multilayer ceramic electronic component
KR20010075728A (en) Electronic device of ceramic
JP3878916B2 (en) Manufacturing method of multilayer electronic components
JP2000173858A (en) Manufacture of laminated ceramic electronic part
JP5012649B2 (en) Manufacturing method of laminated electronic component
JP4443659B2 (en) Manufacturing method of multilayer ceramic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees