JP5709808B2 - Particulate matter detection element manufacturing method and particulate matter detection sensor - Google Patents

Particulate matter detection element manufacturing method and particulate matter detection sensor Download PDF

Info

Publication number
JP5709808B2
JP5709808B2 JP2012171820A JP2012171820A JP5709808B2 JP 5709808 B2 JP5709808 B2 JP 5709808B2 JP 2012171820 A JP2012171820 A JP 2012171820A JP 2012171820 A JP2012171820 A JP 2012171820A JP 5709808 B2 JP5709808 B2 JP 5709808B2
Authority
JP
Japan
Prior art keywords
detection
detection electrode
particulate matter
insulating
film sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012171820A
Other languages
Japanese (ja)
Other versions
JP2014032063A (en
Inventor
水谷 圭吾
圭吾 水谷
真哉 寺西
真哉 寺西
岳人 木全
岳人 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2012171820A priority Critical patent/JP5709808B2/en
Priority to DE102013215123.3A priority patent/DE102013215123A1/en
Priority to CN201310334469.4A priority patent/CN103575628B/en
Publication of JP2014032063A publication Critical patent/JP2014032063A/en
Application granted granted Critical
Publication of JP5709808B2 publication Critical patent/JP5709808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2086Output circuits, e.g. for controlling currents in command coils with means for detecting circuit failures
    • F02D2041/2089Output circuits, e.g. for controlling currents in command coils with means for detecting circuit failures detecting open circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、自動車用内燃機関の排気系等に使用され、被測定ガス中に含まれるカーボンからなる煤を主成分とする粒子状物質を検出する粒子状物質検出素子の製造方法、並びに、粒子状物質検出センサに関する。   The present invention relates to a method for manufacturing a particulate matter detection element that is used in an exhaust system of an internal combustion engine for automobiles, etc., and detects particulate matter mainly composed of soot composed of carbon contained in a gas to be measured, and particles TECHNICAL FIELD OF THE INVENTION

自動車用ディーゼルエンジン等において、燃焼排気に含まれる環境汚染物質、特に煤粒子(Soot)及び可溶性有機成分(SOF)を主体とする粒子状物質(Particulate Matter;以下、PMと称する。)を捕集するために、排気通路にディーゼルパティキュレートフィルタ(以下、DPFと称する。)を設置することが行われている。DPFは、耐熱性に優れる多孔質セラミックスからなり、多数の細孔を有する隔壁に燃焼排気を通過させてPMを捕捉する。
DPFは、PM捕集量が許容量を超えると、目詰まりが生じて圧力損失が増大したり、過剰に堆積したPMを燃焼したときに発生する熱によりDPFが破損してPMのすり抜けを生じたりする虞があり、定期的に再生処理を行って捕集能力を回復させている。
In automobile diesel engines and the like, environmental pollutants contained in combustion exhaust, particularly particulate matter (hereinafter referred to as PM) mainly composed of soot particles and soluble organic components (SOF) are collected. For this purpose, a diesel particulate filter (hereinafter referred to as DPF) is installed in the exhaust passage. The DPF is made of porous ceramics having excellent heat resistance, and traps PM by allowing combustion exhaust gas to pass through partition walls having a large number of pores.
If the amount of collected PM exceeds the allowable amount, the DPF will become clogged and the pressure loss will increase, or the DPF will be damaged by the heat generated when burning excessively accumulated PM, causing the PM to pass through. The collection ability is restored by periodically performing a regeneration process.

DPFの再生時期の適切な判断や、PMのすり抜け等の異常を早期に検出すべく、被測定ガス中のPMを検出するPM検出センサについて種々提案されている。
例えば、特許文献1には、絶縁体の表面に所定の間隙を隔てて対向させた一対の櫛歯電極間に被測定ガス中のPMを堆積させ、その堆積量に応じて変化する抵抗値、静電容量、インピーダンス等の電気的特性を測定して、被測定ガス中に含まれるPM量を検出するPM検出素子が開示されている。
また、特許文献2には、板状の素子基材、前記素子基材に配設された一対の計測電極、前記一対の計測電極の間における電気的特性の測定をする特性測定手段、及び前記特性測定手段で測定をされた電気的特性の変化量に基づいて前記一対の計測電極及びその周囲に集塵された粒子状物質の量を求める粒子状物質量算出手段、を備え、一対の前記計測電極を構成するそれぞれの計測電極は、平面的に配列された複数の櫛歯部と、各前記計測電極の前記複数の櫛歯部をその一端で連結する櫛骨部とを有する櫛歯状の電極であり、それぞれの前記計測電極の前記櫛歯部が、隙間を空けて相互にかみ合わされるように配置されてなり、且つ、少なくとも一方の前記計測電極の前記櫛骨部は、誘電体からなる櫛骨被覆部によって被覆された粒子状物質検出装置が開示されている。この粒子状物質検出装置は、一対の計測電極及びその周囲に粒子状物質を付着させ、一対の計測電極間の電気的特性の変化を測定することにより粒子状物質の検出を行うものである。
Various PM detection sensors for detecting PM in the gas to be measured have been proposed in order to appropriately detect the DPF regeneration timing and to detect abnormalities such as PM slipping at an early stage.
For example, in Patent Document 1, PM in a measurement gas is deposited between a pair of comb electrodes facing a surface of an insulator with a predetermined gap therebetween, and a resistance value that changes according to the amount of deposition, There is disclosed a PM detecting element that measures electrical characteristics such as capacitance and impedance and detects the amount of PM contained in a gas to be measured.
Patent Document 2 discloses a plate-shaped element base, a pair of measurement electrodes disposed on the element base, characteristic measurement means for measuring electrical characteristics between the pair of measurement electrodes, and the above A pair of the measurement electrodes and a particulate matter amount calculation means for obtaining the amount of particulate matter collected around the measurement electrodes based on a change amount of the electrical characteristics measured by the property measurement means; Each measurement electrode constituting the measurement electrode has a comb-tooth shape having a plurality of comb-tooth portions arranged in a plane and a comb-bone portion connecting the plurality of comb-tooth portions of each measurement electrode at one end thereof. The comb teeth of each of the measurement electrodes are arranged so as to be engaged with each other with a gap, and the comb bone of at least one of the measurement electrodes is a dielectric. Particulate matter covered by a comb bone covering portion comprising Out apparatus is disclosed. This particulate matter detection apparatus detects particulate matter by attaching a particulate matter to a pair of measurement electrodes and the periphery thereof and measuring a change in electrical characteristics between the pair of measurement electrodes.

このような、従来のPM検出素子では、アルミナ等の絶縁性基板や、ジルコニア等の導電性基板の表面に、厚膜印刷、化学蒸着(CVD)、物理蒸着(PVD)等の薄膜印刷等の手法を用いて、略短冊状に形成した複数の電極を一定の間隔で並べ、極性が交互に入れ代わるように対向させた、いわゆる櫛歯状にパターン形成されたものが用いられている。櫛歯状電極を対向させたPM検出素子においては、一対の電極間に堆積するPM量が一定量を超えるまで電極間の電気的特性を検出することができない不感質量が存在し、DPFの異常をより早期に、しかも確実に検出するために、この不感質量をできる限り少なくすることが望まれている。   In such a conventional PM detection element, thick film printing, chemical vapor deposition (CVD), thin film printing such as physical vapor deposition (PVD), etc. are performed on the surface of an insulating substrate such as alumina or a conductive substrate such as zirconia. A technique is used in which a plurality of electrodes formed in a substantially strip shape are arranged at regular intervals and are opposed to each other so that the polarities are alternately changed, and a so-called comb-like pattern is used. In the PM detection element with the comb-like electrodes facing each other, there is a dead mass that cannot detect the electrical characteristics between the electrodes until the amount of PM deposited between the pair of electrodes exceeds a certain amount, and an abnormality of the DPF It is desired to reduce this dead mass as much as possible in order to detect the above in an early and reliable manner.

また、検出電極間に一定量以上のPMが堆積し飽和状態となると、検出電極間で検出される電気的特性が一定となり、被測定ガス中のPMを検出できなくなる。
そこで、PM検出装置においては、PM検出を継続するために、検検出電極間へのPM付着量が限界に達したときに、ヒータ等の加熱により、付着したPMを燃焼除去してPM検出素子の再生を図っている。
Further, when a certain amount or more of PM is accumulated between the detection electrodes and becomes saturated, the electrical characteristics detected between the detection electrodes become constant, and the PM in the gas to be measured cannot be detected.
Therefore, in the PM detection device, in order to continue the PM detection, when the amount of PM adhering between the detection electrodes reaches a limit, the attached PM is burned and removed by heating with a heater or the like to detect the PM. Is trying to play.

さらに、特許文献3では、このようなガスセンサにおいて、検出部と抵抗測定手段との間を繋ぐ導通経路の断線の有無を検出する断線検出手段として、所定の抵抗値を有する断線検出抵抗を一対の検出電極を導通すると共に、該検出電極間に形成される検出抵抗に対して並列となるように反抵抗測定手段側に設けたことを特徴とするガスセンサが開示されており、早期の断線検出を可能としている。   Furthermore, in Patent Document 3, in such a gas sensor, a disconnection detection resistor having a predetermined resistance value is paired as a disconnection detection unit that detects the presence or absence of a disconnection of a conduction path that connects between the detection unit and the resistance measurement unit. Disclosed is a gas sensor characterized in that it is provided on the side of the resistance measuring means so as to conduct the detection electrode and to be in parallel with the detection resistance formed between the detection electrodes. It is possible.

ところが、従来のPM検出素子において、櫛歯状電極を形成する際に、一般的な厚膜印刷を用いた場合には、検出電極間の間隙は数十μm程度となり、印刷ペーストのレオロジー特性や印刷スクリーンに形成するマスクの製造上の制約等から20μm程度が限界であった。
また、CVDやPVD等の薄膜印刷を用いた場合には、極めて精密なパターンの形成が可能である反面、設備費用が大きく、製造コストの増大となる虞がある。
加えて、形成される検出電極は、必然的に薄膜となるため、自動車エンジン等の内燃機関の燃焼排気流路に設けられ、外部からの振動、被測定ガスの温度変化、PM検出素子を加熱して検出部に堆積したPMを燃焼除去する際の熱ストレス、被測定ガス中に含まれる水分の付着による冷熱ストレス等、極めて過酷な使用環境に直接晒されるPM検出素子においては、検出電極の蒸散や剥離等を招き、十分な耐久性が得られない虞もある。
However, in the conventional PM detection element, when forming a comb-like electrode, when using a general thick film printing, the gap between the detection electrodes is about several tens of μm, and the rheological characteristics of the printing paste and About 20 μm was the limit due to restrictions on the production of the mask formed on the printing screen.
In addition, when thin film printing such as CVD or PVD is used, it is possible to form a very precise pattern, but on the other hand, the equipment cost is high and the manufacturing cost may be increased.
In addition, since the detection electrode to be formed is necessarily a thin film, it is provided in the combustion exhaust passage of an internal combustion engine such as an automobile engine, and the vibration from the outside, the temperature change of the measured gas, and the PM detection element are heated. In PM detection elements that are directly exposed to extremely harsh usage environments such as thermal stress when burning and removing PM deposited on the detection unit, and thermal stress due to adhesion of moisture contained in the gas to be measured, There is a risk that transpiration, peeling, and the like may occur, and sufficient durability may not be obtained.

さらに、一対の電極間に堆積する粒子状物質の量に応じて変化する電気的特性を検出する粒子状物質検出素子において、電気的特性として、検出電極間の抵抗値変化を測定する場合であっても、静電容量を測定する場合であっても、各検出電極内に何らかの欠陥による断線が生じた状態と検出電極間に粒子状物質が堆積していない状態とは、電気的には等価となるため、検出電極内の断線等の欠陥と検出電極間にPMが堆積していない状態との区別が付かなくなる虞もある。   Furthermore, in a particulate matter detection element that detects electrical characteristics that change according to the amount of particulate matter deposited between a pair of electrodes, the change in resistance value between the detection electrodes is measured as electrical characteristics. However, even in the case of measuring capacitance, the state where a disconnection due to some defect occurs in each detection electrode and the state where no particulate matter is deposited between the detection electrodes are electrically equivalent. Therefore, there is a possibility that it is not possible to distinguish between a defect such as a disconnection in the detection electrode and a state where PM is not deposited between the detection electrodes.

そこで、本発明は、かかる実情に鑑み、被測定ガス中に含まれる粒子状物質の検出部への堆積量に応じて変化する電気的特性を測定して被測定ガス中の粒子状物質の量を検出する粒子状物質検出素子であって、不感質量が極めて少なく、測定精度の高い構造の粒子状物質検出素子の製造方法を提供すると共に、その粒子状物質検出素子を用いた粒子状物質検出センサにおいて、素子内部における断線等の欠陥の有無を検出可能とした信頼性の高い粒子状物質検出センサを提供することを目的とする。   Accordingly, in view of such circumstances, the present invention measures the electrical characteristics that change according to the amount of particulate matter contained in the measurement gas deposited on the detection unit, and thereby determines the amount of particulate matter in the measurement gas. Provides a method for manufacturing a particulate matter detection element having a structure with extremely low dead mass and high measurement accuracy, and detecting particulate matter using the particulate matter detection element An object of the present invention is to provide a highly reliable particulate matter detection sensor that can detect the presence or absence of a defect such as a disconnection in an element.

本発明(1、1a、1b、1c、1d)では、少なくとも所定の距離を隔てて対向する第1の検出電極(EL )と、第2の検出電極(ELを具備する検出部(10、10c、10d)に捕集・堆積する粒子状物質の量に応じて変化する上記第1の検出電極と上記第2の検出電極の間の電気的特性を検出して被測定ガス中に含まれる粒子状物質の量を検出する粒子状物質検出素子(2、2、2b、2c、2d)を備えた粒子状物質検出センサであって、
上記第1の検出電極(EL )が、一方の端部(103A103Ac103Adから、他方の端部(104A104Ac104Adに至る迄に直列に接続された導通経路を形成し、上記検出部において、その一部をコ字形に屈曲せしめた折り返し部(101A101Adと、所定の検出電極対間距離を形成する絶縁層(120)を介して対向する検出電極対向部(100Aと、からなり、
上記第2の検出電極(EL )が、一方の端部(103B、103Bc、103Bd)から、他方の端部(104B、104Bc、104Bd)に至る迄に直列に接続された導通経路を形成し、上記検出部において、その一部を逆コ字形に屈曲せしめた第2の検出電極折り返し部(101B、101Bd)と、所定の検出電極対間距離を形成する絶縁層(120)を介して対向する第2の検出電極対向部(100B)と、からなり、
上記第1の検出電極の一方の端部(103A103Ac103Adから上記第1の検出電極の他方の端部(104A104Ac104Adに至るまでの抵抗値の計測により、上記第1の検出電極(EL の内部における断線の有無を検出する第1の断線検出回路部(301A、301Aa、301Ab)と、
上記第2の検出電極の一方の端部(103B、103Bc、103Bd)から上記第2の検出電極の他方の端部(104B、104Bc、104Bd)に至るまでの抵抗値の計測により、上記第1の検出電極(EL )の内部における断線の有無を検出する第1の断線検出回路部(301B、301Ba、301Bb)と、を具備する。
In the present invention (1,1a, 1b, 1c, 1d ), the first detection electrodes face each other with at least a predetermined distance (EL A), detecting unit comprising a second detection electrode (EL B) (10, 10c, 10d) in the gas to be measured by detecting electrical characteristics between the first detection electrode and the second detection electrode , which change according to the amount of particulate matter collected and deposited on (10, 10c, 10d) A particulate matter detection sensor comprising a particulate matter detection element (2, 2, 2b, 2c, 2d) for detecting the amount of particulate matter contained in
The first detection electrode (EL A ) forms a conduction path connected in series from one end (103A , 103Ac , 103Ad ) to the other end (104A , 104Ac , 104Ad ). In the above detection part, a detection electrode facing part (101A , 101Ad ) , a part of which is bent in a U shape, and a detection electrode facing part (120) facing each other via an insulating layer (120) forming a predetermined distance between the detection electrodes 100A ), and
The second detection electrode (EL B ) forms a conduction path connected in series from one end (103B, 103Bc, 103Bd) to the other end (104B, 104Bc, 104Bd). In the detection part, the second detection electrode folded part (101B, 101Bd), a part of which is bent in an inverted U shape, is opposed to an insulating layer (120) that forms a predetermined distance between the detection electrodes. A second sensing electrode facing portion (100B) that
The first detection one end of the electrode (103A, 103Ac, 103Ad) the other end of the first detection electrode from (104A, 104Ac, 104Ad) by the measurement of the resistance value of up to, the first A first disconnection detection circuit section (301A, 301Aa, 301Ab ) for detecting the presence or absence of disconnection inside the detection electrode (EL A ) of
By measuring the resistance value from one end (103B, 103Bc, 103Bd) of the second detection electrode to the other end (104B, 104Bc, 104Bd) of the second detection electrode, A first disconnection detection circuit portion (301B, 301Ba, 301Bb) for detecting the presence or absence of disconnection in the detection electrode (EL B ) .

また、本発明は、上記第1の検出電極の一方の端部と上記第2の検出電極の一方の端部との間(103A−103B、103Ac−103Bc、103Ad−103Bd)、又は、上記第1の検出電極の他方の端部と、上記第2の検出電極の間(104A−104B、104Ac−104Bc、104Ad−104Bd)の抵抗値、静電容量、インピーダンスのいずれかの検出により、上記第1の検出電極上記第2の検出電極との間に堆積する粒子状物質の堆積量を検出するPM検出回路部(31)を具備する。
さらに、本発明は、上記粒子状物質検出素子(2、2b、2c、2d)が、上記検出部(10、10c、10d)と、これを実装する基板部(20、20b、20c、20d)とからなり、上記検出部(10、10c、10d)が、100μm以上、500μm以下の膜厚で略平板状に形成した上記第1の検出電極対向部(100A)と上記第2の検出電極対向部(100B)と、5μm以上、20μm以下の膜厚で略平板状に形成した上記絶縁層(120)とを繰り返して積層せしめた積層構造体からなり、その積層方向端面を検出面として利用するものである。
In addition, the present invention provides a configuration between one end of the first detection electrode and one end of the second detection electrode (103A-103B, 103Ac-103Bc, 103Ad-103Bd), or the first the other end of the first detecting electrodes, the during the second detection electrode (104A-104B, 104Ac-104Bc , 104Ad-104Bd) resistance of the capacitance, either by detection of the impedance, said first A PM detection circuit unit (31) for detecting the amount of particulate matter deposited between one detection electrode and the second detection electrode is provided.
Further, according to the present invention, the particulate matter detection element (2, 2b, 2c, 2d) includes the detection unit (10, 10c, 10d) and a substrate unit (20, 20b, 20c, 20d) on which the detection unit is mounted. The detection portion (10, 10c, 10d) is formed in a substantially flat plate shape with a film thickness of 100 μm or more and 500 μm or less and the first detection electrode facing portion (100A ) and the second detection electrode facing Part ( 100B) and the laminated structure in which the insulating layer (120) formed in a substantially flat shape with a film thickness of 5 μm or more and 20 μm or less is repeatedly laminated, and the end surface in the stacking direction is used as a detection surface. Is .

本発明によれば、被測定ガス中に含まれる粒子状物質の検出部への堆積量に応じて変化する電気的特性を測定して被測定ガス中の粒子状物質の量を検出する粒子状物質検出素子において、上記第1の断線検出回路部(301Aによって上記第1の検出電極(EL の内部の欠陥の有無を上記第1の検出電極の一方の端部(103Aから上記第1の検出電極の他方の端部(104Aに至るまでの直流抵抗の計測によって検出し、上記第2の断線検出回路部(301B)によって上記第2の検出電極(EL )の内部の欠陥の有無を上記第2の検出電極の一方の端部(103B)から上記第2の検出電極の他方の端部(104B)に至るまでの直流抵抗の計測によって検出した上で、上記第1の検出電極(EL )と上記第2の検出電極(ELとの間に堆積した粒子状物質の量に応じて変化する電気的特性を上記PM検出回路部(31)によって検出するため、従来のように検出された電気的特性が、断線等の検出電極内部の欠陥によるものなのか検出電極間に粒子状物質が堆積していないことによるものなのかが区別できなくなるような虞がなく、高い信頼性の維持を図ることができる。
加えて、上記検出部(10、10c、10d)を積層構造によって形成し、積層方向断面を検出面とすることにより、20μm以下の極めて薄く形成することが可能な上記絶縁層(120)の膜厚を上記第1の検出電極と上記第2の検出電極との間の検出電極対間距離を20μm以下のい距離に形成することが可能となり、不感質量が極めて少なく、測定制度の高い構造の粒子状物質検出素子の製造方法を提供することができる。
従来の厚膜印刷等の方法では、検出電極間を20μm以下に形成することが極めて困難であるが、本発明のように積層構造をとることで、絶縁層(120)を容易に5μm以上20μm以下の範囲で形成することが可能となり、極めて不感質量を少なくできる。
さらに、LNF(LaNi 0.6 Fe 0.4 )、LSN(La 1.2 Sr 0.8 NiO )、LSM(La 1−X Sr MnO 3−δ )、LSC(La 1−X Sr CoO 3―δ )、LCC(La 1−X Ca CrO 3−δ )、LSCN(La 0.85 Sr 0.15 Cr 1−X Ni 3−δ )(0.1≦X≦0.7)のいずれかから選択したペロブスカイト型の導電性酸化物材料を用いて、100μm以上500μm以下の膜厚を有する略平板状の導電性厚膜シート(100 THK )と、同材質の導電性酸化物材料を用いて5μm以上20μm以下の膜厚を有する略平板状の導電性薄膜シート(100 THN )を形成し、8YSZ((ZrO 0.92 (Y 0.08 )からなる部分安定化ジルコニア、MgO、Al のいずれかから選択した絶縁性酸化物材料を用いて、100μm以上500μm以下の膜厚を有する略平板状の絶縁性厚膜シート(120 THK )と、同材質の絶縁性酸化物材料を用いて5μm以上20μm以下の膜厚を有する略平板状の絶縁性薄膜シート(120 THN )を形成し、導電性厚膜シート(100 THK )の所定位置に、所定の形状に区画した絶縁性厚膜シート(120 THK )を埋め込んだ絶縁性厚膜シート埋め込み導電性厚膜シート(A層、B層)と絶縁性薄膜シート(120THN)の所定位置に、所定形状に区画した導電性薄膜シート(100THN)を埋め込んだ導電性薄膜シート埋め込み絶縁性薄膜シート(MA層、MB層、C層)とを所定の繰り返しパターンで積層することにより、第1の検出電極(EL )が、検出部(10、10c、10d)において、その一部をコ字形に屈曲せしめた折り返し部(101A、101Ad)と、所定の検出電極対間距離を形成する絶縁層(120)を介して他の検出部と対向する第1の検出電極対向部(100A)とを具備し、第2の検出電極(EL )が、検出部(10、10c、10d)において、その一部を逆コ字形に屈曲せしめた折り返し部(101B、101Bd)と、所定の検出電極対間距離を形成する絶縁層(120)を介して他の検出電極と対向する第2の検出電極対向部(100B)とを具備した、粒子状物質検出センサを実現することができる。
According to the present invention, the particulate matter that detects the amount of particulate matter in the measurement gas by measuring the electrical characteristics that change according to the amount of particulate matter contained in the measurement gas deposited on the detection unit. in substance-detecting element, the said first disconnection detecting circuit section the presence or absence of internal defects (301A) by said first detection electrode (EL a) from one end (103A) of the first detection electrode Detected by measuring the DC resistance up to the other end (104A ) of the first detection electrode, and detected by the second disconnection detection circuit (301B) inside the second detection electrode (EL B ). The presence or absence of a defect is detected by measuring the DC resistance from one end (103B) of the second detection electrode to the other end (104B) of the second detection electrode . first detecting electrodes (EL a) and the second test To detect the electrodes the PM detection circuit an electrical characteristic that varies depending on the amount of the particulate matter deposited between (EL B) (31), is detected electrical characteristics as in the prior art, There is no fear that it may be impossible to distinguish whether the defect is due to a defect in the detection electrode such as a disconnection or the absence of particulate matter between the detection electrodes, and high reliability can be maintained.
In addition, by forming the detection section (10 , 10c, 10d ) with a laminated structure and using the cross section in the lamination direction as a detection surface, the film of the insulating layer (120) that can be formed extremely thin of 20 μm or less the thickness of it is possible to form the detection electrode pair distance has the following short-20μm the distance between the first detection electrode and the second detection electrode, insensitive mass is extremely small, high measurement system structure A method for producing a particulate matter detection element can be provided.
In conventional methods such as thick film printing, it is extremely difficult to form the gap between the detection electrodes to 20 μm or less, but by taking a laminated structure as in the present invention, the insulating layer (120) can be easily formed to 5 μm to 20 μm. It becomes possible to form in the following ranges, and extremely insensitive mass can be reduced.
Furthermore, LNF (LaNi 0.6 Fe 0.4 O 3), LSN (La 1.2 Sr 0.8 NiO 4), LSM (La 1-X Sr X MnO 3-δ), LSC (La 1-X Sr X CoO 3-δ), LCC (La 1-X Ca X CrO 3-δ), LSCN (La 0.85 Sr 0.15 Cr 1-X Ni X O 3-δ) (0.1 ≦ X ≦ 0.7) a perovskite-type conductive oxide material selected from any one of the above, a substantially flat conductive thick film sheet (100 THK ) having a thickness of 100 μm to 500 μm, and a conductive material of the same material A substantially flat conductive thin film sheet (100 THN ) having a film thickness of 5 μm or more and 20 μm or less is formed using a conductive oxide material , and 8YSZ ((ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 ) Partial stabilization dice Using an insulating oxide material selected from Luconia, MgO, and Al 2 O 3 , a substantially flat insulating thick film sheet (120 THK ) having a thickness of 100 μm to 500 μm, and the same material A substantially flat insulating thin film sheet (120 THN ) having a film thickness of 5 μm or more and 20 μm or less is formed using an insulating oxide material, and a predetermined shape is formed at a predetermined position of the conductive thick film sheet (100 THK ). Insulating thick film sheet (120 THK ) embedded in an insulating thick film sheet embedded conductive thick film sheet (A layer, B layer) and insulating thin film sheet (120 THN) are partitioned into predetermined shapes at predetermined positions A conductive thin film sheet embedded with a conductive thin film sheet (100THN) and an insulating thin film sheet (MA layer, MB layer, C layer) are laminated in a predetermined repeating pattern. Accordingly, the first detection electrode (EL A ) has a folded portion (101A, 101Ad) in which a part of the detection portion (10, 10c, 10d) is bent in a U shape, and a predetermined distance between the detection electrodes The first detection electrode facing portion (100A) facing the other detection portion via the insulating layer (120) forming the second detection electrode (EL B ) is disposed on the detection portion (10, 10c). 10d), the folded portion (101B, 101Bd), a part of which is bent in an inverted U shape, and the other detection electrode are opposed to each other through an insulating layer (120) that forms a predetermined distance between the detection electrodes. A particulate matter detection sensor including the second detection electrode facing portion (100B) can be realized.

本発明の粒子状物質検出センサの基本構成を示す模式図。The schematic diagram which shows the basic composition of the particulate matter detection sensor of this invention. 本発明の第1の実施形態における粒子状物質検出センサの全体概要を示す構成図。The block diagram which shows the whole outline | summary of the particulate matter detection sensor in the 1st Embodiment of this invention. 本発明の第1の実施形態における粒子状物質検出素子の要部である検出電極積層体の概要を示す斜視図。The perspective view which shows the outline | summary of the detection electrode laminated body which is the principal part of the particulate matter detection element in the 1st Embodiment of this invention. 図2A中A−Aに沿った検出電極積層体の断面図。FIG. 2B is a cross-sectional view of the detection electrode laminate along AA in FIG. 2A. 本発明の第1の実施形態における粒子状物質検出素子の概要を示す展開斜視図。FIG. 2 is a developed perspective view showing an outline of a particulate matter detection element according to the first embodiment of the present invention. 正常時における本発明の作動状態を示す等価回路図。The equivalent circuit diagram which shows the operation state of this invention in the time of normal. 断線時における本発明の作動状態の一例を示す等価回路図。The equivalent circuit diagram which shows an example of the operation state of this invention at the time of a disconnection. 比較例の正常時における作動状態を示す等価回路図。The equivalent circuit diagram which shows the operation state at the time of the normal of a comparative example. 比較例の問題点を示し、断線時における作動状態の一例を示す等価回路図。The equivalent circuit diagram which shows the problem of a comparative example and shows an example of the operation state at the time of a disconnection. 第1の実施形態における粒子状物質検出素子の要部である検出電極積層体の製造方法における埋め込み工程を説明するための断面図。Sectional drawing for demonstrating the embedding process in the manufacturing method of the detection electrode laminated body which is the principal part of the particulate matter detection element in 1st Embodiment. 検出電極積層体の詳細な構造を示すと共に図6Aに続く積層工程の概要を説明するための展開斜視図。FIG. 6B is a developed perspective view illustrating the detailed structure of the detection electrode laminate and explaining the outline of the lamination step subsequent to FIG. 6A. 図6Bに続く検出電極積層体切り出し工程の概要を示す斜視図。The perspective view which shows the outline | summary of the detection electrode laminated body cutting-out process following FIG. 6B. 本発明の第2の実施形態における粒子状物質検出センサの概要を示す構成図。The block diagram which shows the outline | summary of the particulate matter detection sensor in the 2nd Embodiment of this invention. 本発明の第3の実施形態における粒子状物質検出センサの概要を示す構成図。The block diagram which shows the outline | summary of the particulate matter detection sensor in the 3rd Embodiment of this invention. 本発明の第4の実施形態における粒子状物質検出素子の概要を示す斜視図。The perspective view which shows the outline | summary of the particulate matter detection element in the 4th Embodiment of this invention. 図9Aの検出電極積層体の詳細な構造を示す展開斜視図。FIG. 9B is a developed perspective view showing a detailed structure of the detection electrode laminate of FIG. 9A. 本発明の第5の実施形態における粒子状物質検出センサの全体概要を示す構成図。The block diagram which shows the whole outline | summary of the particulate matter detection sensor in the 5th Embodiment of this invention. 図10Aの検出電極積層体の詳細な構造の一例を示す展開斜視図。FIG. 10B is a developed perspective view showing an example of a detailed structure of the detection electrode laminate of FIG. 10A.

図1Aを参照して、本発明の粒子状物質検出センサ1の基本構成について説明する。図1Aは、本発明の粒子状物質検出センサ1の基本構成を最も簡略化して表現した概念図である。
粒子状物質検出センサ1は、少なくとも所定の距離を隔てて対向する第1の検出電極EL と第2の検出電極ELを具備する検出部10に捕集・堆積する粒子状物質の量に応じて変化する第1の検出電極EL と第2の検出電極EL との間の電気的特性を検出して被測定ガス中に含まれる粒子状物質の量を検出する粒子状物質検出素子2と、回路部3とによって構成されている。
粒子状物質検出素子2は、検出部10とこれを実装する基板部20とによって構成されている。
With reference to FIG. 1A, the basic structure of the particulate matter detection sensor 1 of the present invention will be described. FIG. 1A is a conceptual diagram expressing the basic configuration of the particulate matter detection sensor 1 of the present invention in a most simplified manner.
The particulate matter detection sensor 1 determines the amount of particulate matter collected and deposited on the detection unit 10 including the first detection electrode EL A and the second detection electrode EL B facing each other at least at a predetermined distance. first detecting electrode EL a and particulate matter detection device that detects the amount of particulate matter by detecting electrical characteristics contained in the measurement gas between the second detection electrode EL B which varies in accordance 2 and the circuit unit 3.
The particulate matter detection element 2 includes a detection unit 10 and a substrate unit 20 on which the detection unit 10 is mounted.

検出部10は、少なくとも、絶縁層120を介して対向せしめた第1の検出電極EL と第2の検出電極EL を有する積層体構造によって形成されている。
なお、第1の検出電極EL と第2の検出電極ELは、いずれの電極であるかを区別するため、便宜上、ハッチングを変えて表示してあるが、いずれの電極も同じ材質で形成してある。
具体的な材質については、製造方法と共に後述する。
回路部3は、第1の検出電極EL と第2の検出電極EL との内部の断線の有無を検出する検出電極断線検出回路部30と、検出電極間に堆積した粒子状物質の量に応じて変化する電気的特性を検出するPM検出回路部31とによって構成されている。
Detector 10, at least, are formed by a laminate structure having a first detection electrode EL A and the second detection electrode EL B which opposition via an insulating layer 120.
The first detection electrode EL A and the second detection electrode EL B are displayed with different hatching for the sake of convenience in order to distinguish which one is the electrode, but both electrodes are made of the same material. It is.
Specific materials will be described later together with the manufacturing method.
The circuit unit 3 includes a detection electrode disconnection detection circuit unit 30 that detects the presence or absence of internal disconnection between the first detection electrode EL A and the second detection electrode EL B, and the amount of particulate matter deposited between the detection electrodes. And a PM detection circuit unit 31 that detects electrical characteristics that change in response to the above.

検出電極断線検出回路部30は、第1の検出電極EL と第2の検出電極ELのそれぞれにおける断線の有無を検出する第1の検出電極断線検出回路部301Aと第2の検出電極断線検出回路部301Bとによって構成されている。
第1検出電極断線検出回路部301Aは、例えば、第1の検出電極EL 一方の端に設けた断線検出端子部103Aから他方の端に設けたPM検出端子104A至るまでの抵抗値を検出して第1の検出電極EL 内部の断線の有無を検出する。
同様に、第2の検出電極断線検出回路部302Bは、第2の検出電極EL の一方の端に設けた断線検出端子部103Bから他方の端に設けたPM検出端子104Bに至るまでの抵抗値を検出して第2の検出電極EL の内部の断線の有無を検出する。
具体的な断線の検出方法としては、微弱な電流を流して両端間の電位差を計測することで、第1の検出電極EL の内部抵抗R ELA 第2の検出電極ELの内部抵抗 ELB の計測が可能となり、これを所定の閾値と比較することによって、断線の有無を判断できる。
The detection electrode disconnection detection circuit unit 30 includes a first detection electrode disconnection detection circuit unit 301A and a second detection electrode disconnection that detect the presence or absence of disconnection in each of the first detection electrode EL A and the second detection electrode EL B. It is comprised by the detection circuit part 301B.
First detecting electrode disconnection detecting circuit section 301A, for example, the resistance value up to the PM detection terminal 104A provided from the first detection electrodes EL one disconnection detecting terminal portion 103A provided at the end of the A to the other end detecting the presence or absence of internal breakage of the first detection electrode EL a by detecting.
Similarly, the second detection electrode disconnection detecting circuit section 302B, the resistance up to the second detecting electrodes EL one PM detection terminal 104B from the disconnection detection terminal portion 103B provided at an end provided at the other end of the B detecting the presence or absence of internal breakage of the second detection electrode EL B to detect the value.
Methods for detecting specific breakage, by measuring the potential difference between both ends by flowing a weak current, the internal resistance R ELA of the first detection electrode EL A, the internal resistance R of the second detection electrode EL B enables measurement of ELB, by comparing these with a predetermined threshold, it can be determined whether the disconnection.

本発明においては、第1の検出電極EL 、略平板状に形成した第1の検出電極対向部100A一部を検出部10において略コ字形に折り返した第1の検出電極折り返し部101Aを具備して、第1の検出リード部102A接続し、第1の検出リード部102A介して、第1の断線検出端子103A及び、第1のPM検出端子104A接続された状態となっており、第1の断線検出端子103AからPM検出端子104Aが枝分かれすることなく、直列に接続された一本の導電経路を形成する一筆書き状となっていることを特徴としている。
同様に、第2の検出電極EL は、第1の検出電極EL を180°反転させた形状となっており、略平板状に形成した第2の検出電極対向部100Bの一部を検出部10において略逆コ字形に折り返した第2の検出電極折り返し部101Bを具備して、第2の検出リード部102Bに接続し、第2の検出リード部102Bを介して、第2の断線検出端子103B、及び、第2のPM検出端子104Bに接続された状態となっており、第2の断線検出端子103BからPM検出端子104B迄が枝分かれすることなく、直列に接続された一本の導電経路を形成する一筆書き状となっていることを特徴としている。
第1の検出電極EL と第2の検出電極EL をこのような枝分かれのない連続した導電経路を有する形状とすることによって確実に断線の有無が検出可能となる。
In the present invention, the first detection electrode EL A is a first detecting electrode folded portion 101A folded back in the detection unit 10 a portion of the first detection electrode facing portion 100A which is a generally flat plate shape substantially U-shape comprises a, connected to the first detection lead 102A, via the first detection lead 102A, a first disconnection detecting terminal 103A, and the state of being connected to the first PM detection terminal 104A it is, until the PM detection terminal 104A from the first disconnection detecting terminal 103A is characterized in that it is a single stroke manner to form a single conductive path without connected in series to branching.
Similarly, the second detection electrode EL B has a shape obtained by inverting the first detection electrode EL A by 180 °, and detects a part of the second detection electrode facing portion 100B formed in a substantially flat plate shape. The second detection electrode folded portion 101B folded in a substantially inverted U shape at the portion 10 is connected to the second detection lead portion 102B, and the second disconnection detection is performed via the second detection lead portion 102B. The terminal 103B and the second PM detection terminal 104B are connected to each other, and one conductive connected in series without branching from the second disconnection detection terminal 103B to the PM detection terminal 104B. It is characterized by a single stroke that forms a path.
The presence or absence of reliably broken by a shape having a first detection electrode EL A and the second detection electrode EL B and such unbranched continuous conductive path can be detected.

PM検出回路部31は、第1の検出電極EL と第2の検出電極ELとの間に堆積する粒子状物質の量に応じて変化する直流抵抗、静電容量、交流インピーダンスのいずれかの電気的特性について、第1の検出電極EL 一方の端部103Aと第2の検出電極EL の一方の端部103Bとの103A−103B間、又は、第1の検出電極EL 他方の端部104Aと第2の検出電極EL の他方の端部104Bとの104A−104B間)の抵抗値、静電容量、インピーダンスのいずれかの計測により検出し、被測定ガス中に含まれる粒子状物質の量を算出することができる。
なお、基板部20には、通電により発熱する発熱体220を具備させて、検出時の温度を安定化させたり、検出部10の表面に堆積した粒子状物質を燃焼除去してセンサの再生に利用したりするようにしても良い。
発熱体220への通電は、後述する発熱制御回路部32によって通電制御することができる。
The PM detection circuit unit 31 is one of DC resistance, capacitance, and AC impedance that changes according to the amount of particulate matter deposited between the first detection electrode EL A and the second detection electrode EL B. the electrical properties of, (between 103A-103B) first between the one end portion 103A and one end 103B of the second detection electrode EL B of the detection electrodes EL a, or first detection electrode It is detected by measuring one of the resistance value, capacitance, and impedance between the other end 104A of EL A and the other end 104B of the second detection electrode EL B ( between 104A and 104B ) The amount of particulate matter contained in the measurement gas can be calculated.
The substrate unit 20 is provided with a heating element 220 that generates heat when energized to stabilize the temperature at the time of detection, or to burn off and remove particulate matter deposited on the surface of the detection unit 10 for sensor regeneration. You may make it use.
Energization of the heating element 220 can be controlled by a heat generation control circuit unit 32 described later.

図1B、図2A、図2B、図3を参照して、本実施形態における粒子状物質検出センサ1のより具体的な構成について説明する。
本実施形態における粒子状物質検出センサ1は、図1Bに示すように、公知の粒子状物質検出センサと同様に、図略のハウジング4に覆われ内燃機関から排出される燃焼排気等の被測定ガスが流れる測定ガス流路5に固定された状態で使用される。
粒子状物質検出素子2は、略筒状に形成したハウジング4内にインシュレータ等の公知の固定部材を介して固定され、基板部20の先端に固定した検出部10が被測定ガスに晒されるようになっている。
With reference to FIG. 1B, FIG. 2A, FIG. 2B, and FIG. 3, the more specific structure of the particulate matter detection sensor 1 in this embodiment is demonstrated.
As shown in FIG. 1B, the particulate matter detection sensor 1 in this embodiment is covered with a housing 4 (not shown) and is subjected to measurement such as combustion exhaust discharged from an internal combustion engine, as with a known particulate matter detection sensor. It is used in a state of being fixed to the measurement gas flow path 5 through which gas flows.
The particulate matter detection element 2 is fixed in a substantially cylindrical housing 4 via a known fixing member such as an insulator so that the detection unit 10 fixed to the tip of the substrate unit 20 is exposed to the gas to be measured. It has become.

本実施形態においては、図2Aに示すように、検出部10内において、痔1の検出電極EL と第2の検出電極EL が複数箇所で対向するように、複数箇所に第1の検出電極折り返し部101Aと第2の検出電極折り返し部101Bが設けられて、コ字形に屈曲する第1の検出電極対向部100Aと逆コ字形に屈曲する第2の検出電極対向部100Bとが交互に対向して複数並んで略櫛歯状に形成されている。
ただし、本実施形態においても、上述の如く、第1の断線検出端子103Aから第1のPM検出端子104A至るまで枝分かれすることなく、第2の断線検出端子103Bから第2のPM検出端子104Bに至るまで、枝分かれすることなく、それぞれ一本の直列する導電経路を構成している。
In the present embodiment, as shown in FIG. 2A, in the detector 10, so that the detection electrode EL A of hemorrhoids 1 and the second detection electrode EL B are opposed at a plurality of places, first to the plurality of locations The detection electrode folded portion 101A and the second detection electrode folded portion 101B are provided, and the first detection electrode facing portion 100A bent in a U shape and the second detection electrode facing portion 100B bent in an inverted U shape are alternately arranged. It is formed in a comb-like aligned plurality opposite the.
However, also in this embodiment, as described above, without branching from the first disconnection detecting terminal 103A up to the first PM detection terminal 104A, the second PM detection terminal 104B from the second disconnection detecting terminal 103B up to, without branching, respectively constitute the conductive path in series of one.

また、本実施形態においては、図2Aに示すように、第1の断線検出端子103Aと第1のPM検出端子104Aとを、検出部10の一方の端に配置すべく、第1の戻りリード部105Aが形成され、第2の断線検出端子103Bと第2のPM検出端子104Bとを、検出部10の一方の端に配置すべく、第2の戻りリード部105Bが形成されている。
さらに、本実施形態における検出部10は、従来の絶縁性基板の表面に電極パターンを印刷形成するのではなく、図2Bに示すように、平板状に形成された第1の検出電極対向部100Aと第2の検出電極対向部100Bと所定の検出電極対間距離を形成するための絶縁層120とを積み重ねたような積層構造によって形成されている。
In the present embodiment, as shown in FIG. 2A, a first disconnection detecting terminal 103A and a first PM detection terminal 104A, to be placed at one end of the detection portion 10, the first return lead A part 105A is formed, and a second return lead part 105B is formed so that the second disconnection detection terminal 103B and the second PM detection terminal 104B are arranged at one end of the detection part 10 .
Furthermore, the detection unit 10 in the present embodiment does not print and form an electrode pattern on the surface of a conventional insulating substrate, but as shown in FIG. 2B, the first detection electrode facing portion 100A formed in a flat plate shape. And a second detection electrode facing part 100B and an insulating layer 120 for forming a predetermined distance between the detection electrode pairs.

一方、本実施形態においては、図2Bに示すように、第1の検出電極対向部100A及び第2の検出電極対向部100Bの積層方向の膜厚は、100μm以上500μm以下に形成され、絶縁層120の積層方向の膜厚は、5μm以上20μm以下に形成されている。
絶縁層120の膜厚を極めて薄く形成し、第1の検出電極対向部100Aと第2の検出電極対向部100Bを積層することによって、検出部10の表面に露出する第1の検出電極EL と第2の検出電極EL との間の積層方向の距離は、5μm以上20μm以下の極めて短い距離に設定することが可能となり、不感質量の解消を図ることができる。
検出部10をこのような積層構造とする具体的な製造方法については、後述する。
On the other hand, in this embodiment, as shown in FIG. 2B, the film thickness in the stacking direction of the first detection electrode facing portion 100A and the second detection electrode facing portion 100B is formed to be 100 μm or more and 500 μm or less. The thickness of 120 in the stacking direction is 5 μm or more and 20 μm or less.
The first detection electrode EL A exposed on the surface of the detection unit 10 is formed by forming the insulating layer 120 to be extremely thin and stacking the first detection electrode facing part 100A and the second detection electrode facing part 100B. When the distance in the stacking direction between the second detection electrode EL B, it becomes possible to set a very short distance of 5μm or 20μm or less, it is possible to eliminate the dead weight.
A specific manufacturing method in which the detection unit 10 has such a laminated structure will be described later.

図3に示すように、本実施形態における基板部20は、略平板状の絶縁性基板200、210の間に、通電により発熱する発熱体220が具備されており、絶縁性基板200の表面には、厚膜印刷、メッキ等の公知の方法により、第1のPM検出端子接続部106A、第2のPM検出端子部106B、第1の断線検出端子接続部107A、第2の断線検出端子部107B、第1のリード部108A、109A、第2のリード部108B、109B第1のPM検出外部接続端子110A、第2のPM検出外部接続端子110B、第1の断線検出外部接続端子111A、第2の断線検出外部接続端子111Bからなる所定の導体パターンが形成されている。
検出部10の第1の断線検出端子103Aが、第1の断線検出端子接続部107Aと、第2の断線検出端子103Bが、第2の断線検出端子接続部107Bと、第1のPM検出端子104Aが、第1のPM検出端子接続部106A第2のPM検出端子104Bが、第2のPM検出端子接続部106Bと、それぞれ接続されると共に基板部20の表面に実装・固定されている。
略平板状に形成した絶縁性基板210の表面には、厚膜印刷、メッキ等の公知の方法により形成され、通電により発熱する発熱体220と一対の発熱体リード部221A、221Bが形成され、発熱体220及び発熱体リード部221A、221Bは、絶縁性基板200によって覆われており、スルーホール電極222A、222Bを介して、絶縁性基板210の裏面側に設けた発熱体端子部223A、223Bに接続されている。
As shown in FIG. 3, the substrate portion 20 in the present embodiment includes a heating element 220 that generates heat when energized between substantially flat insulating substrates 200 and 210, and is formed on the surface of the insulating substrate 200. The first PM detection terminal connection unit 106A, the second PM detection terminal unit 106B, the first disconnection detection terminal connection unit 107A, and the second disconnection detection terminal unit by known methods such as thick film printing and plating. 107B, first lead portions 108A, 109A, second lead portions 108B , 109B , a first PM detection external connection terminal 110A, a second PM detection external connection terminal 110B, a first disconnection detection external connection terminal 111A, A predetermined conductor pattern including the second disconnection detection external connection terminal 111B is formed.
The first disconnection detection terminal 103A of the detection unit 10 is the first disconnection detection terminal connection unit 107A, the second disconnection detection terminal 103B is the second disconnection detection terminal connection unit 107B, and the first PM detection terminal. 104A is connected to the first PM detection terminal connection portion 106A and the second PM detection terminal 104B is connected to the second PM detection terminal connection portion 106B, and is mounted and fixed on the surface of the substrate portion 20. Yes.
On the surface of the insulating substrate 210 formed in a substantially flat plate shape, a heating element 220 and a pair of heating element lead portions 221A and 221B are formed by a known method such as thick film printing and plating, and generate heat when energized. The heating element 220 and the heating element lead portions 221A and 221B are covered with the insulating substrate 200, and the heating element terminal portions 223A and 223B provided on the back side of the insulating substrate 210 through the through-hole electrodes 222A and 222B. It is connected to the.

