JP4278567B2 - Multi-axis photoelectric sensor - Google Patents

Multi-axis photoelectric sensor Download PDF

Info

Publication number
JP4278567B2
JP4278567B2 JP2004162082A JP2004162082A JP4278567B2 JP 4278567 B2 JP4278567 B2 JP 4278567B2 JP 2004162082 A JP2004162082 A JP 2004162082A JP 2004162082 A JP2004162082 A JP 2004162082A JP 4278567 B2 JP4278567 B2 JP 4278567B2
Authority
JP
Japan
Prior art keywords
light
interference
optical axis
photoelectric sensor
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004162082A
Other languages
Japanese (ja)
Other versions
JP2005345141A (en
Inventor
徹 和氣
Original Assignee
サンクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社 filed Critical サンクス株式会社
Priority to JP2004162082A priority Critical patent/JP4278567B2/en
Publication of JP2005345141A publication Critical patent/JP2005345141A/en
Application granted granted Critical
Publication of JP4278567B2 publication Critical patent/JP4278567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多光軸光電センサに関する。   The present invention relates to a multi-optical axis photoelectric sensor.

従来より多光軸光電センサとして、複数の投光素子が備えられた投光器と各投光素子に対応して複数の受光素子が備えられた受光器とが対向して配置されているものがある。   Conventionally, as a multi-optical axis photoelectric sensor, there is one in which a light projector provided with a plurality of light projecting elements and a light receiver equipped with a plurality of light receiving elements corresponding to each light projecting element are arranged to face each other. .

そして、投光器に備えられた投光素子が所定の投光タイミングにて順次投光される投光スキャン動作を所定周期で繰り返し行うとともに、各投光素子と対応する受光素子からの受光信号に基づいて、検出エリア内への物体侵入が検出されるようになっている。   The light projecting element provided in the light projector repeatedly performs the light projecting scanning operation in which light is projected sequentially at a predetermined light projecting timing at a predetermined cycle, and based on the light receiving signal from the light receiving element corresponding to each light projecting element. Thus, an object intrusion into the detection area is detected.

ところで、図6に示すように、より広い領域で物体の侵入を検出すべく複数台の多光軸光電センサ41,42を設置することがあり、多光軸光電センサ41,42同士が近接した状態に配されることがある。   By the way, as shown in FIG. 6, in order to detect intrusion of an object in a wider area, a plurality of multi-optical axis photoelectric sensors 41 and 42 may be installed, and the multi-optical axis photoelectric sensors 41 and 42 are close to each other. May be placed in a state.

この場合、例えば上方に設置されている多光軸光電センサ41のいずれかの光軸で投受光動作が行われているときに、下方に設置されている多光軸光電センサ42から投光された光が、上方の多光軸光電センサ41の当該受光動作を行っている受光素子に干渉光として入射することがある。すると、上方の多光軸光電センサ41の光軸が遮光されているのに、光軸の遮光状態を検出できないという誤検出が生じてしまうことになる。   In this case, for example, when the light projecting / receiving operation is performed on any one of the optical axes of the multi-optical axis photoelectric sensor 41 installed above, the light is projected from the multi-optical axis photoelectric sensor 42 installed below. Light may enter the light receiving element performing the light receiving operation of the upper multi-optical axis photoelectric sensor 41 as interference light. Then, although the optical axis of the upper multi-optical axis photoelectric sensor 41 is shielded from light, a false detection that the light shielding state of the optical axis cannot be detected occurs.

そこで、かかる誤検出を防止すべく受光素子における遮光検出のタイミングの直前にその受光素子にて干渉光の検出を行い、このとき干渉光が検出された場合には、一旦後の投光スキャン動作の周期を変えて、その後再び所定の周期で投光スキャン動作を行うことで、他の多光軸光電センサ42からの干渉光による誤検出を防止する構成が考えられた。
特開2003−133933号
Therefore, in order to prevent such erroneous detection, interference light is detected by the light receiving element immediately before the timing of detection of light shielding by the light receiving element. It is conceivable that the detection scan operation is performed again at a predetermined cycle and the erroneous detection due to interference light from other multi-optical axis photoelectric sensors 42 is prevented.
JP 2003-133933 A

ところで、受光素子に入射する干渉光としては、上記したような他の多光軸光電センサ42からの干渉光の他にも、他の光源(例えば、単光軸の光電センサ、ランプ等)からの干渉光がある。   By the way, as the interference light incident on the light receiving element, in addition to the interference light from the other multi-optical axis photoelectric sensor 42 as described above, other light sources (for example, a single optical axis photoelectric sensor, a lamp, etc.). There is no interference light.

一方、上記構成では、これら異なる要因の干渉光について判別するものではなく、特定の受光素子について干渉光を検出した場合には、後の投光スキャン動作の周期を変えることにより誤検出を防止する構成であった。   On the other hand, in the above configuration, the interference light caused by these different factors is not discriminated. When the interference light is detected for a specific light receiving element, erroneous detection is prevented by changing the period of the subsequent light projection scanning operation. It was a configuration.

ここで、受光素子に入射する干渉光が他の多光軸光電センサ42からの干渉光でない場合には、多光軸光電センサ41の複数の受光素子に順番に同じ間隔(各受光素子間の受光間隔)で干渉光が入射してくるということは極めて稀である。このように干渉光が異なる間隔で入射しているにもかかわらず多光軸光電センサ41の投光タイミングを変更した場合には、この変更により多光軸光電センサ41の投光タイミングが他の多光軸光電センサ42の投光タイミングと等しくなってしまう可能性があり、かかる場合には、新たに誤検出が生じるおそれがある。   Here, when the interference light incident on the light receiving element is not the interference light from the other multi-optical axis photoelectric sensor 42, the plurality of light receiving elements of the multi-optical axis photoelectric sensor 41 are sequentially spaced at the same interval (between each light receiving element. It is extremely rare for interference light to enter at a light receiving interval. As described above, when the light projection timing of the multi-optical axis photoelectric sensor 41 is changed even though the interference light is incident at different intervals, the light projection timing of the multi-optical axis photoelectric sensor 41 is changed by this change. There is a possibility that the light projection timing of the multi-optical axis photoelectric sensor 42 becomes equal. In such a case, there is a possibility that a new erroneous detection occurs.

本発明は上記のような事情に基づいて完成されたものであって、誤検出を防止可能な多光軸光電センサを提供することを目的とする。   The present invention has been completed based on the above situation, and an object thereof is to provide a multi-optical axis photoelectric sensor capable of preventing erroneous detection.

上記の目的を達成するための手段として、請求項1の発明に係る多光軸光電センサは、一列状に配列された複数の投光素子と、
前記各投光素子と対向して一列状に配列された複数の受光素子と、
前記複数の投光素子を所定の投光タイミングで順次投光させる投光スキャン動作を所定の周期で繰り返させる投光制御手段と、
前記各投光素子から投光された光のうち、前記投光素子と対応する受光素子に受光された受光信号を当該投光素子の投光タイミングに一致させて有効化する有効化手段と、
前記有効化手段で有効化された受光信号のレベルに基づいて検出を行う検出手段と、
前記複数の投光素子の非投光期間のうちから複数のタイミングを干渉光検出タイミングとし、この干渉光検出タイミングで有効化した受光信号に基づいて干渉光の検出を行う干渉光検出手段と、
前記干渉光検出手段において干渉光が検出されたときには、所定の干渉回避動作を行う干渉回避手段とを備える多光軸光電センサにおいて、
前記干渉光検出手段において、1投光スキャン動作中に複数の受光素子から干渉光が検出された場合に、前記干渉光検出手段で検出された干渉光が、他の多光軸光電センサから投光された光である判定する干渉光判定手段を備え、
前記干渉回避手段は、
前記干渉光判定手段により、前記干渉光が他の多光軸光電センサから投光された光であると判定されたときには、前記所定の干渉回避動作を行なう一方、前記干渉光が他の多光軸光電センサから投光された光でないと判定されたときには、前記所定の干渉回避動作を行わない構成としたところに特徴を有する。
As means for achieving the above object, a multi-optical axis photoelectric sensor according to the invention of claim 1 includes a plurality of light projecting elements arranged in a line,
A plurality of light receiving elements arranged in a row facing each of the light projecting elements;
A light projection control means for repeating a light projection scanning operation for sequentially projecting the plurality of light projecting elements at a predetermined light projection timing at a predetermined period;
An enabling means for enabling a light receiving signal received by a light receiving element corresponding to the light projecting element among the light projected from each of the light projecting elements to be matched with a light projecting timing of the light projecting element;
Detection means for performing detection based on the level of the received light signal validated by the validation means;
Interference light detection means for detecting interference light based on a received light signal activated at the interference light detection timing, with a plurality of timings as interference light detection timings from the non-light projection period of the plurality of light projecting elements,
When the interference light is detected by the interference light detection means, the multi-optical axis photoelectric sensor comprising interference avoidance means for performing a predetermined interference avoidance operation,
In the interference light detection means, when interference light is detected from a plurality of light receiving elements during one light projection scanning operation, the interference light detected by the interference light detection means is projected from another multi-optical axis photoelectric sensor. comprising an interferometric light determining means for determining that the optical light,
The interference avoidance means includes
When the interference light determination unit determines that the interference light is light projected from another multi-optical axis photoelectric sensor, the interference light is performed while the interference light is transmitted to another multi-light. It is characterized in that the predetermined interference avoidance operation is not performed when it is determined that the light is not projected from the axial photoelectric sensor.

請求項2の発明は、請求項1に記載のものにおいて、前記干渉光検出手段は、各投光スキャン動作ごとに、前記複数の投光素子のうち最初に投光する投光素子の投光タイミングの所定時間前の時点から、最後に投光する投光素子の投光タイミングの所定時間後の時点までのうち、前記複数の投光素子の投光時を除く全ての期間が干渉光検出タイミングとして設定されているところに特徴を有する。   According to a second aspect of the present invention, in the first aspect of the present invention, the interference light detection unit projects the light of the light projecting element that projects first among the plurality of light projecting elements for each light projecting scan operation. Interference light detection is performed for all periods from the time before a predetermined time to the time after the predetermined time of the light projecting timing of the last light projecting element, except for the time of projecting the light projecting elements. It is characterized by being set as timing.

請求項の発明は、請求項1または請求項2に記載のものにおいて、前記干渉回避手段の前記所定の干渉回避動作は、前記投光スキャン動作の開始タイミングを異ならせるものであるところに特徴を有する。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the predetermined interference avoidance operation of the interference avoidance unit is configured to vary a start timing of the light projection scan operation. Have

<請求項1の発明>
本構成によれば、干渉回避手段は、干渉光が他の多光軸光電センサから投光された光であると判定されたときには、所定の干渉回避動作を行なう一方、干渉光が他の多光軸光電センサから投光された光でないと判定されたときには、所定の干渉回避動作を行わない。したがって、他の多光軸光電センサ以外の光源(例えば、単光軸の光電センサやランプ)からの光を受けたときには干渉回避動作を行わないから、この干渉回避動作により他の多光軸光電センサから投光された光が投光タイミングに受光素子に受光されて生じる誤検出を防止できる。
<Invention of Claim 1>
According to this configuration, when it is determined that the interference light is light projected from another multi-optical axis photoelectric sensor, the interference avoidance unit performs a predetermined interference avoidance operation, while the interference light is transmitted from the other multi-optical axis photoelectric sensor. When it is determined that the light is not projected from the optical axis photoelectric sensor, a predetermined interference avoidance operation is not performed. Therefore, when receiving light from a light source other than the other multi-optical axis photoelectric sensor (for example, a single optical axis photoelectric sensor or lamp), the interference avoiding operation is not performed. It is possible to prevent erroneous detection that occurs when the light projected from the sensor is received by the light receiving element at the light projection timing.

<請求項2の発明>
本構成によれば、他の多光軸光電センサからの干渉光であるかどうかの判定を精度よく行うことができる。
<Invention of Claim 2>
According to this configuration, it is possible to accurately determine whether or not the light is interference light from another multi-optical axis photoelectric sensor.

<請求項の発明>
本構成によれば、後の投光スキャン動作の全ての周期を変えることなく、他の多光軸光電センサとの干渉を回避することが可能となる。
<Invention of Claim 3 >
According to this configuration, it is possible to avoid interference with other multi-optical axis photoelectric sensors without changing the entire period of the subsequent light projection scanning operation.

<実施形態1>
本発明の実施形態1を図1ないし図5を参照しつつ説明する。
本実施形態の多光軸光電センサ10は、図1に示すように、投光器20と受光器30とを対向させた状態で構成され、例えば、4チャンネルの光軸L1〜L4を有する。投光器20のうち受光器30と対向する面には、各チャンネル毎に1個(計4個)の投光素子21a〜21d(例えば、LED)が上下方向に一列に配列され、受光器30のうち投光器20と対向する面には投光素子21a〜21dと対をなす受光素子31a〜31d(例えば、フォトダイオード)が同じく上下方向に配列されている。なお、多光軸光電センサ10の下方には他の多光軸光電センサAが近接して配置されている。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the multi-optical axis photoelectric sensor 10 of the present embodiment is configured with the projector 20 and the light receiver 30 facing each other, and has, for example, four-channel optical axes L1 to L4. On the surface of the light projector 20 facing the light receiver 30, one (total of four) light projecting elements 21 a to 21 d (for example, LEDs) are arranged in a line in the vertical direction for each channel. Among them, light receiving elements 31a to 31d (for example, photodiodes) that are paired with the light projecting elements 21a to 21d are similarly arranged in the vertical direction on the surface facing the projector 20. Note that another multi-optical axis photoelectric sensor A is disposed in the vicinity of the multi-optical axis photoelectric sensor 10.

本実施形態の多光軸光電センサ10の電気的構成を図2に示す。
投光器20には投光素子21a〜21dを点灯させるための駆動回路22a〜22dが備えられ、各駆動回路22a〜22dはAND回路23a〜23dからの信号を受けると投光素子21a〜21dに駆動電流を供給する。AND回路23a〜23dにはシフトレジスタ24及び投光側CPU25からの出力信号が入力され、双方からの信号が入力されると駆動回路22a〜22dに信号を送出するようになっている。投光側CPU25は後述する受光器30に備えられた受光側CPU35から投光タイミング信号Stを受けとり、この投光タイミング信号Stをシフトレジスタ24及びAND回路23a〜23dに出力する。
FIG. 2 shows an electrical configuration of the multi-optical axis photoelectric sensor 10 of the present embodiment.
The projector 20 is provided with drive circuits 22a to 22d for lighting the light projecting elements 21a to 21d, and the drive circuits 22a to 22d are driven by the light projecting elements 21a to 21d when receiving signals from the AND circuits 23a to 23d. Supply current. Output signals from the shift register 24 and the light-projecting CPU 25 are input to the AND circuits 23a to 23d. When signals from both are input, signals are sent to the drive circuits 22a to 22d. The light projection side CPU 25 receives a light projection timing signal St from a light reception side CPU 35 provided in the light receiver 30 described later, and outputs this light projection timing signal St to the shift register 24 and the AND circuits 23a to 23d.

この投光タイミング信号Stは所定周期のパルス信号であって(図3参照)、投光素子21a〜21dの点灯タイミングを決定するために受光側CPU35によって生成される。投光タイミング信号Stのスキャン周期(T1時間)内には4個のパルスが時間taを空けて等間隔に発生し、4番目のパルスの後、休止期間tbが設けられている。これにより、4個の投光素子21a〜21dが上から下へと順次点灯される投光スキャン動作が周期T1毎に繰り返し行なわれる。従って、AND回路23a〜23d、シフトレジスタ24、投光側CPU25及び受光側CPU35が投光素子21a〜21dを所定のタイミングで順次点灯させる投光制御手段を構成する。   The light projection timing signal St is a pulse signal having a predetermined period (see FIG. 3), and is generated by the light receiving side CPU 35 in order to determine the lighting timing of the light projecting elements 21a to 21d. Within the scanning period (time T1) of the light projection timing signal St, four pulses are generated at equal intervals with a time ta, and a pause period tb is provided after the fourth pulse. Thereby, the light projection scanning operation in which the four light projecting elements 21a to 21d are sequentially turned on from the top to the bottom is repeatedly performed every period T1. Therefore, the AND circuits 23a to 23d, the shift register 24, the light emitting side CPU 25, and the light receiving side CPU 35 constitute a light projecting control means for sequentially lighting the light projecting elements 21a to 21d at a predetermined timing.

一方、受光器30には、受光素子31a〜31dからの受光信号を所定の増幅率で増幅する受光アンプ32a〜32dが各受光素子31a〜31dにそれぞれ備えられている。受光アンプ32a〜32dから出力される受光信号はアナログスイッチ33a〜33dを介し、共通の信号線にまとめられてコンパレータ34に取り込まれる。この受光信号がコンパレータ34に設定されている基準値以上であればハイレベル、基準値以下であるとロウレベルとなる入遮光検出信号Sd(干渉光検出信号Sy)が受光側CPU35に出力される。そして、受光側CPU35に入力された入遮光検出信号Sd(干渉光検出信号Sy)がハイレベルであればその受光素子31a(〜31d)に光(投受光動作で受光した光又は干渉光)が入射したことが検出される一方、受光側CPU35に入力された信号がロウレベルであればその受光素子31a〜31dに光が入射しない(遮光されている)ことが検出される。したがって、受光側CPU35は本発明の検出手段、干渉光検出手段を構成する。   On the other hand, the light receiver 30 includes light receiving amplifiers 32a to 32d that amplify light reception signals from the light receiving elements 31a to 31d at a predetermined amplification rate, respectively. The light receiving signals output from the light receiving amplifiers 32a to 32d are collected into a common signal line and taken into the comparator 34 via the analog switches 33a to 33d. An incident light blocking detection signal Sd (interference light detection signal Sy) that is high level if this received light signal is equal to or higher than the reference value set in the comparator 34 and low level if it is equal to or lower than the reference value is output to the light receiving side CPU 35. If the incoming light blocking detection signal Sd (interference light detection signal Sy) input to the light receiving side CPU 35 is at a high level, light (light received by the light projecting / receiving operation or interference light) is transmitted to the light receiving element 31a (to 31d). While it is detected that the light is incident, if the signal input to the light receiving side CPU 35 is at a low level, it is detected that light is not incident (shielded) on the light receiving elements 31a to 31d. Therefore, the light receiving side CPU 35 constitutes the detection means and the interference light detection means of the present invention.

受光側CPU35は各アナログスイッチ33a〜33dに接続されており、前述の投光タイミング信号Stのパルスと周期及び位相が一致した(同期した)パルスが所定時時間(間隔ta)ごとに各アナログスイッチ33a〜33dに順次送出される受光タイミング信号Srを送信する。   The light-receiving side CPU 35 is connected to each of the analog switches 33a to 33d, and each analog switch has a pulse whose cycle and phase match (synchronized) with the pulse of the light projection timing signal St described above every predetermined time (interval ta). A light reception timing signal Sr sequentially transmitted to 33a to 33d is transmitted.

また、受光側CPU35は、各投光素子21a〜21dの投光時を除き、各投光素子21a〜21dごとに、各投光時の前後の所定時間(例えば、前後共にta/2時間)にパルスの送出される干渉光検出タイミング信号Siを各アナログスイッチ33a〜33dに順次送信する。
これにより受光側CPU35は、投光素子21a〜21dのうち最初に投光する投光素子21aの投光タイミングの所定時間(例えば、ta/2)前の時点から、最後に投光する投光素子21dの投光タイミングの所定時間(例えば、ta/2)後の時点までのうち、投光素子21a〜21dの投光時を除く全ての期間にパルスを送出するようになっている。
Further, the light receiving side CPU 35, for each of the light projecting elements 21 a to 21 d, except for the time of projecting each of the light projecting elements 21 a to 21 d, is a predetermined time before and after each light projecting (for example, ta / 2 hours both before and after) The interference light detection timing signal Si to which the pulse is transmitted is sequentially transmitted to the analog switches 33a to 33d.
Thereby, the light receiving side CPU 35 projects light lastly from a time point before a predetermined time (for example, ta / 2) of the light projecting timing of the light projecting element 21a that projects light first among the light projecting elements 21a to 21d. Pulses are sent out in all periods except when light is projected by the light projecting elements 21a to 21d, up to a point after a predetermined time (for example, ta / 2) after the light projecting timing of the element 21d.

そして、送信された干渉光検出タイミング信号Siのパルスにより各アナログスイッチ33a〜33dがオンされると、各受光素子31a〜31dからの受光信号がコンパレータ34に入力される。   When the analog switches 33 a to 33 d are turned on by the transmitted interference light detection timing signal Si, light reception signals from the light receiving elements 31 a to 31 d are input to the comparator 34.

これにより、受光側CPU35が受光タイミング信号Sr(及び投光タイミング信号St)のパルスを送出したときには、各投光素子21a〜21dが点灯状態にあるから、コンパレータ34から出力される入遮光検出信号Sdによって、受光側CPU35は遮光検出を行うとともに、受光側CPU35が干渉光検出タイミング信号Siのパルスを送出したときには、投光素子21a〜21dが非点灯状態であるから、コンパレータ34から出力される干渉光検出信号Syによって受光側CPU35は干渉光の検出を行う。   Thereby, when the light receiving side CPU 35 sends a pulse of the light receiving timing signal Sr (and the light projecting timing signal St), the light projecting elements 21a to 21d are in the lighting state, so that the light incident / light blocking detection signal output from the comparator 34 is obtained. With Sd, the light receiving side CPU 35 performs light shielding detection, and when the light receiving side CPU 35 sends out a pulse of the interference light detection timing signal Si, the light projecting elements 21a to 21d are in the non-lighting state, and thus output from the comparator 34. The light receiving side CPU 35 detects the interference light by the interference light detection signal Sy.

次に、受光側CPU35の処理について図2〜図5を参照しつつ説明する。
多光軸光電センサ10の電源をオンすると、図2に示すように、受光側CPU35は、投光側CPU25に投光タイミング信号Stを送信することにより投光スキャン動作を周期T1で繰り返し行なわせる。また、受光側CPU35は、受光タイミング信号Sr及び干渉光検出タイミング信号Siをアナログスイッチ33a〜33dに送信することにより受光信号を有効化して遮光検出及び干渉検出を行なう。
Next, processing of the light receiving side CPU 35 will be described with reference to FIGS.
When the power source of the multi-optical axis photoelectric sensor 10 is turned on, as shown in FIG. 2, the light receiving side CPU 35 transmits the light projection timing signal St to the light projection side CPU 25 to repeatedly perform the light projection scan operation at the cycle T1. . The light receiving side CPU 35 validates the light receiving signal by transmitting the light receiving timing signal Sr and the interference light detection timing signal Si to the analog switches 33a to 33d, and performs the light shielding detection and the interference detection.

<遮光検出>
受光側CPU35は、図3に示すように、所定のタイミングでパルスを送出する投光タイミング信号Stと、この投光タイミング信号Stと同期してパルスを送出する受光タイミング信号Srを出力することにより、投光スキャン動作(周期T1)が開始される。すると、まず投光素子21a(P1)が投光されるとともに、受光素子31aにて受光された光の受光信号が有効化され、コンパレータ34でハイレベル若しくはロウレベルの入遮光検出信号Sdとされて、この入遮光検出信号Sdが受光側CPU35に入力される。
<Shading detection>
As shown in FIG. 3, the light receiving side CPU 35 outputs a light projection timing signal St for sending a pulse at a predetermined timing and a light reception timing signal Sr for sending a pulse in synchronization with the light projection timing signal St. Then, the light projection scan operation (cycle T1) is started. Then, first, the light projecting element 21a (P1) is projected, and the light reception signal of the light received by the light receiving element 31a is validated, and the comparator 34 sets it as a high-level or low-level incident light-shielding detection signal Sd. The incident / light shielding detection signal Sd is input to the light receiving side CPU 35.

受光側CPU35は、図4に示すように、入遮光検出信号Sdを受けると、この入遮光検出信号Sdがハイレベル(光が入射)であるときは(S11で「N」)、光軸L1の遮光回数のカウントN1を初期化し(S15)、光軸L2の遮光検出を行う。   As shown in FIG. 4, when the light-receiving / shielding detection signal Sd is received at the high level (light is incident) ("N" in S11), the light-receiving side CPU 35 receives the light-shielding detection signal Sd. The count N1 of the number of times of light shielding is initialized (S15), and the light shielding detection of the optical axis L2 is performed.

一方、入遮光検出信号Sdがロウレベル(遮光)であるときは、光軸L1が前回の投光スキャン動作時に遮光状態(遮光カウントN1=1)であったかどうかが判定され(S12)、光軸L1が前回の投光スキャン動作時に遮光状態であった場合には(S12で「Y」)、出力回路36に遮光判定の出力を行った後(S14)、光軸L2の遮光検出を行う。   On the other hand, when the incoming light blocking detection signal Sd is at the low level (light blocking), it is determined whether or not the optical axis L1 is in the light blocking state (light blocking count N1 = 1) during the previous light projection scan operation (S12), and the optical axis L1. Is in a light blocking state during the previous light projection scan operation (“Y” in S12), a light blocking determination is output to the output circuit 36 (S14), and then the light blocking detection of the optical axis L2 is performed.

光軸L1が前回の投光スキャン動作時に遮光状態でなかった場合には(N1=0,S12で「N」)、光軸L1の遮光回数のカウントN1を1とした後(S13)、光軸L2の遮光検出を行う。   When the optical axis L1 is not in the light-shielding state during the previous light projection scan operation (N1 = 0, “N” in S12), the light-blocking count N1 of the optical axis L1 is set to 1 (S13), Shading detection of the axis L2 is performed.

次に、パルスの送出してから所定時間(間隔ta)後に投光タイミング信号Stと、受光タイミング信号Srの2回目のパルスを送出すると、投光素子21b(P2)が投光されるとともに、受光素子31bにて受光された光の受光信号が有効化され、コンパレータ34でハイレベル若しくはロウレベルの入遮光検出信号Sdとされて、この入遮光検出信号Sdが受光側CPU35に入力される。   Next, when a second pulse of the light projection timing signal St and the light reception timing signal Sr is transmitted after a predetermined time (interval ta) from the transmission of the pulse, the light projecting element 21b (P2) is projected, The light receiving signal of the light received by the light receiving element 31b is validated, and the comparator 34 sets the incident / shielded light detection signal Sd at the high level or the low level, and this incident / shielded light detection signal Sd is input to the light receiving side CPU 35.

受光側CPU35は、入遮光検出信号Sdを受けると、この入遮光検出信号Sdがハイレベル(光が入射)であるときは(S16で「N」)、光軸L2の遮光回数のカウントN2を初期化し(S20)、光軸L3の遮光検出を行う。   The light receiving side CPU 35 receives the incoming / outgoing shading detection signal Sd, and if the incoming / outgoing shading detection signal Sd is at a high level (light is incident) (“N” in S16), it counts the number of shadings N2 of the optical axis L2. Initialization is performed (S20), and the light shielding detection of the optical axis L3 is performed.

一方、入遮光検出信号Sdがロウレベル(遮光)であるときは、光軸L2が前回の投光スキャン動作時に遮光状態(遮光カウントN2=1)であったかどうかが判定され(S17)、光軸L2が前回の投光スキャン動作時に遮光状態であった場合には(S17で「Y」)、出力回路36に遮光判定の出力を行った後(S19)、光軸L3の遮光検出を行う。   On the other hand, when the incoming light blocking detection signal Sd is at the low level (light blocking), it is determined whether or not the optical axis L2 is in the light blocking state (light blocking count N2 = 1) during the previous light projection scan operation (S17), and the optical axis L2 is determined. Is in the light blocking state during the previous light projection scanning operation (“Y” in S17), the light blocking determination is output to the output circuit 36 (S19), and then the light blocking detection of the optical axis L3 is performed.

光軸L2が前回の投光スキャン動作時に遮光状態でなかった場合には(N2=0,S17で「N」)、光軸L2の遮光回数のカウントN2を1とした後(S18)、光軸L3の遮光検出を行う。   When the optical axis L2 is not in the light-shielding state during the previous light projection scan operation (N2 = 0, “N” in S17), the light-block count N2 of the optical axis L2 is set to 1 (S18), Shading detection of the axis L3 is performed.

そして、受光側CPU35は、光軸L3(S21〜S25),光軸L4(S26〜S30)についても上記と同様の処理を行うことにより、各光軸L1〜L4が物体の進入により遮光されたかどうかを検出する。   Then, the light receiving side CPU 35 performs the same processing as described above for the optical axes L3 (S21 to S25) and the optical axes L4 (S26 to S30), so that each of the optical axes L1 to L4 is blocked by the entry of an object. Detect if.

<干渉光検出>
受光側CPU35は、図3,5に示すように、干渉光検出タイミング信号Siのパルスを投光スキャン動作の開始タイミング(光軸L1の投受光タイミングP1)の所定時間前(例えば、投受光タイミングP1のta/2時間前(投光間隔taの半分前))に、アナログスイッチ33aに出力する。するとアナログスイッチ33aがオンされることにより、受光素子31aに干渉光が入光していた場合には、その受光信号が有効化されてコンパレータ34に入力され、このコンパレータ34から出力されるハイレベル若しくはロウレベルの干渉光検出信号Syにより、受光側CPU35は、入力した干渉光検出信号Syがハイレベルである場合には、干渉光の入光を検出する(S41)。
<Interference light detection>
As shown in FIGS. 3 and 5, the light-receiving side CPU 35 uses a pulse of the interference light detection timing signal Si for a predetermined time before the light-emission scanning operation start timing (light-emission / reception timing P 1 of the optical axis L 1) It is output to the analog switch 33a at ta / 2 hours before P1 (half the light projection interval ta). Then, when the interference light is incident on the light receiving element 31a by turning on the analog switch 33a, the received light signal is validated and input to the comparator 34, and the high level output from the comparator 34 is output. Alternatively, the low-level interference light detection signal Sy causes the light-receiving side CPU 35 to detect the interference light incident when the input interference light detection signal Sy is at a high level (S41).

次に、受光側CPU35は、投光スキャン動作の開始タイミング(投光素子21aの投光タイミングP1)となると、干渉光検出タイミング信号Siのパルス送出を停止し、アナログスイッチ33aをオフするとともに、投光タイミング信号Stと受光タイミング信号Srのパルスを出力し、上述した遮光検出時の処理を行う(S42)。   Next, the light-receiving side CPU 35 stops the pulse transmission of the interference light detection timing signal Si at the start timing of the projection scan operation (projection timing P1 of the projection element 21a), turns off the analog switch 33a, Pulses of the light projection timing signal St and the light reception timing signal Sr are output, and the above-described processing at the time of detecting the light shielding is performed (S42).

そして、所定の投光時間が経過すると、投光タイミング信号Stと受光タイミング信号Srのパルスの出力を停止するとともに、4光軸L1〜L4の全てについて投受光動作が終了したかどうかが判断され(S43)、光軸L1しか投受光動作が終了していないから(S43で「N」)、再びアナログスイッチ33aに干渉光検出タイミング信号Siのパルス送出を行い、受光素子31aの干渉光の検出をta/2時間経過するまで行うとともに、ta/2時間経過後はアナログスイッチ33bに干渉光検出タイミング信号Siのパルス送出を行い、受光素子31bの干渉光の検出をta/2時間経過するまで行う(S41)。   When a predetermined light projecting time has elapsed, output of the light projecting timing signal St and the light receiving timing signal Sr is stopped, and it is determined whether the light projecting / receiving operation has been completed for all the four optical axes L1 to L4. (S43) Since only the optical axis L1 has completed the light projecting / receiving operation (“N” in S43), the interference light detection timing signal Si is sent again to the analog switch 33a to detect the interference light of the light receiving element 31a. Until ta / 2 hours elapses, and after ta / 2 hours elapses, the interference light detection timing signal Si is sent to the analog switch 33b until the interference light detection of the light receiving element 31b elapses ta / 2 hours elapses. Perform (S41).

次に、受光側CPU35は、投光素子21bの投光タイミングP2になると、アナログスイッチ33bをオフするとともに、投光タイミング信号Stと受光タイミング信号Srのパルスを出力し、上述した遮光検出時の処理を行う(S42)。   Next, at the light projection timing P2 of the light projecting element 21b, the light receiving side CPU 35 turns off the analog switch 33b and outputs pulses of the light projection timing signal St and the light reception timing signal Sr. Processing is performed (S42).

次に、所定の投光時間が経過すると、投光タイミング信号Stと受光タイミング信号Srのパルスの出力を停止するとともに、4光軸の全てについて投受光動作が終了したかどうかが判断され(S43)、光軸L2までしか投受光動作が終了していないから(S43で「N」)、再びアナログスイッチ33bに干渉光検出タイミング信号Siのパルス送出を行うとともに、上記した処理を4光軸の全てについて終了するまで繰り返す(S41〜S43)。   Next, when a predetermined light projecting time has elapsed, output of the light projecting timing signal St and the light receiving timing signal Sr is stopped, and it is determined whether the light projecting / receiving operation has been completed for all four optical axes (S43). ) Since the light projecting / receiving operation is completed only up to the optical axis L2 (“N” in S43), the interference light detection timing signal Si is sent to the analog switch 33b again, and the above processing is performed for the four optical axes. It repeats until it complete | finishes about all (S41-S43).

そして、光軸L4について遮光検出を行うことにより、4光軸の全てについて終了(S43で「Y」)した後に、再びアナログスイッチ33dに干渉光検出タイミング信号Siのパルス送出を行い、受光素子31dの干渉光の検出をta/2時間経過するまで行う(S44)。   Then, by performing light shielding detection on the optical axis L4, after completing all four optical axes (“Y” in S43), the interference light detection timing signal Si is sent again to the analog switch 33d, and the light receiving element 31d. The interference light is detected until ta / 2 hours have elapsed (S44).

次に、受光側CPU35は、上記した処理により検出された干渉光の回数(請求項3の「所定時間内に検出される干渉光の回数」に相当)をカウントし、この回数が予め規定されている回数(例えば、2回)以上であるかどうかを判定する(S45,本発明の「干渉光判定手段」に相当)。
この回数が予め規定されている回数(2回)以上である場合には、次の投光スキャン動作を行うまでの休止期間tbをt’時間減らして休止期間tb-t’に変更(スキャン周期T1をT2に変更)する(S46,本発明の「干渉回避手段」に相当)。一方、干渉光の回数が予め規定されている回数以下(例えば、1回)である場合には、次の投光スキャン動作を行うまでの時間を変更しない(通常通りの休止期間tb(スキャン周期T1),S47,本発明の「干渉回避手段」に相当)。
Next, the light receiving side CPU 35 counts the number of interference lights detected by the above processing (corresponding to “the number of interference lights detected within a predetermined time” of claim 3), and this number is specified in advance. It is determined whether or not the number of times (for example, twice) or more (S45, corresponding to “interference light determination means” of the present invention).
When the number of times is equal to or more than a predetermined number (2 times), the pause period tb until the next light emission scan operation is performed is reduced by t 'time and changed to the pause period tb-t' (scan cycle) T1 is changed to T2) (S46, corresponding to “interference avoiding means” of the present invention). On the other hand, when the number of interference lights is equal to or less than a predetermined number (for example, once), the time until the next light projection scan operation is not changed (the normal pause period tb (scan cycle) T1), S47, corresponding to “interference avoiding means” of the present invention).

そして、休止期間tbが変更された場合には、休止期間tb-t’の経過後に次の投光スキャン動作が行われるが、その(次の)投光スキャン動作で干渉光が所定回数以上検出されなければ、再び通常の休止期間tbとなる。   When the pause period tb is changed, the next light projection scan operation is performed after the pause period tb-t ′ has elapsed, and the interference light is detected a predetermined number of times or more by the (next) light projection scan operation. If not, the normal suspension period tb is entered again.

上記構成によれば、干渉光が他の多光軸光電センサAからの干渉光である場合には、図3(a)に示すように、所定の間隔(周期)で干渉光が検出されることになり、その干渉光の回数も所定(規定)回数以上(例えば4回)になるから、後の投光スキャン動作の開始タイミング(休止期間tb)を変えることにより、遮光検出時の干渉光の入射が回避できる。   According to the above configuration, when the interference light is interference light from another multi-optical axis photoelectric sensor A, the interference light is detected at a predetermined interval (period) as shown in FIG. In other words, the number of the interference light is also a predetermined (specified) number or more (for example, 4 times), so that the interference light at the time of detecting the light shielding can be changed by changing the start timing (pause period tb) of the subsequent projection scan operation. Can be avoided.

一方、干渉光が他の多光軸光電センサAからの干渉光でない場合(例えば、単光軸の光電センサやランプ等)には、図3(b)に示すように、干渉光は一般に不規則なタイミングで受光素子31a〜31dに入射される。そのため、周期的に入射することは極めて稀であり、1投光スキャン動作のうちに干渉光が複数回検出されることは少ない。したがって、1投光スキャン動作中に所定の回数(例えば、2回)以上の干渉光が検出されないときには、次の投光スキャン動作の休止期間tbの変更を行わないことにより、休止期間tbの変更により多光軸光電センサ10の投光タイミングが他の多光軸光電センサAから投光された光の投光タイミング(多光軸光電センサAからの干渉光が入射するタイミング)に等しくなってしまうことにより生じる誤検出を防止できる。   On the other hand, when the interference light is not interference light from another multi-optical axis photoelectric sensor A (for example, a single optical axis photoelectric sensor, a lamp, etc.), as shown in FIG. The light is incident on the light receiving elements 31a to 31d at regular timing. For this reason, it is extremely rare that the light is periodically incident, and interference light is rarely detected a plurality of times in one light projection scanning operation. Therefore, when no interference light is detected a predetermined number of times (for example, twice) during one light projection scan operation, the pause period tb is changed by not changing the pause period tb of the next light projection scan operation. Thus, the light projection timing of the multi-optical axis photoelectric sensor 10 becomes equal to the light projection timing of light projected from the other multi-optical axis photoelectric sensor A (timing of interference light from the multi-optical axis photoelectric sensor A). It is possible to prevent erroneous detection caused by the error.

また、受光側CPU35は、各投光スキャン動作ごとに、投光素子21a〜21dのうち最初に投光する投光素子21aの投光タイミングの所定時間(ta/2)前の時点から、最後に投光する投光素子21dの投光タイミングの所定時間(ta/2)後の時点までのうち、投光素子21a〜21dの投光時を除く全ての期間が干渉光検出タイミングとして設定されている。したがって、例えば、投光時の直前や直後のみに干渉光の検出を行う構成と比較して、より広い期間に干渉光の検出を行うことで、より正確に干渉光が他の多光軸光電センサAによるものか否かを判定することができる。また、最後に投光する投光素子21dの投光タイミングの所定時間(ta/2)後から、次の投光スキャン動作の開始までは、休止期間tbとして干渉光の検出を行わないから、受光側CPU35の処理を少なくすることができる。   Further, the light receiving side CPU 35 lasts from a time point before a predetermined time (ta / 2) of the light projecting timing of the light projecting element 21a that projects the first light among the light projecting elements 21a to 21d for each light projecting scan operation. In the period up to a time point after a predetermined time (ta / 2) of the light projecting timing of the light projecting element 21d that projects light, all the periods except the time of projecting the light projecting elements 21a to 21d are set as the interference light detection timing. ing. Therefore, for example, by detecting the interference light in a wider period compared to a configuration in which the interference light is detected just before or just after the projection, the interference light is more accurately detected by other multi-optical axis photoelectrics. It can be determined whether or not the sensor A is used. In addition, the interference light is not detected as the rest period tb from the predetermined time (ta / 2) of the light projection timing of the light projecting element 21d that projects the last light until the start of the next light projection scan operation. The processing on the light receiving side CPU 35 can be reduced.

さらに、検出される干渉光の回数があらかじめ定められた所定回数(2回)以上であるときに、干渉光が他の多光軸光電センサAから投光された光であると判定するから、他の多光軸光電センサAから干渉光であるか否かをより安定して判別することができる。   Furthermore, since it is determined that the interference light is light projected from another multi-optical axis photoelectric sensor A when the number of detected interference light is a predetermined number of times (twice) or more, It is possible to more stably determine whether or not the light is interference light from another multi-optical axis photoelectric sensor A.

また、所定の干渉回避動作は、投光スキャン動作の開始タイミング(休止期間tb)を異ならせるものであるから、後の投光スキャン動作の全てについて投光スキャン動作の周期T1を変えることなく、他の多光軸光電センサAとの干渉を回避することができる。   In addition, since the predetermined interference avoidance operation is to change the start timing (pause period tb) of the light projection scan operation, without changing the cycle T1 of the light projection scan operation for all the subsequent light projection scan operations, Interference with other multi-optical axis photoelectric sensors A can be avoided.

<実施形態2>
次に、本発明の実施形態2を説明する。以下、同一の構成については、同一の符号を付して説明を省略し、異なる部分のみを説明する。
実施形態1では、受光側CPU35は、干渉光が所定回数以上入射したことを検出したときに、他の多光軸光電センサAからの干渉光であると判定することとした。
<Embodiment 2>
Next, Embodiment 2 of the present invention will be described. Hereinafter, about the same structure, the same code | symbol is attached | subjected and description is abbreviate | omitted and only a different part is demonstrated.
In the first embodiment, the light-receiving side CPU 35 determines that the interference light from the other multi-optical axis photoelectric sensor A is detected when it detects that the interference light has entered a predetermined number of times.

一方、実施形態2では、複数の干渉光が検出された場合に、2回連続して検出される干渉光の間隔(周期)が所定時間(例えば、予め記憶されている多光軸光電センサの投光間隔ta(周期))であった場合には、他の多光軸光電センサAからの干渉光であることを検出するものである。
例えば、他の光源(単光軸の光電センサ、ランプ等)からの干渉光は周期が一定ではないから、所定時間(周期)と比較することにより干渉光が他の多光軸光電センサAからのものであるかどうかを容易に判定できる。
On the other hand, in the second embodiment, when a plurality of interference lights are detected, the interval (cycle) of the interference lights detected twice consecutively is a predetermined time (for example, a pre-stored multi-optical axis photoelectric sensor). If it is the light projection interval ta (cycle)), it is detected that the light is interference light from another multi-optical axis photoelectric sensor A.
For example, since interference light from other light sources (single optical axis photoelectric sensor, lamp, etc.) has a non-constant period, the interference light is separated from other multi-optical axis photoelectric sensors A by comparing with a predetermined time (period). Can be easily determined.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)上記実施形態では、干渉光が2回検出されたことを条件に休止期間tbを変更していたが、これに限らず、例えば、干渉光が3回以上検出されたことを条件に休止期間tbを変更するようにしてもよい。   (1) In the above embodiment, the pause period tb is changed on the condition that the interference light is detected twice. However, the present invention is not limited to this. For example, on the condition that the interference light is detected three times or more. The suspension period tb may be changed.

(2)上記実施形態では、休止期間tbを短く変更したが、休止期間tbを短く変更することに限らず、長く変更することも可能であり、また、投光タイミング信号のパルス間の間隔taを変更するようにしてもよい。   (2) In the above-described embodiment, the pause period tb is changed short. However, the pause period tb is not limited to be changed short, but can be changed longer, and the interval ta between the pulses of the projection timing signal is also possible. May be changed.

(3)上記実施形態では、干渉光の入射回数をカウントする所定時間(請求項3の「所定時間」)は、1投光スキャン動作における最初の投光タイミングの所定時間ta/2前の時点から、最後の投光タイミングの所定時間ta/2後の時点までのうち、投光時を除く期間としたが、これに限られない。例えば、1投光スキャン動作中の複数のタイミングに複数の光軸(受光素子)についての干渉光の回数をカウントしてもよく、また、複数回の投光スキャン動作に亘って干渉光の回数をカウントしてもよい。   (3) In the above embodiment, the predetermined time (the “predetermined time” in claim 3) for counting the number of times interference light is incident is a time point before the predetermined time ta / 2 of the first light projection timing in one light projection scan operation. From the time until the time after the predetermined time ta / 2 of the last light projection timing, the period excluding the time of light projection is used, but it is not limited thereto. For example, the number of interference lights for a plurality of optical axes (light receiving elements) may be counted at a plurality of timings during one projection scan operation, and the number of interference lights over a plurality of projection scan operations. May be counted.

多光軸光電センサの構成斜視図Configuration perspective view of multi-optical axis photoelectric sensor 多光軸光電センサの電気的構成を示す回路図Circuit diagram showing electrical configuration of multi-optical axis photoelectric sensor (a)多光軸光電センサの動作と他の多光軸光電センサからの干渉光のタイミングを示すタイムチャート (b)多光軸光電センサの動作と他の光源からの干渉光のタイミングを示すタイムチャート(A) Time chart showing operation of multi-optical axis photoelectric sensor and timing of interference light from other multi-optical axis photoelectric sensor (b) Showing operation of multi-optical axis photoelectric sensor and timing of interference light from other light source Time chart 遮光検出時の処理を示すフローチャートFlow chart showing processing at the time of shading detection 干渉光検出の処理を示すフローチャートFlow chart showing processing of interference light detection 従来の多光軸光電センサの構成斜視図Configuration perspective view of a conventional multi-optical axis photoelectric sensor

符号の説明Explanation of symbols

10…多光軸光電センサ
21a〜21d…投光素子
22a〜22d…駆動回路
24…シフトレジスタ
31a〜31d…受光素子
33a〜33d…アナログスイッチ
34…コンパレータ
A…他の多光軸光電センサ
CPU25…投光側
CPU35…受光側
L1〜L4…光軸
St…投光タイミング信号
Sr…受光タイミング信号
Si…干渉光検出タイミング信号
Sd…入遮光検出信号
Sy…干渉光検出信号
T1…スキャン周期
tb…休止期間
DESCRIPTION OF SYMBOLS 10 ... Multi-optical axis photoelectric sensor 21a-21d ... Light projection element 22a-22d ... Drive circuit 24 ... Shift register 31a-31d ... Light receiving element 33a-33d ... Analog switch 34 ... Comparator A ... Other multi-optical axis photoelectric sensor CPU25 ... Emitting side CPU 35 ... Receiving side L1 to L4 ... Optical axis St ... Emitting timing signal Sr ... Receiving timing signal Si ... Interference light detection timing signal Sd ... Incident light shielding detection signal Sy ... Interference light detection signal T1 ... Scan cycle tb ... Pause period

Claims (3)

一列状に配列された複数の投光素子と、
前記各投光素子と対向して一列状に配列された複数の受光素子と、
前記複数の投光素子を所定の投光タイミングで順次投光させる投光スキャン動作を所定の周期で繰り返させる投光制御手段と、
前記各投光素子から投光された光のうち、前記投光素子と対応する受光素子に受光された受光信号を当該投光素子の投光タイミングに一致させて有効化する有効化手段と、
前記有効化手段で有効化された受光信号のレベルに基づいて検出を行う検出手段と、
前記複数の投光素子の非投光期間のうちから複数のタイミングを干渉光検出タイミングとし、この干渉光検出タイミングで有効化した受光信号に基づいて干渉光の検出を行う干渉光検出手段と、
前記干渉光検出手段において干渉光が検出されたときには、所定の干渉回避動作を行う干渉回避手段とを備える多光軸光電センサにおいて、
前記干渉光検出手段において、1投光スキャン動作中に複数の受光素子から干渉光が検出された場合に、前記干渉光検出手段で検出された干渉光が、他の多光軸光電センサから投光された光である判定する干渉光判定手段を備え、
前記干渉回避手段は、
前記干渉光判定手段により、前記干渉光が他の多光軸光電センサから投光された光であると判定されたときには、前記所定の干渉回避動作を行なう一方、前記干渉光が他の多光軸光電センサから投光された光でないと判定されたときには、前記所定の干渉回避動作を行わないことを特徴とする多光軸光電センサ。
A plurality of light emitting elements arranged in a line;
A plurality of light receiving elements arranged in a row facing each of the light projecting elements;
A light projection control means for repeating a light projection scanning operation for sequentially projecting the plurality of light projecting elements at a predetermined light projection timing at a predetermined period;
An enabling means for enabling a light receiving signal received by a light receiving element corresponding to the light projecting element among the light projected from each of the light projecting elements to be matched with a light projecting timing of the light projecting element;
Detection means for performing detection based on the level of the received light signal validated by the validation means;
Interference light detection means for detecting interference light based on a received light signal activated at the interference light detection timing, with a plurality of timings as interference light detection timings from the non-light projection period of the plurality of light projecting elements,
When the interference light is detected by the interference light detection means, the multi-optical axis photoelectric sensor comprising interference avoidance means for performing a predetermined interference avoidance operation,
In the interference light detection means, when interference light is detected from a plurality of light receiving elements during one light projection scanning operation, the interference light detected by the interference light detection means is projected from another multi-optical axis photoelectric sensor. comprising an interferometric light determining means for determining that the optical light,
The interference avoidance means includes
When the interference light determination unit determines that the interference light is light projected from another multi-optical axis photoelectric sensor, the interference light is performed while the interference light is transmitted to another multi-light. The multi-optical axis photoelectric sensor, wherein the predetermined interference avoidance operation is not performed when it is determined that the light is not projected from the axial photoelectric sensor.
前記干渉光検出手段は、
各投光スキャン動作ごとに、前記複数の投光素子のうち最初に投光する投光素子の投光タイミングの所定時間前の時点から、最後に投光する投光素子の投光タイミングの所定時間後の時点までのうち、前記複数の投光素子の投光時を除く全ての期間が干渉光検出タイミングとして設定されていることを特徴とする請求項1記載の多光軸光電センサ。
The interference light detection means includes
For each projection scanning operation, the predetermined projection timing of the last projecting element from the time before the projection timing of the first projecting element to project among the plurality of projecting elements is predetermined. 2. The multi-optical axis photoelectric sensor according to claim 1, wherein all periods other than the time of light projection of the plurality of light projecting elements are set as interference light detection timings up to a time point after the time.
前記干渉回避手段の前記所定の干渉回避動作は、前記投光スキャン動作の開始タイミングを異ならせるものであることを特徴とする請求項1または請求項2記載の多光軸光電センサ。 3. The multi-optical axis photoelectric sensor according to claim 1, wherein the predetermined interference avoiding operation of the interference avoiding unit is to change a start timing of the light projection scanning operation.
JP2004162082A 2004-05-31 2004-05-31 Multi-axis photoelectric sensor Expired - Fee Related JP4278567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004162082A JP4278567B2 (en) 2004-05-31 2004-05-31 Multi-axis photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004162082A JP4278567B2 (en) 2004-05-31 2004-05-31 Multi-axis photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2005345141A JP2005345141A (en) 2005-12-15
JP4278567B2 true JP4278567B2 (en) 2009-06-17

Family

ID=35497683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004162082A Expired - Fee Related JP4278567B2 (en) 2004-05-31 2004-05-31 Multi-axis photoelectric sensor

Country Status (1)

Country Link
JP (1) JP4278567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271127B2 (en) * 2009-03-17 2013-08-21 アズビル株式会社 Photoelectric sensor and interference reduction method
JP6021633B2 (en) * 2012-12-20 2016-11-09 アズビル株式会社 Reflected wave detector

Also Published As

Publication number Publication date
JP2005345141A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
CN108627881B (en) Photoelectric sensor
JP5865669B2 (en) Photoelectric switch
JP4278567B2 (en) Multi-axis photoelectric sensor
JP3860013B2 (en) Multi-axis photoelectric sensor
AU2002301601B2 (en) Photoelectric Sensor
JP2008277163A (en) Multiple optical-axis photoelectric sensor
JP3763202B2 (en) Photoelectric sensor and multi-optical axis photoelectric sensor
JP4846325B2 (en) Multi-optical axis photoelectric sensor, projector, and light receiver
JP2004214899A (en) Multi optical axis photoelectric sensor
JP2003133934A (en) Photoelectric switch
JP4394591B2 (en) Multi-axis photoelectric sensor
JP2002204151A (en) Many optic axes photoelectric sensor
JP2002368595A (en) Radiation pulse interposed sensor
JP4579704B2 (en) Photoelectric sensor with interference prevention function
JP2519310Y2 (en) Multi-axis photoelectric switch
JP2007324898A (en) Multi-optical-axis photoelectric sensor, its phototransmitter, and its photoreceiver
JP2003099201A (en) Optical touch panel device
JP2007129583A (en) Multiple-optical-axis photoelectric sensor
JP4007965B2 (en) Object detection device
JP2003158448A (en) Optic multiaxial photoelectric sensor
JP2513335Y2 (en) Multi-axis photoelectric switch
JP2003142997A (en) Multi-optical axis photoelectric sensor
JP2003124792A (en) Multiple optical axis photoelectronic sensor
JP2003289244A (en) Multiple optical axis photoelectric sensor
JP2012199823A (en) Multiple optical axis photoelectric sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees