JPS6366859A - Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst - Google Patents

Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst

Info

Publication number
JPS6366859A
JPS6366859A JP61209453A JP20945386A JPS6366859A JP S6366859 A JPS6366859 A JP S6366859A JP 61209453 A JP61209453 A JP 61209453A JP 20945386 A JP20945386 A JP 20945386A JP S6366859 A JPS6366859 A JP S6366859A
Authority
JP
Japan
Prior art keywords
thin film
metal
type composite
composite oxide
film electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61209453A
Other languages
Japanese (ja)
Other versions
JPH0520869B2 (en
Inventor
Susumu Mizuta
水田 進
Wakichi Kondo
和吉 近藤
Toshiya Kumagai
俊弥 熊谷
Hiroshi Yokota
洋 横田
Hideaki Sekiguchi
英明 関口
Koshiro Sakai
酒井 幸四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP61209453A priority Critical patent/JPS6366859A/en
Publication of JPS6366859A publication Critical patent/JPS6366859A/en
Publication of JPH0520869B2 publication Critical patent/JPH0520869B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To make it possible to manufacture an electrode having wide area and high efficiency by forming the thin film of an organic metal compound on the surface of an electrolyte film or a current collector from the solution containing a specific metal organic salt or metal alkoxide, then baking. CONSTITUTION:Metal organic salt or metal alkoxide containing metal ion which forms conductive perovskite type composite oxide is mixed. A mixed solution diluted with organic solvent if necessary, or the solution prepared by adding a metal or an inorganic compound which increases the activity and selectivity of a catalyst in the mixed solution is dropped on or applied to an electrolyte film or a current collector, or the electrolyte film or the current collector is immersed in the solution, then the solution is dried to form the metal organic compound on the surface of the electrolyte film or the current collector, and they are baked. Thereby, the perovskite type composite oxide is formed on the complicated surface or the micropores, and the efficiency of the electrode is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発EAはペロブスカイト型複合酸化物薄膜電極、又は
、N膜電衡触媒の製造法VC関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The unexploded EA relates to a method VC for producing a perovskite-type composite oxide thin film electrode or an N-film electrostatic catalyst.

〔従来の技術及び問題点〕[Conventional technology and problems]

良導電性のペロブスカイト型複合酸化物は高い電子伝導
性のみならず、触媒としての高い酸化活性等により′e
L極やvL電極触媒して優れた性質を有している。また
耐熱性に優れ、高温においてはイオン伝導性金も示すた
め、高温型燃料電池の′FL極触媒やガス透過用電極及
び電極触媒として広く注目されている。これらの目的の
ために電極として使用するにあたっては、実際には薄膜
化できることが望1しく、また電極触媒としては、複雑
形状金持つ集電体電極表面を薄く被すすることが必要で
ある。
Perovskite-type composite oxides with good conductivity not only have high electronic conductivity, but also have high oxidation activity as a catalyst.
It has excellent properties as an L electrode or VL electrode catalyst. Furthermore, since it has excellent heat resistance and exhibits ion conductive gold at high temperatures, it is attracting wide attention as a FL electrode catalyst for high-temperature fuel cells, a gas permeation electrode, and an electrode catalyst. When used as an electrode for these purposes, it is actually desirable to be able to form a thin film, and as an electrode catalyst, it is necessary to thinly cover the surface of a current collector electrode having a complicated shape of gold.

酸化物薄膜の台底法としては、気相法、テ−ブキャスト
粉末焼結法が従来から一般に広く用いられているが、気
相法は設備が大がかりとなる上に大面積のものは製造が
困難であり、生産性も高くない、また、テープキャスト
粉末焼結法は薄さに限界(20〜3O/j)があると同
時に、均一な薄膜を合成することは難しく、また高い焼
結温度が必要である。
The vapor phase method and the table cast powder sintering method have been widely used as the platform method for producing oxide thin films, but the vapor phase method requires large-scale equipment and is difficult to manufacture for large areas. Moreover, the tape cast powder sintering method has a thinness limit (20 to 3 O/j), it is difficult to synthesize a uniform thin film, and the sintering temperature is high. is necessary.

〔発明の構成〕[Structure of the invention]

本発明は、電気伝導性ペロブスカイト型複合酸化物を形
成する金属イオンを含む金属有機酸塩或いは金属アルコ
キシドを複数混合し、必要に応じて適当な有機溶剤で希
釈した混合浴1g、を、或いはまた本溶液に適時、触媒
の感度及び選択性を高める働きをする金属或いはその無
機化合物を添加した混合溶液を電解質膜上或いは集電体
上に滴下するか、塗布するか或いは該溶液に電解質膜或
いは集電体全浸漬し、引き上げ、乾探して有機金属化合
物の薄膜を1!L解質膜或いは集電体表面上に作9、こ
れを焼成することにより、ペロブスカイトu複合酸化物
薄膜電極又は薄膜電極触媒を製造する方法である。
The present invention provides 1 g of a mixed bath prepared by mixing a plurality of metal organic acid salts or metal alkoxides containing metal ions to form an electrically conductive perovskite-type composite oxide and diluting the mixture with an appropriate organic solvent as necessary, or A mixed solution in which a metal or an inorganic compound thereof that works to enhance the sensitivity and selectivity of the catalyst is added to this solution at an appropriate time is dropped or applied onto the electrolyte membrane or current collector, or the electrolyte membrane or the electrolyte is added to the solution. Immerse the entire current collector, pull it out, and dry it to find a thin film of organometallic compound! This is a method for producing a perovskite U composite oxide thin film electrode or thin film electrode catalyst by forming a film on the surface of an L solute membrane or a current collector and firing it.

本発明の有機金属化合物の塗布熱分解法は、上記の欠点
を含まず、f000℃以下の低温で簡便に1μ以下の薄
膜を合成することができるものであり、上記の2つの従
来の方法にとって代わるべきものである。
The coating pyrolysis method of organometallic compounds of the present invention does not have the above-mentioned drawbacks and can easily synthesize thin films of 1μ or less at a low temperature of f000℃ or less, and is superior to the above two conventional methods. It should be replaced.

これまで、固体電解質薄膜やガスセンサーを目的として
、有機金属化合物を用いる薄膜の合成法は報告されてい
るものの、3棟ないし4種類以上の金属成分を含むペロ
ブスカイト型複合酸化物によって、薄膜電極及び薄膜電
極触媒としての有効性を確かめたのは初めてであり、こ
れは発明者らの長年の努力の成果である。この方法によ
り、複雑な形状の表面や、多孔体細孔中にも、ペロブス
カイト型複合酸化物の形成が可能となり、電極効率を高
めることが期待できる。
Until now, methods for synthesizing thin films using organometallic compounds have been reported for the purpose of solid electrolyte thin films and gas sensors. This is the first time that its effectiveness as a thin film electrode catalyst has been confirmed, and this is the result of many years of effort by the inventors. This method enables the formation of perovskite-type composite oxides even on surfaces with complex shapes and in the pores of porous materials, and is expected to improve electrode efficiency.

さらに本発明によれば、ベロブスカイ) ff1J複合
酸化物薄膜電極及び電極触媒に対して、別個の触媒機能
を有する。貴金属や他の酸化物触媒を、均一性、分散性
良く添加することも可能であり、二元、三元機能性薄膜
電極、薄膜電極触媒を合成することができる。
Furthermore, according to the present invention, the FF1J composite oxide thin film electrode and electrocatalyst have separate catalytic functions. It is also possible to add noble metals or other oxide catalysts with good uniformity and dispersibility, and binary or ternary functional thin film electrodes and thin film electrode catalysts can be synthesized.

金属有機酸塩及び金属アルコキシドは焼成することによ
り有機成分が分解・酸化・除去でれ、均一な酸化物薄膜
が生成される。有機物の分解・燃焼は200〜500℃
で終了し、その後散化物の生成、結晶化が生じるため焼
成温度は400〜800℃という低い温度でも充分であ
る。また薄膜の厚みは有機溶剤で希釈したものを用いる
ことにより、数十オングストロームから数万オングスト
ロームまで調節することができる。
By firing the metal organic acid salt and metal alkoxide, the organic components are decomposed, oxidized, and removed, and a uniform oxide thin film is produced. Decomposition and combustion of organic matter at 200-500℃
After that, the formation of dispersion and crystallization occur, so a low firing temperature of 400 to 800°C is sufficient. Further, the thickness of the thin film can be adjusted from several tens of angstroms to tens of thousands of angstroms by using a thin film diluted with an organic solvent.

基板は1を解質膜や集電体でおるが、平面球面をとわす
、また緻密体、多孔体、繊維状のものであっても破穏可
能である。
Although the substrate 1 is covered with a decomposition membrane or a current collector, it is also possible to disintegrate it even if it is a planar spherical surface, a dense material, a porous material, or a fibrous material.

電気伝導性のペロブスカイト型複合酸化物はABO3が
基本組成であるが、特性金高めるためにAOtll、B
側ともi種の元素で一部を置換することが良く行なわれ
るが、これらの含有量の調整は気相法や粉末焼結法では
非常に困難なものとなっているのに対し、本方法では、
添加すべき元素の有機化合物をその組成に合せただけ添
加した混合液を調製するだけで達成できることは大きな
利点である。又、賞金&等の添加に於いても同様に、均
一に分散した触媒の担持が容易に行える。
The basic composition of electrically conductive perovskite-type composite oxide is ABO3, but in order to enhance the properties, AOtll, B
Although it is common practice to partially replace elements of type i on both sides, adjusting the content of these elements is extremely difficult with vapor phase methods and powder sintering methods, whereas this method So,
It is a great advantage that this can be achieved simply by preparing a mixed solution in which the organic compound of the element to be added is added in an amount matching the composition. Furthermore, even when adding prize money and the like, a uniformly dispersed catalyst can be easily supported.

本発明方法では、はとんどすべてのペロブスカイト型複
合酸化物が合成され得るが、例を上げれば、La1−z
srzcOOl 、 LaCrO3、Lal−1srz
)zin03 。
By the method of the present invention, almost all perovskite-type composite oxides can be synthesized, but for example, La1-z
srzcOOl, LaCrO3, Lal-1srz
) zin03.

LaNiO3、La1−zcazcol−yFey03
 、 CaVO3、5rFe03 。
LaNiO3, La1-zcazcol-yFey03
, CaVO3, 5rFe03.

CaRu03 、 BaPb1.zBiz03 、5r
Ce03 、 LaCuO3。
CaRu03, BaPb1. zBiz03, 5r
Ce03, LaCuO3.

CaTil−1A7z03等があり、金属の有機酸塩と
しては、ナフテン酸、オクチル酸、カプリル酸等との金
属塩が好ましく、また金属アルコキシドとしては、エト
キシド、プロピオキシド、ブトキシド等が用いられる。
Examples of the metal organic acid salts include metal salts with naphthenic acid, octylic acid, caprylic acid, etc., and metal alkoxides include ethoxide, propioxide, butoxide, and the like.

一般に電池に用いられる電極は、高い゛電子伝導性全示
すだけでは不充分であジ、電位上での電気化学反応に対
する高い活性も要求される。
Generally, it is not enough for electrodes used in batteries to exhibit high electronic conductivity; they are also required to have high activity for electrochemical reactions at high potentials.

ペロブスカイト型複合酸化物は、陰極における酸素の還
元反応に対する活性が高いことが知られているが、室温
付近では、電子伝導性が充分に高くないため、黒鉛粒子
等と混合し、!極として使用することが広く行われる。
Perovskite-type composite oxides are known to have high activity for oxygen reduction reactions at the cathode, but their electronic conductivity is not sufficiently high near room temperature, so they are mixed with graphite particles, etc. Widely used as poles.

しかし、炭素繊維、炭素板などの集電体表面を薄く被覆
することができれば、電子伝導性の不足に伴なう内部抵
抗は無視できる程度となる。そこで、本発明方法で示し
た薄膜の合成によれば広い電極面積を有する効率の高い
電極の製造が可能となる。
However, if the surface of a current collector such as carbon fiber or carbon plate can be coated thinly, the internal resistance due to insufficient electron conductivity will be negligible. Therefore, by synthesizing a thin film according to the method of the present invention, it becomes possible to manufacture highly efficient electrodes having a wide electrode area.

また、高温においては一部のペロブスカイト型複合酸化
物は、電子とイオンの混合導伝性を示す。通常の電子伝
導性のみを持つ電極を使用しfc場合、電子の授受は、
電解質、電極及びガスの3者共存点のみでしか起こらず
、有効電極面積が極めて小さいのに対し、この混合導伝
体では、ガスと電極或いは、ガスと電解質の2者の接点
で反応が進行するため、有効I′It極面積は大幅に増
加する。ここにおいても、イオン及び電子の透過速度を
高めるために薄膜化が重要な技術課題であり、高温型燃
料電池等の電極製造技術として、本発明方法の使用が有
効でらる0また、白金電極等の高温下の使用で問題とな
る揮発、焼結などによる電極特性の劣化の心配もなく、
優れた特性が持続する。
Further, at high temperatures, some perovskite-type composite oxides exhibit mixed conductivity of electrons and ions. When using fc electrodes with only normal electron conductivity, the exchange of electrons is as follows:
The reaction occurs only at the point where the electrolyte, electrode, and gas coexist, and the effective electrode area is extremely small. However, in this mixed conductor, the reaction proceeds at the contact point between the gas and the electrode, or the gas and the electrolyte. Therefore, the effective I'It pole area increases significantly. Here, too, thinning the film is an important technical issue in order to increase the transmission rate of ions and electrons, and the method of the present invention can be effectively used as an electrode manufacturing technology for high-temperature fuel cells. There is no need to worry about deterioration of electrode properties due to volatilization or sintering, which is a problem when used at high temperatures such as
Excellent properties last.

さらに、このペロブスカイト型複合酸化物の触媒に他の
触媒機能を持つ貴金属等の触媒の均一、分散担持が簡便
に伝え、多機能性電極触媒としての利用が期待できる。
Furthermore, this perovskite-type composite oxide catalyst can be easily and uniformly and dispersedly supported with catalysts such as noble metals having other catalytic functions, and is expected to be used as a multifunctional electrode catalyst.

実施例1 有機金属化合物として、ランタン、ストロンチウム、鉄
、コバルトのナンテン酸塩を用い、La 、 Sr 、
 Co 、 Fe  のモル比が5:1:5:1となる
よう混合し、ブタノールで希釈して2Dwt%ブタノー
ル溶液とした。本溶液をAt20.基板上に塗布し、乾
燥後1000℃で焼成して、薄膜を焼成した。Xa分析
の結果、ペロブスカイト型のLa5rCoFe03−α
が生成していることが確認された。本薄膜上に約10m
の間隔で白金ペーストを塗布・焼付けして電極とし、薄
膜の表面導電度を室温より900℃まで測定した。導伝
特性は高温になるにつれて増加する半導体的挙動を示し
、400℃〜900℃では10″″3〜10−!Ω−の
であp、導伝性が充分に高いことを確認した。
Example 1 Nanthenates of lanthanum, strontium, iron, and cobalt were used as organometallic compounds, and La, Sr,
Co and Fe were mixed in a molar ratio of 5:1:5:1 and diluted with butanol to obtain a 2Dwt% butanol solution. This solution was mixed with At20. It was applied onto a substrate, dried, and then fired at 1000°C to create a thin film. As a result of Xa analysis, perovskite type La5rCoFe03-α
was confirmed to be generated. Approximately 10m above this thin film
A platinum paste was coated and baked at intervals of 2 to 30°C to form electrodes, and the surface conductivity of the thin film was measured from room temperature to 900°C. The conductive properties show a semiconducting behavior that increases as the temperature increases, and at 400°C to 900°C, 10''3 to 10-! It was confirmed that the conductivity was sufficiently high because it was Ω-.

実施例2 実施例1で用いた混合溶液をY2O3安定化Zr01の
緻密焼結体円板の両側に塗布、乾燥、焼成しLa5rC
oFe03−αの電極をとりつけた後、白金ペーストで
固定することにより、白金リード線を円板両端面よ夕取
り出した。このZrO2円板を隔壁として、両側に気密
室を設け、一方をアルゴン、他方を空気とし700℃に
てアルゴン側に■、空気側に■の直流電源を印加した所
、アルゴンガス側の酸素濃度の増加がみらnた〇 また、この時の電圧−電流特性は、白金を極のそれと比
べて、同電位であり高い電流密度が得られることが確認
された。
Example 2 The mixed solution used in Example 1 was applied to both sides of a Y2O3-stabilized Zr01 dense sintered disk, dried, and fired to form La5rC.
After the oFe03-α electrodes were attached, they were fixed with platinum paste, and the platinum lead wires were taken out from both end faces of the disk. This ZrO2 disk was used as a partition wall, an airtight chamber was provided on both sides, argon was placed on one side, and air was placed on the other side. When a DC power source (■) was applied to the argon side and (■) was applied to the air side at 700°C, the oxygen concentration on the argon gas side was determined. In addition, it was confirmed that the voltage-current characteristics at this time were the same potential as those of the platinum electrode, and a high current density was obtained.

Claims (1)

【特許請求の範囲】 1、電気伝導性ペロブスカイト型複合酸化物を形成する
金属イオンを含む金属有機酸塩或 いは金属アルコキシドを複数混合し必要に応じて適当な
有機溶剤で希釈し、その混合溶液を電解質膜上或いは集
電体上に滴下するか、塗布するか、或いは該溶液に電解
質膜或いは集電体を浸漬し、引き上げた後、乾燥して有
機金属化合物の薄膜を電解質膜表面上或いは集電体表面
上に作り、これを加熱・焼成する事を特徴とするペロブ
スカイト型複合酸化物薄膜電極又は薄膜電極触媒の製造
法。 2、更に触媒の感度及び/又は選択性を高める働きをす
る金属或いはその無機化合物を、分散或いは溶解させた
混合溶液を使用する特許請求範囲第1項記載のペロブス
カイト型複合酸化物薄膜電極触媒の製造法。
[Claims] 1. Mix a plurality of metal organic acid salts or metal alkoxides containing metal ions to form an electrically conductive perovskite-type composite oxide, dilute with an appropriate organic solvent as necessary, and prepare the mixed solution. A thin film of the organometallic compound is deposited on the surface of the electrolyte membrane or the current collector by dropping or coating it, or by immersing the electrolyte membrane or the current collector in the solution, pulling it up, and drying it. A method for producing a perovskite-type composite oxide thin film electrode or thin film electrode catalyst, which is produced on the surface of an electric body and heated and fired. 2. The perovskite-type composite oxide thin film electrode catalyst according to claim 1, which uses a mixed solution in which a metal or an inorganic compound thereof is dispersed or dissolved and further functions to enhance the sensitivity and/or selectivity of the catalyst. Manufacturing method.
JP61209453A 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst Granted JPS6366859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61209453A JPS6366859A (en) 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61209453A JPS6366859A (en) 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst

Publications (2)

Publication Number Publication Date
JPS6366859A true JPS6366859A (en) 1988-03-25
JPH0520869B2 JPH0520869B2 (en) 1993-03-22

Family

ID=16573122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61209453A Granted JPS6366859A (en) 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst

Country Status (1)

Country Link
JP (1) JPS6366859A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231074A (en) * 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
JPH06317555A (en) * 1993-05-07 1994-11-15 Fujikura Ltd Manufacture of ceramic oxygen sensor
US5705601A (en) * 1995-07-07 1998-01-06 Nippon Ester Co., Ltd. Process for producing polyester film
EP0902493A1 (en) * 1997-09-11 1999-03-17 Sulzer Hexis AG Elektrochemical active element for a solid oxide fuel cell
JP2011016093A (en) * 2009-07-09 2011-01-27 Noritake Co Ltd Oxygen separation membrane element and method of manufacturing the same
JP2013231627A (en) * 2012-04-27 2013-11-14 Nippon Soken Inc Particle matter detection element, manufacturing method thereof, and particle matter detection sensor
JP2014032063A (en) * 2012-08-02 2014-02-20 Nippon Soken Inc Method of manufacturing particulate matter detection element, and particulate matter detection sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231074A (en) * 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
JPH06317555A (en) * 1993-05-07 1994-11-15 Fujikura Ltd Manufacture of ceramic oxygen sensor
US5705601A (en) * 1995-07-07 1998-01-06 Nippon Ester Co., Ltd. Process for producing polyester film
EP0902493A1 (en) * 1997-09-11 1999-03-17 Sulzer Hexis AG Elektrochemical active element for a solid oxide fuel cell
US6232009B1 (en) 1997-09-11 2001-05-15 Sulzer Hexis Ag Electrochemically active element for a high temperature fuel cell
JP2011016093A (en) * 2009-07-09 2011-01-27 Noritake Co Ltd Oxygen separation membrane element and method of manufacturing the same
JP2013231627A (en) * 2012-04-27 2013-11-14 Nippon Soken Inc Particle matter detection element, manufacturing method thereof, and particle matter detection sensor
US9528971B2 (en) 2012-04-27 2016-12-27 Denso Corporation Particulate matter detection element and method of manufacturing same
JP2014032063A (en) * 2012-08-02 2014-02-20 Nippon Soken Inc Method of manufacturing particulate matter detection element, and particulate matter detection sensor

Also Published As

Publication number Publication date
JPH0520869B2 (en) 1993-03-22

Similar Documents

Publication Publication Date Title
US6319626B1 (en) Cathode composition for solid oxide fuel cell
US11682789B2 (en) Environmentally preferable method of making solid electrolyte and integration of metal anodes thereof
RU2521874C2 (en) Solid oxide cell and battery containing same
US20040166380A1 (en) Porous electrode, solid oxide fuel cell, and method of producing the same
JP3827209B2 (en) Method for producing composite air electrode for solid oxide fuel cell
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP2008538543A (en) Precursor material infiltration and coating methods
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
US6548203B2 (en) Cathode composition for solid oxide fuel cell
US20060280864A1 (en) Method for electrode deposition for solid oxide fuel cells
JP3380681B2 (en) Method for manufacturing solid oxide fuel cell
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JPS6366859A (en) Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst
JP5283500B2 (en) Fuel cell cathode with large surface area
JP5116221B2 (en) Electrode material containing copper oxide particles and method for producing fuel electrode of solid oxide fuel cell using the same
Zhou et al. Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ electrode prepared by electroless deposition technique
Bu et al. Composites of single/double perovskites as cathodes for solid oxide fuel cells
CN116639727A (en) Modified bismuth vanadate-based oxygen ion conductor material and preparation method thereof
KR102335014B1 (en) Electrode material for solid oxide fuel cell and method for manufacturing the same
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JP3714659B2 (en) Fabrication method of anode for solid oxide fuel cell
JP4712970B2 (en) Transition metal based ceramic materials and electrodes fabricated therefrom
JP3667297B2 (en) Solid oxide fuel cell and method for producing the same
JP3117781B2 (en) Method for producing electrode material for solid oxide fuel cell
KR20160150009A (en) Complex catalyst for rechargeable metal-air battery, method for manufacturing the same, air electrode for rechargeable metal-air battery including the same, and metal-air battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term