図4A、図4Bを参照して、本発明の第1の実施形態における粒子状物質検出センサ1の効果を説明すると共に、図5A、図5Bを参照して、比較例として示す従来の絶縁性基板の表面に一対の櫛歯状電極を厚膜形成した粒子状物質検出センサ1zの問題点について説明する。
本発明の粒子状物質検出センサ1を用いた場合、第1の検出電極EL の両端(103A−104A間)、及び、第2の検出電極EL の両端(103B−104B間)において、第1の断線検出回路部301A及び第2の断線検出回路部301によって検出される抵抗値は、第1の検出電極EL の内部抵抗ELA 、及び、第2の検出電極ELの内部抵抗RELBに加え、第1の検出電極EL と第2の検出電極ELの表面に堆積する粒子状物質の影響を受ける。
このとき、粒子状物質の堆積によって形成される抵抗パスは、第1の検出電極EL の互いに対向する第1の検出電極対向部100A同士、及び、第2の検出電極EL の第2の検出電極対向部100B同士を架橋するように形成されるため、図4Aに示すように、粒子状物質の堆積によって形成される内部抵抗rPMは、第1の検出電極EL の内部抵抗R ELA 、と、第2の検出電極EL内部抵抗ELBに対して並列に接続されることになり、第1の検出電極EL と第2の検出電極ELそれぞれの両端で検出される第1の検出抵抗値R と第2の検出抵抗とは、
1/R=1/RELA+1/rPM
1/R=1/RELB+1/rPMの関係が成り立つ。
The effect of the particulate matter detection sensor 1 in the first embodiment of the present invention will be described with reference to FIGS. 4A and 4B, and the conventional insulation shown as a comparative example with reference to FIGS. 5A and 5B A problem of the particulate matter detection sensor 1z in which a pair of comb-like electrodes are formed thick on the surface of the substrate will be described.
When the particulate matter detection sensor 1 of the present invention is used, the first detection electrode EL A has both ends (between 103A and 104A ) and the second detection electrode EL B has both ends ( between 103B and 104B) . resistance value detected by the first disconnection detecting circuit portion 301A and the second disconnection detecting circuit 301 B is the internal resistance R ELA of the first detection electrode EL a, and the internal resistance of the second detection electrode EL B In addition to R ELB, it is affected by particulate matter deposited on the surfaces of the first detection electrode EL A and the second detection electrode EL B.
At this time, the resistance paths formed by the deposition of the particulate matter are the first detection electrode facing portions 100A of the first detection electrodes EL A facing each other and the second detection electrodes EL B of the second detection electrodes EL B. Since the detection electrode facing portions 100B are formed so as to bridge each other, as shown in FIG. 4A, the internal resistance r PM formed by the deposition of the particulate matter is the internal resistance R ELA of the first detection electrode EL A. and, it would be connected in parallel to the internal resistance R ELB of the second detecting electrodes EL B, are detected by the respective ends of the first detecting electrode EL a and the second detection electrode EL B a first detection resistance value R a and the second detection resistor R B,
1 / R A = 1 / R ELA + 1 / r PM ,
The relationship 1 / R B = 1 / R ELB + 1 / r PM is established.

第1の検出電極EL 内部抵抗RELA 、及び、第2の検出電極EL の内部抵抗ELB 、例えば、1Ω〜200Ω程度とした場合、粒子状物質の堆積によって形成される抵抗パスの抵抗値rPMは、粒子状物質の堆積量に応じて、1000Ω〜10Ω程度まで変化したとしても、第1の検出電極EL の両端、及び、第2の検出電極ELの両端で検出される第1の検出抵抗値R及び、第2の検出抵抗値は、0.999Ω〜199.96Ω程度となり、第1の検出電極EL第2の検出電極ELのいずれかの導通経路に断線が生じた場合には、第1の両端抵抗値R 、若しくは、第2の両端抵抗値R のいずれかが、1000Ω以上となる。
このため、図4Bに示すように、断線が発生している第1の検出電極ELの内部抵抗R ELA 、又は、第2の検出電極ELの内部抵抗 ELB は、10Ω以上に上昇するため、第1の断線検出回路部301A、又は、第2の断線検出回路部301Bにおいて、第1の検出抵抗R第2の検出抵抗と、所定の抵抗閾値RREF(例えば、1000Ω)と、を比較する第1の断線判定手段302A、第2の断線判定手段302Bを設けることによって、極めて容易に断線の有無を検出することができる。
Internal resistance R ELA of the first detection electrode EL A, and the internal resistance R ELB of the second detecting electrodes EL B, for example, when about 1Omu~200omu, resistance path formed by deposition of particulate matter The resistance value r PM of both ends of the first detection electrode EL A and both ends of the second detection electrode EL B even if the resistance value r PM changes to about 1000Ω to 10 6 Ω depending on the amount of particulate matter deposited. The first detection resistance value R A and the second detection resistance value R B detected in Step 1 are about 0.999Ω to 199.96Ω, and the first detection electrode EL A and the second detection electrode EL B are detected. When a disconnection occurs in any of the conduction paths, either the first both-end resistance value R A or the second both-end resistance value R B is 1000Ω or more.
For this reason, as shown in FIG. 4B, the internal resistance R ELA of the first detection electrode EL A , or the internal resistance R ELB of the second detection electrode EL B in which the disconnection occurs, is 10 5 Ω or more. Therefore, in the first disconnection detection circuit unit 301A or the second disconnection detection circuit unit 301B, the first detection resistor R A , the second detection resistor R B, and a predetermined resistance threshold R REF ( For example, by providing the first disconnection determination unit 302A and the second disconnection determination unit 302B, the presence / absence of disconnection can be detected very easily.

加えて、対向する第1の検出電極EL と第2の検出電極EL との間に堆積する粒子状物質の量に応じて変化する電気的特性として、PM検出端子104A−104B間のPM由来抵抗RPMを計測した場合、粒子状物質の堆積量による抵抗値変化のみを検出することができる。
また、断線を検出したときには、異常警告を発信することにより、粒子状物質算出を停止させることもできる。
In addition, as an electrical characteristic that varies depending on the amount of the particulate matter deposited in between the first detection electrode EL A and the second detection electrode EL B facing, PM between the PM detection terminals 104A-104B When the derived resistance RPM is measured, only a change in resistance value due to the amount of particulate matter deposited can be detected.
In addition, when a disconnection is detected, the particulate matter calculation can be stopped by issuing an abnormality warning.

一方、絶縁性基板の表面に、所定の間隙を隔てて互いに対向する一対の検出電極を厚膜印刷によって櫛歯状に形成した従来の粒子状物質検出センサ1zを用いた場合、正常時には、図5Aに示すように、検出電極間で検出される検出抵抗RSUMは、第1の検出電極ELAZ の内部抵抗r 第2の検出電極ELBZ内部抵抗と、粒子状物質の堆積量QPMに応じて変化するPM由来抵抗RPMと、が直列接続されたものと等価となり、その合成抵抗RPM+r+rを計測することでPM堆積量QPMの算出が可能となる。 On the other hand, when a conventional particulate matter detection sensor 1z in which a pair of detection electrodes facing each other with a predetermined gap are formed on a surface of an insulating substrate in a comb-like shape by thick film printing is used in a normal state, FIG. as shown in 5A, the detection resistor R SUM is detected between the detection electrodes, the internal resistance r a of the first detection electrode EL AZ, and the internal resistance r B of the second detecting electrodes EL BZ, particulate matter It is equivalent to the PM-derived resistance R PM that changes according to the amount of deposit Q PM in series, and the PM accumulated amount Q PM can be calculated by measuring the combined resistance R PM + r A + r B It becomes.

しかし、従来の粒子状物質検出センサ1zでは、第1の検出電極ELAZ第2の検出電極ELBZの何処かに断線異常が発生した場合、図5Bに示すように、断線箇所とPM由来抵抗RPMとは直列に接続された状態であり、PM由来抵抗は、1000Ω〜10Ωまでの大きな範囲で変化し、断線が生じた場合の検出抵抗は10Ω程度となるで、断線が生じているのか、検出電極ELAZ、ELBZ間に粒子状物質が堆積していない状態なのかを区別して検出することができない虞がある。
さらに、断線を生じた場合であっても、断線箇所を架橋するように粒子状物質が堆積した場合には、断線箇所をバイパスするように並列に接続された抵抗パスrPMZが形成されるため、断線が検出されない虞もある。
本発明は、従来の粒子状物質検出センサ1zにおいて起こり得るこのような問題を解決するためになされたものである。
However, in the conventional particulate matter detection sensor 1z, when a disconnection abnormality occurs somewhere in the first detection electrode EL AZ and the second detection electrode EL BZ , as shown in FIG. resistance and R PM is in a state of being connected in series, PM-derived resistance is varied in a large range up 1000Ω~10 6 Ω, the detection resistor is about 10 5 Omega when disconnection occurs, disconnection It may not be possible to distinguish between the detection electrodes EL AZ and EL BZ and detect the particulate matter.
Furthermore, even when a disconnection occurs, when particulate matter is deposited so as to bridge the disconnection portion, a resistance path r PMZ connected in parallel so as to bypass the disconnection portion is formed. There is also a possibility that the disconnection is not detected.
The present invention has been made to solve such a problem that may occur in the conventional particulate matter detection sensor 1z.

ここで、図6A、図6B、図6cを参照して、本発明の粒子状物質検出センサ1の要部である検出部10の製造方法について説明する。
絶縁層120は、8YSZ(ZrO0.92(Y0.08からなる部分安定化ジルコニア、MgO、Alのいずれかから選択した絶縁性酸化物材料に所定の結合材、可塑剤、分散剤、溶剤等を添加して、厚膜印刷、又は、ドクターブレード法等の公知の成膜方法を用いて、膜厚5μm以上、20μm以下の略平板状によって形成された、絶縁性薄膜シート(120 THN )と、膜厚100μm以上、500μm以下の略平板状によって形成された、絶縁性厚膜シート(120 THK )とを用いて形成されている。
なお、以下の説明において、焼成前のグリーンシートの状態であるか、焼成後の焼結体の状態であるかを特に区別していないが、積層工程や埋め込み工程においては、グリーンシートの状態で加工され、焼成により一体の粒子状物質検出素子を構成するものであることは、いうまでもない。
Here, with reference to FIG. 6A, FIG. 6B, and FIG. 6c, the manufacturing method of the detection part 10 which is the principal part of the particulate matter detection sensor 1 of this invention is demonstrated.
Insulating layer 120, 8YSZ ((ZrO 2) 0.92 (Y 2 O 3) 0.08) consisting of partially stabilized zirconia, predetermined MgO, the insulating oxide material selected from one of Al 2 O 3 By adding a binder, plasticizer, dispersant, solvent, etc., and using a known film formation method such as thick film printing or doctor blade method, the film is formed in a substantially flat shape with a film thickness of 5 μm or more and 20 μm or less. The insulating thin film sheet (120 THN ) and the insulating thick film sheet (120 THK ) formed in a substantially flat shape with a film thickness of 100 μm or more and 500 μm or less are formed.
In the following description, there is no particular distinction between the state of the green sheet before firing or the state of the sintered body after firing, but in the lamination step and the embedding step, the state of the green sheet It goes without saying that an integrated particulate matter detection element is formed by being processed and fired.

導電性シート成形工程では、第1の検出電極EL及び、第2の検出部ELを形成するための導電性シートを形成する。
導電性シートは、LNF(LaNi0.6Fe0.4)、LSN(La1.2Sr0.8NiO)、LSM(La1−XSrMnO3−δ)、LSC(La1−XSrCoO3―δ)、LCC(La1−XCaCrO3−δ)、LSCN(La0.85Sr0.15Cr1−XNi3−δ)(0.1≦X≦0.7)のいずれかから選択したペロブスカイト型の導電性酸化物材料に所定の結合材、可塑剤、分散剤、溶剤等を添加して、ドクターブレード法、プレス法等の公知の形成方法によって、膜厚100μm以上、500μm以下の略平板状に形成された導電性厚膜シート(100 THK )が用いられている。
後述する、膜厚5μm以上、20μm以下の絶縁性薄膜シート120内に埋め込むための導電性薄膜シート100 THN は、導電性厚膜シート100 THK と同材料を用いて、絶縁性薄膜シート120 THN と同一膜厚に形成されている。
LNF、LSN、LSM、LSC、LCC、LSCN等の導電性酸化物材料によって形成された導電性シートは、焼成によって、導電率が10−2S/cm以上の導電性酸化物となる。
なお、図においては、第1の検出電極EL を構成する導電性シートには、Aの符号を、第2の検出電極EL を構成する導電性シートにはBの符号を付して区別したため、導電性厚膜シート100 THK と導電性薄膜シート100 THN との違いを示す符号は付していない。
In the conductive sheet forming step, a conductive sheet for forming the first detection electrode EL A and the second detection portion EL B is formed.
The conductive sheet, LNF (LaNi 0.6 Fe 0.4 O 3), LSN (La 1.2 Sr 0.8 NiO 4), LSM (La 1-X Sr X MnO 3-δ), LSC ( La 1-X Sr X CoO 3 -δ), LCC (La 1-X Ca X CrO 3-δ), LSCN (La 0.85 Sr 0.15 Cr 1-X Ni X O 3-δ) (0. A known binder blade method, press method, etc. by adding a predetermined binder, plasticizer, dispersant, solvent, etc. to a perovskite-type conductive oxide material selected from 1 ≦ X ≦ 0.7) In this method, a conductive thick film sheet (100 THK ) formed in a substantially flat plate shape with a film thickness of 100 μm or more and 500 μm or less is used.
Described later, the thickness 5μm or more, the conductive thin film sheet 100 THN for implantation into 20μm or less of the insulating thin film sheet 120, using a conductive thick film sheet 100 THK the same material, an insulating thin film sheet 120 THN The same film thickness is formed.
A conductive sheet formed of a conductive oxide material such as LNF, LSN, LSM, LSC, LCC, or LSCN becomes a conductive oxide having a conductivity of 10 −2 S / cm or more by firing.
In the figure, the conductive sheet constituting the first detection electrode EL A is identified by the symbol A, and the conductive sheet constituting the second detection electrode EL B is identified by the symbol B. Therefore , the code | symbol which shows the difference between the electroconductive thick film sheet 100THK and the electroconductive thin film sheet 100THN is not attached | subjected.

絶縁性シート成形工程では、YSZ((ZrO0.92(Y0.08からなる部分安定化ジルコニア、MgO、Alのいずれかから選択した絶縁性酸化物材料をドクターブレード法、厚膜印刷法等の公知の成形方法を利用して形成する。
絶縁性シート成形工程で形成された絶縁シートは、焼成により、絶縁層120を構成する導電率が10−5S/cm以下の絶縁性酸化物となる。
検出電極間距離を決定する絶縁性薄膜シート120 THN は、膜厚5μm以上、20μm以下に形成され、後述する導電性厚膜シート100 THK 内に埋め込まれる絶縁性厚膜シート120 THK は、導電性厚膜シート100 THK と同一の膜厚に形成されている。
なお、図においては、絶縁性厚膜シート120 THK と絶縁性薄膜シート120 THN とは、同材質であり、いずれも、焼成後に絶縁層120となるため、膜厚の違いによる符号の区別をしていない。
In the insulating sheet forming step, an insulating oxide material selected from partially stabilized zirconia, MgO, and Al 2 O 3 made of YSZ ((ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 ) Is formed using a known molding method such as a doctor blade method or a thick film printing method.
The insulating sheet formed in the insulating sheet forming step becomes an insulating oxide having an electric conductivity of 10 −5 S / cm or less, which constitutes the insulating layer 120, by firing.
The insulating thin film sheet 120 THN that determines the distance between the detection electrodes is formed to have a film thickness of 5 μm or more and 20 μm or less, and the insulating thick film sheet 120 THK embedded in the conductive thick film sheet 100 THK described later is conductive. Thick film sheet 100 is formed to the same film thickness as THK .
In the figure, the insulating thick film sheet 120 THK and the insulating thin film sheet 120 THN are made of the same material, and both of them become the insulating layer 120 after firing. Not.

図6Aに(a)〜(d)の順を追って示す絶縁性厚膜シート埋め込み導電性厚膜シート成形工程では、予め用意した同じ膜厚の絶縁性厚膜シート120 THK と導電性厚膜シート100 THK とを重ね合わせ、金型M1、M2を用いて、同時に打ち抜くことで、絶縁性膜厚シート120 THK を導電性厚膜シート100 THK 内に隙間なく埋込み、絶縁性厚膜シート埋め込み導電性厚膜シート(A層、B層)を形成することができる。
金型のパターンを適宜変更することによって、導電性厚膜シート100 THK の複数の所定位置に所定の形状に区画した絶縁性厚膜シート120 THK を埋め込むことで、導電性薄膜シート埋め込み絶縁性薄膜シート(MA層、MB層、C層)の形成が可能である。
なお、膜厚5μm以上、20μm以下の絶縁性薄膜シート120 THN の所定位置に部分的に同膜厚で所定形状に区画した導電性薄膜シート100 THN を埋め込む導電性薄膜シート埋め込み絶縁性薄膜シート成形工程において、上記のような方法が困難な場合には、所定のパターンの導電性シートと絶縁性シートとを重ねて厚膜印刷するようにしても良い。
The step-by-step illustrated insulating thick sheet embedded conductive thick film sheet forming process in FIG. 6A (a) ~ (d) , of the same thickness prepared in advance insulating thick film sheet 120 THK and the conductive thick film sheet 100 superposed and THK, using a mold M1, M2, by punching out at the same time, no gap embedded seen in the insulating film thickness sheet 120 conducting thick film sheet 100 in THK the THK, insulating thick sheet embedded A conductive thick film sheet (A layer, B layer) can be formed .
By appropriately changing the pattern of the mold, the insulating thick film sheet 120 THK divided into a predetermined shape is embedded in a plurality of predetermined positions of the conductive thick film sheet 100 THK , thereby the conductive thin film sheet embedded insulating thin film Sheets (MA layer, MB layer, C layer) can be formed .
The thickness 5μm or more, 20 [mu] m or less of the insulating thin film sheet 120 partially same film conductive thin sheet embedding a conductive thin film sheet 100 THN was partitioned into a predetermined shape in the thickness buried insulating thin film sheet formed in a predetermined position of THN In the process, when the above method is difficult, the conductive sheet and the insulating sheet having a predetermined pattern may be stacked to perform thick film printing.

このような絶縁性シート120と導電性シート100とが所定のパターンで組み合わされたシートを図6Bに示すような積層工程を経て積層することで、検出部10が形成されている。
例えば、図6BにA層と記した絶縁性厚膜シート埋め込み導電性厚膜シートでは、導電性厚膜シート100 THK 内の5カ所に絶縁性厚膜シート120 THK を埋め込むことで、検出電極戻りリード部105Aと、検出電極対向部100Aと、検出電極リード部102Bと、検出電極戻りリード部105Bとが絶縁層120を介して配置された状態とすることができる。
なお、第1の検出電極EL と第2の検出電極ELのどの部分を構成するものであるかを明確にするために、便宜上、第1の検出電極EL 側と第2の検出電極EL 側とをハッチングを分けて示しているが、元々は、一枚の導電性厚膜シート100 THK に絶縁性厚膜シート120 THK を埋め込んだものである。
絶縁性厚膜シート埋め込み導電性厚膜シートB層は、絶縁性厚膜シート埋め込み導電性厚膜シートA層を平面方向に180度回転させたものである。
The detection unit 10 is formed by laminating a sheet in which the insulating sheet 120 and the conductive sheet 100 are combined in a predetermined pattern through a laminating process as illustrated in FIG. 6B.
For example, in the case of the conductive thick film embedded in the insulating thick film sheet indicated as A layer in FIG. 6B, the insulating thick film sheet 120 THK is embedded in five locations in the conductive thick film sheet 100 THK , thereby returning the detection electrode. The lead portion 105A, the detection electrode facing portion 100A, the detection electrode lead portion 102B, and the detection electrode return lead portion 105B can be in a state of being disposed via the insulating layer 120.
In order to clarify whether it constitutes a first detection electrode EL A part of the second detection electrode EL B throat, for convenience, a side of the first detection electrode EL A second detection Although the side of the electrode EL B show separately hatching originally is a piece of conductive thick film sheet 100 THK by embedding an insulating thick film sheet 120 THK.
The conductive thick film sheet B layer embedded with the insulating thick film sheet is obtained by rotating the conductive thick film sheet A layer embedded with the insulating thick film sheet 180 degrees in the plane direction.

導電性薄膜シート埋め込み絶縁性薄膜シートMA層は、A層とA層とを直列に接続するものであり、絶縁性薄膜シート120 THN の所定の4カ所に導電性薄膜シート100 THN を埋め込むことで、絶縁層120内の所定の位置に検出電極戻りリード部105A、検出電極折り返し部101A、検出電極リード部102B、検出電極戻りリード部105Bが配設された状態となっている。
導電性薄膜シート埋め込み絶縁性薄膜シートMB層は、B層とB層とを直列に接続するものであり、導電性薄膜シート埋め込み絶縁性薄膜シートMA層を平面方向に180度回転させたものである。
The conductive thin film sheet-embedded insulating thin film sheet MA layer connects the A layer and the A layer in series. By embedding the conductive thin film sheet 100 THN in four predetermined locations of the insulating thin film sheet 120 THN. The detection electrode return lead portion 105A, the detection electrode return portion 101A, the detection electrode lead portion 102B, and the detection electrode return lead portion 105B are arranged at predetermined positions in the insulating layer 120.
The conductive thin film sheet-embedded insulating thin film sheet MB layer connects the B layer and the B layer in series, and is obtained by rotating the conductive thin film sheet embedded insulating thin film sheet MA layer by 180 degrees in the plane direction. is there.

導電性薄膜シート埋め込み絶縁性薄膜シートC層は、互いに対向する第1の検出電極対向部100Aと第2の検出電極対向部100Bとの絶縁を図りつつ、第1の検出電極リード部102A、第2の検出電極リード部102B、第1の検出電極戻りリード部105A、第2の検出電極戻りリード部105Bの導通を図るものであり、絶縁性薄膜シート120 THN の所定の4カ所に導電性薄膜シート100 THN を埋め込むことで、絶縁層120内の所定の位置に第1の検出電極戻りリード部105A、第1の検出電極リード部102A、第2の検出電極リード部102B、第2の検出電極戻りリード部105Bが配設された状態となっている。
A層、MA層、A層、C層、B層、MB層、B層、C層、A層・・・のように、所定のパターンを繰り返して積層することにより、第1の検出電極EL は、少なくとも、略平板状に形成した第1の検出電極対向部100Aとその一部が略コ字形に屈曲する第1の検出電極折り返し部101A、検出電極リード部102Aによって構成され、一方の端部に第1の断線検出端子部103A形成され、他方の端部に第1のPM検出端子部104A形成され、第1の断線検出端子部103AからPM検出端子部104Aまでが直列に接続された一本の導通経路を形成することができ、第2の検出電極EL は、少なくとも、略平板状に形成した第2の検出電極対向部100Bと、その一部が略コ字形に屈曲する第2の検出電極折り返し部101Bと、検出電極リード部102Bとによって構成され、一方の端部に第2の断線検出端子部103Bが形成され、他方の端部に第2のPM検出端子部104Bが形成され、第2の断線検出端子部103BからPM検出端子部104Bまでが直列に接続された一本の導通経路を形成することができる。
The conductive thin film sheet-embedded insulating thin film sheet C layer provides insulation between the first detection electrode facing portion 100A and the second detection electrode facing portion 100B facing each other, while the first detection electrode lead portion 102A and the second detection electrode facing portion 100B are insulated from each other . second detecting electrode lead part 102B, the first detection electrode return lead portions 105A, it is intended to reduce the conduction of the second detection electrode return lead part 105B, the conductive thin film in a predetermined four locations of the insulating thin film sheet 120 THN By embedding the sheet 100 THN , the first detection electrode return lead portion 105A, the first detection electrode lead portion 102A, the second detection electrode lead portion 102B, and the second detection electrode are placed at predetermined positions in the insulating layer 120. The return lead portion 105B is disposed.
The first detection electrode EL is formed by repeatedly laminating a predetermined pattern such as A layer, MA layer, A layer, C layer, B layer, MB layer, B layer, C layer, A layer,. a is at least a first detection electrode facing portion 100A which is a generally flat plate shape, a first detection electrode folded portion 101A, a part is bent in a substantially U-shaped, it is constituted by a detection electrode lead portion 102A is the first disconnection detecting terminal portion 103A at one end is formed, and the first PM detection terminal portion 104A is formed at the other end, to the PM detection terminal section 104A from the first disconnection detecting terminal portion 103A Can be formed in series, and the second detection electrode EL B has at least a second detection electrode facing part 100B formed in a substantially flat plate shape, and a part of the second detection electrode EL B is substantially a part. Second sensing electrode folded back in a U shape 101B and the detection electrode lead portion 102B, the second disconnection detection terminal portion 103B is formed at one end, the second PM detection terminal portion 104B is formed at the other end, and the second A single conduction path in which the disconnection detection terminal portion 103B to the PM detection terminal portion 104B are connected in series can be formed.

絶縁性厚膜シート埋め込み導電性厚膜シートAE層は、検出部10の一方の端部処理を行うものであり、導電性厚膜シート100 THK の3カ所に絶縁性厚膜シート120 THK が埋設されて、第1の検出電極対向端部100AEが、第1の検出電極折り返し部101Aと第1の検出電極戻りリード部105Aとに接続するように配設され、第2の検出電極対向部100BEが、第2の検出電極リード部102Bと第2の検出電極戻りリード部105Bとに接続されるように配設されている。
また、上端末シートETP層は、絶縁性シート120のみからなり、検出部10の一方の端面の絶縁保持を図っている。
The conductive thick film sheet AE layer embedded in the insulating thick film sheet performs one end processing of the detection unit 10, and the conductive thick film sheet 120 THK is embedded in three places of the conductive thick film sheet 100 THK. The first detection electrode facing end portion 100AE is disposed so as to be connected to the first detection electrode folded portion 101A and the first detection electrode return lead portion 105A, and the second detection electrode facing end portion 100BE is disposed so as to be connected to the second detection electrode lead portion 102B and the second detection electrode return lead portion 105B.
Further, the upper terminal sheet ETP layer is composed only of the insulating sheet 120, and is intended to retain the insulation of one end face of the detection unit 10.

なお、導電性薄膜シート埋め込み絶縁性薄膜シートC層を繰り返し積層することで、第1の検出電極リード部102A、第2の検出電極リード部102B、第1の検出電極戻りリード部105A、第2の検出電極戻りリード部105Bを任意の長さに形成することができる。
下端末シートEND層は、検出部10の他方の端部処理を行うもので、絶縁性厚膜シート120 THK の所定の4カ所に導電性厚膜シート100 THK を埋設(逆に、導電性厚膜シート100 THK の所定の3カ所に絶縁性膜厚シート120 THK を埋設しても良い。)することによって、第1の断線検出端子103A、第2の断線検出端子103B、第1のPM検出端子104A、第2のPM検出端子104Bを形成し検出部10の片側に配設してある。
The conductive thin film sheet-embedded insulating thin film sheet C layer is repeatedly laminated so that the first detection electrode lead portion 102A, the second detection electrode lead portion 102B, the first detection electrode return lead portion 105A, the second The detection electrode return lead portion 105B can be formed to an arbitrary length.
Lower terminal sheet END layer is for performing other end processing of the detection unit 10, a conductive thick film sheet 100 THK buried (reversed predetermined four locations of the insulative thick film sheet 120 THK, conductive thick Insulating film thickness sheet 120 THK may be embedded in predetermined three locations of film sheet 100 THK .) , Thereby providing first disconnection detection terminal 103A, second disconnection detection terminal 103B, and first PM detection. terminal 104A, the second PM detection terminal 104B is formed, it is disposed on one side of the detector 10.

また、実際の製造工程においては、多層セラミックスの製法において慣用されているように、各層の周囲を覆う枠部を設けて、位置決め孔を形成した上で積層することにより、高い精度で第1の検出電極層EL第2の検出電極層ELの一方の端から他方の端までが枝分かれすることなく直列に接続された導通経路を形成しつつ、互いに一定の間隙を隔てて対向させることができる。 Further, in the actual manufacturing process, as is commonly used in the manufacturing method of multilayer ceramics, a frame portion that covers the periphery of each layer is provided, and after positioning holes are formed, the first precision is obtained with high accuracy . The detection electrode layer EL A and the second detection electrode layer EL B are opposed to each other with a certain gap while forming a conduction path connected in series without branching from one end to the other end. Can do.

なお、本実施形態において、各層の幅を厚く形成し、積層した後、金太郎飴のように、所定の幅に切り出すことによって、複数の検出部10を効率良く形成することができる。
このようにして得られた検出部集合体10MLTを図6Cに示すように、ダイシングソー等の切断手段を用いて、所定の厚みに切り出して検出部10が完成する。
これを、図3に示したように、基板部20に実装すれば、本発明の要部である粒子状物質検出素子2が完成する。
In addition, in this embodiment, after forming the width | variety of each layer thickly and laminating | stacking, the several detection part 10 can be efficiently formed by cutting out to predetermined width | variety like Kintaro-an.
As shown in FIG. 6C, the detection unit aggregate 10MLT obtained in this way is cut into a predetermined thickness by using a cutting means such as a dicing saw to complete the detection unit 10.
If this is mounted on the substrate part 20 as shown in FIG. 3, the particulate matter detection element 2 which is the main part of the present invention is completed.

なお、検出部集合体10MLTから、個片を切り出すのは、焼成前に行っても良いし、焼成後に行っても良い。
焼成前の加工であれば、成形体の状態であるので加工が容易であるメリットがある反面、焼成による寸法変化があるため、検出部10の寸法バラツキが大きくなるデメリットがある。
焼成後の加工であれば、検出部10の強度が高くなっているので、加工が困難となるデメリットがある反面、焼成による寸法変化がないので、加工後の寸法精度が高いメリットがある。
したがって、生産コストを重視する用途か、加工精度を重視しる用途かに応じて、いずれの時期に加工するのが良いかを適宜選択できる。
It should be noted that the individual pieces may be cut out from the detection unit assembly 10MLT before firing or after firing.
If it is processing before firing, there is a merit that the processing is easy because it is in the form of a molded body, but there is a demerit that dimensional variation of the detection unit 10 increases because there is a dimensional change due to firing.
If the processing is performed after firing, the strength of the detection unit 10 is high, so that there is a demerit that the processing becomes difficult. However, since there is no dimensional change due to firing, there is an advantage of high dimensional accuracy after processing.
Accordingly, it is possible to appropriately select at which time the processing should be performed depending on whether the production cost is important or the processing accuracy is important.

また、本発明の要部である検出部10は、上述のような積層構造を呈しているため、多層基板や、圧電アクチュエータ等の積層構造体と同様に、加工工程途中での不純物の混入や、各層間の熱膨張係数の違い等によって、層間剥離(デラミネーション)を生じる虞がある。
第1の検出電極EL 内、又は、第2の検出電極EL内に、デラミネーションを生じると、各層間の導通が阻害され、局所的な断線を生じる虞があるが、上述の如く、本発明によれば、極めて容易に素子内部の断線の有無を検出することができる。
したがって、検出部10を積層体構造とし、積層方向断面を検出面として利用することによって、第1の検出電極EL と第2の検出電極EL との間の絶縁距離を極めて短くして不感質量の解消を図った場合であっても、高い信頼性を維持できるのである。
In addition, since the detection unit 10 which is a main part of the present invention has a laminated structure as described above, in the same way as a laminated structure such as a multilayer substrate or a piezoelectric actuator, impurities may be mixed during the processing step. There is a risk of delamination due to the difference in thermal expansion coefficient between the layers.
If delamination occurs in the first detection electrode EL A or the second detection electrode EL B , conduction between the respective layers may be inhibited and local disconnection may occur. According to the present invention, it is possible to detect the presence or absence of disconnection inside the device very easily.
Accordingly, the detection unit 10 is a laminate structure, by utilizing the stacking direction cross the detection surface, and the insulation distance between the first detection electrode EL A and the second detection electrode EL B very short Even when the dead mass is eliminated, high reliability can be maintained.

図7を参照して、本発明の第2の実施形態における粒子状物質検出センサ1aについて説明する。なお、上記実施形態と同じ構成については、同じ符号を付したので詳細な説明を省略し、類似する構成であって相違する部分には同じ符号に枝番としてアルファベットを付してあり、相違点を中心に説明する。以下の実施例においても同様とする。
上記実施形態においては、基板部20に具備した発熱体220への通電を制御する発熱体通電制御回路部32を、断線検出回路部30、及び、PM検出回路部31とは独立に設けた例を示したが、本実施形態においては、断線検出回路部30(第1の断線検出回路部301Aa、第2の断線検出回路部301Ba)を、発熱体220の発熱温度の検出と温度制御に利用するように構成した点が相違する。
With reference to FIG. 7, a particulate matter detection sensor 1a according to a second embodiment of the present invention will be described. Since the same reference numerals are given to the same components as those in the above embodiment, detailed description thereof is omitted, and the same components but different parts are given the same reference characters with alphabets as branch numbers. The explanation will be focused on. The same applies to the following embodiments.
In the above embodiment, the heating element energization control circuit unit 32 that controls the energization of the heating element 220 provided in the substrate unit 20 is provided independently of the disconnection detection circuit unit 30 and the PM detection circuit unit 31. In this embodiment, the disconnection detection circuit unit 30 ( first disconnection detection circuit unit 301 Aa, second disconnection detection circuit unit 301 Ba) is used to detect the heat generation temperature of the heating element 220 and to control the temperature. The difference is that it is configured to be used for the above.

第1の検出電極EL の第1の断線検出端子103Aから第1のPM検出端子104A至るまでの第1の内部抵抗R 及び第2の検出電極EL の第2の断線検出端子103Bから第2のPM検出端子104Bに至るまでの第2の内部抵抗R は、温度に対して相関性を有するため、検出された第1の内部抵抗Rから、発熱体220の第1の発熱温度T を、第2の内部抵抗R から発熱体220の第2の発熱温度を算出することが可能である。
得られた温度結果を、ヒータ制御回路320にフィードバックし、ヒータ制御回路320では、温度結果に応じて、発熱体220への通電を制御するスイッチング素子322を開閉駆動するたドライバ321の駆動を制御する。
本実施形態によれば、上記実施形態と同様に、検出部10内部の断線の有無検出が可能で、高い精度で粒子状物質の検出が可能であるのに、加えて、発熱体の温度をより正確に制御することも可能となる。
First detecting electrode internal resistance R A and the first from the disconnection detection terminal 103A first up to the first PM detection terminal 104A of EL A, a second disconnection detecting terminal of the second detection electrode EL B second internal resistance R B from 103B up to the second PM detection terminal 104B, in order to have a correlation to the temperature, from a first internal resistance R a detected, first heating element 220 the heating temperature T 1 of the, it is possible to calculate the second heating temperature T 2 of the heating element 220 from the second internal resistance R B.
The obtained temperature result is fed back to the heater control circuit 320, and the heater control circuit 320 controls the driving of the driver 321 that opens and closes the switching element 322 that controls energization to the heating element 220 according to the temperature result. To do.
According to the present embodiment, in the same manner as the above-described embodiment, it is possible to detect the presence or absence of disconnection inside the detection unit 10 and to detect particulate matter with high accuracy. It becomes possible to control more accurately.

図8を参照して、本発明の第3の実施形態における粒子状物質検出センサ1bについて説明する。
上記実施形態においては、検出部10に堆積した粒子状物質を燃焼除去させたり、検出時の温度を一定として検出精度の向上を図ったりするために、基板部20の内部に通電により発熱する発熱体220を設けた例を示したが、本実施形態においては、発熱体220を具備することなく、第1の検出電極ELと第2の検出電極EL のそれぞれを抵抗発熱体として利用するように構成した点が相違する。
本実施形態においては、第1の検出電極EL の両端103A−104A間の断線を検出する第1の断線検出回路部301Abと、第2の検出電極ELの両端103B−104間の断線を検出する第2の断線検出回路部301Bbのそれぞれに、発熱制御機能を持たせたことを特徴とする。
具体的には、第1の検出電極EL の両端103A−104A間の内部抵抗、及び、第2のEL両端103B−104A間の内部抵抗を測定することによって断線の有無を検出するだけでなく、導体の抵抗値は、温度依存性を有することから、測定された第1の検出抵抗値Rから第1の検出電極EL の温度を第2の検出抵抗値 から第2の検出電極ELの温度を算出する。
With reference to FIG. 8, a particulate matter detection sensor 1b according to a third embodiment of the present invention will be described.
In the above-described embodiment, in order to burn off particulate matter deposited on the detection unit 10 or improve detection accuracy by keeping the temperature at the time of detection constant, the heat generated by energization inside the substrate unit 20 is generated. an example is shown in which a body 220, in this embodiment, without having a heating element 220, the first detection electrode EL a, and as each resistance heating element of the second detection electrode EL B The difference is that it is configured to be used.
In the present embodiment, a first disconnection detecting circuit unit 301Ab for detecting disconnection across 103A-104A of the first detecting electrode EL A, disconnection across 103B-104 B of the second detection electrode EL B Each of the second disconnection detection circuit units 301Bb for detecting the heat is provided with a heat generation control function.
Specifically, the presence or absence of a disconnection is only detected by measuring the internal resistance between both ends 103A-104A of the first detection electrode EL A and the internal resistance between both ends 103B-104A of the second EL B. not, the resistance value of the conductor, since it has a temperature dependence, the temperature of the first detection electrode EL a from the first detection resistance R a measured, first from the second detection resistance value R B The temperature of the second detection electrode EL B is calculated.

さらに、抵抗体の発熱量は、供給電力に比例することから、第1の検出抵抗値R第2の検出抵抗値をモニタしつつ、第1の可変電源32Abから第1の検出電極EL に、2の可変電源32Bbから第2の検出電極ELに供給する電力量を増減することによって、第1の検出電極EL及び、第2の検出電極ELを所望の温度に維持することが可能となる。
本実施形態によれば、上記実施形態と同様の効果に加え、第1の検出電極EL 、及び、第2の検出電極ELに堆積した粒子状物質が飽和状態となった場合には、第1の可変電源32Ab、及び/又は、第2の可変電源32Bbからの供給電力を上げ、第1の検出電極EL 及び/又は、第2の検出電極ELの温度を上昇させ、堆積した粒子状物質を燃焼除去することもできる。
Further, the heating value of the resistor is proportional to the power supply, the first detection resistance value R A, while monitoring the second detection resistance value R B, first detected from the first variable power source 32Ab the electrode EL a, from the second variable power source 32Bb by increasing or decreasing the amount of power supplied to the second detection electrode EL B, the first detection electrode EL a, and the desired second detection electrode EL B It becomes possible to maintain the temperature.
According to the present embodiment, in addition to the same effect as the above embodiment , when the particulate matter deposited on the first detection electrode EL A and the second detection electrode EL B is saturated, The power supplied from the first variable power source 32Ab and / or the second variable power source 32Bb is increased, and the temperature of the first detection electrode EL A and / or the second detection electrode EL B is increased and deposited. Particulate matter can also be removed by combustion.

図9A、図9Bを参照して、本発明の第4の実施形態における粒子状物質検出センサ1cとその要部である検出電極積層体10cについて説明する。
上記実施形態においては、検出電極積層体10の内部を貫通するように、検出電極戻りリード部105A、105Bを設けて外部との接続を図る断線検出端子部103A、103Bと粒子状物質検出端子部104A、104Bとを検出電極積層体10の一方の端縁に引き出した構成について説明したが、図9A、図9Bに示すように、検出電極戻りリード部105A、105Bを設けることなく、断線検出端子部103Ac、103Bc、粒子状物質検出端子部104Ac、104Bcを4箇所に振り分けて露出させ、基板部20cの表面に設けた導体106Ac、106Bc、107Ac、107Bc、108Ac、108Bc、109Ac、109Bc、110Ac、110Bc、111Ac、111Bcの配線パターンによって、外部との接続を図る接続端子110Ac、110Bc、111Ac、111Bcを粒子状物質検出素子2cの基端側に配設するようにした点が相違する。
With reference to FIG. 9A and FIG. 9B, the particulate matter detection sensor 1c and the detection electrode laminated body 10c which is the principal part in the 4th Embodiment of this invention are demonstrated.
In the above-described embodiment, the disconnection detection terminal portions 103A and 103B and the particulate matter detection terminal portion that are provided with the detection electrode return leads 105A and 105B so as to penetrate the inside of the detection electrode laminate 10 and are connected to the outside. The configuration in which 104A and 104B are pulled out to one end edge of the detection electrode laminate 10 has been described. However, as shown in FIGS. 9A and 9B, the disconnection detection terminal is not provided without providing the detection electrode return leads 105A and 105B. The parts 103Ac and 103Bc and the particulate matter detection terminal parts 104Ac and 104Bc are divided and exposed in four places, and the conductors 106Ac, 106Bc, 107Ac, 107Bc, 108Ac, 108Bc, 109Ac, 109Bc, 110Ac, provided on the surface of the substrate part 20c, 110Bc, 111Ac, and 111Bc wiring patterns Connection terminals 110Ac to achieve the connection, 110Bc, 111Ac, the point where the 111Bc to be disposed on the proximal side of the particulate matter detection device 2c differs.

検出電極戻りリード部105A、105Bを形成していないので、図9Bに示すように、各層の構成がシンプルで上記実施形態より製造容易となる。
本実施形態においても、上記実施形態と同様に、第1の検出電極EL が、第1の断線検出端子103Acから第1のPM検出端子104Ac至るまで枝分かれすることなく、一筆書き状の導電経路が形成され、第2の検出電極EL が、第2の断線検出端子103Bcから第2のPM検出端子104Bcに至るまで枝分かれすることなく、一筆書き状の導電経路が形成されているので、第1の検出電極EL と第2の検出電極EL内部の断線の有無を極めて容易に検出できる。
Since the detection electrode return lead portions 105A and 105B are not formed, as shown in FIG. 9B, the configuration of each layer is simple and the manufacture is easier than the above embodiment.
In this embodiment, as in the above embodiment, the first detection electrode EL A is without branching from the first disconnection detecting terminal 103Ac down to the first PM detection terminal 104Ac, single stroke-like conductive Since the path is formed and the second detection electrode EL B is not branched from the second disconnection detection terminal 103Bc to the second PM detection terminal 104Bc, a one-stroke writing conductive path is formed . The presence or absence of a disconnection inside the first detection electrode EL A and the second detection electrode EL B can be detected very easily.

図10A、図10Bを参照して、本発明の第5の実施形態における粒子状物質検出センサ1d、及び、検出電極積層体10dについて説明する。
上記実施形態においては、導電性厚膜シート100 THK 内に絶縁性薄膜シート120 THK を埋め込んだ絶縁性厚膜シート埋め込み導電性厚膜シート(A層、B層)と、絶縁性薄膜シート120 THN 内に導電性薄膜シート100 THN を埋め込んだ導電性薄膜シート埋め込み絶縁性薄膜シート(MA層、MB層、C層)を積層することで、第1の検出電極折り返し部101A、第2の検出電極折り返し部101Bや、第1の検出電極リード部102A、第2の検出電極リード部102Bを形成して、第1の検出電極EL が、第1の断線検出端子103A、から、第1のPM検出端子104Aまで、第2の検出電極EL が第2の断線検出端子103Bから第2のPM検出端子104Bまで、それぞれ枝分かれすることなく、直列接続された導電経路を形成する方法を示したが、本実施形態においては、各層間の導通を確保する第1の検出電極折り返し部101A、第2の検出電極折り返し部101Bや、第1の検出電極リード部102A、第2の検出電極リード部102Bをスルーホール印刷によって形成する点が相違する。
With reference to FIG. 10A and FIG. 10B, the particulate matter detection sensor 1d and the detection electrode laminate 10d in the fifth exemplary embodiment of the present invention will be described.
In the above embodiment, the conductive thick film sheet 100 THK is embedded with the insulating thin film sheet 120 THK, and the conductive thick film sheet embedded in the conductive thick film sheet (A layer, B layer), and the insulating thin film sheet 120 THN. Conductive thin film sheet 100 THN embedded conductive thin film sheet embedded insulating thin film sheets (MA layer, MB layer, C layer) are laminated in the first detection electrode folded portion 101A, second detection electrode The folded portion 101B, the first detection electrode lead portion 102A, and the second detection electrode lead portion 102B are formed, and the first detection electrode EL A is connected to the first PM from the first disconnection detection terminal 103A. to the detection terminal 104A, the second detection electrode EL B is a second disconnection detecting terminal 103B to the second PM detection terminal 104B, without branching, respectively, the series contact Although the method of forming the conductive paths, in the present embodiment, the first detection electrode folded portion 101A to secure the continuity of the layers, and the second detecting electrode folded portion 101B, the first detection electrode The difference is that the lead portion 102A and the second detection electrode lead portion 102B are formed by through-hole printing.

このような構成とすることで、検出部10dの表面には、略短冊状に区画された第1の検出電極対向部100A、第1の検出電極対向部100Bのみが絶縁層120を介して平行に並んで露出した状態となり、第1の検出電極折り返し部101Ad、第2の検出電極折り返し部101Bd、及び、第1の検出電極リード部102Ad、第1の検出電極リード部102Bdは、絶縁層120内部に埋設された状態となっている。
このため、第1の検出電極ELAd と第2の検出電極ELBd との間に電界を作用させ、被測定ガス中に含まれる粒子状物質の捕集を図った場合に、検出電極の屈曲する部分に電界集中することがなく、平行に並んだ第1の検出電極ELAd第2の検出電極ELBd との間に一様な電界が形成されるため、捕集される粒子状物質の偏在が抑制され、検出精度のさらなる向上を図ることもできる。
また、本発明において、検出部10、10a、10b、10c、10dの方向性を特に限定するものではなく、図1Bに示すように、粒子状物質検出素子2の長手方向に対して、直交する方向に第1の検出電極対向部100A、第2の検出電極対向部100Bが並ぶように形成しても良いし、図10Aに示すように、粒子状物質検出素子2の長手方向に対して、平行する方向に第1の検出電極対向部100Aと第2の検出電極対向部100Bが並ぶように形成してもよい。
With this configuration, only the first detection electrode facing portion 100A and the first detection electrode facing portion 100B, which are partitioned in a substantially strip shape, are parallel to each other on the surface of the detection portion 10d via the insulating layer 120. The first detection electrode folded portion 101Ad, the second detection electrode folded portion 101Bd, the first detection electrode lead portion 102Ad, and the first detection electrode lead portion 102Bd are exposed in the insulating layer 120. It is buried inside.
Therefore, when an electric field is applied between the first detection electrode EL Ad and the second detection electrode EL Bd to collect particulate matter contained in the gas to be measured, the detection electrode is bent. without having to electric field concentration in a portion, the first detection electrode EL Ad aligned parallel, since the uniform electric field is formed between the second detection electrode EL Bd, particulate matter is trapped Can be suppressed and detection accuracy can be further improved.
Further, in the present invention, the directionality of the detection units 10, 10a, 10b, 10c, and 10d is not particularly limited, and is orthogonal to the longitudinal direction of the particulate matter detection element 2 as shown in FIG. 1B. The first detection electrode facing portion 100A and the second detection electrode facing portion 100B may be formed to be aligned in the direction, or as shown in FIG. 10A, with respect to the longitudinal direction of the particulate matter detection element 2 The first detection electrode facing portion 100A and the second detection electrode facing portion 100B may be formed to be aligned in the parallel direction.

なお、上記実施形態においては、検出部10、10a、10b、10c、10dを積層体構造とすることで、一対の検出電極対向部100A、100B間を絶縁する絶縁層120の膜厚を20μm以下にすることを可能にし、極めて検出精度を高くした構成について説明した
厚膜印刷の場合、第1の検出電極対向部100Azと第2の検出電極対向部100Bzとを絶縁する絶縁距離を20μm以下とするのが困難であるため、上記実施形態に比べ、検出精度の低下は避けられない
In the above embodiment, the thickness of the insulating layer 120 that insulates between the pair of detection electrode facing portions 100A and 100B is 20 μm or less by making the detection portions 10, 10a, 10b, 10c, and 10d have a laminated structure. The configuration in which the detection accuracy is extremely high and the detection accuracy is extremely high has been described .
In the case of thick film printing, it is difficult to set the insulation distance for insulating the first detection electrode facing portion 100Az and the second detection electrode facing portion 100Bz to 20 μm or less. A decline is inevitable .

1 粒子状物質検出センサ
10 検出部
100A 第1の検出電極対向部
100B 第2の検出電極対向部
101A 第1の検出電極折り返し部
101B 第2の検出電極折り返し部
102A 第1の検出電極リード部
102B 第2の検出電極リード部
103A 第1の断線検出端子部
103B 第2の断線検出端子部
104A 第1の粒子状物質検出端子部
104B 第2の粒子状物質検出端子部
105A 第1の検出電極戻りリード部
105B 第2の検出電極戻りリード部
2 粒子状物質検出素子
20 基板部
200、210 絶縁性基板
220 発熱体
221A、221B 発熱体リード部
222A、222B 発熱体端子部
223A、223B スルーホール電極
A層、B層 絶縁性厚膜シート埋め込み導電性厚膜シート
MA層、MB層、C層 導電性薄膜シート埋め込み絶縁性薄膜シート
DESCRIPTION OF SYMBOLS 1 Particulate matter detection sensor 10 Detection part 100A 1st detection electrode opposing part
100B 2nd detection electrode opposing part 101A 1st detection electrode return part
101B second detection electrode folded portion 102A first detection electrode lead portion
102B second detection electrode lead portion 103A first disconnection detection terminal portion 103B second disconnection detection terminal portion 104A first particulate matter detection terminal portion 104B second particulate matter detection terminal portion 105A first detection electrode Return lead part 105B Second detection electrode Return lead part 2 Particulate matter detection element 20 Substrate part 200, 210 Insulating substrate 220 Heating element 221A, 221B Heating element lead part 222A, 222B Heating element terminal part 223A, 223B Through-hole electrode
A layer, B layer Insulating thick film sheet embedded conductive thick film sheet
MA layer, MB layer, C layer Conductive thin film sheet embedded insulating thin film sheet

特開2005−164554号公報JP 2005-164554 A 特開2012−47596号公報JP 2012-47596 A 特開2011−203093号公報JP 2011-203093 A

Claims (10)

少なくとも所定の距離を隔てて対向する第1の検出電極(EL )と第2の検出電極(ELを具備する検出部(10、10c、10d)に捕集・堆積する粒子状物質の量に応じて変化する上記第1の検出電極(EL )と上記第2の検出電極(EL )との間の電気的特性を検出して被測定ガス中に含まれる粒子状物質の量を検出する粒子状物質検出素子(2、2、2b、2c、2d)を備えた粒子状物質検出センサであって、
上記第1の検出電極(EL )が、一方の端部(103A、103Ac、103Ad)から、他方の端部(104A、104Ac、104Ad)に至る迄に直列に接続された導通経路を形成しつつ、
上記検出部(10、10c、10d)において、その一部をコ字形に屈曲せしめた折り返し部(101A、101Ad)と、
所定の検出電極対間距離を形成する絶縁層(120)を介して他の検出電極に対向する検出電極対向部(100A)と、を備えてなり、
上記第2の検出電極(EL )が、一方の端部(103B、103Bc、103Bd)から、他方の端部(104B、104Bc、104Bd)に至る迄に直列に接続された導通経路を形成しつつ、
上記検出部(10、10c、10d)において、その一部を逆コ字形に屈曲せしめた折り返し部(101B、101Bd)と、
所定の検出電極対間距離を形成する絶縁層(120)を介して他の検出電極に対向する検出電極対向部(100B)と、を備えてなり
上記第1の検出電極(EL )の上記一方の端部(103A、103Ac、103Ad)から上記他方の端部(104A、104Ac、104Ad)に至るまでの抵抗値の計測により、上記第1の検出電極(EL)の内部における断線の有無を検出する第1の断線検出回路部(301A、301Aa、301Ab)と、
上記第2の検出電極(ELの上記一方の端部(103B、103Bc、103Bd)から上記他方の端部(104B、104Bc、104Bd)に至るまでの抵抗値の計測により、上記第2の検出電極(EL )の内部における断線の有無を検出する第2の断線検出回路部(301B、301Ba、301Bb)と、を具備することを特徴とする粒子状物質検出センサ(1、1a、1b、1c、1d)。
Particulate matter trapped and accumulated in at least a first detection electrode (EL A) and a second detection electrode facing at a predetermined distance (EL B) a detection section having a (10,10c, 10d) The electrical characteristics between the first detection electrode (EL A ) and the second detection electrode (EL B ), which change according to the amount of the gas, are detected to detect the particulate matter contained in the gas to be measured. A particulate matter detection sensor provided with a particulate matter detection element (2, 2, 2b, 2c, 2d) for detecting an amount,
The first detection electrode (EL A ) forms a conduction path connected in series from one end (103A, 103Ac, 103Ad) to the other end (104A, 104Ac, 104Ad). While
In the detection part (10, 10c, 10d), a folded part (101A, 101Ad) in which a part thereof is bent in a U-shape;
A detection electrode facing portion (100A) facing the other detection electrode via an insulating layer (120) that forms a predetermined distance between the detection electrodes,
The second detection electrode (EL B ) forms a conduction path connected in series from one end (103B, 103Bc, 103Bd) to the other end (104B, 104Bc, 104Bd). While
In the detection part (10, 10c, 10d), a folded part (101B, 101Bd) in which a part thereof is bent in an inverted U shape,
A detection electrode facing portion (100B) facing the other detection electrode via an insulating layer (120) that forms a predetermined distance between the detection electrode pairs ,
Said one end of the first detection electrode (EL A) (103A, 103Ac , 103Ad) the other end portion from (104A, 104Ac, 104Ad) by the measurement of the resistance value of up to, the first A first disconnection detection circuit section (301A , 301Aa, 301Ab) for detecting the presence or absence of disconnection inside the detection electrode (EL A ) ;
By measuring the resistance value from the one end (103B, 103Bc, 103Bd) to the other end (104B, 104Bc, 104Bd) of the second detection electrode (EL B ) , A particulate matter detection sensor (1, 1a, 1b ) comprising a second breakage detection circuit portion (301B, 301Ba, 301Bb) for detecting the presence or absence of a breakage in the detection electrode (EL B ) . 1c, 1d).
上記第1の検出電極(EL )の一方の端部(103A、103Ac、103Ad)と上記第2の検出電極(EL )の一方の端部(103B、103Bc、103Bd)との間(103A−103B、103Ac−103Bc、103Ad−103Bd)、又は、上記第1の検出電極(EL )の他方の端部(104A、104Ac、104Ad)と上記第2の検出電極(EL )の他方の短部(104B、104Bc、104Bd)との間(104A−104B、104Ac−104Bc、104Ad−104Bd)の抵抗値、静電容量、インピーダンスのいずれかの検出により、上記第1の検出電極(EL )と上記第2の検出電極(EL )との間に堆積した粒子状物質の堆積量を検出するPM検出回路部(31)を具備する請求項1に記載の粒子状物質検出センサ(1、1a、1b、1c、1d)。 Between one end (103A, 103Ac, 103Ad) of the first detection electrode (EL A ) and one end (103B, 103Bc, 103Bd) of the second detection electrode (EL B ) (103A -103B, 103Ac-103Bc, 103Ad-103Bd), or the other end (104A, 104Ac, 104Ad) of the first detection electrode (EL A ) and the other of the second detection electrode (EL B ) The first detection electrode (EL A) is detected by detecting any one of the resistance value, capacitance, and impedance between the short portions (104B, 104Bc, 104Bd) (104A-104B, 104Ac-104Bc, 104Ad-104Bd). ) and to include a PM detection circuit (31) for detecting the deposition amount of the particulate matter deposited between the second detection electrode (EL B) The particulate matter detection sensor as claimed in claim 1 (1,1a, 1b, 1c, 1d). 上記粒子状物質検出素子(2、2b、2c、2d)が、
上記検出部(10、10c、10d)と、
これを実装する基板部(20、20b、20c、20d)とからなり、
上記検出部(10、10c、10d)が、
100μm以上、500μm以下の膜厚で略平板状に形成した上記第1の検出電極対向部(100A)と上記第2の検出電極対向部(100B)と、
5μm以上、20μm以下の膜厚で略平板状に形成した上記絶縁層(120)とを繰り返して積層せしめた積層構造体の積層方向断面からなる請求項1又は2に記載の粒子状物質検出センサ(1、1a、1b、1c、1d)。
The particulate matter detection element (2, 2b, 2c, 2d)
The detection unit (10, 10c, 10d);
The board portion (20, 20b, 20c, 20d) on which this is mounted,
The detection unit (10, 10c, 10d)
The first detection electrode facing portion (100A ) and the second detection electrode facing portion ( 100B) formed in a substantially flat plate shape with a film thickness of 100 μm or more and 500 μm or less,
The particulate matter detection sensor according to claim 1 or 2, comprising a cross-section in the stacking direction of a stacked structure in which the insulating layer (120) formed in a substantially flat shape with a film thickness of 5 µm to 20 µm is repeatedly stacked. (1, 1a, 1b, 1c, 1d).
上記粒子状物質検出素子(2、2b、2c、2d)が、
通電により発熱する抵抗発熱体(EL、EL/220)を具備する請求項1ないし3のいずれかに記載の粒子状物質検出センサ(1、1a、1b、1c、1d)。
The particulate matter detection element (2, 2b, 2c, 2d)
The particulate matter detection sensor (1, 1a, 1b, 1c, 1d) according to any one of claims 1 to 3, comprising a resistance heating element (EL A , EL B / 220) that generates heat when energized.
上記第1の断線検出回路部(301Aaが、
上記第1の検出部(EL )の上記一方の端部(103Aから上記第1の検出部(EL )の上記他方の端部(104Aまでの直流抵抗を測定して断線の有無を検出すると共に、
上記第2の断線検出回路部(301Ba)が、
上記第2の検出部(EL )の上記一方の端部(103B)から上記第2の検出部(EL )の上記他方の端部(104B)までの直流抵抗を測定して断線の有無を検出して、
上記第1の断線検出回路部(301Aa)と上記第2の断線検出回路部(301Ba)とによって検出された直流抵抗の値から上記発熱体(EL、EL/220)の発熱温度を算出し、上記抵抗発熱体(EL、EL/220)への通電を制御する発熱制御回路部としての機能を具備する請求項4に記載の粒子状物質検出センサ(1a、1b)。
The first disconnection detection circuit section (301Aa ) is
The presence or absence of breakage by measuring the DC resistance of the first detector from the one end of the (EL A) (103A) to the first detector the other end of the (EL A) (104A) And detecting
The second disconnection detection circuit section (301Ba)
The presence or absence of breakage by measuring the DC resistance of the second detector from the one end of the (EL B) (103B) to the second detector the other end of the (EL B) (104B) Detect
The heat generation temperature of the heating element (EL A , EL B / 220) is calculated from the DC resistance value detected by the first disconnection detection circuit unit (301Aa) and the second disconnection detection circuit unit (301Ba). The particulate matter detection sensor (1a, 1b) according to claim 4, wherein the particulate matter detection sensor (1a, 1b) has a function as a heat generation control circuit unit for controlling energization to the resistance heating element (EL A , EL B / 220).
上記基板部(20)が、
略平板状の絶縁性基板(200、210)とその内部に上記抵抗発熱体(220)を具備する請求項4に記載の粒子状物質検出センサ(1、1a、1c、1d)。
The substrate part (20) is
The particulate matter detection sensor (1, 1a, 1c, 1d) according to claim 4, comprising a substantially flat insulating substrate (200, 210) and the resistance heating element (220) therein.
上記第1の断線検出回路部(301Abが、上記第1の検出電極(EL )の一方の端部(103Aから上記第1の検出電極(EL )の他方の端部(104Aまでの直流抵抗を測定して断線の有無を検出し、
上記第2の断線検出回路部(301Bb)が、上記第2の検出電極(EL )の一方の端部(103B)から上記第2の検出電極(EL )の他方の端部(104B)までの直流抵抗を測定して断線の有無を検出すると共に
上記第1の検出電極(EL )と上記第2の検出電極(EL )とのそれぞれを上記抵抗発熱体として利用して、
上記第1の検出電極(EL )において、上記一方の端部(103Aと上記他方の端部(104Aとの間への通電により、上記第1の検出電極(EL を発熱させ、
上記第2の検出電極(EL )において、上記一方の端部(103B)と上記他方の端部(104B)との間への通電により、上記第2の検出電極(EL )を発熱させる発熱制御回路部を具備する請求項4に記載の粒子状物質検出センサ(1b)。
The first disconnection detecting circuit unit (301Ab) is, one end portion of the first detection electrode (EL A) the other end of the from (103A) a first detection electrode (EL A) (104A) Measure the DC resistance up to and detect the disconnection ,
Said second disconnection detecting circuit unit (301Bb) is, one end of the second detection electrode (EL B) the other end of the from (103B) a second detection electrode (EL B) (104B) Measure the direct current resistance to detect the presence or absence of disconnection ,
Using each of the first detection electrode (EL A ) and the second detection electrode (EL B ) as the resistance heating element,
In the first detection electrode (EL A ), the first detection electrode (EL A ) generates heat by energization between the one end (103A ) and the other end (104A ). ,
In the second detection electrode (EL B ), the second detection electrode (EL B ) generates heat by energization between the one end (103B) and the other end (104B) . The particulate matter detection sensor (1b) according to claim 4, further comprising a heat generation control circuit unit.
上記第1の検出電極(EL )と上記第2の検出電極(ELが、LNF(LaNi0.6Fe0.4)、LSN(La1.2Sr0.8NiO)、LSM(La1−XSrMnO3−δ)、LSC(La1−XSrCoO3―δ)、LCC(La1−XCaCrO3−δ)、LSCN(La0.85Sr0.15Cr1−XNi3−δ)(0.1≦X≦0.7)のいずれかから選択したペロブスカイト型の導電性酸化物材料からなり、導電率が10−2S/cm以上の導電性酸化物である請求項1ないし7のいずれか記載の粒子状物質検出センサ(1、1a、1b、1c、1d)。 The first detection electrode and the (EL A) and the second detection electrode (EL B) but, LNF (LaNi 0.6 Fe 0.4 O 3), LSN (La 1.2 Sr 0.8 NiO 4 ), LSM (La 1-X Sr X MnO 3-δ), LSC (La 1-X Sr X CoO 3-δ), LCC (La 1-X Ca X CrO 3-δ), LSCN (La 0.85 Sr 0.15 Cr 1-X Ni X O 3-δ ) (0.1 ≦ X ≦ 0.7), and a perovskite-type conductive oxide material having a conductivity of 10 −2 S The particulate matter detection sensor (1, 1a, 1b, 1c, 1d) according to any one of claims 1 to 7, which is a conductive oxide of at least / cm. 上記絶縁層(120)が、8YSZ((ZrO0.92(Y0.08からなる部分安定化ジルコニア、MgO、Alのいずれかから選択した絶縁性酸化物材料からなり、導電率が10−5S/cm以下の絶縁性酸化物である請求項1ないし7のいずれか記載の粒子状物質検出センサ(1、1a、1b、1c、1d)。 The insulating layer (120) is, 8YSZ ((ZrO 2) 0.92 (Y 2 O 3) 0.08) part consisting of stabilized zirconia, MgO, insulating oxide selected from one of Al 2 O 3 The particulate matter detection sensor (1, 1a, 1b, 1c, 1d) according to any one of claims 1 to 7, which is an insulating oxide made of a material and having an electrical conductivity of 10 -5 S / cm or less. 所定の膜厚に形成した導電性シートと所定の膜厚に形成した絶縁性シートを積層した積層構造体の断面を検出部(10、10c、10d)として、上記絶縁性シートの膜厚によって決定される所定の間隙を隔てて対向せしめた第1の検出電極(EL )と第2の検出電極(EL )との間に堆積する粒子状物質の堆積量に応じて変化する電気的特性により被測定ガス中の粒子状物質を検出する請求項1から9のいずれかに記載の粒子状物質検出センサ(1、1a、1b、1c、1d)に用いられる粒子状物質検出素子(2、2b、2c、2d)の製造方法であって、
少なくとも、
LNF(LaNi0.6Fe0.4)、LSN(La1.2Sr0.8NiO)、LSM(La1−XSrMnO3−δ)、LSC(La1−XSrCoO3―δ)、LCC(La1−XCaCrO3−δ)、LSCN(La0.85Sr0.15Cr1−XNi3−δ)(0.1≦X≦0.7)のいずれかから選択したペロブスカイト型の導電性酸化物材料を用いて、100μm以上500μm以下の膜厚を有する略平板状の上記第1の検出電極対向部(100A)と上記第2の検出電極対抗部(100B)を構成するための導電性厚膜シート(100 THK )を形成する導電性厚膜シート成形工程と、
上記導電性酸化物材料を用いて、5μm以上10μm以下の膜厚を有する記第1の検出電極折り返し部(101A)と上記第2の検出電極折り返し部(101B)を構成するための導電性薄膜シート(100 THN )を形成する導電性薄膜シート成形工程と、
8YSZ((ZrO0.92(Y0.08からなる部分安定化ジルコニア、MgO、Alのいずれかから選択した絶縁性酸化物材料を用いて、5μm以上20μm以下の膜厚を有する略平板状の絶縁層(120THN)を構成するための絶縁性薄膜シート(120 THN )を形成する絶縁性シート薄膜成形工程と、
上記絶縁性酸化物材料を用いて100μm以上500μm以下の膜厚を有する略平板状の絶縁層(120 THK )を構成するための絶縁性厚膜シート(120 THK )を形成する絶縁性シート厚膜成形工程と、
上記導電性厚膜シート(100 THK )内の所定位置に、該導電性厚膜シートと同一膜厚に形成され、所定形状に区画した上記絶縁性薄膜シート(120 THN )と同材質の絶縁性厚膜シート(120 THK )を埋め込む、絶縁性厚膜シート埋め込み導電性厚膜(A層/B層)成形工程と、
上記絶縁性薄膜シート(120 THN )内の所定位置に、該絶縁薄膜シートと同一膜厚に形成され所定形状に区画した上記導電性厚膜シート(100 THK )と同材質の導電性薄膜シート(100 THN )を埋め込む、導電性薄膜シート埋め込み絶縁性薄膜シート(MA層/MB層/C層)成形工程をと、
得られた絶縁性厚膜シート埋め込み導電性厚膜シート(A層/B層)と導電性薄膜シート埋め込み絶縁性薄膜シート(MA層/MB層/C層)とを、所定の繰り返しパターンで積層して上記検出部(10、10c、10d)を形成する積層工程と、を具備し、
上記第1の検出電極(EL )の一部が上記検出部においてコ字形に屈曲した上記第1の検出電極折り返し部(101A)と、上記第2の検出電極(EL )の一部が上記検出部において逆コ字形に屈曲した上記折り返し部(101B)を形成することを特徴とする粒子状物質検出素子の製造方法。
The cross section of the laminated structure in which the conductive sheet formed to a predetermined film thickness and the insulating sheet formed to the predetermined film thickness are laminated is determined by the film thickness of the insulating sheet as a detection unit (10, 10c, 10d). Electrical characteristics that change according to the amount of particulate matter deposited between the first detection electrode (EL A ) and the second detection electrode (EL B ) opposed to each other with a predetermined gap therebetween The particulate matter detection element (2, 1) used for the particulate matter detection sensor (1, 1a, 1b, 1c, 1d) according to any one of claims 1 to 9, wherein particulate matter in the gas to be measured is detected by 2b, 2c, 2d),
at least,
LNF (LaNi 0.6 Fe 0.4 O 3 ), LSN (La 1.2 Sr 0.8 NiO 4 ), LSM (La 1-X Sr X MnO 3-δ ), LSC (La 1-X Sr X CoO 3−δ ), LCC (La 1−X Ca X CrO 3−δ ), LSCN (La 0.85 Sr 0.15 Cr 1−X Ni X O 3−δ ) (0.1 ≦ X ≦ 0. 7) Using the perovskite-type conductive oxide material selected from any one of 7), the substantially flat plate-like first detection electrode facing portion (100A ) having the thickness of 100 μm or more and 500 μm or less and the second detection A conductive thick film sheet forming step of forming a conductive thick film sheet (100 THK ) for constituting the electrode facing portion ( 100B);
Conductive thin film for forming the first detection electrode folded portion (101A) and the second detection electrode folded portion (101B) having a film thickness of 5 μm or more and 10 μm or less using the conductive oxide material A conductive thin film sheet forming step for forming a sheet (100 THN );
8YSZ ((ZrO 2) 0.92 ( Y 2 O 3) 0.08) partially stabilized zirconia consisting of, MgO, using an insulating oxide material selected from one of Al 2 O 3, 20μm or more 5μm a substantially flat insulating layer (120 THN) insulating sheet film forming step of forming a for configuring the insulating thin sheet (120 THN) a having a thickness of less,
Insulating sheet thick film for forming an insulating thick film sheet (120 THK ) for forming a substantially flat insulating layer (120 THK ) having a film thickness of 100 μm or more and 500 μm or less using the insulating oxide material Molding process;
Insulation of the same material as the insulating thin film sheet (120 THN ) formed in the same thickness as the conductive thick film sheet and partitioned into a predetermined shape at a predetermined position in the conductive thick film sheet (100 THK ) Insulating thick film sheet embedding conductive thick film (A layer / B layer) embedding a thick film sheet (120 THK );
A conductive thin film sheet (100 THK ) of the same material as the conductive thin film sheet (100 THK ) formed in the same thickness as the insulating thin film sheet and partitioned in a predetermined shape at a predetermined position in the insulating thin film sheet (120 THN ) 100 THN ), a conductive thin film sheet embedded insulating thin film sheet (MA layer / MB layer / C layer) molding step,
The obtained insulating thick film sheet embedded conductive thick film sheet (A layer / B layer) and conductive thin film sheet embedded insulating thin film sheet (MA layer / MB layer / C layer) were laminated in a predetermined repeating pattern. And a laminating step for forming the detection units (10, 10c, 10d) ,
The first detection electrode folded portion (101A) in which a part of the first detection electrode (EL A ) is bent in a U shape in the detection unit, and a part of the second detection electrode (EL B ) The method for manufacturing a particulate matter detection element, wherein the folded portion (101B) bent in an inverted U shape is formed in the detection portion.
JP2012171820A 2012-08-02 2012-08-02 Particulate matter detection element manufacturing method and particulate matter detection sensor Expired - Fee Related JP5709808B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012171820A JP5709808B2 (en) 2012-08-02 2012-08-02 Particulate matter detection element manufacturing method and particulate matter detection sensor
DE102013215123.3A DE102013215123A1 (en) 2012-08-02 2013-08-01 PARTICULATE MATERIAL DETECTION ELEMENT, DETECTOR SENSOR FOR PARTICULAR MATERIAL THEREFORE EQUIPPED, AND METHOD OF MANUFACTURING THEREOF
CN201310334469.4A CN103575628B (en) 2012-08-02 2013-08-02 Particle matter detecting element, the particle matter detection sensor equipped with the element and the method for manufacturing the element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171820A JP5709808B2 (en) 2012-08-02 2012-08-02 Particulate matter detection element manufacturing method and particulate matter detection sensor

Publications (2)

Publication Number Publication Date
JP2014032063A JP2014032063A (en) 2014-02-20
JP5709808B2 true JP5709808B2 (en) 2015-04-30

Family

ID=49944196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171820A Expired - Fee Related JP5709808B2 (en) 2012-08-02 2012-08-02 Particulate matter detection element manufacturing method and particulate matter detection sensor

Country Status (3)

Country Link
JP (1) JP5709808B2 (en)
CN (1) CN103575628B (en)
DE (1) DE102013215123A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219555A1 (en) * 2014-09-26 2016-03-31 Continental Automotive Gmbh soot sensor
JP6547274B2 (en) 2014-10-20 2019-07-24 株式会社デンソー Particulate matter detection sensor
KR101547446B1 (en) * 2015-06-09 2015-08-26 주식회사 아모텍 Particular matter sensor and exhaust gas purification system using the same
EP3382379A4 (en) 2015-11-25 2019-08-14 Kyocera Corporation Sensor substrate and sensor device
RU2017105125A (en) * 2016-03-07 2018-08-16 Форд Глобал Текнолоджиз, Ллк METHOD AND SYSTEM FOR DETERMINING THE NUMBER OF SOLID PARTICLES IN EXHAUST GASES
JPWO2017200028A1 (en) 2016-05-20 2019-03-07 京セラ株式会社 Sensor substrate and sensor device
JP6674842B2 (en) * 2016-05-24 2020-04-01 京セラ株式会社 Sensor substrate and sensor device
DE102016225420A1 (en) * 2016-12-19 2018-06-21 Robert Bosch Gmbh Sensor for detecting at least one property of a sample gas
DE102017208552A1 (en) * 2017-05-19 2018-11-22 Robert Bosch Gmbh Resistive particle sensor
EP3417926B1 (en) * 2017-06-23 2022-03-23 MANN+HUMMEL GmbH A filter element analysis system and associated methods
WO2019039549A1 (en) 2017-08-25 2019-02-28 京セラ株式会社 Sensor substrate and sensor device provided with same
TWI633921B (en) * 2017-11-03 2018-09-01 台灣晶技股份有限公司 Micro aerosol sensing device with self-cleaning function
DE102018207789A1 (en) * 2017-12-19 2019-06-19 Robert Bosch Gmbh Sensor arrangement for detecting particles of a measuring gas in a measuring gas space and method for detecting particles of a measuring gas in a measuring gas space
DE102018207784A1 (en) * 2017-12-19 2019-06-19 Robert Bosch Gmbh Sensor arrangement for detecting particles of a measuring gas in a measuring gas space and method for detecting particles of a measuring gas in a measuring gas space
DE102018207793A1 (en) * 2017-12-19 2019-06-19 Robert Bosch Gmbh Method for detecting particles of a measuring gas in a measuring gas space and sensor arrangement for detecting particles of a measuring gas in a measuring gas space
JP7088119B2 (en) * 2019-04-10 2022-06-21 株式会社デンソー Control device
CN113916733A (en) * 2020-07-09 2022-01-11 北京智感度衡科技有限公司 Sensor and particulate matter detection device
CN113609645B (en) * 2021-07-07 2024-01-26 杨建云 Gold mine exploration target area prediction method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196659A (en) * 1984-03-21 1985-10-05 Hitachi Ltd Resistance measuring electrode for sensor
JPS62287135A (en) * 1986-06-04 1987-12-14 Dainippon Printing Co Ltd Method for inspecting electrode pattern
JPS6366859A (en) * 1986-09-08 1988-03-25 Agency Of Ind Science & Technol Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst
JP2707782B2 (en) * 1989-06-01 1998-02-04 富士電機株式会社 Multilayer piezoelectric element
JPH039273A (en) * 1989-06-06 1991-01-17 Fujikura Ltd Disconnection detector for inside lead wire in oxygen sensor
JPH1010080A (en) * 1996-06-20 1998-01-16 Toyota Motor Corp Oxygen sensor
US6902701B1 (en) * 2001-10-09 2005-06-07 Sandia Corporation Apparatus for sensing volatile organic chemicals in fluids
JP4275914B2 (en) * 2002-08-29 2009-06-10 京セラ株式会社 Manufacturing method of multilayer electronic components
JP4068552B2 (en) 2003-12-05 2008-03-26 日本特殊陶業株式会社 Manufacturing method of gas sensor
JP4565563B2 (en) * 2005-03-31 2010-10-20 日本特殊陶業株式会社 Method for manufacturing gas sensor element
JP4430591B2 (en) * 2005-07-25 2010-03-10 日本特殊陶業株式会社 Gas sensor element and gas sensor
DE102007013522A1 (en) * 2007-03-21 2008-09-25 Robert Bosch Gmbh Sensor element of a gas sensor
WO2008117853A1 (en) * 2007-03-27 2008-10-02 Ngk Insulators, Ltd. Fine particle sensor
JP5070901B2 (en) * 2007-03-28 2012-11-14 株式会社デンソー Humidity sensor device
JP2011080781A (en) * 2009-10-05 2011-04-21 Nippon Soken Inc Particulate sensing element and particulate sensor using the same
JP2011080780A (en) * 2009-10-05 2011-04-21 Denso Corp Particulate detection element
FR2956435B1 (en) * 2010-02-16 2012-03-02 Electricfil Automotive METHOD AND DEVICE FOR DETERMINING THE OPERATING STATE OF A PROBE FOR MEASURING THE QUANTITY OF SOOT IN THE EXHAUST GASES OF A VEHICLE
JP2011203093A (en) * 2010-03-25 2011-10-13 Denso Corp Gas sensor, and disconnection detection method thereof
JP2011226859A (en) * 2010-04-16 2011-11-10 Ngk Insulators Ltd Particulate material detection device
JP2011247650A (en) * 2010-05-24 2011-12-08 Denso Corp Particulate matter detection sensor, and particulate matter detection sensor unit
JP5382060B2 (en) * 2010-07-09 2014-01-08 株式会社デンソー Gas sensor element and gas sensor
JP5542006B2 (en) 2010-08-26 2014-07-09 日本碍子株式会社 Particulate matter detector
JP5500028B2 (en) * 2010-09-30 2014-05-21 株式会社デンソー Method for manufacturing particulate matter detection sensor
JP5201193B2 (en) * 2010-10-28 2013-06-05 株式会社デンソー Particulate matter detection sensor

Also Published As

Publication number Publication date
DE102013215123A1 (en) 2014-02-06
JP2014032063A (en) 2014-02-20
CN103575628B (en) 2017-07-07
CN103575628A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5709808B2 (en) Particulate matter detection element manufacturing method and particulate matter detection sensor
US9528971B2 (en) Particulate matter detection element and method of manufacturing same
JP5500028B2 (en) Method for manufacturing particulate matter detection sensor
US11231354B2 (en) Method of manufacturing particulate matter detection element
EP0134709A1 (en) An oxygen sensor element
US20100180668A1 (en) Sensor element of a gas sensor
CN107076691B (en) Granular substance detection sensor
JP6523144B2 (en) Gas sensor
JP3889568B2 (en) Gas component measuring device
JP2012220257A (en) Particulate matter detection sensor and manufacturing method of the same
CN115087863B (en) Gas sensor element
KR20150058252A (en) Sensor for detecting particles
US10591431B2 (en) Sensor element
CN110612277A (en) Sensor for determining gas parameters
EP3647777B1 (en) Sensor substrate and sensor device
JP6601977B2 (en) Particulate matter detection sensor and particulate matter detection device
JP6964038B2 (en) Particulate matter detector
CN109891211B (en) Sensor element for sensing particles of a measurement gas in a measurement gas chamber
JP4426065B2 (en) Gas sensor element and gas sensor including the same
JP4106243B2 (en) Manufacturing method of gas sensor
JP6488352B2 (en) Particulate matter detection element
JPS6239701B2 (en)
JP2018017633A (en) Particulate substance detection sensor and particulate substance detector
JP4543074B2 (en) Manufacturing method of gas sensor
JP2024105982A (en) Gas Sensor Element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees