JP3870812B2 - Manufacturing method of multilayer piezoelectric element - Google Patents

Manufacturing method of multilayer piezoelectric element Download PDF

Info

Publication number
JP3870812B2
JP3870812B2 JP2002088842A JP2002088842A JP3870812B2 JP 3870812 B2 JP3870812 B2 JP 3870812B2 JP 2002088842 A JP2002088842 A JP 2002088842A JP 2002088842 A JP2002088842 A JP 2002088842A JP 3870812 B2 JP3870812 B2 JP 3870812B2
Authority
JP
Japan
Prior art keywords
layer
green
sheet
unfired
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002088842A
Other languages
Japanese (ja)
Other versions
JP2003282994A (en
Inventor
昭夫 岩瀬
昭二 尾崎
鉄次 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002088842A priority Critical patent/JP3870812B2/en
Publication of JP2003282994A publication Critical patent/JP2003282994A/en
Application granted granted Critical
Publication of JP3870812B2 publication Critical patent/JP3870812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は,圧電層と内部電極層とを交互に積層して構成した駆動層の両端に第1と第2の保護層を備えた積層型圧電体素子の製造方法に関する。
【0002】
【従来技術】
圧電層と内部電極層とを交互に積層した駆動層と,該駆動層における積層方向の両端に設けた第1と第2の保護層とよりなる圧電体素子が知られている。
近年,自動車エンジンにおける燃料噴射装置の駆動源として上記圧電体素子を使用することがある。この用途に用いる圧電体素子は低電圧で高い出力が得られ,かつ信頼性,耐久性に優れていることが必要である。
このような用途に供する圧電体素子は,圧電層の厚みを薄く,圧電層の積層枚数を非常に多くして(数百層),高い出力を発揮できるよう構成することが多い。
【0003】
【解決しようとする課題】
ところで,上記駆動層の両端に第1,第2の保護層を設けた積層型圧電体素子は,焼成を終えた駆動層に別途作成した保護層を後工程によって接着して作製することが多い(後述する比較例参照)。
【0004】
しかしながら,この方法により設けた保護層にはいくつか問題点がある。
(1)後工程を行う分手間がかかり,生産効率やコストの点で不利である。
(2)圧電体素子の出力が保護層との接着部分で減少するおそれがある。
(3)自動車内燃機関の燃料噴射用という過酷な使用環境では,保護層を接着するだけでは剪断力を十分に緩和できない。
【0005】
また,他の保護層の形成方法として,特開平8−8471にプレス成形体として保護層を作成し,これを焼成前の駆動層に圧着し両者を共に一体焼成する方法が提示されている。しかし,積層枚数が非常に多く数百層に達する圧電体素子では焼成時の駆動層と保護層との間の収縮率の差から変形が発生し,デラミネーション(層間剥離)が生じるおそれがある。
【0006】
また,特開平9−270540に示す圧電体素子は保護層も駆動層と同じ構成である。すなわち,駆動層と同様に保護層も圧電層と内部電極層とが交互に積層された状態にあるが,駆動層と異なり保護層は外部から電源を供給するための側面電極などを持っていない。よって,保護層の圧電層は伸縮しない。
【0007】
この構成の積層型圧電体素子での問題は,駆動層を構成する圧電層が非常に薄い場合は強度高い保護層が得られない点,また保護層の内部電極層に用いた電極材料が無駄になり,特に電極材料として使用する銀・パラジウムが高価で経済的でない点である。
【0008】
本発明は,かかる従来の問題点に鑑みてなされたもので,クラックやデラミネーションなどの欠陥が少なく,耐久性に優れ,生産効率に優れ,コスト安である積層型圧電体素子の製造方法を提供しようとするものである。
【0009】
【課題の解決手段】
本発明は,圧電層と内部電極層とを交互に積層した駆動層と該駆動層の積層方向の両端面にそれぞれ第1と第2の保護層を備えた積層型圧電体素子を,
第1未焼シートを所定の枚数接着層を介して積層した第1保護層用の第1未焼部と,該第1未焼部に対し内部電極層用印刷部を設けた圧電層用未焼シートを所定の枚数接着層を介して積層した第3未焼部と,該第3未焼部に対し第2未焼シートを所定の枚数接着層を介して積層した第2保護層用の第2未焼部とよりなる未焼積層体を焼成することにより製造する方法であって,
上記未焼積層体を得るにあたり,
少なくとも積層型圧電体素子を1個作製することが可能な分量の第1及び第2未焼シート,圧電層用未焼シートを採取可能な大きさを有する大型未焼シートを準備し,
上記大型未焼シートにおいて圧電層用未焼シートとなる部分に内部電極層用印刷部を印刷形成し,上記大型未焼シートにおいて第1及び第2未焼シート,圧電層用未焼シートとなる部分に接着層を印刷形成し,
次いで,上記大型未焼シートより第1の未焼シートを打ち抜くと同時に所定の枚数を積層圧着して第1の未焼部となし,続いて圧電層用未焼シートを打ち抜くと同時に所定の枚数を第1の未焼部に積層圧着して第3未焼部を形成し,更に続いて第2の未焼シートを打ち抜くと同時に所定の枚数を第3の未焼部に積層圧着して第2の未焼部とすることを特徴とする積層型圧電体素子の製造方法にある(請求項1)。
なお,本明細書においては,以下,適宜,「第1の・・・」は「第1・・・」と記載して「の」を省略する場合があるが,意味は同じである。これは,「第1」に限らず「第2」及び「第3」を用いる場合においても同様である。また,「第1と第2の・・・」,「第1及び第2の・・・」,及び「第1及び第2・・・」という表現は,いずれも「第1の・・・及び第2の・・・」を示すものである。
【0010】
本発明の作用効果につき説明する。
本発明にかかる製造方法では,焼成して第1と第2の保護層,駆動層となる第1と第2の未焼シート,圧電層用未焼シートを1枚の大型未焼シートより採取する。同じシートから採取するため,材質や性状に違いが少なく,焼成時に保護層にかかる部分と駆動層にかかる部分との間で焼成収縮差が生じ難く,これに起因するクラックやデラミネーションなどを防止することができ,強度低下も生じ難い。
【0011】
また,接着層を利用して各第1と第2の未焼シート,圧電層用未焼シートを接着するため,第1,第2の未焼シート,圧電層用未焼シートの圧着時に加える圧力を下げることができる。接着の圧力が大きくなることで,未焼シート内に欠陥などが発生し,焼成後のマイクロクラックの原因となる。低圧力で接着可能となる本発明の製造方法によれば上記問題を防ぐことができる。
よって,上記問題に起因するクラックやデラミネーションなどを防止することができ,積層型圧電体素子の強度低下も生じ難い。
【0012】
また,本発明にかかる製造方法では,第1,第2の未焼シートや圧電層用未焼シートを大型未焼シートから打ち抜くと同時に積層して未焼積層体を構成する。
よって,大型未焼シートから採取する工程と積層する工程とを別々に行う必要がない。従って,未焼積層体の製作効率が高まり,生産速度も向上する。よって,製作コストも安価となる。
さらに,保護層は圧電層と同じ材料で構成され,内部電極層のような高価な材料を含まないため,原料コストが安価となる。
【0013】
以上,本発明によれば,クラックやデラミネーションなどの欠陥が少なく,耐久性に優れ,生産効率に優れ,コスト安である積層型圧電体素子の製造方法を得ることができる。
【0014】
【発明の実施の形態】
上記第1の発明(請求項1)において圧電層及び第1及び第2の保護層は,通常圧電体素子で用いる誘電材料にて構成することができる。多く利用されるのはPZT(ジルコン酸チタン酸鉛)であるが,他の材料を用いることもできる。
また,内部電極層はPt,Agなどの各種電極材料を使用することができる。
【0015】
また,上記接着層は,圧電層や第1,第2の保護層と同じまたは似た材料より構成したペーストより構成することが好ましい。
接着層の性状が圧電層,第1,第2の保護層と異なる場合は焼成収縮などにより,クラックやデラミネーションが生じるおそれがある。
【0016】
また,上記接着層の厚みは乾燥厚みで3〜17μmとすることが好ましい。
乾燥厚みとは,印刷形成した直後ではなく,乾燥収縮を終えた後の厚みである。
この厚みが3μm未満である場合は,大型未焼シート等に接着層の液状の成分(バインダーなど)が浸透し,接着する前に乾燥しきって接着力が失われるおそれがある。また,3μm未満の接着層は印刷形成することが困難である。
さらに,17μmより厚い場合は,印刷形成が難しく,積層後に側面からはみ出すおそれがある。なお,接着層は7μmとすることがより好ましい。
【0017】
また,上記大型未焼シートの長手方向は積層型圧電体素子を少なくとも1個作製するに必要な枚数の第1,第2未焼シート,圧電層用未焼シートを採取できるだけの長さを備えることが好ましい。
生産効率の点から,長尺の大型未焼シートを準備して,連続的に多数の未焼積層体を作製することが好ましい(実施例参照)。
【0018】
【実施例】
以下に,図面を用いて本発明の実施例について説明する。
(実施例)
本例は,図1に示すごとく,圧電層132と内部電極層131とを交互に積層した駆動層13と該駆動層13の積層方向の両端面にそれぞれ第1と第2の保護層11,12を備えた積層型圧電体素子1を製造する方法について説明する。
【0019】
この方法は,図2に示すごとく,第1未焼シート310を所定の枚数接着層35を介して積層した第1保護層11用の第1未焼部21と,該第1未焼部21に対し内部電極層用印刷部331を設けた圧電層用未焼シート332を所定の枚数接着層35を介して積層した第3未焼部23と,該第3未焼部23に対し第2未焼シート320を所定の枚数接着層35を介して積層した第2保護層12用の第2未焼部22とよりなる未焼積層体2を焼成することにより,積層型圧電体素子1を製造する方法である。
【0020】
上記未焼積層体2を得る方法を簡単に説明する。
図2〜図8に示すごとく,少なくとも積層型圧電体素子1を1個作製することが可能な分量の第1及び第2未焼シート310,320,圧電層用未焼シート332を採取可能な大きさを有する大型未焼シート30を準備する。
上記大型未焼シート30において圧電層用未焼シート332となる部分に内部電極層用印刷部331を印刷形成し,上記大型未焼シート30において第1及び第2未焼シート310,320,圧電層用未焼シート332となる部分に接着層35を印刷形成する。
【0021】
そして,上記大型未焼シート30より第1の未焼シート310を打ち抜くと同時に積層圧着して第1未焼部21となし,続いて圧電層用未焼シート332を打ち抜くと同時に積層圧着して第1の未焼部21に積層して第3未焼部23を形成し,更に第2の未焼シート320を打ち抜くと同時に積層圧着して第3の未焼部23に積層して第2の未焼部22となす。
これにより,図2にかかる,第1未焼部21,第3未焼部23,第2未焼部22からなる未焼積層体2を得る。
【0022】
以下,詳細に説明する。
本例にかかる積層型圧電体素子1は,図1に示すごとく,第1の保護層11と第2の保護層12との間に駆動層13を有する構成で,駆動層13は圧電層132と内部電極層131とが交互に積層した構成,また第1及び第2の保護層11,12は,圧電層132と同じ組成のセラミック層110,120が積層した構成である。
【0023】
駆動層13における内部電極層131は圧電層132表面の一部を覆う部分電極であり,積層型圧電体素子1の側面101と102に対し,内部電極層131の端面135が圧電層132の一層おきに露出する。
積層型圧電体素子1の側面101,102には側面電極14が設けてあり,各側面101,102に露出した内部電極層131の端面135は側面電極14により電気的な導通が確保される。
側面電極14は導電性ペースト140によりリード端子141と接続し,リード端子141は図示を略した外部電源と接続する。
【0024】
上記駆動層13の圧電層132,第1及び第2保護層11,12はPZT,内部電極層131はPt・Agよりなる。また,以下に記述するように未焼積層体の状態では,圧電層132や第1,第2の保護層11,12を構成するセラミック層110,120の間はすべて接着層35で接着されているが,この接着層35は圧電層132やセラミック層110,120と同組成であるため,焼成後は圧電層132やセラミック層110,120と略一体化する。よって,図1の記載では省略した。
【0025】
また,本例の駆動層13や第1,第2の保護層11,12の積層枚数は,駆動層13は圧電層132が100μm(焼成前)で100枚積層,第1,第2の保護層11,12はセラミック層110,120が100μm(焼成前)で各5枚づつ積層した。図面は見やすさを優先して積層枚数を少なく記載した。
【0026】
次に,本例の製造方法の詳細について説明する。
図3(a)に示すごとく,大型未焼シート30を準備する。
PZTよりなる平均粒径0.5μmのセラミック材料を1000g準備する。
これにPVB(ポリビニルブチラール)よりなるバインダーを40gと適量の溶剤を添加してスラリーを得る。上記スラリーをドクターブレード法で成形して,厚さ100μmの大型未焼シート30を得る。
この大型未焼シート30の幅は圧電層132等が数枚採取できる程度の長さ,長尺方向は本例の未焼成形体2の数個〜数十個分に相当する圧電層132等が採取できる程度の長さとする。
【0027】
次に,大型未焼シート30に,図3(b)や図4に示すごとく,厚さ6μmの内部電極層用印刷部331を設ける。
上記内部電極層用印刷部331は,PdとAgとよりなる平均粒径0.5μmの電極材料を1000g準備し,これにPVB(ポリビニルブチラール)よりなるバインダーを40gと適量の溶剤を添加して内部電極層用スラリーとし,スクリーン印刷を利用して形成する。
【0028】
スクリーン印刷について説明する。
図5に示すごとく,二つのローラー41,43の間にガイド42を配置した搬送装置49上にキャリアフィルム45を配置する。上記キャリアフィルム45上に内部電極層用のスラリーを盛った印刷マスク4を配置する。この印刷マスク4は枠体40と該枠体40内に張ったスクリーン41よりなり,スクリーン41は内部電極層用印刷部331の形状にスラリーを落とすための印刷孔402を持つ。
そして,上記印刷マスク4上からキャリアフィルム45上に配した大型未焼シート30にスラリーを落として所定の形状の内部電極層用印刷部331を多数形成する。
【0029】
またスクリーン印刷の代わりに次の方法で印刷部を形成することもできる。
図6に示すごとく,二つのローラー41,43の間にガイド42を配置した搬送装置49上にキャリアフィルム45を配置する。上記キャリアフィルム45上に内部電極層用のスラリーを噴出可能としたジェットノズル46を設置して,ジェットノズル46から内部電極層用のスラリーをキャリアフィルム45に配した大型未焼シート30に射出し,所定の形状の内部電極層用印刷部331を多数形成する。
【0030】
ところで大型未焼シート30の使い方を図4を用いて説明する。まず大型未焼シート30は次のような領域を有する。
すなわち,第1保護層用領域301は第1保護層11となるセラミック層110用の第1未焼シート310の採取場所,第2保護層用領域302は第2保護層12となるセラミック層120用の第2未焼シート320の採取場所となる。
また駆動層用領域303は駆動層13となる圧電層用未焼シート332を採取する部分で,内部電極層131は駆動層13にしか存在しないため,内部電極層用印刷部331は駆動層用領域303にのみ設ける。
【0031】
このように大型未焼シート30は,第1保護層用採取領域301,駆動層用採取領域303,第2保護層用採取領域302に区分できる。これら三つの領域をあわせた領域300が積層型圧電体素子1の1個分に相当する第1,第2未焼シート310,320及び圧電層用未焼シート332を得る場所となる。
【0032】
本例の製造方法では,図4にA列として示したように,1個の積層型圧電体素子1にかかる領域300が大型未焼シート30の長手方向に沿って一列に多数確保される。
そして,大型未焼シート30の幅方向に位置を揃えて,上記領域300が配列して確保される。
【0033】
なお,各領域は説明上記載したもので,実際の未焼積層体2作製の際は,点線で囲った第1未焼シート310,圧電層用未焼シート332,第2未焼シート320にかかる部分のみが打ち抜かれる。
【0034】
次いで,内部電極層用印刷部331を設けた大型未焼シート30に対し,図3(c)に示すごとく,厚さ11μmの接着層35を設ける。
接着層用のスラリーは,PZT(大型未焼シートで用いたものと同じ材料)よりなる平均粒径0.6μmのセラミック材料を100g準備し,これにPVBよりなるバインダーを12g添加して作製する。
【0035】
この接着層用スラリーを前述した図5や図6に示す方法と同様にして大型未焼シート30に印刷し,接着層35となす。この接着層35は第1未焼シート310,圧電層用未焼シート332,第2未焼シート320と同じ大きさ,形状である。または,複数の内部電極層用印刷部の全体を被覆するように接着層35を設けることもできる。
【0036】
次いで,大型未焼シート30より第1,第2未焼シート310,320や圧電層用未焼シート332を打ち抜き,該打ち抜きと同時に積層して未焼積層体2を得る。図3(d)に打ち抜かれた状態での第1,第2の未焼シート310,320,圧電層用未焼シート332を示す。本例の製法では打ち抜きと同時に積層してしまうため,図3(d)のように各未焼シートが単独の状態となることはないが,説明のために図示した。
【0037】
上記打ち抜きと積層は図7及び図8に示すごとき,打ち抜き積層装置6を用いて行った。
この装置6は,大型未焼シート30の打ち抜きを行うパンチ61と,該パンチ61により打ち抜かれた第1,第2未焼シート310,320や圧電層用未焼シート332を積層すると共に積層途中の未焼積層体2を支持するホルダ64とよりなり,大型未焼シート30の下側に配置する下型62,上側に配置するダイ型63とを備える。
【0038】
パンチ61は大型未焼シート30の幅方向に対して同時に複数の第1未焼シート310等を打ち抜くために,支承部610により連結した複数のパンチ部619を備えた構成を有する。
また,ホルダ64も,支承部640によって連結した複数のホルダ部641を備える。ホルダ部641は,図8に示すごとく,未焼積層体2を支持する凹状部642と該凹状部642に連通する空気穴643を備える。
【0039】
図示を略したポンプがホルダ部641の空気穴643を通じて凹状部642の内部を吸引し,この吸引力が未焼積層体2をホルダ部641に固定する。
また,図2や図8に示すように,未焼積層体2の最上面209と凹状部642の天井面644との間には未焼積層体2をホルダ部641から容易に取り外すことができるようにダミーシート29を設ける。
未焼積層体2の最上面209は図2に示すごとく接着層35となるため,ダミーシート29を設けないとホルダ部641に未焼積層体2が強く接着してしまい,はずれなくなる可能性がある。
【0040】
上記下型62は,パンチ部619の先端が通過するガイド穴620を備える。また,上記ダイ型63もガイド穴630を備える。大型未焼シート30が上記下型62とダイ型63との間にはさまれた状態で,パンチ部619により第1,第2未焼シート310,320や圧電層用未焼シート332が打ち抜かれる。
【0041】
上記装置6を用いた打ち抜き積層を説明する。
すなわち,大型未焼シート30を打ち抜き積層装置6の下型62とダイ型63との間に導入する。
この状態でパンチ部619を図面下方向から上方向へ移動し,大型未焼シート30より第1,第2未焼シート310,320や圧電層用未焼シート332を打ち抜く。
【0042】
図7に示すごとく,内側電極層印刷部331,接着層35を所定の場所に設けた大型未焼シート30をローラー450において,キャリアフィルム45と剥離しつつ,打ち抜き積層装置6の下型62,ダイ型63との間に送り出した。
そして,凹状部642内を図示を略したポンプで吸引しながら,ここにダミーシート29をセットする。なお,ダミーシート29の装着はコレット方式で行うこともできる。吸着させるにしろコレット方式にしろ,いずれの方式も量産時に適する。
そして,大型未焼シート30における第1保護層用採取領域301にかかる部分より順次打ち抜き積層を行う
【0043】
打ち抜かれた第1未焼シート310はガイド穴630を通過して,ホルダ64のダミーシート29に対し圧接し,続く他の第1未焼シート310,圧電層用未焼シート332,最後に第2の未焼シート320がそれぞれ所定の枚数圧着積層する。このようにしてホルダ64に未焼積層体2が形成される。
なお,この積層圧着の際の圧力はおよそ0.02〜0.1MPaとなる。
【0044】
打ち抜きを終えて残った大型未焼シート30の残骸は,巻き取り機48によって回収する。
また,図6において,斜線を付した部分はこれから打ち抜こうとする第1,第2未焼シート310,320,圧電層用未焼シート332である。打ち抜き装置6より図面右側の白抜きの箇所は打ち抜きを終えた跡である。
【0045】
積層を終えた未焼積層体2はホルダ部641の凹状部642の吸引を行っているポンプを停止して,開放することで取り外すことができる。
未焼積層体2を外した後は一端大型未焼シート30を停止させ,ホルダ部641に再びダミーシート29をセットする。そして再び大型未焼シート30を送出して,次の第1保護層用採取領域301にかかる部分より再び順次打ち抜き積層を行って,次の未焼積層体2を連続的に製造する。
【0046】
そして,得られた未焼積層体2をバインダーを除去するための加熱を行い,続いて温度1000℃で2時間保持して焼成した。なお,ダミーシート29は焼成時に焼失する素材より構成するため,後に残らない。
そして,側面電極14,リード部141等を取り付けて,本例にかかる積層型圧電体素子1を得た。
【0047】
上記方法にして得た積層型圧電体素子1の各部を観察したが,デラミネーションもクラックも生じていなかった。
また,上記と同じ製造方法で,駆動層13の圧電層132を250枚積層,第1,第2の保護層11,12はセラミック層110,120を各10枚づつ積層して積層型圧電体素子1を作製した。
このもの素子についてもデラミネーションもクラックも生じていなかった。
【0048】
本例にかかる作用効果について説明する。
本例の製造方法では,焼成して第1と第2の保護層11,12,駆動層13となる第1と第2の未焼シート310,320,圧電層用未焼シート332を1枚の大型未焼シート30より採取する。同じシートから採取するため,材質や性状に違いが少なく,焼成時に保護層11,12にかかる部分と駆動層13にかかる部分との間で焼成収縮差が生じ難く,これに起因するクラックやデラミネーションなどを防止することができ,強度低下も生じ難い。
【0049】
また,接着層35を利用して各第1と第2の未焼シート310,320,圧電層用未焼シート332を接着するため,これらの未焼シートの積層圧着時に加える圧力を下げることができる。
接着の圧力が大きい場合は,未焼シート内に欠陥などが発生し,焼成後のマイクロクラックの原因となる。低圧力で接着可能となる本例を利用することで,上記問題を防ぐことができる。
【0050】
また,本例にかかる製造方法では,第1,第2の未焼シート310,320や圧電層用未焼シート332を大型未焼シート30から打ち抜くと同時に積層して未焼積層体2を構成する。よって,大型未焼シートから採取する工程と積層する工程とを別々に行う必要がなくて,製作効率が高まり,生産速度も向上する。よって,製作コストも安価となる。
さらに,第1,第2保護層11,12は圧電層132とが同じ材料で構成され,内部電極層131のような高価な材料を第1,第2保護層11,12が含まないため,原料コストが安価となる。
【0051】
以上,本例によれば,クラックやデラミネーションなどの欠陥が少なく,耐久性に優れ,生産効率に優れ,コスト安である積層型圧電体素子の製造方法を得ることができる。
なお,本例では大型未焼シート30を下から上へと打ち抜いたが,反対に上から下へと打ち抜いて,積層を行うこともできる。
【0052】
(比較例)
図9に示すごとき,積層型圧電体素子9を次のように作製した。
駆動部13を本例と同様に作製するが,第1と第2の保護層91,92は,圧電層132を作製する際に用いたPZTからスラリーを作製し,これを射出成形して所定の大きさ,形状の未焼体とした。焼成前の未焼シートを積層して構成した状態の駆動部に上記未焼体を(1)接着層(実施例と同じものを利用する)で接合して未焼積層体を得る。
または,加圧治具に駆動部と上記未焼体を組み込み(2)80℃で30分加圧後,圧力を30MPaにして1分間加圧して加圧接合して未焼積層体を得る。
【0053】
上記(1),(2)により得た未焼積層体を実施例と同じ条件で焼成したところ,(1)は保護層と駆動層との間にクラックが生じ剥離するという問題が起きてしまった。
(2)は,高い加圧力にて加熱加圧接合するため密度にバラツキが生じる。そのために焼成時の収縮が均一でないとクラックが生じ,剥離するという問題が起きてしまった。
【図面の簡単な説明】
【図1】実施例における,積層型圧電体素子の断面説明図。
【図2】実施例における,未焼積層体の断面説明図。
【図3】実施例における,大型未焼シートに内部電極層用印刷部,接着層を形成するプロセスの説明図。
【図4】実施例における,大型未焼シートに内部電極層用印刷部を形成した状態の平面説明図。
【図5】実施例における,スクリーン印刷による内部電極層用印刷部形成の説明図。
【図6】実施例における,ノズルからの噴射による内部電極層用印刷部形成の説明図。
【図7】実施例における,打ち抜き積層の説明図。
【図8】実施例における,打ち抜き積層の要部説明図。
【図9】比較例における,積層型圧電体素子の断面説明図。
【符号の説明】
1...積層型圧電体素子,
11...第1保護層,
12...第2保護層,
13...駆動層,
131...内部電極層,
132...圧電層,
2...未焼積層体,
21...第1未焼部,
22...第2未焼部,
23...第3未焼部,
30...大型未焼シート,
310...第1未焼シート,
320...第2未焼シート,
331...内部電極層用未焼部,
332...圧電層用未焼シート,
35...接着層,
[0001]
【Technical field】
The present invention relates to a method for manufacturing a laminated piezoelectric element having first and second protective layers on both ends of a drive layer configured by alternately laminating piezoelectric layers and internal electrode layers.
[0002]
[Prior art]
There is known a piezoelectric element including a driving layer in which piezoelectric layers and internal electrode layers are alternately stacked, and first and second protective layers provided at both ends of the driving layer in the stacking direction.
In recent years, the piezoelectric element is sometimes used as a drive source for a fuel injection device in an automobile engine. The piezoelectric element used for this purpose is required to have a high output at a low voltage and to be excellent in reliability and durability.
Piezoelectric elements used for such applications are often configured to exhibit high output by reducing the thickness of the piezoelectric layer and increasing the number of stacked piezoelectric layers (several hundred layers).
[0003]
[Problems to be solved]
By the way, a laminated piezoelectric element in which the first and second protective layers are provided on both ends of the drive layer is often produced by bonding a separately prepared protective layer to the drive layer after firing in a subsequent process. (Refer to a comparative example described later).
[0004]
However, the protective layer provided by this method has some problems.
(1) It takes time and labor to perform the post-process, which is disadvantageous in terms of production efficiency and cost.
(2) There is a possibility that the output of the piezoelectric element may be reduced at the adhesion portion with the protective layer.
(3) In a harsh environment such as for fuel injection of an automobile internal combustion engine, the shearing force cannot be sufficiently relaxed only by adhering the protective layer.
[0005]
As another method for forming a protective layer, JP-A-8-8471 proposes a method in which a protective layer is produced as a press-molded product, which is pressure-bonded to a driving layer before firing, and both are integrally fired. However, piezoelectric elements that have a very large number of layers and reach hundreds of layers may be deformed due to the difference in shrinkage between the drive layer and the protective layer during firing, resulting in delamination. .
[0006]
Further, in the piezoelectric element disclosed in Japanese Patent Laid-Open No. 9-270540, the protective layer has the same configuration as the driving layer. That is, like the drive layer, the protective layer is in a state where the piezoelectric layer and the internal electrode layer are alternately laminated, but unlike the drive layer, the protective layer does not have a side electrode for supplying power from the outside. . Therefore, the piezoelectric layer of the protective layer does not expand and contract.
[0007]
The problems with the multilayer piezoelectric element with this configuration are that a protective layer with high strength cannot be obtained when the piezoelectric layer constituting the driving layer is very thin, and the electrode material used for the internal electrode layer of the protective layer is wasted. In particular, silver / palladium used as an electrode material is expensive and not economical.
[0008]
The present invention has been made in view of such conventional problems, and provides a method for manufacturing a multilayer piezoelectric element having few defects such as cracks and delamination, excellent durability, excellent production efficiency, and low cost. It is something to be offered.
[0009]
[Means for solving problems]
According to the present invention, there is provided a multi-layer piezoelectric element including a driving layer in which piezoelectric layers and internal electrode layers are alternately stacked, and first and second protective layers on both end surfaces in the stacking direction of the driving layer.
A first first green portion of the protective layer of the first unsintered sheet are layered with a prescribed number of adhesive layers, provided the printing portion internal electrode layer with respect to green portion of the first stacked through a third green part the green sheet for a piezoelectric layer laminated through a predetermined number adhesive layer, the predetermined number adhesive layer and a second green sheet to green part of the third a method of manufacturing by firing become more green laminate and the second of the second green portion of the protective layer, and
In obtaining the unfired laminate,
Prepare at least stacked aliquot capable piezoelectric element to one producing the first and second green sheet, a large green sheet having a size capable of collecting green sheet for a piezoelectric layer,
The printing portion internal electrode layer formed by printing on the portion to be a green sheet for a piezoelectric layer in the large green sheet, the first and second green sheet in the large green sheet, the green sheet for a piezoelectric layer An adhesive layer is printed on
Next, the first unfired sheet is punched from the large unfired sheet, and at the same time, a predetermined number of sheets are stacked and pressure-bonded to form the first unfired portion, and then the piezoelectric layer unfired sheet is punched at the same time as the predetermined number of sheets. the laminated crimped to the first green part to form a third green part, further followed by the second green sheet punched out at the same time a predetermined number of sheets stacked crimped to the third green part The present invention is a method for manufacturing a laminated piezoelectric element, characterized in that the second unfired part is formed.
In the present specification, hereinafter, “first...” Is sometimes referred to as “first...” And “no” may be omitted, but the meaning is the same. This applies not only to “first” but also to “second” and “third”. In addition, the expressions “first and second...”, “First and second...”, And “first and second. And second ... ".
[0010]
The function and effect of the present invention will be described.
In the manufacturing method according to the present invention, the first and second protective layers, the first and second unfired sheets serving as the driving layers, and the unfired piezoelectric layer sheet are collected from one large unfired sheet by firing. To do. Since it is collected from the same sheet, there is little difference in material and properties, and it is difficult for firing shrinkage difference between the part applied to the protective layer and the part applied to the drive layer during firing, preventing cracks and delamination caused by this. It is possible to reduce the strength.
[0011]
In addition, since the first and second green sheets and the piezoelectric layer green sheet are bonded using the adhesive layer, the first and second green sheets and the piezoelectric layer green sheet are applied during pressure bonding. The pressure can be lowered. Increased bonding pressure causes defects in the unfired sheet and causes microcracks after firing. According to the manufacturing method of the present invention that enables bonding at a low pressure, the above-mentioned problems can be prevented.
Therefore, cracks and delamination due to the above problems can be prevented, and the strength of the multilayer piezoelectric element is hardly reduced.
[0012]
In the manufacturing method according to the present invention, the first and second unfired sheets and the unfired piezoelectric layer sheet are punched from the large unfired sheet and are laminated at the same time to form an unfired laminate.
Therefore, there is no need to perform the process of collecting from the large green sheet and the process of laminating separately. Therefore, the production efficiency of the unfired laminate is increased and the production speed is also improved. Therefore, the manufacturing cost is also low.
Furthermore, since the protective layer is made of the same material as the piezoelectric layer and does not include an expensive material such as the internal electrode layer, the raw material cost is low.
[0013]
As described above, according to the present invention, it is possible to obtain a method for manufacturing a multilayer piezoelectric element that has few defects such as cracks and delamination, is excellent in durability, is excellent in production efficiency, and is low in cost.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the first aspect of the invention (invention 1), the piezoelectric layer and the first and second protective layers can be made of a dielectric material which is usually used in a piezoelectric element. PZT (lead zirconate titanate) is often used, but other materials can be used.
In addition, various electrode materials such as Pt and Ag can be used for the internal electrode layer.
[0015]
The adhesive layer is preferably made of a paste made of the same or similar material as the piezoelectric layer and the first and second protective layers.
If the properties of the adhesive layer are different from those of the piezoelectric layer and the first and second protective layers, cracks and delamination may occur due to firing shrinkage and the like.
[0016]
The adhesive layer preferably has a dry thickness of 3 to 17 μm.
The dry thickness is the thickness after the drying shrinkage is completed, not immediately after the print formation.
When this thickness is less than 3 μm, the liquid component (binder, etc.) of the adhesive layer permeates into a large unfired sheet and the like, and the adhesive force may be lost by drying before bonding. Also, it is difficult to print and form an adhesive layer of less than 3 μm.
Furthermore, when it is thicker than 17 μm, it is difficult to form a print, and there is a possibility that it protrudes from the side surface after lamination. The adhesive layer is more preferably 7 μm.
[0017]
Further, the longitudinal direction of the large green sheet has a length sufficient to collect the first and second green sheets and the piezoelectric layer green sheet necessary for producing at least one laminated piezoelectric element. It is preferable.
From the viewpoint of production efficiency, it is preferable to prepare a long, large unfired sheet and continuously produce a large number of unfired laminates (see Examples).
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
(Example)
In this example, as shown in FIG. 1, the driving layers 13 in which the piezoelectric layers 132 and the internal electrode layers 131 are alternately stacked, and the first and second protective layers 11, A method of manufacturing the laminated piezoelectric element 1 having 12 will be described.
[0019]
As shown in FIG. 2, this method includes a first unfired portion 21 for the first protective layer 11 in which a predetermined number of first unfired sheets 310 are laminated via an adhesive layer 35, and the first unfired portion 21. On the other hand, a third unfired portion 23 in which a predetermined number of unfired piezoelectric layer sheets 332 provided with internal electrode layer printing portions 331 are laminated via an adhesive layer 35, and a second unfired portion 23 with respect to the third unfired portion 23. By firing the unfired laminated body 2 including the second unfired portion 22 for the second protective layer 12 in which a predetermined number of unfired sheets 320 are laminated via the adhesive layer 35, the multilayer piezoelectric element 1 is obtained. It is a manufacturing method.
[0020]
A method for obtaining the unfired laminate 2 will be briefly described.
As shown in FIGS. 2 to 8, the first and second unbaked sheets 310 and 320 and the unbaked sheet 332 for the piezoelectric layer can be collected so that at least one stacked piezoelectric element 1 can be produced. A large green sheet 30 having a size is prepared.
An internal electrode layer printing portion 331 is formed by printing on a portion of the large green sheet 30 that will be the piezoelectric layer green sheet 332, and the large green sheet 30 includes first and second green sheets 310 and 320, piezoelectric elements. The adhesive layer 35 is printed and formed on a portion that becomes the unfired sheet 332 for layers.
[0021]
Then, the first green sheet 310 is punched from the large green sheet 30 and simultaneously laminated and pressed to form the first green section 21, and the piezoelectric layer green sheet 332 is punched and simultaneously stacked and pressed. A third unfired portion 23 is formed by laminating the first unfired portion 21, and a second unfired sheet 320 is punched out and simultaneously laminated and laminated on the third unfired portion 23. The unburned part 22 is formed.
Thereby, the unfired laminated body 2 which consists of the 1st unburned part 21, the 3rd unburned part 23, and the 2nd unburned part 22 concerning FIG. 2 is obtained.
[0022]
This will be described in detail below.
As shown in FIG. 1, the multilayer piezoelectric element 1 according to this example has a drive layer 13 between a first protective layer 11 and a second protective layer 12, and the drive layer 13 is a piezoelectric layer 132. The first and second protective layers 11 and 12 have a structure in which ceramic layers 110 and 120 having the same composition as the piezoelectric layer 132 are stacked.
[0023]
The internal electrode layer 131 in the drive layer 13 is a partial electrode that covers a part of the surface of the piezoelectric layer 132, and the end surface 135 of the internal electrode layer 131 is one layer of the piezoelectric layer 132 with respect to the side surfaces 101 and 102 of the multilayer piezoelectric element 1. Every other exposure.
The side surface electrodes 14 are provided on the side surfaces 101 and 102 of the multilayer piezoelectric element 1, and the end surface 135 of the internal electrode layer 131 exposed at each side surface 101 and 102 is electrically connected by the side surface electrode 14.
The side electrode 14 is connected to the lead terminal 141 by the conductive paste 140, and the lead terminal 141 is connected to an external power source (not shown).
[0024]
The piezoelectric layer 132, the first and second protective layers 11 and 12 of the driving layer 13 are made of PZT, and the internal electrode layer 131 is made of Pt · Ag. Further, as described below, in the state of the unfired laminated body, the ceramic layers 110 and 120 constituting the piezoelectric layer 132 and the first and second protective layers 11 and 12 are all adhered by the adhesive layer 35. However, since the adhesive layer 35 has the same composition as the piezoelectric layer 132 and the ceramic layers 110 and 120, it is substantially integrated with the piezoelectric layer 132 and the ceramic layers 110 and 120 after firing. Therefore, it is omitted in the description of FIG.
[0025]
In addition, the drive layer 13 and the first and second protective layers 11 and 12 of this example are stacked in the number of the drive layer 13 with the piezoelectric layer 132 being 100 μm (before firing), and the first and second protective layers. The layers 11 and 12 were formed by laminating 5 ceramic layers 110 and 120 each at 100 μm (before firing). In the drawing, the number of stacked sheets is described with a low priority in view of easy viewing.
[0026]
Next, details of the manufacturing method of this example will be described.
As shown in FIG. 3A, a large green sheet 30 is prepared.
1000 g of a ceramic material made of PZT and having an average particle size of 0.5 μm is prepared.
To this, 40 g of a binder made of PVB (polyvinyl butyral) and an appropriate amount of solvent are added to obtain a slurry. The slurry is formed by a doctor blade method to obtain a large green sheet 30 having a thickness of 100 μm.
The large unfired sheet 30 has a width that allows several piezoelectric layers 132 or the like to be collected, and the longitudinal direction includes the piezoelectric layers 132 or the like corresponding to several to several tens of unfired features 2 of this example. The length should be sufficient for collection.
[0027]
Next, as shown in FIG. 3B and FIG. 4, an internal electrode layer printing section 331 having a thickness of 6 μm is provided on the large green sheet 30.
The internal electrode layer printing section 331 is prepared by preparing 1000 g of an electrode material having an average particle size of 0.5 μm made of Pd and Ag, and adding 40 g of a binder made of PVB (polyvinyl butyral) and an appropriate amount of a solvent. Form a slurry for internal electrode layers using screen printing.
[0028]
Screen printing will be described.
As shown in FIG. 5, a carrier film 45 is arranged on a conveying device 49 in which a guide 42 is arranged between two rollers 41 and 43. On the carrier film 45, a printing mask 4 on which slurry for internal electrode layers is deposited is disposed. The printing mask 4 includes a frame body 40 and a screen 41 stretched in the frame body 40, and the screen 41 has printing holes 402 for dropping slurry into the shape of the internal electrode layer printing section 331.
Then, the slurry is dropped from the printing mask 4 onto the large green sheet 30 disposed on the carrier film 45 to form a large number of internal electrode layer printing portions 331 having a predetermined shape.
[0029]
Further, instead of screen printing, the printing section can be formed by the following method.
As shown in FIG. 6, a carrier film 45 is arranged on a conveying device 49 in which a guide 42 is arranged between the two rollers 41 and 43. A jet nozzle 46 capable of ejecting the slurry for the internal electrode layer is installed on the carrier film 45, and the slurry for the internal electrode layer is injected from the jet nozzle 46 onto the large green sheet 30 disposed on the carrier film 45. A large number of internal electrode layer printing portions 331 having a predetermined shape are formed.
[0030]
By the way, how to use the large green sheet 30 will be described with reference to FIG. First, the large green sheet 30 has the following areas.
That is, the first protective layer region 301 is a place where the first green sheet 310 for the ceramic layer 110 to be the first protective layer 11 is collected, and the second protective layer region 302 is the ceramic layer 120 to be the second protective layer 12. It becomes a collection place of the second green sheet 320 for use.
The drive layer region 303 is a portion for collecting the piezoelectric layer green sheet 332 to be the drive layer 13, and the internal electrode layer 131 exists only in the drive layer 13, so the internal electrode layer printing unit 331 is used for the drive layer. It is provided only in the area 303.
[0031]
In this way, the large green sheet 30 can be divided into a first protective layer collection region 301, a drive layer collection region 303, and a second protective layer collection region 302. A region 300 obtained by combining these three regions is a place to obtain the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 corresponding to one of the multilayer piezoelectric elements 1.
[0032]
In the manufacturing method of this example, as shown as row A in FIG. 4, a large number of regions 300 related to one laminated piezoelectric element 1 are secured in a row along the longitudinal direction of the large green sheet 30.
And the said area | region 300 is arranged and secured by aligning the position in the width direction of the large unbaked sheet 30.
[0033]
Each region is described in the explanation, and when the actual green laminate 2 is manufactured, the first green sheet 310, the piezoelectric layer green sheet 332, and the second green sheet 320 surrounded by a dotted line are used. Only this part is punched out.
[0034]
Next, as shown in FIG. 3C, an adhesive layer 35 having a thickness of 11 μm is provided on the large green sheet 30 provided with the internal electrode layer printing portion 331.
The slurry for the adhesive layer is prepared by preparing 100 g of a ceramic material having an average particle size of 0.6 μm made of PZT (the same material as that used for the large unfired sheet) and adding 12 g of a binder made of PVB thereto. .
[0035]
The adhesive layer slurry is printed on the large green sheet 30 in the same manner as the method shown in FIGS. The adhesive layer 35 has the same size and shape as the first green sheet 310, the piezoelectric layer green sheet 332, and the second green sheet 320. Alternatively, the adhesive layer 35 can be provided so as to cover the whole of the plurality of internal electrode layer printing portions.
[0036]
Next, the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 are punched from the large green sheet 30 and laminated simultaneously with the punching to obtain the green laminate 2. FIG. 3D shows the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 in the punched state. In the manufacturing method of this example, lamination is performed at the same time as punching, so that each unsintered sheet does not become a single state as shown in FIG.
[0037]
The punching and laminating were performed using a punching and laminating apparatus 6 as shown in FIGS.
The apparatus 6 stacks a punch 61 for punching a large unfired sheet 30, and first and second unfired sheets 310 and 320 punched by the punch 61 and an unfired sheet 332 for a piezoelectric layer, and in the middle of the stacking. A holder 64 for supporting the unfired laminated body 2, and includes a lower mold 62 disposed on the lower side of the large unfired sheet 30 and a die mold 63 disposed on the upper side.
[0038]
The punch 61 has a configuration including a plurality of punch portions 619 connected by a support portion 610 in order to punch out the plurality of first unfired sheets 310 and the like simultaneously in the width direction of the large unfired sheet 30.
The holder 64 also includes a plurality of holder parts 641 connected by the support part 640. As shown in FIG. 8, the holder portion 641 includes a concave portion 642 that supports the unfired laminate 2 and an air hole 643 that communicates with the concave portion 642.
[0039]
A pump (not shown) sucks the inside of the concave portion 642 through the air hole 643 of the holder portion 641, and this suction force fixes the unfired laminated body 2 to the holder portion 641.
Further, as shown in FIG. 2 and FIG. 8, the unfired laminate 2 can be easily detached from the holder portion 641 between the uppermost surface 209 of the unfired laminate 2 and the ceiling surface 644 of the concave portion 642. A dummy sheet 29 is provided as described above.
Since the uppermost surface 209 of the unfired laminated body 2 becomes the adhesive layer 35 as shown in FIG. 2, if the dummy sheet 29 is not provided, the unfired laminated body 2 is strongly bonded to the holder portion 641 and may not come off. is there.
[0040]
The lower mold 62 includes a guide hole 620 through which the tip of the punch portion 619 passes. In addition, the die 63 is also provided with a guide hole 630. In a state where the large green sheet 30 is sandwiched between the lower mold 62 and the die mold 63, the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 are punched out by the punch portion 619. It is.
[0041]
The punching lamination using the apparatus 6 will be described.
That is, the large green sheet 30 is introduced between the lower mold 62 and the die mold 63 of the punching and laminating apparatus 6.
In this state, the punch unit 619 is moved from the lower side to the upper side in the drawing, and the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 are punched from the large green sheet 30.
[0042]
As shown in FIG. 7, the large unbaked sheet 30 provided with the inner electrode layer printing part 331 and the adhesive layer 35 in a predetermined place is peeled off from the carrier film 45 in the roller 450, while the lower die 62 of the punching and laminating apparatus 6 is It sent out between the die type | molds 63.
And the dummy sheet | seat 29 is set here, attracting | sucking the inside of the recessed part 642 with the pump which abbreviate | omitted illustration. Note that the dummy sheet 29 can be mounted by a collet method. Either adsorption or collet method is suitable for mass production.
Then, punching and laminating are sequentially performed from a portion of the large unfired sheet 30 on the first protective layer sampling region 301.
The punched first green sheet 310 passes through the guide hole 630 and comes into pressure contact with the dummy sheet 29 of the holder 64, and continues to the other first green sheet 310, the piezoelectric layer green sheet 332, and finally the first sheet. Two unfired sheets 320 are laminated in a predetermined number of times. In this way, the green laminate 2 is formed on the holder 64.
In addition, the pressure at the time of this lamination | stacking crimping | combination will be about 0.02-0.1 MPa.
[0044]
The remnants of the large unfired sheet 30 remaining after the punching are collected by a winder 48.
In FIG. 6, the hatched portions are the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 to be punched. The white spot on the right side of the drawing from the punching device 6 is a mark after the punching is finished.
[0045]
The unfired laminated body 2 that has been laminated can be removed by stopping and opening the pump that sucks the concave portion 642 of the holder portion 641.
After removing the unfired laminate 2, the large unfired sheet 30 is stopped at one end, and the dummy sheet 29 is set on the holder portion 641 again. Then, the large unsintered sheet 30 is sent out again, and the next unsintered laminate 2 is continuously manufactured by sequentially punching and stacking again from the portion related to the next sampling region 301 for the first protective layer.
[0046]
And the obtained unbaked laminated body 2 was heated for removing the binder, and then kept at a temperature of 1000 ° C. for 2 hours and fired. Since the dummy sheet 29 is made of a material that is burned off during firing, it does not remain later.
And the side surface electrode 14, the lead part 141, etc. were attached, and the laminated piezoelectric element 1 concerning this example was obtained.
[0047]
Although each part of the multilayer piezoelectric element 1 obtained by the above method was observed, neither delamination nor cracks occurred.
Further, by the same manufacturing method as described above, 250 piezoelectric layers 132 of the drive layer 13 are stacked, and the first and second protective layers 11 and 12 are stacked by 10 ceramic layers 110 and 120, respectively, to form a stacked piezoelectric body. Element 1 was produced.
Neither delamination nor cracks occurred in this device.
[0048]
The effect concerning this example is demonstrated.
In the manufacturing method of this example, the first and second protective layers 11 and 12 and the first and second unfired sheets 310 and 320 to be the drive layer 13 are fired to form one unfired sheet 332 for the piezoelectric layer. The large unbaked sheet 30 is collected. Since it is collected from the same sheet, there is little difference in material and properties, and it is difficult for a difference in firing shrinkage between the portion applied to the protective layers 11 and 12 and the portion applied to the drive layer 13 at the time of firing. Lamination etc. can be prevented and the strength is unlikely to decrease.
[0049]
In addition, since the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 are bonded using the adhesive layer 35, the pressure applied when these green sheets are laminated and pressed can be lowered. it can.
When the bonding pressure is high, defects or the like occur in the unfired sheet, causing microcracks after firing. By using this example that can be bonded at a low pressure, the above problem can be prevented.
[0050]
In the manufacturing method according to this example, the first and second green sheets 310 and 320 and the piezoelectric layer green sheet 332 are punched from the large green sheet 30 and stacked at the same time to form the green laminate 2. To do. Therefore, it is not necessary to perform the process of collecting from a large green sheet and the process of laminating separately, so that the production efficiency is increased and the production speed is also improved. Therefore, the manufacturing cost is also low.
Furthermore, since the first and second protective layers 11 and 12 are made of the same material as the piezoelectric layer 132 and the expensive material such as the internal electrode layer 131 is not included in the first and second protective layers 11 and 12, Raw material costs are reduced.
[0051]
As described above, according to this example, it is possible to obtain a method for manufacturing a multilayer piezoelectric element having few defects such as cracks and delamination, excellent durability, excellent production efficiency, and low cost.
In this example, the large green sheet 30 is punched from the bottom to the top, but conversely, it can be stacked by punching from the top to the bottom.
[0052]
(Comparative example)
As shown in FIG. 9, the multilayer piezoelectric element 9 was produced as follows.
The drive unit 13 is produced in the same manner as in this example, but the first and second protective layers 91 and 92 are made of slurry from PZT used for producing the piezoelectric layer 132, and this is injection-molded to obtain a predetermined one. The size and shape of the green body were used. The green body is joined to the drive unit in a state where the green sheets before baking are laminated and joined by (1) an adhesive layer (using the same material as in the example) to obtain a green laminate.
Alternatively, the drive unit and the unfired body are incorporated in a pressure jig. (2) After pressurizing at 80 ° C. for 30 minutes, the pressure is set to 30 MPa, and pressure bonding is performed for 1 minute to obtain an unfired laminate.
[0053]
When the unfired laminate obtained by the above (1) and (2) was fired under the same conditions as in the example, (1) had a problem that a crack was generated between the protective layer and the driving layer, causing peeling. It was.
In (2), since the heat and pressure bonding is performed with a high pressure, the density varies. Therefore, if the shrinkage at the time of firing is not uniform, cracks occur and the problem of peeling occurs.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view of a multilayer piezoelectric element in an example.
FIG. 2 is a cross-sectional explanatory view of an unfired laminated body in an example.
FIG. 3 is an explanatory diagram of a process for forming an internal electrode layer printing portion and an adhesive layer on a large unfired sheet in an example.
FIG. 4 is an explanatory plan view showing a state in which the internal electrode layer printing portion is formed on the large green sheet in the embodiment.
FIG. 5 is an explanatory diagram of formation of a printing part for internal electrode layers by screen printing in an example.
FIG. 6 is an explanatory diagram of formation of a printing part for internal electrode layers by jetting from a nozzle in an example.
FIG. 7 is an explanatory diagram of punching lamination in an example.
FIG. 8 is an explanatory view of a main part of punching lamination in an example.
FIG. 9 is a cross-sectional explanatory view of a multilayer piezoelectric element in a comparative example.
[Explanation of symbols]
1. . . Laminated piezoelectric element,
11. . . A first protective layer,
12 . . A second protective layer,
13. . . Driving layer,
131. . . Internal electrode layer,
132. . . Piezoelectric layer,
2. . . Unfired laminate,
21. . . 1st unbaked part,
22. . . Second unbaked part,
23. . . Third unburned part,
30. . . Large green sheet,
310. . . First green sheet,
320. . . Second green sheet,
331. . . Unfired part for internal electrode layer,
332. . . Green sheet for piezoelectric layer,
35. . . Adhesive layer,

Claims (1)

圧電層と内部電極層とを交互に積層した駆動層と該駆動層の積層方向の両端面にそれぞれ第1と第2の保護層を備えた積層型圧電体素子を,
第1未焼シートを所定の枚数接着層を介して積層した第1保護層用の第1未焼部と,該第1未焼部に対し内部電極層用印刷部を設けた圧電層用未焼シートを所定の枚数接着層を介して積層した第3未焼部と,該第3未焼部に対し第2未焼シートを所定の枚数接着層を介して積層した第2保護層用の第2未焼部とよりなる未焼積層体を焼成することにより製造する方法であって,
上記未焼積層体を得るにあたり,
少なくとも積層型圧電体素子を1個作製することが可能な分量の第1及び第2未焼シート,圧電層用未焼シートを採取可能な大きさを有する大型未焼シートを準備し,
上記大型未焼シートにおいて圧電層用未焼シートとなる部分に内部電極層用印刷部を印刷形成し,上記大型未焼シートにおいて第1及び第2未焼シート,圧電層用未焼シートとなる部分に接着層を印刷形成し,
次いで,上記大型未焼シートより第1の未焼シートを打ち抜くと同時に所定の枚数を積層圧着して第1の未焼部となし,続いて圧電層用未焼シートを打ち抜くと同時に所定の枚数を第1の未焼部に積層圧着して第3未焼部を形成し,更に続いて第2の未焼シートを打ち抜くと同時に所定の枚数を第3の未焼部に積層圧着して第2の未焼部とすることを特徴とする積層型圧電体素子の製造方法。
A laminated piezoelectric element comprising a driving layer in which piezoelectric layers and internal electrode layers are alternately laminated, and first and second protective layers on both end surfaces in the laminating direction of the driving layer;
A first first green portion of the protective layer of the first unsintered sheet are layered with a prescribed number of adhesive layers, provided the printing portion internal electrode layer with respect to green portion of the first stacked through a third green part the green sheet for a piezoelectric layer laminated through a predetermined number adhesive layer, the predetermined number adhesive layer and a second green sheet to green part of the third a method of manufacturing by firing become more green laminate and the second of the second green portion of the protective layer, and
In obtaining the unfired laminate,
Prepare at least stacked aliquot capable piezoelectric element to one producing the first and second green sheet, a large green sheet having a size capable of collecting green sheet for a piezoelectric layer,
The printing portion internal electrode layer formed by printing on the portion to be a green sheet for a piezoelectric layer in the large green sheet, the first and second green sheet in the large green sheet, the green sheet for a piezoelectric layer An adhesive layer is printed on
Next, the first unfired sheet is punched from the large unfired sheet, and at the same time, a predetermined number of sheets are stacked and pressure-bonded to form the first unfired portion, and then the piezoelectric layer unfired sheet is simultaneously punched out the laminated crimped to the first green part to form a third green part, further followed by the second green sheet punched out at the same time a predetermined number of sheets stacked crimped to the third green part A method for manufacturing a laminated piezoelectric element, characterized in that a second unfired part is formed.
JP2002088842A 2002-03-27 2002-03-27 Manufacturing method of multilayer piezoelectric element Expired - Fee Related JP3870812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088842A JP3870812B2 (en) 2002-03-27 2002-03-27 Manufacturing method of multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088842A JP3870812B2 (en) 2002-03-27 2002-03-27 Manufacturing method of multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2003282994A JP2003282994A (en) 2003-10-03
JP3870812B2 true JP3870812B2 (en) 2007-01-24

Family

ID=29234589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088842A Expired - Fee Related JP3870812B2 (en) 2002-03-27 2002-03-27 Manufacturing method of multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP3870812B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207881A (en) * 2006-01-31 2007-08-16 Denso Corp Laminated piezoelectric element and method for manufacturing the same
CN112234138B (en) * 2020-10-28 2022-08-12 中科传感技术(青岛)研究院 Preparation method of large-size multilayer piezoelectric ceramic

Also Published As

Publication number Publication date
JP2003282994A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
JP4035988B2 (en) Ceramic laminate and manufacturing method thereof
CN1258826C (en) Packed piezoelectric device and its manufacture method and piezoelectric actuator
JP5052619B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP3994877B2 (en) Comb-shaped piezoelectric actuator and manufacturing method thereof
JP3740991B2 (en) Green sheet laminating apparatus, green sheet laminating method, and multilayer ceramic electronic component manufacturing method
JP4771649B2 (en) Manufacturing method of multilayer electronic component
JP5043311B2 (en) Piezoelectric laminate and manufacturing method thereof, piezoelectric speaker, electronic device
JP3870812B2 (en) Manufacturing method of multilayer piezoelectric element
JP2003101092A (en) Laminated piezoelectric element and manufacturing method therefor, and injection device
JP5070438B2 (en) Multilayer piezoelectric element
JP4569153B2 (en) Multilayer piezoelectric element and manufacturing method thereof
JP2004522323A (en) Manufacturing method and manufacturing apparatus for ceramic electronic components
JP4352670B2 (en) Manufacturing method of multilayer piezoelectric element
JP3891009B2 (en) Method for manufacturing ceramic laminate
JP4275914B2 (en) Manufacturing method of multilayer electronic components
JP4349820B2 (en) Manufacturing method of multilayer electronic components
JP4659368B2 (en) Manufacturing method of multilayer electronic components
JP2739117B2 (en) Manufacturing method of multilayer ceramic element
JPH11354379A (en) Method and apparatus for manufacturing laminate
JP3279721B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP4022062B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP3894861B2 (en) Multilayer piezoelectric element and injection device
JP4280043B2 (en) Manufacturing method of multilayer electronic components
JP2000114611A (en) Multi-layer piezoelectric element
JP2003017357A (en) Method of manufacturing laminated ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees