JP4275914B2 - Manufacturing method of multilayer electronic components - Google Patents

Manufacturing method of multilayer electronic components Download PDF

Info

Publication number
JP4275914B2
JP4275914B2 JP2002250781A JP2002250781A JP4275914B2 JP 4275914 B2 JP4275914 B2 JP 4275914B2 JP 2002250781 A JP2002250781 A JP 2002250781A JP 2002250781 A JP2002250781 A JP 2002250781A JP 4275914 B2 JP4275914 B2 JP 4275914B2
Authority
JP
Japan
Prior art keywords
sheet
scattering material
laminate
hole
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002250781A
Other languages
Japanese (ja)
Other versions
JP2004095592A (en
Inventor
剛 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002250781A priority Critical patent/JP4275914B2/en
Publication of JP2004095592A publication Critical patent/JP2004095592A/en
Application granted granted Critical
Publication of JP4275914B2 publication Critical patent/JP4275914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、積層型電子部品の製法に関し、特にセラミックスと内部電極とが交互に積層された素子本体の対向する側面に、内部電極端が露出する凹溝を交互に形成し、凹溝が形成された側面に、内部電極と交互に接続する外部電極が形成された積層型電子部品の製法に関するものである。
【0002】
【従来技術】
従来、同時焼成タイプの積層型電子部品の製法として、特開平6−151999号公報に記載されるようなものが知られている。
【0003】
この公報に開示された積層型電子部品は、先ず、内部電極パターンが一対のグリーンシートで挟持された複数のシート積層体にそれぞれ複数の貫通孔を形成し、これらの貫通孔にポリビニルアルコールからなる飛散物質をメタルマスクを用いて充填し、ポリビニルアルコールが充填された複数のシート積層体を、交互に位置をずらして積層し、この積層体を貫通孔で切断して素子本体成形体を作製するとともに、この素子本体成形体の側面に、内部に飛散物質が設けられた凹溝を、内部電極パターン一層置きに形成する。
【0004】
この後、素子本体成形体を所定温度で脱バインダ処理し、焼成することにより凹溝を有する素子本体を作製し、この素子本体の凹溝内にセラミック製の絶縁材料を充填し、この凹溝が形成された素子本体の側面にAgからなる導電性ペーストを塗布し、焼き付けることにより、積層型圧電素子を作製していた。
【0005】
このような製法では、従来のダイシングなどにより一つ一つ溝加工をすることなく、凹溝を一挙に形成することができ、製造工程を簡略化できる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記公報に記載された積層型圧電素子では、シート積層体の貫通孔にポリビニルアルコールからなる飛散物質をメタルマスクを用いて印刷充填していたため、その位置制御が困難であり、例えば、貫通孔を形成する成形型と、メタルマスクの位置合わせが異なる場合には、貫通孔内部だけでなく、貫通孔周辺のシート積層体表面に塗布印刷されるという問題があった。このため、シート積層体が積層された積層体が変形したり、貫通孔周辺が膨らんだりし、さらにこの積層体を切断して素子本体成形体を作製すると、凹溝が変形し、焼成後に凹溝変形、素子本体におけるクラックやデラミネーションが発生するという問題があった。
【0007】
また、メタルマスクによる貫通孔への飛散物質充填では、貫通孔への充填量を制御するのが困難であり、貫通孔への飛散物質の充填不足や充填過剰が発生し、充填不足の場合には貫通孔の変形が発生し、充填過剰の場合には、上記と同様、凹溝変形、素子本体におけるクラックやデラミネーションが発生するという問題があった。
【0008】
さらに、メタルマスクによる貫通孔への飛散物質充填では、メタルマスクをシート積層体上に載置し、このメタルマスク上のペーストをブレードで塗布するという作業が必要となり、製造工程が多いという問題があった。
【0009】
本発明は、凹溝を一挙にかつ確実に形成できるとともに、工程を簡略化できる積層型電子部品の製法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の積層型電子部品の製法は、複数のセラミックグリーンシートと複数の内部電極パターンを積層してなる素子本体成形体を作製する工程と、該素子本体成形体を熱処理して、セラミックスと内部電極とが交互に積層され、かつ対向する側面に、内部電極端が露出する凹溝が交互に形成された素子本体を作製する工程と、前記凹溝が形成された素子本体の対向する側面に、前記内部電極と交互に接続する外部電極をそれぞれ形成する工程とを具備する積層型電子部品の製法であって、前記素子本体成形体が、前記内部電極パターンを一対の前記セラミックグリーンシートで挟持してなるシート積層体に、熱処理により分解する飛散物質シートを積層して飛散物質シート積層体を作製する工程と、該飛散物質シート積層体を成形型で打抜加工して前記シート積層体に貫通孔を形成すると同時に、前記貫通孔にシート状飛散物質を充填する工程と、前記シート積層体上の前記飛散物質シートを剥離する工程と、前記貫通孔に前記シート状飛散物質が充填された複数の前記シート積層体を、交互に位置をずらして積層して積層体を作製する工程と、該積層体を前記貫通孔部分で積層方向に切断して、対向する側面に前記シート状飛散物質が充填された凹溝を前記内部電極パターン一層おきに形成する工程とを具備して形成されることを特徴とする。
【0011】
このような製法では、飛散物質シートとシート積層体を積層して打ち抜く際に、貫通孔を形成する成形型の押出量を調整することにより、シート積層体への貫通孔の作製と同時に、該貫通孔にシート状飛散物質を充填収容でき、一回の打抜加工により、小さなシート積層体の貫通孔内のみに、シート状飛散物質を確実に精度良く充填することができ、飛散物質の貫通孔からのはみ出しによる積層不良を防止することができる。
【0012】
また、飛散物質シートの厚みをシート積層体の厚みと同一に制御することにより、貫通孔内のみに、シート積層体の厚みとほぼ同一厚みのシート状飛散物質を充填することができ、これにより、シート積層体表面の凹凸、シート積層体が積層された積層体の変形や、素子本体成形体の作製後における凹溝の変形、焼成後の凹溝変形、素子本体のクラックやデラミネーションの発生を防止できる。
【0013】
また、本発明の積層型電子部品の製法は、前記シート状飛散物質が前記貫通孔に充填された前記シート積層体を加圧して、前記シート積層体と前記シート状飛散物質との厚み差を小さくする工程を具備することを特徴とする。
【0014】
このような積層型圧電素子の製法では、シート積層体とシート状飛散物質が一体化され、積層工程におけるシート状飛散物質の外れを防止して、取り扱いを簡易化できるとともに、この工程でグリーンシートとシート状飛散物質の厚みに差が生じているシート積層体を除くことができ、加圧一体化する際に生じる厚み差による段差を防止することが可能であるため、シート積層体とシート状飛散物質の収縮率を同等にすることが可能となり、シート積層体とシート状飛散物質の収縮差に伴う積層界面の空隙、もしくは変形を防止することが可能となる。
【0020】
【発明の実施の形態】
図1乃至図7は本発明の積層型電子部品の製法を説明するための工程図で、先ず、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3などの圧電体セラミックスの仮焼粉末と、アクリル樹脂や、ブチラール樹脂などの有機高分子からなる有機バインダーと、可塑剤とを混合したスラリーを作製し、例えばスリップキャステイング法により、厚み50〜250μmのセラミックグリーンシートを作製する。
【0021】
このグリーンシートを所定の寸法に打ち抜いた後、図1(a)に示すようにグリーンシート1の片面に、内部電極となる、例えば、銀−パラジウム、Cuを主成分とする導電性ペーストをスクリーン印刷法により1〜10μmの厚みに印刷し、乾燥させて内部電極パターン3を形成する。
【0022】
この後、内部電極パターン3上に、図1(b)に示すように、作製したグリーンシート5を、内部電極パターン3を挟むように重ね、加圧してシート積層体7を作製する。尚、図1(a)のように、広いグリーンシート1の中央部に導電性ペーストを塗布し、この導電性ペーストを覆うようにグリーンシート5を積層し、これをカットして、図1(b)に示すようなシート積層体7を作製する。このようなシート積層体7を多数形成する。
【0023】
次に打ち抜き装置を用いて、図2、図3(a)に示すように、複数のシート積層体7にそれぞれ多数の貫通孔9を規則的に整列した状態で形成するとともに、これらの貫通孔9にシート状飛散物質11を充填する。これらの貫通孔9は、凹溝の大きさによって寸法は異なってくるが、例えば幅2mm、長さ10mm程度の大きさの長方形形状とする。
【0024】
具体的に説明すると、先ず、図3(b)に示すように、シート積層体7の上面に飛散物質シート13に積層し、飛散物質シート積層体を作製する。飛散物質シート13は、シート積層体7の厚みと同一厚みとされている。
【0025】
飛散物質シート13が積層された飛散物質シート積層体を、図3(c)に示すように、貫通孔9を形成するために作製した成形型14により、押出量を制御して打ち抜き加工し、この後、シート積層体7の表面に積層された飛散物質シート13を剥離することにより、図3(c)に示したように、貫通孔9内にシート状飛散物質11が収納されたシート積層体7を作製できる。
【0026】
即ち、飛散物質シート13の厚みがシート積層体7の厚みと同一とされており、成形型14の雄型の下面は、シート積層体7の上面までしか下降しないように制御されている。ここで、成形型14が下降すると、シート状飛散物質13、シート積層体7の一部が押し出され、飛散物質シート13の上面がシート積層体7の上面の位置となるまで押し出され、これにより、貫通孔9の形成とシート状飛散物質11の貫通孔9への充填が同時に行われる。
【0027】
シート積層体7の貫通孔9にシート状飛散物質11を収納し、シート積層体7表面に残存する飛散物質シート13を除去した後、シート積層体7を表面から加圧してシート積層体7とシート状飛散物質11との厚み差を小さくすることが望ましい。特に厚みは5μm以下とすることが望ましい。これにより、複数のシート積層体7を積層し、加圧一体化する際に、シート積層体7とシート状飛散物質11の収縮率を同等にすることが可能となり、シート積層体7とシート状飛散物質11の収縮差に伴う積層界面の空隙、もしくは変形を防止することが可能となる。
【0028】
飛散物質シート13は、脱バイ〜焼成時(熱処理時)に飛散する物質からなるもので、低温域で分解飛散する低温分解有機物と、高温域で分解飛散する高温分解有機物とを含有しており、高温分解有機物と、低温分解有機物と、可塑剤とを混合したスラリーを作製し、グリーンシート1と同様に、例えばスリップキャステイング法により、厚み50〜250μmにて作製される。
【0029】
低温分解有機物としては、アクリル樹脂や、ブチラール樹脂などの有機高分子樹脂等があるが、本発明では、シート積層体7の加熱加圧して一体化する時におけるシート状飛散物質11の積層方向への収縮をグリーンシート1に近づけることができ、シート積層体7とシート状飛散物質11の収縮差に伴う積層界面の空隙、もしくは変形を防止するために、また、低温域でのシート状飛散物質の脱脂時の重量変化をグリーンシート1に近づけることができ、凹溝近傍におけるクラックやデラミネーションを抑制できるという点から、セラミックグリーンシート1に用いられるバインダ樹脂を、低温分解有機物として用いることが望ましい。
【0030】
特に、シート積層体7同士の加熱圧着時の接着力、及び脱バイ時の易分解性の点からアクリル樹脂が望ましい。尚、本発明では、低温分解有機物とは、600℃までに分解飛散する有機物である。
【0031】
また、高温分解有機物としては、フェノール粉末、アクリルビーズ、カーボンビーズ、もしくはカーボンファイバーがある。焼成温度近くまで、残留するという点、及びアクリル樹脂やブチラール樹脂などの有機高分子樹脂と混合してシート状飛散物質11の作製が容易という点から、高温分解有機物としては、カーボンビーズ、もしくはカーボンファイバーが望ましい。尚、本発明においては、750℃でも分解せずに残留する有機物である。
【0032】
低温分解有機物と高温分解有機物の混合比率は、高温分解有機物100重量部に対して低温分解有機物を25〜60重量部であることが望ましく、特に収縮を合致させるという点から、低温分解有機物は35〜45重量部であることが望ましい。
【0033】
この後、そして、図4に示すように、貫通孔9にシート状飛散物質11が充填されたシート積層体7を、交互に位置をずらして積層し、その後、50〜200℃で加熱を行いながら加圧して一体化し、図4に示すような積層体を作製する。
【0034】
この後、積層体を、図4(a)、(b)で示す一点鎖線で、即ち、貫通孔9で切断して、図5に示すように、内部にシート状飛散物質11が充填された凹溝21が、対向する側面に内部電極パターン3が一層置きに形成された、素子本体成形体23を作製する。
【0035】
この素子本体成形体23は、対向する側面に内部電極パターン3一層置きに凹溝21が形成されており、これらの凹溝21の底面には内部電極パターン3端が露出し、さらに凹溝21内には熱処理により分解するシート状飛散物質11が充填されている。
【0036】
その後、大気中において400〜800℃で5〜40時間の脱バイを行なう。この際、シート状飛散物質11が分解飛散し、素子本体成形体23の対向する側面に凹溝21が形成される。その後、900〜1200℃で2〜5時間で本焼成が行われ、図6に示すように、圧電体27と内部電極29が交互に積層された素子本体31が作製される。この素子本体31は柱状で、対向する側面には、底面に内部電極29端が露出する凹溝21が、一側面において内部電極29毎に交互に形成されている。
【0037】
この後、例えば、素子本体31の凹溝21が形成された側面において、凹溝21以外の素子本体31の側面に露出した内部電極29およびこの内部電極29の近傍の圧電体27表面に、銀ガラス導電性ペーストを塗布乾燥し、この銀ガラス導電性ペーストに金属板33を押圧するように荷重を加えた状態で700〜950℃で熱処理することにより、銀ガラス導電性ペースト中のガラスが溶融し、溶融したガラス中に存在する銀成分が内部電極29の端部に集合し、図7に示すように、素子本体31の側面から突出する突起状導電性端子35が形成されるとともに、該突起状導電性端子35の先端部に金属板からなる外部電極33を接合する。
【0038】
この後、凹溝21内に絶縁樹脂39を充填し、また、内部電極29端が露出している素子本体31の他の側面にも絶縁樹脂を被覆して、積層型圧電素子を作製できる。
【0039】
以上のような積層型圧電素子の製法では、飛散物質シート13とシート積層体7を積層して打ち抜く際に、貫通孔9を形成する成形型14の雄型の押出量を調整することにより、シート積層体7への貫通孔9の形成と同時に、該貫通孔9にシート状飛散物質11を充填収容でき、一回の打抜加工により、小さなシート積層体7の貫通孔9内のみに、シート状飛散物質11を確実に精度良く充填することができ、飛散物質の貫通孔9からのはみ出しによる積層不良を防止することができるとともに、飛散物質シート13の厚みをシート積層体7の厚みと同一に制御することにより、貫通孔9内のみに、シート積層体7の厚みと同一厚みのシート状飛散物質11を、シート状飛散物質11の上下面がシート積層体7の上下面と一致するように充填することができ、これにより、シート積層体7表面の凹凸、シート積層体7が積層された積層体の変形、素子本体成形体23の作製後における凹溝21の変形、焼成後の凹溝変形、素子本体31のクラックやデラミネーションの発生を防止できる。
【0040】
また、素子本体成形体23の凹溝21内に充填されたシート状飛散物質11が、低温域で分解飛散する低温分解有機物と、高温域で分解飛散する高温分解有機物とを含有するため、脱バイ〜焼成工程における低温時においては低温分解有機物と高温分解有機物により、また高温時には高温分解有機物により、凹溝21を形成するグリーンシート1が固化するまで形状を保持でき、これにより、凹溝21の変形を防止できるとともに、凹溝21におけるクラックや積層界面のデラミネショーンなどの欠陥がない寸法通りの凹溝を確実にかつ一挙に形成できる。本発明の積層型電子部品の製法は、積層型圧電トランス、積層型コンデンサ、積層型圧電アクチュエータ等の積層型電子部品の製法に好適に用いられる。
【0041】
【実施例】
チタン酸ジルコン酸鉛Pb(Zr,Ti)O3からなる圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、スリップキャステイング法により、厚み150μmのセラミックグリーンシートを作製した。
【0042】
このグリーンシートの片面に内部電極となる銀−パラジウムを主成分とする導電性ペーストをスクリーン印刷法により5μmの厚みに印刷し、導電性ペーストを乾燥して内部電極パターンを形成した後、さらにこの内部電極パターン表面に前記グリーンシートを積層し、図1(b)に示すような、内部電極パターンをグリーンシートで挟持した厚み355μmのシート積層体を複数作製した。
【0043】
この後、表1に示すような低温分解有機物と高温分解有機物を、高温分解有機物100重量部に対して低温分解有機物40重量部の割合で混合し、これを表1に示すようにシート状に成形して、シート積層体の厚みと同一厚みの飛散物質シートを形成し、これを図3(b)に示すように、シート積層体表面に積層した。
【0044】
この後、図3(c)に示すように、成形型により、飛散物質シートが積層された飛散物質シート積層体に貫通孔を形成するとともに、この貫通孔内にシート状飛散物質を充填した。成形型は、その押出量が飛散物質シートの厚み量とされ、これにより、シート積層体の貫通孔内に容易にかつ確実にシート状飛散物質を充填することができ、しかも充填された飛散物質のシート積層体からの盛り上がりもなく、また充填不足もなく、さらに不要な貫通孔周辺における飛散物質の塗布もなかった。
【0045】
この後、貫通孔内に充填されていない部分の飛散物質シートをシート積層体から剥離した。シート積層体の貫通孔は、長方形形状(幅2mm、長さ10mm)とした。
【0046】
その後、貫通孔内にシート状飛散物質が充填されたシート積層体表面を加圧して、シート積層体とシート状飛散物質との厚み差を±5μm以下とした。
【0047】
尚、アクリル樹脂は500℃程度、アクリルビーズは500℃程度、カーボンビーズは800℃程度、カーボンファイバーは800℃程度で分解飛散するものである。
【0048】
そして、図4に示すように、貫通孔の位置を交互にずらして積層し、その後、150℃で加熱を行いながら加圧して一体化し、図4に一点鎖線で示す部分を切断して、内部に飛散物質が設けられた凹溝を、前記内部電極パターン一層置きに形成した、図5に示すような素子本体成形体を作製した。
【0049】
【表1】

Figure 0004275914
【0050】
素子本体成形体は、対向する側面に内部電極パターン一層置きに凹溝が形成されており、これらの凹溝の底面には内部電極パターン端が露出し、さらに凹溝内に熱処理により分解する飛散物質が充填されていた。これら各素子本体成形体の断面を観察した結果、凹溝の変形はなかった。
【0051】
その後、800℃で5時間の脱バイを行ない、飛散物質を分解飛散させ、図6に示すように、素子本体成形体の対向する2側面に凹溝を形成した。この素子本体成形体の凹溝の形成状態を観察した。その結果、本発明の試料では、溝部の変形は全くなかった。
【0052】
その後、1100℃で5時間で本焼成を行い、素子本体を得た。この後、素子本体の対向する側面に外部電極を形成し、積層型圧電素子を作製した。素子本体の凹溝の形成状態を観察したところ、本発明の積層型圧電素子では、凹溝部の変形がなく、寸法通りの凹溝を確実にかつ一挙に形成できていることを確認した。また、接合界面を観察しても、クラックやデラミネーションも発生していなかった。
【0053】
一方、比較例として、試料No.1の飛散物質をゾル状とし、上記成形型を用いてシート積層体に貫通孔を形成し、この貫通孔にメタルマスクを用いて飛散物質を充填する以外は、上記と同様にしてシート積層体を作製し、このシート積層体を積層して素子本体成形体を作製し、これを熱処理して素子本体を作製した。
【0054】
シート積層体の貫通孔内への飛散物質の充填性を確認したところ、貫通孔内への充填性が不十分で貫通孔周辺のシート積層体上にも飛散物質がはみ出して塗布された部分もあり、また、貫通孔内への飛散物質充填不足の部分、貫通孔内に盛り上がって充填されている部分も存在し、シート積層体の貫通孔内のみに、シート状飛散物質を確実に精度良く充填することが困難であった。
【0055】
また、シート積層体が積層された積層体の一部が変形しており、素子本体成形体の作製後における凹溝変形、焼成後の凹溝変形が一部見られた。
【0056】
【発明の効果】
以上詳述した通り、本発明の積層型電子部品の製法では、飛散物質シートとシート積層体を積層して打ち抜く際に、貫通孔を形成する成形型の押出量を調整することにより、シート積層体への貫通孔の作製と同時に、該貫通孔にシート状飛散物質を充填収容でき、一回の打抜加工により、小さなシート積層体の貫通孔内のみに、シート状飛散物質を確実に精度良く充填することができ、飛散物質の貫通孔からのはみ出しによる積層不良を防止することができ、さらに飛散物質シートの厚みをシート積層体の厚みと同一に制御することにより、貫通孔内のみに、シート積層体の厚みとほぼ同一厚みのシート状飛散物質を充填することができ、これにより、シート積層体表面の凹凸、シート積層体が積層された積層体の変形、素子本体成形体の作製後における凹溝の変形、焼成後の凹溝変形、素子本体のクラックやデラミネーションの発生を防止できる。
【図面の簡単な説明】
【図1】 本発明の積層型電子部品の製法に用いられるシート積層体の工程図であり、(a)はグリーンシート上に内部電極パターンを形成した平面図、(b)は内部電極パターンをグリーンシートで挟持した断面図である。
【図2】 シート積層体の貫通孔内にシート状飛散物質が充填された状態を示す平面図である。
【図3】 (a)は貫通孔に飛散物質が充されたシート積層体を示す断面図、(b)(c)はシート状飛散物質を貫通孔に充填する工程図である。
【図4】 (a)は飛散物質が充填されたシート積層体を交互に位置をずらして積層した状態を示す断面図、(b)はその平面図である。
【図5】 素子本体成形体の断面図である。
【図6】 素子本体の断面図である。
【図7】 積層型電子部品の断面図である。
【符号の説明】
1、5・・・グリーンシート
3・・・内部電極パターン
7・・・シート積層体
9・・・貫通孔
11・・・シート状飛散物質
13・・・飛散物質シート
14・・・成形型
21・・・凹溝
23・・・素子本体成形体
27・・・圧電体
29・・・内部電極
31・・・素子本体
33・・・外部電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer electronic component, and in particular, a concave groove is formed by alternately forming a concave groove in which an end of an internal electrode is exposed on an opposing side surface of an element body in which ceramics and internal electrodes are alternately stacked. The present invention relates to a method for manufacturing a multilayer electronic component in which external electrodes alternately connected to internal electrodes are formed on the side surfaces.
[0002]
[Prior art]
Conventionally, as a method for producing a multi-layered electronic component of the co-firing type, a method as described in JP-A-6-151999 is known.
[0003]
In the multilayer electronic component disclosed in this publication, first, a plurality of through holes are formed in a plurality of sheet laminates in which the internal electrode pattern is sandwiched between a pair of green sheets, and these through holes are made of polyvinyl alcohol. A scattering material is filled using a metal mask, and a plurality of sheet laminates filled with polyvinyl alcohol are laminated alternately shifted in position, and the laminate is cut at a through hole to produce an element body molded body. At the same time, a concave groove provided with a scattering material is formed on the side surface of the element body compact every other internal electrode pattern.
[0004]
Thereafter, the element body molded body is subjected to a binder removal treatment at a predetermined temperature and fired to produce an element body having a groove, and the groove of the element body is filled with a ceramic insulating material. A laminated piezoelectric element was manufactured by applying and baking a conductive paste made of Ag on the side surface of the element body on which was formed.
[0005]
In such a manufacturing method, the groove can be formed at a time without performing groove processing one by one by conventional dicing or the like, and the manufacturing process can be simplified.
[0006]
[Problems to be solved by the invention]
However, in the multilayer piezoelectric element described in the above publication, since the scattering material made of polyvinyl alcohol is printed and filled in the through holes of the sheet laminate using a metal mask, the position control is difficult. When the positioning of the metal mold and the mold for forming the holes is different, there is a problem that the printing is performed not only on the inside of the through holes but also on the surface of the sheet laminate around the through holes. For this reason, when the laminated body in which the sheet laminated body is laminated is deformed or the periphery of the through-hole is expanded, and when the laminated body is further cut to produce the element body molded body, the concave groove is deformed and the concave body is formed after firing. There was a problem that groove deformation, cracks and delamination in the element body occurred.
[0007]
In addition, when filling the through-holes with a metal mask, it is difficult to control the filling amount of the through-holes. However, in the case where the through hole is deformed and overfilled, there is a problem that the groove is deformed and cracks and delamination are generated in the element body as described above.
[0008]
Furthermore, in the case of filling the through-holes with a metal mask, it is necessary to place the metal mask on the sheet laminate and apply the paste on the metal mask with a blade, resulting in many manufacturing processes. there were.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a multilayer electronic component that can form a concave groove at once and reliably and can simplify the process.
[0010]
[Means for Solving the Problems]
The manufacturing method of the multilayer electronic component of the present invention includes a step of producing an element body molded body formed by laminating a plurality of ceramic green sheets and a plurality of internal electrode patterns, and heat-treating the element body molded body, thereby A step of producing an element body in which the electrodes are alternately laminated and the opposite side surfaces are formed with the recessed grooves in which the internal electrode ends are exposed; and the opposite side surface of the element body in which the recessed grooves are formed. , a method of the multilayer electronic component and forming an external electrode connected to alternate with the internal electrode, respectively, the element body molding body, pinching the internal electrode pattern of a pair of the ceramic green sheet the sheet stack is formed by the steps of preparing a scattering material sheet laminate by laminating the decomposed scattering material sheet by heat treatment, punching in the mold of the flight diffusing material sheet laminate抜加And at the same time to form a through hole in the sheet laminated body, and filling a sheet-like scattering material in the through hole, a step of removing the scattering material sheet on the sheet stack, the sheet in the through-hole a plurality of said sheet stack Jo scattering material is filled, a process of forming a laminate by laminating by shifting the position alternately, and the laminate is cut in the stacking direction in the through hole portion, facing the sheet-like scattering material, characterized in that it is formed by a step of forming a concave groove which is filled in the internal electrode pattern one layer every side.
[0011]
In such a manufacturing method, when the scattering material sheet and the sheet laminate are laminated and punched out, by adjusting the extrusion amount of the molding die for forming the through hole, simultaneously with the production of the through hole in the sheet laminate, Sheet-like scattered material can be filled and accommodated in the through hole, and sheet-like scattered material can be filled accurately and accurately only in the through-holes of small sheet laminates by a single punching process. It is possible to prevent the stacking failure due to the protrusion from the hole.
[0012]
Further, by controlling the thickness of the scattering material sheet to be the same as the thickness of the sheet laminate, it is possible to fill only the through holes with the sheet-like scattering material having the same thickness as the thickness of the sheet laminate. , Irregularities on the surface of the sheet laminate, deformation of the laminate on which the sheet laminate is laminated, deformation of the groove after fabrication of the element body molded body, deformation of the groove after firing, generation of cracks and delamination in the element body Can be prevented.
[0013]
Further, production method of the multilayer electronic component of the present invention, the sheet-like scattering material pressurizes the sheet stack that has been filled in the through hole, the thickness difference of the sheet stack and the sheet-like scattering material It is characterized by comprising a step of reducing.
[0014]
In such a manufacturing method of the laminated piezoelectric element, the sheet laminate and the sheet-like scattered material are integrated, and the sheet-like scattered material is prevented from coming off in the lamination process, and the handling is simplified. Sheet stacks with a difference in thickness between the sheet stack and the sheet-like scattered material can be removed, and a step due to the thickness difference that occurs when the pressure is integrated can be prevented. It becomes possible to make the shrinkage rate of the scattering material equal, and it is possible to prevent the gap or deformation of the lamination interface due to the shrinkage difference between the sheet laminate and the sheet-like scattering material.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 to FIG. 7 are process diagrams for explaining a method of manufacturing a multilayer electronic component according to the present invention. First, a calcined powder of piezoelectric ceramics such as lead zirconate titanate Pb (Zr, Ti) O 3 , A slurry in which an organic binder made of an organic polymer such as acrylic resin or butyral resin and a plasticizer are mixed is prepared, and a ceramic green sheet having a thickness of 50 to 250 μm is manufactured by, for example, a slip casting method.
[0021]
After the green sheet is punched to a predetermined size, as shown in FIG. 1 (a), a conductive paste which is an internal electrode, for example, silver-palladium and Cu as main components is screened on one side of the green sheet 1. The internal electrode pattern 3 is formed by printing to a thickness of 1 to 10 μm by a printing method and drying.
[0022]
Thereafter, as shown in FIG. 1B, the produced green sheet 5 is overlaid on the internal electrode pattern 3 so as to sandwich the internal electrode pattern 3, and is pressed to produce a sheet laminate 7. As shown in FIG. 1 (a), a conductive paste is applied to the center of a wide green sheet 1, a green sheet 5 is laminated so as to cover the conductive paste, and this is cut. A sheet laminate 7 as shown in b) is produced. A large number of such sheet laminates 7 are formed.
[0023]
Next, using a punching device, as shown in FIGS. 2 and 3A, a plurality of through holes 9 are formed in a plurality of sheet laminates 7 in a regularly aligned state, and these through holes are formed. 9 is filled with the sheet-like scattering material 11. These through-holes 9 have different dimensions depending on the size of the concave grooves, but are, for example, rectangular shapes having a width of about 2 mm and a length of about 10 mm.
[0024]
Specifically, as shown in FIG. 3B, first, the scattering material sheet laminate is produced by laminating the scattering material sheet 13 on the upper surface of the sheet laminate 7. The scattering material sheet 13 has the same thickness as that of the sheet laminate 7.
[0025]
As shown in FIG. 3 (c), the scattering material sheet laminate in which the scattering material sheet 13 is laminated is punched by controlling the amount of extrusion by the forming die 14 formed to form the through holes 9, Thereafter, the scattering material sheet 13 laminated on the surface of the sheet laminate 7 is peeled off, whereby the sheet lamination in which the sheet-like scattering material 11 is accommodated in the through hole 9 as shown in FIG. The body 7 can be produced.
[0026]
That is, the thickness of the scattering material sheet 13 is the same as the thickness of the sheet laminate 7, and the lower surface of the male mold of the mold 14 is controlled so as to descend only to the upper surface of the sheet laminate 7. Here, when the forming die 14 is lowered, the sheet-like scattered material 13 and a part of the sheet laminate 7 are pushed out, and the upper surface of the scattered matter sheet 13 is pushed out until the upper surface of the sheet laminate 7 is positioned. The formation of the through-hole 9 and the filling of the sheet-like scattered material 11 into the through-hole 9 are performed simultaneously.
[0027]
After the sheet-like scattered material 11 is accommodated in the through holes 9 of the sheet laminated body 7 and the scattered material sheet 13 remaining on the surface of the sheet laminated body 7 is removed, the sheet laminated body 7 is pressurized from the surface and the sheet laminated body 7 and It is desirable to reduce the thickness difference from the sheet-like scattered material 11. In particular, the thickness difference is desirably 5 μm or less. Thereby, when laminating | stacking the several sheet laminated body 7 and carrying out pressurization integration, it becomes possible to make the shrinkage | contraction rate of the sheet laminated body 7 and the sheet-like scattering substance 11 equivalent, and the sheet laminated body 7 and sheet-like It becomes possible to prevent the gap or deformation of the laminated interface due to the contraction difference of the scattering material 11.
[0028]
The flying material sheet 13 is made of a material that scatters at the time of debuying and firing (at the time of heat treatment), and contains a low-temperature decomposition organic material that decomposes and scatters in a low-temperature region and a high-temperature decomposition organic material that decomposes and scatters in a high-temperature region. Then, a slurry in which a high temperature decomposition organic substance, a low temperature decomposition organic substance, and a plasticizer are mixed is prepared, and similarly to the green sheet 1, the slurry is prepared with a thickness of 50 to 250 μm by, for example, a slip casting method.
[0029]
Examples of the low-temperature decomposition organic substance include an acrylic polymer, an organic polymer resin such as a butyral resin, and the like. In the present invention, when the sheet laminate 7 is integrated by heating and pressurizing, the sheet-like scattered material 11 is laminated. In order to make the shrinkage of the sheet close to that of the green sheet 1, and to prevent voids or deformation at the lamination interface due to the difference in shrinkage between the sheet laminate 7 and the sheet-like scattering substance 11. It is desirable to use the binder resin used for the ceramic green sheet 1 as a low-temperature decomposition organic substance from the viewpoint that the weight change at the time of degreasing can be brought close to the green sheet 1 and cracks and delamination near the concave grooves can be suppressed. .
[0030]
In particular, an acrylic resin is desirable from the viewpoint of adhesive strength at the time of thermocompression bonding between the sheet laminates 7 and easy decomposability at the time of removal. In the present invention, the low-temperature decomposition organic substance is an organic substance that decomposes and scatters up to 600 ° C.
[0031]
Examples of the high-temperature decomposition organic substance include phenol powder, acrylic beads, carbon beads, and carbon fibers. From the point of remaining near the firing temperature and the ease of producing the sheet-like scattering material 11 by mixing with an organic polymer resin such as an acrylic resin or a butyral resin, the high-temperature decomposition organic substance may be carbon beads or carbon. Fiber is preferred. In the present invention, the organic substance remains without being decomposed even at 750 ° C.
[0032]
The mixing ratio of the low temperature decomposition organic substance and the high temperature decomposition organic substance is preferably 25 to 60 parts by weight of the low temperature decomposition organic substance with respect to 100 parts by weight of the high temperature decomposition organic substance. It is desirable that it is -45 weight part.
[0033]
Thereafter, as shown in FIG. 4, the sheet laminate 7 in which the through-holes 9 are filled with the sheet-like scattering substance 11 is laminated with the positions shifted alternately, and then heated at 50 to 200 ° C. Then, it is pressurized and integrated to produce a laminate as shown in FIG.
[0034]
Thereafter, the laminate was cut along the alternate long and short dash line shown in FIGS. 4 (a) and 4 (b), i.e., through the through-hole 9, and as shown in FIG. The element body molded body 23 in which the inner electrode patterns 3 are alternately formed on the opposite side surfaces of the concave grooves 21 is produced.
[0035]
In this element body molded body 23, concave grooves 21 are formed on the opposite side surfaces every three internal electrode patterns 3, and the ends of the internal electrode patterns 3 are exposed on the bottom surfaces of these concave grooves 21. The inside is filled with a sheet-like scattering substance 11 that decomposes by heat treatment.
[0036]
Thereafter, de-bye treatment is performed in the atmosphere at 400 to 800 ° C. for 5 to 40 hours. At this time, the sheet-like scattered material 11 is decomposed and scattered, and the concave grooves 21 are formed on the opposing side surfaces of the element body molded body 23. Thereafter, the main baking is performed at 900 to 1200 ° C. for 2 to 5 hours, and as shown in FIG. 6, the element body 31 in which the piezoelectric bodies 27 and the internal electrodes 29 are alternately laminated is manufactured. The element body 31 has a columnar shape, and concave grooves 21 in which the ends of the internal electrodes 29 are exposed on the bottom surface are alternately formed on the opposite side surfaces for each internal electrode 29 on one side surface.
[0037]
Thereafter, for example, on the side surface of the element main body 31 where the concave groove 21 is formed, the internal electrode 29 exposed on the side surface of the element main body 31 other than the concave groove 21 and the surface of the piezoelectric body 27 in the vicinity of the internal electrode 29 are exposed to silver. The glass in the silver glass conductive paste is melted by applying and drying the glass conductive paste and heat-treating the silver glass conductive paste at a temperature of 700 to 950 ° C. while applying a load so as to press the metal plate 33. The silver component present in the molten glass collects at the end of the internal electrode 29, and as shown in FIG. 7, a protruding conductive terminal 35 protruding from the side surface of the element body 31 is formed, and the An external electrode 33 made of a metal plate is joined to the tip of the protruding conductive terminal 35.
[0038]
Thereafter, the insulating resin 39 is filled in the concave groove 21, and the other side surface of the element body 31 where the end of the internal electrode 29 is exposed is covered with the insulating resin, whereby a laminated piezoelectric element can be manufactured.
[0039]
In the manufacturing method of the multilayer piezoelectric element as described above, when the scattering material sheet 13 and the sheet laminate 7 are stacked and punched, by adjusting the extrusion amount of the male mold of the molding die 14 that forms the through hole 9, Simultaneously with the formation of the through-holes 9 in the sheet laminate 7, the through-holes 9 can be filled and accommodated with the sheet-like scattering substance 11, and only in the through-holes 9 of the small sheet laminate 7 by a single punching process. The sheet-like scattering material 11 can be reliably and accurately filled, and the stacking failure due to the protrusion of the scattering material from the through-hole 9 can be prevented, and the thickness of the scattering material sheet 13 is set to the thickness of the sheet laminate 7. By controlling the same, the sheet-like scattered material 11 having the same thickness as the thickness of the sheet laminate 7 is disposed only in the through hole 9, and the upper and lower surfaces of the sheet-like scattered material 11 coincide with the upper and lower surfaces of the sheet laminate 7. As filling Accordingly, unevenness on the surface of the sheet laminate 7, deformation of the laminate on which the sheet laminate 7 is laminated, deformation of the groove 21 after the element body molded body 23 is produced, deformation of the groove after firing The occurrence of cracks and delamination of the element body 31 can be prevented.
[0040]
Further, since the sheet-like scattered material 11 filled in the concave grooves 21 of the element body molded body 23 contains a low-temperature decomposed organic substance that decomposes and scatters in a low-temperature range and a high-temperature decomposed organic substance that decomposes and scatters in a high-temperature range, The shape can be maintained by the low temperature decomposition organic substance and the high temperature decomposition organic substance at the low temperature in the bi-firing process and by the high temperature decomposition organic substance at the high temperature until the green sheet 1 forming the concave groove 21 is solidified. In addition, it is possible to prevent the deformation of the concave groove 21 and to form a concave groove having a size without defects such as cracks in the concave groove 21 and delamination at the lamination interface. The method for producing a multilayer electronic component of the present invention is suitably used for a method of producing a multilayer electronic component such as a multilayer piezoelectric transformer, a multilayer capacitor, or a multilayer piezoelectric actuator.
[0041]
【Example】
A slurry in which a calcined powder of a piezoelectric ceramic made of lead zirconate titanate Pb (Zr, Ti) O 3, a binder made of an organic polymer, and a plasticizer is prepared, and a thickness of 150 μm is obtained by a slip casting method. A ceramic green sheet was prepared.
[0042]
A conductive paste mainly composed of silver-palladium serving as an internal electrode is printed on one side of the green sheet to a thickness of 5 μm by a screen printing method, and the conductive paste is dried to form an internal electrode pattern. The green sheet was laminated on the surface of the internal electrode pattern, and a plurality of sheet laminates having a thickness of 355 μm in which the internal electrode pattern was sandwiched between the green sheets as shown in FIG.
[0043]
Thereafter, the low-temperature decomposed organic substance and the high-temperature decomposed organic substance as shown in Table 1 are mixed in a ratio of 40 parts by weight of the low-temperature decomposed organic substance to 100 parts by weight of the high-temperature decomposed organic substance. The scattering material sheet having the same thickness as that of the sheet laminate was formed, and this was laminated on the surface of the sheet laminate as shown in FIG.
[0044]
Thereafter, as shown in FIG. 3C, through holes were formed in the scattering material sheet laminated body in which the scattering material sheets were laminated, and the sheet-like scattering material was filled in the through holes. The extrusion amount of the molding die is the thickness of the scattering material sheet, so that the sheet-like scattering material can be easily and reliably filled into the through-holes of the sheet laminate, and the filled scattering material There was no swell from the sheet laminate, no insufficient filling, and there was no unnecessary application of scattered substances around the through-holes.
[0045]
Thereafter, the portion of the scattered material sheet that was not filled in the through holes was peeled from the sheet laminate. The through holes of the sheet laminate were rectangular (width 2 mm, length 10 mm).
[0046]
Thereafter, the surface of the sheet laminate in which the through-holes were filled with the sheet-like scattered material was pressurized, and the difference in thickness between the sheet laminate and the sheet-like scattered material was adjusted to ± 5 μm or less.
[0047]
The acrylic resin is decomposed and scattered at about 500 ° C, the acrylic beads are about 500 ° C, the carbon beads are about 800 ° C, and the carbon fibers are about 800 ° C.
[0048]
Then, as shown in FIG. 4, the positions of the through holes are alternately shifted and laminated, and then the pressure holes are integrated while being heated at 150 ° C., and the portion indicated by the alternate long and short dash line in FIG. An element body molded body as shown in FIG. 5 was produced, in which concave grooves provided with scattering materials were formed every other internal electrode pattern.
[0049]
[Table 1]
Figure 0004275914
[0050]
The element body molded body has concave grooves formed on the opposite side surfaces every other internal electrode pattern, and the ends of the internal electrode patterns are exposed on the bottom surfaces of these concave grooves, and the inner grooves are further decomposed by heat treatment in the concave grooves. The material was filled. As a result of observing the cross section of each element body molded body, the groove was not deformed.
[0051]
Thereafter, de-buying was performed at 800 ° C. for 5 hours to decompose and disperse the scattered substances, and as shown in FIG. 6, concave grooves were formed on the two opposite side surfaces of the element body molded body. The formation state of the groove in the element body molded body was observed. As a result, in the sample of the present invention, there was no deformation of the groove.
[0052]
Then, main baking was performed at 1100 ° C. for 5 hours to obtain an element body. After that, external electrodes were formed on the opposing side surfaces of the element body to produce a multilayer piezoelectric element. When the formation state of the groove in the element body was observed, it was confirmed that in the multilayer piezoelectric element of the present invention, the groove was not deformed, and the groove having the dimensions was surely formed at once. Moreover, even when the bonding interface was observed, no cracks or delamination occurred.
[0053]
On the other hand, as a comparative example, Sample No. The sheet laminate is similar to the above except that the scattering material 1 is made into a sol, a through-hole is formed in the sheet laminate using the mold, and the through-hole is filled with the scattering material using a metal mask. The sheet laminate was laminated to produce an element body molded body, which was heat-treated to produce an element body.
[0054]
As a result of confirming the filling property of the scattering material into the through hole of the sheet laminate, the filling property into the through hole is insufficient, and there is a portion where the scattering material protrudes also on the sheet laminate around the through hole. In addition, there are parts that are insufficiently filled with scattered substances in the through holes, and parts that are raised and filled in the through holes, and the sheet-like scattered substances are reliably and accurately placed only in the through holes of the sheet laminate. It was difficult to fill.
[0055]
Moreover, a part of the laminated body in which the sheet laminated body was laminated was deformed, and a part of the groove deformation after the production of the element body molded body and a part of the groove groove after firing were observed.
[0056]
【The invention's effect】
As described above in detail, in the method of manufacturing a multilayer electronic component according to the present invention, when the scattering material sheet and the sheet laminate are laminated and punched out, the sheet stack is adjusted by adjusting the extrusion amount of the molding die for forming the through hole. Simultaneously with the creation of through-holes in the body, the through-holes can be filled and accommodated with sheet-like scattered substances, and the sheet-like scattered substances can be accurately and accurately placed only in the through-holes of small sheet laminates by a single punching process. It can be filled well, can prevent stacking faults due to protrusion of the scattering material from the through hole, and by controlling the thickness of the scattering material sheet to be the same as the thickness of the sheet laminate, only in the through hole The sheet-like scattering material having the same thickness as the thickness of the sheet laminate can be filled, so that the irregularities on the surface of the sheet laminate, the deformation of the laminate on which the sheet laminate is laminated, and the production of the element body compact Deformation of the groove, the groove deformation after firing, the occurrence of cracking and delamination of the device body can be prevented after.
[Brief description of the drawings]
FIG. 1 is a process diagram of a sheet laminate used in a method for producing a multilayer electronic component according to the present invention, wherein (a) is a plan view in which an internal electrode pattern is formed on a green sheet, and (b) is an internal electrode pattern. It is sectional drawing clamped with the green sheet.
FIG. 2 is a plan view showing a state in which a sheet-like scattering substance is filled in a through hole of a sheet laminate.
3 (a) is a sectional view showing the sheet stack scattering material is Hama charged in the through hole, (b) (c) are process diagrams filling the sheet scattering material in the through hole.
FIG. 4A is a cross-sectional view showing a state in which sheet laminates filled with scattering substances are alternately stacked with different positions, and FIG. 4B is a plan view thereof.
FIG. 5 is a cross-sectional view of an element body molded body.
FIG. 6 is a cross-sectional view of an element body.
FIG. 7 is a cross-sectional view of a multilayer electronic component.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 5 ... Green sheet 3 ... Internal electrode pattern 7 ... Sheet laminated body 9 ... Through-hole 11 ... Sheet-like scattering material 13 ... Scattering material sheet 14 ... Mold 21 ... Concave groove 23 ... Element body molded body 27 ... Piezoelectric body 29 ... Internal electrode 31 ... Element body 33 ... External electrode

Claims (2)

複数のセラミックグリーンシートと複数の内部電極パターンを積層してなる素子本体成形体を作製する工程と、該素子本体成形体を熱処理して、セラミックスと内部電極とが交互に積層され、かつ対向する側面に、内部電極端が露出する凹溝が交互に形成された素子本体を作製する工程と、前記凹溝が形成された素子本体の対向する側面に、前記内部電極と交互に接続する外部電極をそれぞれ形成する工程とを具備する積層型電子部品の製法であって、前記素子本体成形体が、前記内部電極パターンを一対の前記セラミックグリーンシートで挟持してなるシート積層体に、熱処理により分解する飛散物質シートを積層して飛散物質シート積層体を作製する工程と、該飛散物質シート積層体を成形型で打抜加工して前記シート積層体に貫通孔を形成すると同時に、前記貫通孔にシート状飛散物質を充填する工程と、前記シート積層体上の前記飛散物質シートを剥離する工程と、前記貫通孔に前記シート状飛散物質が充填された複数の前記シート積層体を、交互に位置をずらして積層して積層体を作製する工程と、該積層体を前記貫通孔部分で積層方向に切断して、対向する側面に前記シート状飛散物質が充填された凹溝を前記内部電極パターン一層おきに形成する工程とを具備して形成されることを特徴とする積層型電子部品の製法。A step of producing an element body molded body formed by laminating a plurality of ceramic green sheets and a plurality of internal electrode patterns, and heat-treating the element body molded body, wherein ceramics and internal electrodes are alternately laminated and face each other A step of fabricating element bodies in which concave grooves in which internal electrode ends are exposed are alternately formed on side surfaces, and external electrodes that are alternately connected to the internal electrodes on opposite side surfaces of the element body in which the concave grooves are formed the a process for preparing multilayer electronic component and a step of forming each decomposition, the element body molding body, the sheet laminate formed by sandwiching with the said internal electrode pattern of the pair ceramic green sheet, by heat treatment a step of scattering material sheet to prepare a laminated by scattering material sheet laminated body, the the flight diffusing material sheet laminate mold stamping to through hole in the sheet laminate And simultaneously formed, said a step of filling the sheet scattering material in the through hole, the sheet and peeling off the scattering material sheet on the laminate, the through hole in the sheet-like scattering material wherein a plurality of filled the sheet laminate, a process of forming a laminate by laminating by shifting the position alternately, the laminate is cut in the stacking direction in the through hole portion, the sheet-like scattering material is filled on opposite sides Forming a concave groove every other internal electrode pattern layer, and a method for producing a multilayer electronic component. 前記シート状飛散物質が前記貫通孔に充填された前記シート積層体を加圧して、前記シート積層体と前記シート状飛散物質との厚み差を小さくする工程を具備することを特徴とする請求項1記載の積層型電子部品の製法。 Claims wherein the sheet-like scattering material pressurizes the sheet stack that has been filled in the through hole, characterized by comprising the step of reducing the thickness difference of the sheet stack and the sheet-like scattering material A method for producing a multilayer electronic component according to 1.
JP2002250781A 2002-08-29 2002-08-29 Manufacturing method of multilayer electronic components Expired - Fee Related JP4275914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250781A JP4275914B2 (en) 2002-08-29 2002-08-29 Manufacturing method of multilayer electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250781A JP4275914B2 (en) 2002-08-29 2002-08-29 Manufacturing method of multilayer electronic components

Publications (2)

Publication Number Publication Date
JP2004095592A JP2004095592A (en) 2004-03-25
JP4275914B2 true JP4275914B2 (en) 2009-06-10

Family

ID=32057520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250781A Expired - Fee Related JP4275914B2 (en) 2002-08-29 2002-08-29 Manufacturing method of multilayer electronic components

Country Status (1)

Country Link
JP (1) JP4275914B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659368B2 (en) * 2004-01-28 2011-03-30 京セラ株式会社 Manufacturing method of multilayer electronic components
DE102006014892B4 (en) * 2005-03-31 2020-09-24 Ngk Spark Plug Co., Ltd. Gas sensor element, method for its manufacture, and gas sensor
JP4565563B2 (en) * 2005-03-31 2010-10-20 日本特殊陶業株式会社 Method for manufacturing gas sensor element
JP5709808B2 (en) * 2012-08-02 2015-04-30 株式会社日本自動車部品総合研究所 Particulate matter detection element manufacturing method and particulate matter detection sensor

Also Published As

Publication number Publication date
JP2004095592A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US6260248B1 (en) Method for producing a monolithic multilayer piezo actuator
US20030107867A1 (en) Stacked ceramic body and production method thereof
JP2008192696A (en) Manufacturing method of multilayer electronic component
JP5062844B2 (en) Manufacturing method of ceramic laminate
JP4275914B2 (en) Manufacturing method of multilayer electronic components
JP4771649B2 (en) Manufacturing method of multilayer electronic component
KR101823369B1 (en) Method of manufacturing multilayer ceramic electronic component
EP2267810A1 (en) Laminated piezoelectric ceramic element fabrication method
JP4349820B2 (en) Manufacturing method of multilayer electronic components
JP4659368B2 (en) Manufacturing method of multilayer electronic components
JP4280043B2 (en) Manufacturing method of multilayer electronic components
JP2006253435A (en) Process for producing multilayer ceramic substrate
EP1158549A1 (en) Laminated body manufacturing method and laminated body pressurizing device
JP2002270459A (en) Manufacturing method for laminated ceramic electronic component
JPH06283375A (en) Manufacture of layered electronic components
JP2004034448A (en) Method for manufacturing multi-layer ceramic substrate
JPH11502677A (en) Composite piezoelectric multilayer device and method for manufacturing such device
KR100694922B1 (en) Electronic device of ceramic
JPH11111560A (en) Production of ceramic electrical component
JP3912153B2 (en) Manufacturing method of ceramic multilayer substrate
JP2000332312A (en) Manufacture of laminated piezoelectric ceramic part
JP3746475B2 (en) Manufacturing method of multilayer electronic components
JP3521774B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3870812B2 (en) Manufacturing method of multilayer piezoelectric element
JP3878916B2 (en) Manufacturing method of multilayer electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees