JPH0520869B2 - - Google Patents

Info

Publication number
JPH0520869B2
JPH0520869B2 JP61209453A JP20945386A JPH0520869B2 JP H0520869 B2 JPH0520869 B2 JP H0520869B2 JP 61209453 A JP61209453 A JP 61209453A JP 20945386 A JP20945386 A JP 20945386A JP H0520869 B2 JPH0520869 B2 JP H0520869B2
Authority
JP
Japan
Prior art keywords
thin film
perovskite
current collector
type composite
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61209453A
Other languages
Japanese (ja)
Other versions
JPS6366859A (en
Inventor
Susumu Mizuta
Wakichi Kondo
Tosha Kumagai
Hiroshi Yokota
Hideaki Sekiguchi
Koshiro Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP61209453A priority Critical patent/JPS6366859A/en
Publication of JPS6366859A publication Critical patent/JPS6366859A/en
Publication of JPH0520869B2 publication Critical patent/JPH0520869B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はペロブスカイト型複合酸化物薄膜電
極、又は、薄膜電極触媒の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a perovskite-type composite oxide thin film electrode or a thin film electrode catalyst.

〔従来の技術及び問題点〕[Conventional technology and problems]

良導電性のペロブスカイト型複合酸化物は高い
電子伝導性のみならず、触媒としての高い酸化活
性等により電極や電極触媒として優れた性質を有
している。また耐熱性に優れ、高温においてはイ
オン伝導性をも示すため、高温型燃料電池の電極
触媒やガス透過用電極及び電極触媒として広く注
目されている。これらの目的のために電極として
使用するにあたつては、実際には薄膜化できるこ
とが望ましく、また電極触媒としては、複雑形状
を持つ集電体電極表面を薄く被覆することが必要
である。
Perovskite-type composite oxides with good conductivity have excellent properties as electrodes and electrocatalysts due to not only high electronic conductivity but also high oxidation activity as a catalyst. Furthermore, since it has excellent heat resistance and exhibits ionic conductivity at high temperatures, it has attracted wide attention as an electrode catalyst for high-temperature fuel cells, a gas permeation electrode, and an electrode catalyst. When used as an electrode for these purposes, it is actually desirable to be able to form a thin film, and as an electrode catalyst, it is necessary to thinly coat the surface of the current collector electrode, which has a complex shape.

酸化物薄膜の合成法としては、気相法、テープ
キヤスト粉末焼結法が従来から一般に広く用いら
れているが、気相法は設備が大がかりとなる上に
大面積のものは製造が困難であり、生産性も高く
ない。また、テープキヤスト粉末焼結法は薄さに
限界(20〜30μ)があると同時に、均一な薄膜を
合成することは難しく、また高い焼結温度が必要
である。
The gas phase method and tape cast powder sintering method have been widely used as methods for synthesizing oxide thin films, but the gas phase method requires large-scale equipment and is difficult to manufacture large-area products. Yes, and productivity is not high. In addition, the tape cast powder sintering method has a thinness limit (20 to 30 microns), is difficult to synthesize a uniform thin film, and requires a high sintering temperature.

〔発明の構成〕[Structure of the invention]

本発明は、電気伝導性ペロブスカイト型複合酸
化物を形成する金属イオンを含む金属有機酸塩或
いは金属アルコキシドを複数混合し、必要に応じ
て適当な有機溶剤で希釈した混合溶液を、或いは
また本溶液に適時、触媒の感度及び選択性を高め
る働きをする金属或いはその無機化合物を添加し
た混合溶液を電解質膜上或いは集電体上に滴下す
るか、塗布するか或いは該溶液に電解質膜或いは
集電体を浸漬し、引き上げ、乾燥して有機金属化
合物の薄膜を電解質膜或いは集電体表面上に作
り、これを焼成することにより、ペロブスカイト
型複合酸化物薄膜電極又は薄膜電極触媒を製造す
る方法である。
The present invention provides a mixed solution prepared by mixing a plurality of metal organic acid salts or metal alkoxides containing metal ions to form an electrically conductive perovskite-type composite oxide, and diluting the mixture with an appropriate organic solvent as necessary, or the present solution. At appropriate times, a mixed solution containing a metal or an inorganic compound thereof that serves to enhance the sensitivity and selectivity of the catalyst is dropped or applied onto the electrolyte membrane or current collector, or the solution is coated with the electrolyte membrane or current collector. A method for producing a perovskite-type composite oxide thin film electrode or thin film electrode catalyst by immersing the body, pulling it up, drying it to form a thin film of an organometallic compound on the surface of an electrolyte membrane or current collector, and firing this. be.

本発明の有機金属化合物の塗布熱分解法は、上
記の欠点を含まず、1000℃以下の低温で簡便に
1μ以下の薄膜を合成することができるものであ
り、上記の2つの従来の方法にとつて代わるべき
ものである。
The coating pyrolysis method of organometallic compounds of the present invention does not have the above drawbacks and can be easily performed at a low temperature of 1000°C or less.
It is possible to synthesize thin films with a thickness of 1μ or less, and should replace the above two conventional methods.

これまで、固体電解質薄膜やガスセンサーを目
的として、有機金属化合物を用いる薄膜の合成法
は報告されているものの、3種ないし4種類以上
の金属成分を含むペロブスカイト型複合酸化物に
よつて、薄膜電極及び薄膜電極触媒としての有効
性を確かめたのは初めてであり、これは発明者ら
の長年の努力の成果である。この方法により、複
雑な形状の表面や、多孔体細孔中にも、ペロブス
カイト型複合酸化物の形成が可能となり、電極効
率を高めることが期待できる。
Until now, methods for synthesizing thin films using organometallic compounds have been reported for the purpose of solid electrolyte thin films and gas sensors. This is the first time that its effectiveness as an electrode and thin film electrocatalyst has been confirmed, and this is the result of many years of efforts by the inventors. This method enables the formation of perovskite-type composite oxides even on surfaces with complex shapes and in the pores of porous materials, and is expected to improve electrode efficiency.

さらに本発明によれば、ペロブスカイト型複合
酸化物薄膜電極及び電極触媒に対して、別個の触
媒機能を有する。貴金属や他の酸化物触媒を、均
一性、分散性良く添加することも可能であり、二
元、三元機能性薄膜電極、薄膜電極触媒を合成す
ることができる。
Furthermore, according to the present invention, the perovskite composite oxide thin film electrode and the electrode catalyst have separate catalytic functions. It is also possible to add noble metals or other oxide catalysts with good uniformity and dispersibility, and binary or ternary functional thin film electrodes and thin film electrode catalysts can be synthesized.

金属有機酸塩及び金属アルコキシドは焼成する
ことにより有機成分が分解・酸化・除去され、均
一な酸化物薄膜が生成される。有機物の分解・燃
焼は200〜500℃で終了し、その後酸化物の生成、
結晶化が生じるため焼成温度は400〜800℃という
低い温度でも充分である。また薄膜の厚みは有機
溶剤で希釈したものを用いることにより、数十オ
ングストロームから数万オングストロームまで調
節することができる。
By firing the metal organic acid salt and metal alkoxide, the organic components are decomposed, oxidized, and removed, and a uniform oxide thin film is produced. The decomposition and combustion of organic matter ends at 200 to 500℃, after which oxides are produced,
Since crystallization occurs, a firing temperature as low as 400 to 800°C is sufficient. Further, the thickness of the thin film can be adjusted from several tens of angstroms to tens of thousands of angstroms by using a thin film diluted with an organic solvent.

基板は電解質膜や集電体であるが、平面球面を
とわず、また緻密体、多孔体、繊維状のものであ
つても被覆可能である。
The substrate is an electrolyte membrane or a current collector, but it does not have to be a flat spherical surface, and even dense, porous, or fibrous materials can be coated.

電気伝導性のペロブスカイト型複合酸化物は
ABO3が基本組成であるが、特性を高めるために
A側、B側とも数種の元素で一部を置換すること
が良く行なわれるが、これらの含有量の調整は気
相法や粉末焼結法では非常に困難なものとなつて
いるのに対し、本方法では、添加すべき元素の有
機化合物をその組成に合せただけ添加した混合液
を調製するたけで達成できることは大きな利点で
ある。又、貴金属等の添加に於いても同様に、均
一に分散した触媒の担持が容易に行える。
Electrically conductive perovskite-type composite oxide
The basic composition is ABO 3 , but in order to improve the properties, parts of both the A and B sides are often replaced with several types of elements, but these contents can be adjusted using the vapor phase method or powder sintering. While this method is extremely difficult to achieve, this method has the great advantage of being able to achieve this by simply preparing a mixed solution in which the organic compounds of the elements to be added are added in amounts that match the composition. . Similarly, when adding noble metals, etc., it is easy to support a uniformly dispersed catalyst.

本発明方法では、ほとんどすべてのペロブスカ
イト型複合酸化物が合成され得るが、例を上げれ
ば、La1-xSrxCoO3、LaCrO3、La1-xSrxMnO3
LaNiO3、La1-xCaxCo1-yFeyO3、CaVO3
SrFeO3、CaRuO3、BaPb1-xBixO3、SrCeO3
LaCuO3、CaTi1-xAlxO3等があり、金属の有機酸
塩としては、ナフテン酸、オクチル酸、カプリル
酸等との金属塩が好ましく、また金属アルコキシ
ドとしては、エトキシド、プロピオキシド、ブト
キシド等が用いられる。
Almost all perovskite-type composite oxides can be synthesized by the method of the present invention, but examples include La 1-x Sr x CoO 3 , LaCrO 3 , La 1-x Sr x MnO 3 ,
LaNiO 3 , La 1-x Ca x Co 1-y Fe y O 3 , CaVO 3 ,
SrFeO 3 , CaRuO 3 , BaPb 1-x Bi x O 3 , SrCeO 3 ,
Examples of metal organic acid salts include metal salts with naphthenic acid, octylic acid, caprylic acid , etc. , and metal alkoxides include ethoxide, propioxide, Butoxide etc. are used.

一般に電池に用いられる電極は、高い電子伝導
性を示すだけでは不充分であり、電極上での電気
化学反応に対する高い活性も要求される。
In general, it is not sufficient for electrodes used in batteries to simply exhibit high electronic conductivity; high activity for electrochemical reactions on the electrodes is also required.

ペロブスカイト型複合酸化物は、陰極における
酸素の還元反応に対する活性が高いことが知られ
ているが、室温付近では、電子伝導性が充分に高
くないため、黒鉛粒子等と混合し、電極として使
用することが広く行われる。しかし、炭素繊維、
炭素板などの集電体表面を薄く被覆することがで
きれば、電子伝導性の不足に伴なう内部抵抗は無
視できる程度となる。そこで、本発明方法で示し
た薄膜の合成によれば広い電極面積を有する効率
の高い電極の製造が可能となる。
Perovskite-type composite oxides are known to have high activity for oxygen reduction reactions at the cathode, but their electronic conductivity is not high enough near room temperature, so they are mixed with graphite particles and used as electrodes. It is widely practiced. However, carbon fiber,
If the surface of a current collector such as a carbon plate can be thinly coated, internal resistance due to insufficient electron conductivity will be negligible. Therefore, by synthesizing a thin film according to the method of the present invention, it becomes possible to manufacture highly efficient electrodes having a wide electrode area.

また、高温においては一部のペロブスカイト型
複合酸化物は、電子とイオンの混合導伝性を示
す。通常の電子伝導性のみを持つ電極を使用した
場合、電子の授受は、電解質、電極及びガスの3
者共存点のみでしか起こらず、有効電極面積が極
めて小さいのに対し、この混合導伝体では、ガス
と電極或いは、ガスと電解質の2者の接点で反応
が進行するため、有効電極面積は大幅に増加す
る。ここにおいても、イオン及び電子の透過速度
を高めるために薄膜化が重要な技術課題であり、
高温型燃料電池等の電極製造技術として、本発明
方法の使用が有効である。また、白金電極等の高
温下の使用で問題となる揮発、焼結などによる電
極特性の劣化の心配もなく、優れた特性が持続す
る。
Further, at high temperatures, some perovskite-type composite oxides exhibit mixed conductivity of electrons and ions. When using electrodes that have only normal electron conductivity, electrons are exchanged between the electrolyte, the electrode, and the gas.
However, in this mixed conductor, the reaction proceeds at the contact point between the gas and the electrode or the gas and the electrolyte, so the effective electrode area is very small. Significant increase. Here too, thinning the film is an important technical issue in order to increase the transmission rate of ions and electrons.
The method of the present invention is effective as an electrode manufacturing technology for high-temperature fuel cells and the like. In addition, there is no concern about deterioration of electrode properties due to volatilization, sintering, etc., which is a problem when using platinum electrodes at high temperatures, and excellent properties are maintained.

さらに、このペロブスカイト型複合酸化物の触
媒に他の触媒機能を持つ貴金属等の触媒の均一、
分散担持が簡便に伝え、多機能性電極触媒として
の利用が期待できる。
Furthermore, this perovskite-type composite oxide catalyst is uniformly coated with catalysts such as noble metals that have other catalytic functions.
Dispersed support allows easy transfer, and it can be expected to be used as a multifunctional electrode catalyst.

実施例 1 有機金属化合物として、ランタン、ストロンチ
ウム、鉄、コバルトのナフテン酸塩を用い、La、
Sr、Co、Feのモル比が5;1;5;1となるよ
う混合し、ブタノールで希釈して20wt%ブタノ
ール溶液とした。本溶液をAl2O3基板上に塗布
し、乾燥後1000℃で焼成して、薄膜を焼成した。
X線分析の結果、ペロブスカイト型の
LaSrCoFeO3-〓が生成していることが確認され
た。本薄膜上に約10mmの間隔で白金ペーストを塗
布・焼付けして電極とし、薄膜の表面導電度を室
温より900℃まで測定した。導伝特性は高温にな
るにつれて増加する半導体的挙動を示し、400℃
〜900℃では10-3〜10-2Ω−cmであり、導伝性が
充分に高いことを確認した。
Example 1 Naphthenates of lanthanum, strontium, iron, and cobalt were used as organometallic compounds, and La,
Sr, Co, and Fe were mixed in a molar ratio of 5:1;5:1, and diluted with butanol to obtain a 20 wt % butanol solution. This solution was applied onto an Al 2 O 3 substrate, dried and then fired at 1000°C to create a thin film.
As a result of X-ray analysis, perovskite-type
It was confirmed that LaSrCoFeO 3- 〓 was generated. Platinum paste was coated and baked on this thin film at intervals of about 10 mm to form electrodes, and the surface conductivity of the thin film was measured from room temperature to 900°C. The conductive properties exhibit semiconducting behavior that increases as the temperature increases, and at 400℃
The conductivity was 10 -3 -10 -2 Ω-cm at -900°C, confirming that the conductivity was sufficiently high.

実施例 2 実施例1で用いた混合溶液をY2O3安定化ZrO2
の緻密焼結体円板の両側に塗布、乾燥、焼成し
LaSrCoFeO3-〓の電極をとりつけた後、白金ペー
ストで固定することにより、白金リード線を円板
両端面より取り出した。このZrO2円板を隔壁と
して、両側に気密室を設け、一方をアルゴン、他
方を空気とし700℃にてアルゴン側に、空気側
にの直流電源を印加した所、アルゴンガス側の
酸素濃度の増加がみられた。
Example 2 The mixed solution used in Example 1 was converted into Y 2 O 3 stabilized ZrO 2
Coated on both sides of a dense sintered disk, dried, and fired.
After attaching LaSrCoFeO 3- electrodes, they were fixed with platinum paste, and the platinum lead wires were taken out from both ends of the disk. Using this ZrO 2 disk as a partition wall, airtight chambers were provided on both sides, argon was placed on one side, and air was placed on the other side. When DC power was applied to the argon side and the air side at 700℃, the oxygen concentration on the argon gas side was An increase was seen.

また、この時の電圧−電流特性は、白金電極の
それと比べて、同電位であり高い電流密度が得ら
れることが確認された。
Further, it was confirmed that the voltage-current characteristics at this time were the same potential as those of the platinum electrode, and a high current density was obtained.

Claims (1)

【特許請求の範囲】 1 電気伝導性ペロブスカイト型複合酸化物を形
成する金属イオンを含む金属有機酸塩或いは金属
アルコキシドを複数混合し必要に応じて適当な有
機溶剤で希釈し、その混合溶液を電解質膜上或い
は集電体上に滴下するか、塗布するか、或いは該
溶液に電解質膜或いは集電体を浸漬し、引き上げ
た後、乾燥して有機金属化合物の薄膜を電解質膜
表面上或いは集電体表面上に作り、これを加熱・
焼成する事を特徴とするペロブスカイト型複合酸
化物薄膜電極又は薄膜電極触媒の製造法。 2 更に触媒の感度及び/又は選択性を高める働
きをする金属或いはその無機化合物を、分散或い
は溶解させた混合溶液を使用する特許請求範囲第
1項記載のペロブスカイト型複合酸化物薄膜電極
触媒の製造法。
[Claims] 1. Mix a plurality of metal organic acid salts or metal alkoxides containing metal ions to form an electrically conductive perovskite-type composite oxide, dilute with an appropriate organic solvent as necessary, and use the mixed solution as an electrolyte. The electrolyte membrane or current collector is dropped or applied onto the membrane or current collector, or the electrolyte membrane or current collector is immersed in the solution, pulled up, and dried to form a thin film of the organometallic compound on the surface of the electrolyte membrane or current collector. produced on the body surface, heated and
A method for producing a perovskite-type composite oxide thin film electrode or thin film electrode catalyst, which comprises firing. 2. Production of a perovskite-type composite oxide thin film electrode catalyst according to claim 1, using a mixed solution in which a metal or an inorganic compound thereof is dispersed or dissolved, and which functions to further enhance the sensitivity and/or selectivity of the catalyst. Law.
JP61209453A 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst Granted JPS6366859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61209453A JPS6366859A (en) 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61209453A JPS6366859A (en) 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst

Publications (2)

Publication Number Publication Date
JPS6366859A JPS6366859A (en) 1988-03-25
JPH0520869B2 true JPH0520869B2 (en) 1993-03-22

Family

ID=16573122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61209453A Granted JPS6366859A (en) 1986-09-08 1986-09-08 Manufacture of perovskite type composite oxide thin film electrode or thin film electrode catalyst

Country Status (1)

Country Link
JP (1) JPS6366859A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231074A (en) * 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
JPH06317555A (en) * 1993-05-07 1994-11-15 Fujikura Ltd Manufacture of ceramic oxygen sensor
US5705601A (en) * 1995-07-07 1998-01-06 Nippon Ester Co., Ltd. Process for producing polyester film
DK0902493T3 (en) 1997-09-11 2001-02-05 Sulzer Hexis Ag Electrochemically active element for a solid oxide fuel cell
JP5269711B2 (en) * 2009-07-09 2013-08-21 株式会社ノリタケカンパニーリミテド Oxygen separation membrane element and manufacturing method thereof
JP5634433B2 (en) 2012-04-27 2014-12-03 株式会社日本自動車部品総合研究所 Particulate matter detection element, manufacturing method thereof, and particulate matter detection sensor
JP5709808B2 (en) * 2012-08-02 2015-04-30 株式会社日本自動車部品総合研究所 Particulate matter detection element manufacturing method and particulate matter detection sensor

Also Published As

Publication number Publication date
JPS6366859A (en) 1988-03-25

Similar Documents

Publication Publication Date Title
Xia et al. Sm0. 5Sr0. 5CoO3 cathodes for low-temperature SOFCs
US5516597A (en) Protective interlayer for high temperature solid electrolyte electrochemical cells
Shimizu et al. Sol–gel synthesis of perovskite‐type lanthanum manganite thin films and fine powders using metal acetylacetonate and poly (vinyl alcohol)
US6319626B1 (en) Cathode composition for solid oxide fuel cell
Mathews et al. Fabrication of La1− xSrxGa1− yMgyO3−(x+ y)/2 thin films by electrophoretic deposition and its conductivity measurement
US6548203B2 (en) Cathode composition for solid oxide fuel cell
Ioroi et al. Preparation of perovskite‐type La1− x Sr x MnO3 films by vapor‐phase processes and their electrochemical properties
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
KR20030036966A (en) Electrode having microstructure of extended triple phase boundary by porous ion conductive ceria film coating and Method to manufacture the said electrode
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JP2008546161A (en) Deposition of electrodes for solid oxide fuel cells
JP3380681B2 (en) Method for manufacturing solid oxide fuel cell
JPH0520869B2 (en)
JP5283500B2 (en) Fuel cell cathode with large surface area
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JP5116221B2 (en) Electrode material containing copper oxide particles and method for producing fuel electrode of solid oxide fuel cell using the same
CN116639727A (en) Modified bismuth vanadate-based oxygen ion conductor material and preparation method thereof
KR102335014B1 (en) Electrode material for solid oxide fuel cell and method for manufacturing the same
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JP2018139182A (en) Solid electrolytic member, solid oxide type fuel cell, water electrolysis device, hydrogen pump and method for manufacturing solid electrolytic member
CN113968596A (en) Iron-based double perovskite type electrode powder material and preparation method thereof, and fuel cell electrode material based on iron-based double perovskite type electrode powder material and preparation method thereof
Kammer Hansen Electrochemical Reduction of Oxygen and Nitric Oxide on Mn‐Based Perovskites with Different A‐Site Cations
JP3215468B2 (en) Method for manufacturing fuel electrode of solid oxide fuel cell
CN110088952A (en) Method for the anode of electrochemical cell and for manufacturing the electrochemical cell comprising such anode
JPH0855625A (en) Manufacture of fuel electrode substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term