JP2002204151A - Many optic axes photoelectric sensor - Google Patents

Many optic axes photoelectric sensor

Info

Publication number
JP2002204151A
JP2002204151A JP2000401313A JP2000401313A JP2002204151A JP 2002204151 A JP2002204151 A JP 2002204151A JP 2000401313 A JP2000401313 A JP 2000401313A JP 2000401313 A JP2000401313 A JP 2000401313A JP 2002204151 A JP2002204151 A JP 2002204151A
Authority
JP
Japan
Prior art keywords
light
abnormality
light receiving
optical axis
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000401313A
Other languages
Japanese (ja)
Inventor
Toru Wake
徹 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2000401313A priority Critical patent/JP2002204151A/en
Publication of JP2002204151A publication Critical patent/JP2002204151A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a many optic axes photoelectric sensor which can accurately detect 'circuit abnormality' at an early stage and detect 'disturbance light abnormality' with optimal sensitivity. SOLUTION: If an output signal SC received from a comparator 13 synchronized with 'an optical signal Y' emitted at non-lighting timing of opposite element, is a signal which shows 'light projected state', a CPU 14 raises an abnormality check flag. In one abnormal scan operation, if an output signal SC with an abnormality flag raised is received and an abnormality flag is not raised in the following output signal SC, it is regarded as 'circuit abnormality' considering that unique abnormality of a photosensitive circuit 12 of a photosensitive element 11 belonging to a certain optical axis L is generated. If the same result is obtained in the following abnormality scan operation, detection operation is performed for 'circuit abnormality'. Meanwhile, in one abnormality scan operation, if an output signal Sc with an abnormality flag raised is received continuously and the same result is obtained in the next two abnormality scan operations, for example, detection operation is performed for 'disturbance light detection'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、順次発光される複
数の投光素子と、それらの各投光素子に対向された複数
の受光素子からの各受光信号に基づいて検出動作を行う
多光軸光電センサに関し、特に外乱光の検出に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of light emitting elements for sequentially emitting light, and a multi-light detecting element for performing a detecting operation based on each light receiving signal from a plurality of light receiving elements facing each of the light emitting elements. The present invention relates to an axial photoelectric sensor, and particularly to detection of disturbance light.

【0002】[0002]

【従来の技術】従来、この種の多光軸光電センサとして
は、特許第3046400号に記載されたものがある。これ
は、各受光素子からの受光信号を、対向する投光素子が
発光していない時期(以下「非投光タイミング」とい
う)に順次取り込んで、その受光信号レベルが所定レベ
ル以上であるか否かを判別するものである。具体的に
は、この非投光タイミングにおける各受光素子からの受
光信号レベルは、本来受光していないときのレベルにな
るはずだが、外部から外乱光として例えば他のセンサの
投光や照明器具等からの強い光が受光素子に入射する
と、その受光素子からの受光信号レベルが所定レベル以
上になる場合がある。そこで、非投光タイミングにおけ
る各受光素子からの受光信号レベルが所定レベル以上か
否かを判別することにより、もって「外乱光異常」の検
出が可能になる。さらに検出精度を向上させるために複
数回スキャン動作を繰り返して、各光軸ごとに受光信号
レベルが所定レベル以上となる判別結果が連続したとき
にはじめて外乱光検出の検出をするようにしていた。
2. Description of the Related Art A conventional multi-optical axis photoelectric sensor is disclosed in Japanese Patent No. 3046400. This is because the light receiving signals from the respective light receiving elements are sequentially received at a time when the opposing light emitting element does not emit light (hereinafter referred to as “non-light emitting timing”), and whether the light receiving signal level is equal to or higher than a predetermined level is determined. Is determined. Specifically, the light receiving signal level from each light receiving element at the non-light emitting timing should be a level when light is not received originally. However, as external disturbance light, for example, light emitted from another sensor or a lighting fixture, etc. When strong light from the light enters the light receiving element, the light receiving signal level from the light receiving element may be higher than a predetermined level. Therefore, it is possible to detect "disturbance light abnormality" by determining whether or not the light receiving signal level from each light receiving element at the non-light emitting timing is equal to or higher than a predetermined level. In order to further improve the detection accuracy, the scanning operation is repeated a plurality of times, and the detection of the disturbance light is performed only when the determination result that the light receiving signal level is equal to or higher than the predetermined level for each optical axis continues.

【0003】[0003]

【発明が解決しようとする課題】ところで、多光軸光電
センサにおいて、非投光タイミングに受光信号レベルが
所定レベル以上となるのは、必ずしも外乱光によるもの
とは限らない。外乱光以外の要因として、複数の受光回
路間の短絡や受光回路に接続されるアナログスイッチの
故障、受光回路自体の故障などのいわゆる「回路異常」
によっても非投光タイミングに受光信号レベルが所定レ
ベル以上となることがある。
In the multi-optical axis photoelectric sensor, the reason why the light receiving signal level becomes equal to or higher than the predetermined level at the non-light emitting timing is not always caused by disturbance light. Factors other than disturbance light include so-called "circuit abnormalities" such as short-circuits between multiple light receiving circuits, failure of an analog switch connected to the light receiving circuit, and failure of the light receiving circuit itself.
In some cases, the light receiving signal level may be higher than a predetermined level at the non-light emitting timing.

【0004】ところが、従来の多光軸光電センサにおい
ては、「回路異常」か「外乱光異常」かを問わず、非投
光タイミングでの受光信号レベルが所定以上である場合
には、一律に「外乱光異常」と判別されてしまうという
問題があった。そこで、従来の多光軸光電センサにおい
て、上述した外乱光検出動作が実行されたときには、
「回路異常」の可能性をも考慮することで、上記問題を
少しでも早期に回避することも考えられる。しかしなが
ら、一般に外乱光検出は短時間の外乱光は無視して、外
乱光侵入が一定時間以上継続する場合を検出すればよい
ことが多い。そのため、上述した複数回スキャンで外乱
光検出を行うときには、そのスキャン回数は多めに設定
されている。従って、緊急を要する「回路異常」を、
「外乱光異常」と同様のタイミングでしか検出できず早
期に発見することができないという問題が生じる。
However, in the conventional multi-optical axis photoelectric sensor, regardless of whether “abnormal circuit” or “abnormal disturbance light”, when the light receiving signal level at the non-light-projecting timing is equal to or higher than a predetermined value, it is uniform. There is a problem that it is determined to be "abnormal disturbance light". Therefore, in the conventional multi-optical axis photoelectric sensor, when the above-described disturbance light detection operation is performed,
It is also conceivable to avoid the above problem as soon as possible by considering the possibility of “circuit abnormality”. However, in general, the disturbance light detection often ignores the short-time disturbance light and detects the case where the disturbance light intrusion continues for a certain time or more. Therefore, when disturbance light detection is performed by the above-described multiple scans, the number of scans is set to be relatively large. Therefore, "urgent circuit abnormalities"
There is a problem that detection can be performed only at the same timing as that of "abnormal disturbance light" and cannot be detected early.

【0005】本発明は、上記事情に鑑みてなされたもの
で、その目的は、正確かつ早期に「回路異常」を検出す
ると共に、最適な感度で「外乱光異常」を検出すること
が可能な多光軸光電センサを提供するところにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to detect "abnormal circuit light" accurately and early and to detect "abnormal disturbance light" with optimum sensitivity. It is to provide a multi-optical axis photoelectric sensor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明に係る多光軸光電センサは、複数の
投光素子に対向させて複数の受光素子を設けることで複
数本の光軸が構成されるようにし、複数の投光素子を順
次発光させると共に、受光素子から出力される受光信号
を、対応する投光素子の発光タイミングで有効化して受
光素子に投光素子からの光が入射するか否かを判断して
各光軸毎の遮光状態を検出する多光軸光電センサにおい
て、複数の受光素子からの各信号を、その受光素子が属
する光軸の投光素子が発光していない時期に有効化する
検査タイミング制御手段と、この検査タイミング制御手
段によって有効化された受光素子からの受光信号に基づ
き、一の光軸に属する受光素子が入光状態にあり、か
つ、その受光素子が属する光軸に隣接する光軸の受光素
子が遮光状態にあることが検出されたときに異常と判断
する回路異常検出手段と、検査タイミング制御手段によ
って有効化された受光素子からの受光信号に基づき、隣
接する光軸に属する複数の受光素子が入光状態にあるこ
とが検出されたときに異常と判断する外乱光異常検出手
段とを備えるところに特徴を有する。
In order to achieve the above object, a multi-optical axis photoelectric sensor according to the first aspect of the present invention has a plurality of light receiving elements provided by opposing a plurality of light emitting elements. An optical axis is configured, a plurality of light emitting elements are sequentially emitted, and a light receiving signal output from the light receiving element is enabled at a light emitting timing of the corresponding light emitting element, and the light receiving element receives light from the light emitting element. In a multi-optical axis photoelectric sensor that determines whether light is incident or not and detects a light blocking state for each optical axis, each signal from a plurality of light receiving elements is transmitted to a light emitting element of the optical axis to which the light receiving element belongs. Inspection timing control means that is activated at a time when light is not emitted, and a light receiving element belonging to one optical axis is in a light incident state based on a light receiving signal from a light receiving element that is activated by the inspection timing control means, and The light-receiving element belongs to Circuit abnormality detecting means for determining that the light receiving element of the optical axis adjacent to the optical axis adjacent to the optical axis is in the light blocking state, and a light receiving signal from the light receiving element activated by the inspection timing control means. And a disturbance light abnormality detecting means for judging an abnormality when a plurality of light receiving elements belonging to an adjacent optical axis are detected to be in a light incident state.

【0007】請求項の2の発明は、請求項1に記載の多
光軸光電センサにおいて、検査タイミング制御手段は、
各受光素子からの受光信号を各光軸毎に順次有効化する
スキャン動作を繰り返すようにされ、回路異常検出手段
および外乱光異常検出手段はともに所定スキャン回数以
上続けて異常と判断されたことを条件に動作し、かつ、
回路異常検出手段が動作するスキャン回数は外乱光異常
検出手段のそれより小さいところに特徴を有する。
According to a second aspect of the present invention, in the multi-optical axis photoelectric sensor according to the first aspect, the inspection timing control means includes:
The scanning operation for sequentially validating the light receiving signals from each light receiving element for each optical axis is repeated, and both the circuit abnormality detecting means and the disturbance light abnormality detecting means are determined to be abnormal for at least a predetermined number of scans. Operate on condition, and
The feature is that the number of scans at which the circuit abnormality detecting means operates is smaller than that of the disturbance light abnormality detecting means.

【0008】[0008]

【発明の作用及び効果】<請求項1の発明>「外乱光異
常」は、検出エリア内に、例えば照明器具等からの強い
光が入射することにより発生し、このような光は、一般
にはある程度広範囲に照射するものであり、1光軸に属
する受光素子だけでなく、隣接する光軸に属する複数の
受光素子に同時に入射して影響を与えると考えられる。
一方、「回路異常」は、例えば受光回路に接続されるア
ナログスイッチの故障や受光回路自体の故障などが一般
的であり、上記「外乱光異常」のように隣接した光軸に
属する複数の受光素子が同時に「回路異常」を引き起こ
すといったことは極めて稀であると考えられる。そこ
で、請求項1の構成によれば、検査タイミング制御手段
により、各受光素子からの信号が、それらと同一の光軸
に属する投光素子が発光していない時期(以下「非投光
タイミング」という)に有効化する。それに伴い回路異
常検出手段は、一の光軸に属する受光素子が入光状態に
あり、かつ、その受光素子が属する光軸に隣接する光軸
の受光素子が遮光状態にあることが検出されたときに異
常と判断する。一方、外乱光異常検出手段は、隣接する
光軸に属する複数の受光素子が入光状態にあることが検
出されたときに異常と判断する。すなわち、回路異常検
出手段により上記「回路異常」を検出することができ、
外乱光異常検出手段により上記「外乱光異常」を検出す
ることが可能になる。
<Operation and effect of the invention><Invention of claim 1>"Disturbance light abnormality" is generated when strong light from, for example, a lighting device or the like enters the detection area, and such light is generally generated. The light is irradiated to a wide range to some extent, and it is considered that the light is simultaneously incident on not only the light receiving elements belonging to one optical axis but also a plurality of light receiving elements belonging to an adjacent optical axis to exert an influence.
On the other hand, "circuit abnormality" is generally caused by, for example, a failure of an analog switch connected to the light receiving circuit or a failure of the light receiving circuit itself. It is considered extremely rare that the elements cause "circuit abnormality" at the same time. Therefore, according to the configuration of the first aspect, the signal from each light receiving element is detected by the inspection timing control means when the light emitting element belonging to the same optical axis does not emit light (hereinafter referred to as “non-light emitting timing”). Enable). Along with this, the circuit abnormality detecting means detects that the light receiving element belonging to one optical axis is in the light receiving state, and that the light receiving element of the optical axis adjacent to the optical axis to which the light receiving element belongs is in the light blocking state. Sometimes it is judged abnormal. On the other hand, the disturbance light abnormality detecting means determines that an abnormality is detected when it is detected that a plurality of light receiving elements belonging to adjacent optical axes are in a light incident state. That is, the "circuit abnormality" can be detected by the circuit abnormality detection means,
The disturbance light abnormality detecting means can detect the “disturbance light abnormality”.

【0009】<請求項2の発明>請求項2の構成によれ
ば、検査タイミング制御手段によるスキャン動作を複数
回繰り返され、回路異常検出手段および外乱光異常検出
手段はともに所定スキャン回数以上続けて異常と判断し
たときに初めてそれぞれ検出動作を行う。これにより1
回のスキャンで検出動作を行う場合に比べてより検出精
度が向上する。また、その検出動作の実行間隔は、外乱
光異常検出手段よりも回路異常検出手段の方が短い。従
って、緊急の検出を要する「回路異常」と、いわゆる瞬
間的な外乱光を無視すべく一定期間以上の異常を検出し
た場合にのみ検出動作を行いたい「外乱光異常」との検
出をそれぞれ別個に行うことが可能になる。これによ
り、正確かつ早期に「回路異常」を検出すると共に、最
適な感度で「外乱光異常」を検出することができる。
According to the second aspect of the present invention, the scanning operation by the inspection timing control means is repeated a plurality of times, and both the circuit abnormality detecting means and the disturbance light abnormality detecting means continue for a predetermined number of scans or more. The respective detection operations are performed only when it is determined that there is an abnormality. This gives 1
The detection accuracy is further improved as compared with the case where the detection operation is performed in each scan. Further, the execution interval of the detection operation is shorter in the circuit abnormality detection means than in the disturbance light abnormality detection means. Therefore, the detection of the "circuit abnormality" requiring urgent detection and the "disturbance light abnormality" for which the detection operation is to be performed only when an abnormality is detected for a certain period or more to ignore the so-called instantaneous disturbance light are separately detected. It is possible to do. This makes it possible to accurately and early detect “abnormal circuit” and detect “abnormal disturbance light” with optimal sensitivity.

【0010】[0010]

【発明の実施の形態】本発明の一実施形態を図1ないし
図5によって説明する。本実施形態の多光軸光電センサ
は、互いに対向配置される投光器20と受光器10とか
らなる。投光器20のうち受光器10との対向側には、
例えばLEDからなる例えば4つの投光素子21が上下
方向に沿って一列に配され、受光器10のうち投光器2
0との対向側には、前記各投光素子21と対をなす例え
ばフォトダイオードからなる例えば4つの受光素子11
が、やはり上下方向に沿って一列に配されて、4本の光
軸L(図1では、符号L1,L2,L3,L4)が構成
されている。そして、この多光軸光電センサは、各投光
素子21の「発光タイミング」及び各投光素子21が発
光していない時期(以下「非発光タイミング」という)
に、それらと同一の光軸Lに属する各受光素子11に前
記投光素子21からの光が入射するか否かを判断して、
もって「被検出物体の検出」と、「外乱光検出」及び
「回路異常検出」とを可能にするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. The multi-optical axis photoelectric sensor according to the present embodiment includes a light projector 20 and a light receiver 10 which are arranged to face each other. On the side of the light emitter 20 facing the light receiver 10,
For example, four light emitting elements 21 composed of, for example, LEDs are arranged in a line in the vertical direction, and the light
For example, four light receiving elements 11 made of, for example, photodiodes that make a pair with each of the light emitting elements 21
Are also arranged in a line along the up-down direction to form four optical axes L (in FIG. 1, symbols L1, L2, L3, and L4). In this multi-optical axis photoelectric sensor, the “light emission timing” of each light emitting element 21 and the time when each light emitting element 21 does not emit light (hereinafter referred to as “non-light emission timing”).
Then, it is determined whether the light from the light emitting element 21 is incident on each of the light receiving elements 11 belonging to the same optical axis L,
Thus, "detection of an object to be detected", "disturbance light detection", and "circuit abnormality detection" are enabled.

【0011】<電気的構成>図1には、本実施形態の多
光軸光電センサの電気的構成が示されている。同図に示
すように、投光器20には、前記投光素子21が連なる
投光回路22及びCPU23が設けられている。このう
ちCPU23は、前記「発光タイミング」を作る所定周
期のクロックパルス信号(以下「発光タイミング信号
X」という)と、前記「非投光タイミング」を作るクロ
ックパルス信号(以下「非発光タイミング信号Y」とい
う)とを生成する。本実施形態では、後述するように
「非発光タイミング信号Y」は「発光タイミング信号
X」の直前に順次生成される。投光回路22は、CPU
23から与えられる「発光タイミング信号X」を受けて
作動し、投光器20の上端側の投光素子21から下端側
の投光素子21へと順次に駆動信号を与え、この動作を
繰り返す。これにより、投光器20の上端側の投光素子
21から順次に光が出射される。
<Electrical Configuration> FIG. 1 shows an electrical configuration of the multi-optical axis photoelectric sensor of the present embodiment. As shown in the figure, the light projector 20 is provided with a light emitting circuit 22 and a CPU 23 to which the light emitting element 21 is connected. The CPU 23 includes a clock pulse signal (hereinafter referred to as “light emission timing signal X”) having a predetermined cycle for generating the “light emission timing” and a clock pulse signal (hereinafter referred to as “non-light emission timing signal Y”) for generating the “non-light emission timing”. "). In the present embodiment, as described later, the “non-light-emission timing signal Y” is sequentially generated immediately before the “light-emission timing signal X”. The light emitting circuit 22 includes a CPU
It operates in response to the "light emission timing signal X" given from the light emitting device 23, and sequentially supplies a drive signal from the light emitting element 21 on the upper end side to the light emitting element 21 on the lower end side of the light projector 20, and repeats this operation. Thereby, light is sequentially emitted from the light emitting element 21 on the upper end side of the light projector 20.

【0012】一方、受光器10には、受光素子11毎
に、受光素子11からの信号を増幅して受光量に応じた
受光信号S(各図においては符号S1,S2,S3,S
4)を出力する受光回路12がそれぞれ設けられてい
る。各受光回路12の出力は、例えばアナログスイッチ
からなるスイッチ素子SW(図1においては符号SW
1,SW2,SW3,SW4)を介して、入力電圧レベ
ルを所定の基準値と比較するコンパレータ13の入力端
子に共通接続され、その出力信号SCがCPU14の入
力端子に与えられる。また、各スイッチ素子SWの各制
御用端子は、CPU14からの駆動信号を受けて駆動す
る検出用シフトレジスタ15及び異常検出用シフトレジ
スタ16の信号端子にそれぞれ接続されている。CPU
14は、投光器20側のCPU23から「発光タイミン
グ信号X」を順次取り込んで、その「発光タイミング信
号X」に同期して検出用シフトレジスタ15に駆動信号
を与える。また、CPU14は同じく投光器20側のC
PU23から「非発光タイミング信号Y」を順次取り込
んで、その「非発光タイミング信号Y」に同期して異常
検出用シフトレジスタ16に駆動信号を与える。
On the other hand, the light receiver 10 amplifies the signal from the light receiving element 11 for each light receiving element 11 and receives a light receiving signal S corresponding to the amount of received light (in each figure, reference numerals S1, S2, S3, S
4) are provided, respectively. The output of each light receiving circuit 12 is, for example, a switch element SW composed of an analog switch (in FIG.
1, SW2, SW3, and SW4) are commonly connected to an input terminal of a comparator 13 that compares an input voltage level with a predetermined reference value, and an output signal SC is provided to an input terminal of a CPU 14. Further, each control terminal of each switch element SW is connected to a signal terminal of a detection shift register 15 and a signal terminal of an abnormality detection shift register 16 which are driven by receiving a drive signal from the CPU. CPU
14 sequentially takes in the “light emission timing signal X” from the CPU 23 on the light projector 20 side, and supplies a drive signal to the detection shift register 15 in synchronization with the “light emission timing signal X”. Further, the CPU 14 also controls the C
The “non-light emission timing signal Y” is sequentially fetched from the PU 23, and a drive signal is supplied to the abnormality detection shift register 16 in synchronization with the “non-light emission timing signal Y”.

【0013】また、CPU14は、後述するように、コ
ンパレータ13から出力される出力信号SCを、前記
「発光タイミング」と「非発光タイミング」に同期して
区別し、「発光タイミング」での出力信号SCに基づい
て「被検出物体の検出」を行い、「非発光タイミング」
での出力信号SCに基づいて「外乱光検出」及び「回路
異常検出」を行う。
As will be described later, the CPU 14 distinguishes the output signal SC output from the comparator 13 in synchronization with the “light emission timing” and the “non-light emission timing”, and outputs the output signal SC at the “light emission timing”. Perform “detection of detected object” based on SC and “non-light emission timing”
"Disturbance light detection" and "circuit abnormality detection" are performed on the basis of the output signal SC at step (1).

【0014】次に、本実施形態に係る多光軸光電センサ
の作用について図2から図5示すタイミングチャートを
参照しつつ説明する。 <<被検出物体の検出>>多光軸光電センサの電源をオ
ン操作すると、図1に示すように、投光回路22によ
り、投光器20の上端側の投光素子21から下端側の投
光素子21へと「発光タイミング」で順次に「発光タイ
ミング信号X」を与え、もって投光器20の上端側の投
光素子21から順次に光が出射される。それと共に、受
光器10側のCPU14は、投光器20側のCPU23
からの前記「発光タイミング信号X」を取り込んで、こ
の「発光タイミング信号X」に同期して、検出用シフト
レジスタ15に駆動信号を順次与える。検出用シフトレ
ジスタ15は、その駆動信号を受けてスイッチ素子SW
1からスイッチSW4へと順次に制御信号(以下「検出
用信号A(各図では、符号A1,A2,A3,A4)」
という)を出力して、もってスイッチ素子SW1からス
イッチ素子SW4へと順次オン作動させる。より詳しく
は、図2に示すように、1回目の発光タイミング信号X
に同期して、検出用シフトレジスタ15から検出用信号
A1が出力され、スイッチ素子SW1が有効化され、も
って光軸L1の受光回路12から受光信号S1がコンパ
レータ13に与えられる。次いで、2回目の発光タイミ
ング信号Xに同期して、検出用シフトレジスタ15から
検出用信号A2が出力され、スイッチ素子SW2が有効
化され、もって光軸L2の受光回路12から受光信号S
2がコンパレータ13に与えられる。以下同様に、3回
目、4回目の発光タイミング信号Xに同期して、それぞ
れ検出用信号A3,A4が出力され、光軸L3,L4の
受光回路12から受光信号S3,S4が順次コンパレー
タ13に与えられる。そして、以上の動作(以下「検出
スキャン動作」という)が繰り返される。
Next, the operation of the multi-optical axis photoelectric sensor according to the present embodiment will be described with reference to timing charts shown in FIGS. << Detection of Object to be Detected >> When the power of the multi-optical axis photoelectric sensor is turned on, the light projecting circuit 22 causes the light projecting element 21 on the upper side of the light projector 20 to project light on the lower side, as shown in FIG. The “light emission timing signal X” is sequentially given to the element 21 at the “light emission timing”, so that light is sequentially emitted from the light emitting element 21 on the upper end side of the light projector 20. At the same time, the CPU 14 of the light receiver 20 is
And the drive signal is sequentially supplied to the detection shift register 15 in synchronization with the "light emission timing signal X". The detection shift register 15 receives the drive signal and switches the switch element SW.
1 to the switch SW4 in sequence (hereinafter referred to as “detection signal A (in each figure, reference symbols A1, A2, A3, A4)”).
), And the switch elements SW1 to SW4 are sequentially turned on. More specifically, as shown in FIG. 2, the first light emission timing signal X
In synchronization with this, the detection signal A1 is output from the detection shift register 15, the switch element SW1 is enabled, and the light reception signal S1 is given to the comparator 13 from the light reception circuit 12 of the optical axis L1. Next, in synchronization with the second light emission timing signal X, a detection signal A2 is output from the detection shift register 15, the switch element SW2 is enabled, and thus the light reception signal S from the light reception circuit 12 of the optical axis L2.
2 is given to the comparator 13. Similarly, detection signals A3 and A4 are respectively output in synchronization with the third and fourth light emission timing signals X, and the light reception signals S3 and S4 are sequentially transmitted from the light reception circuit 12 of the optical axes L3 and L4 to the comparator 13. Given. Then, the above operation (hereinafter referred to as “detection scan operation”) is repeated.

【0015】そしてコンパレータ13にてその受光信号
Sレベルが所定基準レベル以上であるかどうかが判断さ
れて、その判断結果に応じた出力信号SCがCPU14
に与えられる。ここで、所定の基準値は、検出エリア内
に被検出物体が存在しない状態での受信回路から出力さ
れる受光信号Sに対応した入力電圧レベルより僅かに低
めに設定してある。従って、常には、受光信号Sのレベ
ルは所定基準レベル以上であり、コンパレータ13から
出力信号SCが出力される。ところが、同図に示すよう
に、例えば、光軸L3を構成する投光素子21と受光素
子11間に物体が存在して、その投光素子21からの光
を遮光するような場合には、受光信号S3のレベルは所
定基準レベル以下となり、コンパレータ13から反転し
た出力信号SCが出力され、もってCPU14にて「被
検出物体の検出」動作が実行される。
The comparator 13 determines whether the light receiving signal S level is equal to or higher than a predetermined reference level, and outputs an output signal SC corresponding to the determination result to the CPU 14.
Given to. Here, the predetermined reference value is set slightly lower than the input voltage level corresponding to the light receiving signal S output from the receiving circuit in a state where the detected object does not exist in the detection area. Therefore, the level of the light receiving signal S is always equal to or higher than the predetermined reference level, and the comparator 13 outputs the output signal SC. However, as shown in the figure, for example, when an object exists between the light projecting element 21 and the light receiving element 11 constituting the optical axis L3 and the light from the light projecting element 21 is blocked, The level of the light receiving signal S3 becomes equal to or lower than the predetermined reference level, and the inverted output signal SC is output from the comparator 13, whereby the "detection of the detected object" operation is executed by the CPU 14.

【0016】<<異常検出>>一方、受光器10側のC
PU14は、投光器20側のCPU23からの「非発光
タイミング信号Y」を前記「発光タイミング信号X」の
直前に取り込んで、この「非発光タイミング信号Y」に
同期して、異常検出用シフトレジスタ16に駆動信号を
順次与える。異常検出用シフトレジスタ16は、その駆
動信号を受けてスイッチ素子SW1からスイッチSW4
へと順次に制御信号(以下「異常用信号B(各図におい
て符号B1,B2,B3,B4)」という)を出力し
て、もってスイッチ素子SW1からスイッチ素子SW4
へと順次オン作動させる。より詳しくは、図3に示すよ
うに、1回目の非発光タイミング信号Yに同期して、異
常検出用シフトレジスタ16から異常用信号B1が出力
され、スイッチ素子SW1が有効化され、もって光軸L
1に属する受光回路12から受光信号S1がコンパレー
タ13に与えられる。次いで、2回目の非発光タイミン
グ信号Yに同期して、異常検出用シフトレジスタ16か
ら異常用信号B2が出力され、スイッチ素子SW2が有
効化され、もって光軸L2に属する受光回路12から受
光信号S2がコンパレータ13に与えられる。以下同様
に、3回目、4回目の非発光タイミング信号Yに同期し
て、それぞれ異常用信号B3,B4が出力され、光軸L
3,L4に属する受光回路12から受光信号S3,S4
が順次コンパレータ13に与えられて、その受信信号の
レベルが所定基準レベル以上かどうかが判断されて、出
力信号SCがCPU14に順次与えられる。そして、以
上の動作(以下「異常スキャン動作」という)が繰り返
される。これにより、各投光素子21が発光していない
時期(本実施形態では、「発光タイミング」の直前)
に、その投光素子21と同一光軸Lに属する受光素子1
1が「入光状態」にあることを検出することが可能にな
る。
<< Abnormality Detection >> On the other hand, C
The PU 14 takes in the “non-light-emission timing signal Y” from the CPU 23 of the light projector 20 immediately before the “light-emission timing signal X”, and synchronizes with the “non-light-emission timing signal Y” to shift the abnormality detection shift register 16. Are sequentially supplied with drive signals. The shift register 16 for abnormality detection receives the drive signal and switches from the switch element SW1 to the switch SW4.
, A control signal (hereinafter referred to as “abnormality signal B (indicated by B1, B2, B3, B4 in each drawing)”) is output in sequence to switch elements SW1 to SW4.
Are sequentially turned on. More specifically, as shown in FIG. 3, in synchronism with the first non-light emission timing signal Y, the abnormality detection signal B1 is output from the abnormality detection shift register 16, the switch element SW1 is enabled, and the optical axis L
The light receiving signal S 1 is supplied to the comparator 13 from the light receiving circuit 12 belonging to 1. Next, in synchronization with the second non-light-emission timing signal Y, the abnormality detection shift register 16 outputs the abnormality signal B2, activates the switch element SW2, and thereby receives the light reception signal from the light reception circuit 12 belonging to the optical axis L2. S2 is given to the comparator 13. Similarly, signals B3 and B4 for abnormalities are output in synchronization with the third and fourth non-light emission timing signals Y, respectively.
3, light receiving signals S3, S4 from the light receiving circuit 12 belonging to L4.
Are sequentially applied to the comparator 13 to determine whether the level of the received signal is equal to or higher than a predetermined reference level, and the output signal SC is sequentially applied to the CPU 14. Then, the above operation (hereinafter referred to as “abnormal scan operation”) is repeated. Thus, the time when each light emitting element 21 does not emit light (in this embodiment, immediately before “light emission timing”).
The light receiving element 1 belonging to the same optical axis L as the light emitting element 21
1 can be detected in the “light incident state”.

【0017】さて、上述したように、「外乱光異常」
は、一般的には隣接する光軸Lに属する複数の受光素子
11に同時に入射して影響を与えると考えられ、「回路
異常」は、「外乱光異常」のように隣接した光軸Lに属
する複数の受光素子11が同時に「回路異常」を引き起
こすといったことは極めて稀であると考えられる。 <回路異常検出>そこで、CPU14は、非投光タイミ
ング信号Yに同期してコンパレータ13から受け取る出
力信号SCが「入光状態」を示す信号であれば、異常チ
ェックフラグを立てる。そして、1回の異常スキャン動
作内において、その異常チェックフラグが立った出力信
号SCを受けたが、その前後の出力信号SCには異常チ
ェックフラグが立たなかった場合には、ある光軸Lに属
する受光素子11の受光回路12独自の異常が発生して
いるとして「回路異常」とみなす。そして、本実施形態
では検出精度を高くするために、例えば次の異常スキャ
ン動作でも同じ結果が得られたときには「回路異常」の
検出動作を行う。例えば、図3に示すように、光軸L3
に属する受光素子11の受光回路12に異常が発生して
「入光状態」となった場合には、その受光回路12から
出力される受光信号S3のレベルも常に所定基準レベル
以上となる。従って、まず、光軸L2の受光回路12
は、何の異常も生じてしないので、異常用信号B2が出
力されるタイミングで与えられる受光信号S2のレベル
は所定基準レベルより低く異常チェックフラグは立たな
い。ところが異常用信号B3が出力されるタイミングで
伝送される受信信号S3のレベルは所定基準レベル以上
なので、異常チェックフラグが立つ。次いで、隣接する
光軸L4の受光回路12は何の異常も生じていないの
で、異常用信号B4が出力されるタイミングで伝送され
る受光信号S4のレベルは所定基準レベルより低く異常
チェックフラグは立たない。この時点で光軸L3の受光
回路12の異常は「外乱光」によるものではなくて、そ
の受光回路12独自の「回路異常」であることが判別さ
れる。そして、次の異常スキャン動作でも光軸L3の受
光信号S3のみに対して同様に異常チェックフラグがた
ち、これにて「回路異常」を示す動作信号を出力して、
例えば図示しない回路異常検出表示灯を点滅させる。
As described above, the "disturbance light abnormality"
Is generally considered to be simultaneously incident on a plurality of light receiving elements 11 belonging to the adjacent optical axis L and affecting the light receiving element 11, and the "circuit abnormality" is regarded as "disturbance light abnormality". It is extremely unlikely that a plurality of light receiving elements 11 belonging to the circuits cause "circuit abnormality" at the same time. <Circuit Abnormality Detection> Then, if the output signal SC received from the comparator 13 in synchronization with the non-light-emission timing signal Y is a signal indicating the “light-in state”, the CPU 14 sets an abnormality check flag. Then, in one abnormal scan operation, an output signal SC with the abnormality check flag raised is received, but if no abnormality check flag is raised in the output signals SC before and after that, a certain optical axis L is It is regarded as "circuit abnormality" because an abnormality unique to the light receiving circuit 12 of the light receiving element 11 to which it belongs has occurred. Then, in this embodiment, in order to increase the detection accuracy, for example, when the same result is obtained in the next abnormal scan operation, the detection operation of “circuit abnormality” is performed. For example, as shown in FIG.
When an abnormality occurs in the light receiving circuit 12 of the light receiving element 11 belonging to the “light receiving state” and the light receiving circuit 12 enters the “light incident state”, the level of the light receiving signal S3 output from the light receiving circuit 12 is always higher than the predetermined reference level. Therefore, first, the light receiving circuit 12 of the optical axis L2
Does not cause any abnormality, the level of the light receiving signal S2 given at the timing when the abnormality signal B2 is output is lower than the predetermined reference level, and the abnormality check flag is not set. However, since the level of the reception signal S3 transmitted at the timing when the abnormality signal B3 is output is equal to or higher than the predetermined reference level, the abnormality check flag is set. Next, since no abnormality has occurred in the light receiving circuit 12 of the adjacent optical axis L4, the level of the light receiving signal S4 transmitted at the timing when the abnormality signal B4 is output is lower than the predetermined reference level, and the abnormality check flag is set. Absent. At this point, it is determined that the abnormality of the light receiving circuit 12 of the optical axis L3 is not caused by "disturbance light" but is a "circuit abnormality" unique to the light receiving circuit 12. Then, in the next abnormal scan operation, an abnormality check flag is similarly turned on only for the light receiving signal S3 of the optical axis L3, thereby outputting an operation signal indicating "circuit abnormality",
For example, a circuit abnormality detection indicator (not shown) blinks.

【0018】<外乱光検出>一方、1回の異常スキャン
動作内において、異常チェックフラグがたった出力信号
SCを連続して受けて、例えば次の2回の異常スキャン
動作でも同じ結果が得られたときには、「外乱光検出」
の検出動作を行う。例えば、図4に示すように、3つの
光軸L1,L2,L3に属する受光素子11に外乱光が
入射した場合には、それらの受光回路12から出力され
る受光信号S1,S2,S3のレベルも常に所定基準レ
ベル以上となる。従って、異常用信号B1,B2,B3
が出力されるタイミングで受信信号S1,S2,S3が
それぞれ伝送され、この受光信号S1,S2,S3のレ
ベルが所定基準レベル以上なので、いずれも異常チェッ
クフラグがたつ。この時点で特定光軸Lの「回路異常」
ではなく、「外乱光検出」が判別される。そして、2回
目、3回目の異常スキャン動作でも同様に受信信号S
1,S2,S3に対して異常チェックフラグがたち、こ
れにて「外乱光検出」を示す動作信号を出力して、例え
ば図示しない外乱光検出表示灯を点滅させる。
<Detection of disturbance light> On the other hand, in one abnormal scan operation, the output signal SC with the abnormal check flag is continuously received, and the same result is obtained, for example, in the next two abnormal scan operations. Sometimes, "disturbance light detection"
Is performed. For example, as shown in FIG. 4, when disturbance light enters the light receiving elements 11 belonging to the three optical axes L1, L2, and L3, the light receiving signals S1, S2, and S3 output from the light receiving circuits 12 are generated. The level is always higher than a predetermined reference level. Therefore, the abnormality signals B1, B2, B3
Are output at the timing of the output of the received signals S1, S2, and S3, respectively. Since the levels of the received light signals S1, S2, and S3 are equal to or higher than a predetermined reference level, an abnormality check flag is set. At this point, the “circuit abnormality” of the specific optical axis L
Instead, "disturbance light detection" is determined. In the second and third abnormal scan operations, the reception signal S
An abnormality check flag is set for S1, S2, and S3, and an operation signal indicating "disturbance light detection" is output to cause, for example, a disturbance light detection indicator (not shown) to blink.

【0019】このように本実施形態によれば、「回路異
常」と「外乱光検出」との特徴に鑑みて、1回の異常ス
キャン動作において、一の光軸Lに属する受光素子11
が入光状態にあり、かつ、その受光素子11が属する光
軸Lに隣接する光軸Lの受光素子11が遮光状態にある
ことが検出されたときには「回路異常」と、隣接する光
軸Lに属する複数の受光素子11が入光状態にあること
が検出されたときには「外乱光検出」として判別して異
常検出を行うことが可能になる。
As described above, according to the present embodiment, the light receiving element 11 belonging to one optical axis L in one abnormal scan operation in consideration of the features of “circuit abnormality” and “disturbance light detection”.
Is in a light incident state, and when it is detected that the light receiving element 11 of the optical axis L adjacent to the optical axis L to which the light receiving element 11 belongs is in the light blocking state, a “circuit abnormality” is detected and the adjacent optical axis L When it is detected that the plurality of light receiving elements 11 belonging to the light receiving state are in a light incident state, it is determined as “disturbance light detection” and abnormality detection can be performed.

【0020】しかも、上記各異常検出に対して、複数回
の異常スキャン動作において連続して同一の異常が検出
された場合に検出動作を実行するとしたので、1回のス
キャンで検出動作を行う場合に比べてより検出精度が向
上する。また、そのスキャン動作回数は、「回路異常」
については2回、「外乱光検出」については3回として
いる。従って、緊急の検出を要する「回路異常」と、い
わゆる瞬間的な外乱光を無視すべく一定期間以上の異常
を検出した場合にのみ検出動作を行いたい「外乱光異
常」との検出をそれぞれ別個に行うことが可能になる。
これにより、正確かつ早期に「回路異常」を検出すると
共に、最適な感度で「外乱光異常」を検出することがで
きる。
In addition, since the detection operation is performed when the same abnormality is continuously detected in a plurality of abnormality scan operations for each abnormality detection, the detection operation is performed in one scan. The detection accuracy is improved as compared with. In addition, the number of scan operations is
Is performed twice and “disturbance light detection” is performed three times. Therefore, the detection of the "circuit abnormality" requiring urgent detection and the "disturbance light abnormality" for which the detection operation is to be performed only when an abnormality is detected for a certain period or more to ignore the so-called instantaneous disturbance light are separately detected. It is possible to do.
This makes it possible to accurately and early detect “abnormal circuit” and detect “abnormal disturbance light” with optimal sensitivity.

【0021】なお、上記実施形態では、各光軸L1,L
2,L3,L4に対して異常検出のタイミングは「非発
光タイミング」に同期して順次行われ同時でないため、
図5に示すように、瞬間的な外乱光が存在したときに、
隣接する光軸Lの検出タイミングでは外乱光を検出でき
ない場合も発生する。この場合、1光軸の受光回路12
からの受光信号Sのみに異常チェックフラグがたつこと
もあり得る。しかし、「回路異常」について、上記実施
形態のように2回、或いはそれ以上の回数のスキャン動
作により検出動作を実行させることにより、上記のよう
な瞬間的な外乱光によるものであれば、その全異常スキ
ャン動作で異常チェックフラグがたつことはない。従っ
て、誤って「回路異常」として検出動作を行ってしまう
問題を回避することが可能になる。
In the above embodiment, each of the optical axes L1, L
Since the timing of abnormality detection is performed sequentially in synchronization with “non-light emission timing” and is not simultaneous with respect to 2, L3 and L4,
As shown in FIG. 5, when there is momentary disturbance light,
In some cases, disturbance light cannot be detected at the detection timing of the adjacent optical axis L. In this case, the light receiving circuit 12 for one optical axis
It is possible that an abnormality check flag is set only for the light receiving signal S from the camera. However, if the "circuit abnormality" is caused by the instantaneous disturbance light as described above, by performing the detection operation by performing the scanning operation twice or more times as in the above embodiment, The abnormality check flag is not set in all the abnormal scan operations. Therefore, it is possible to avoid a problem that the detection operation is erroneously performed as “circuit abnormality”.

【0022】<他の実施形態>本発明は、実施形態に限
定されるものではなく、例えば、以下に説明するような
実施形態も本発明の技術的範囲に含まれ、さらに、下記
以外にも要旨を逸脱しない範囲内で種々変更して実施す
ることができる。 (1)上記実施形態では、「回路異常」及び「外乱光検
出」の検出動作をそれぞれ2回、3回の異常スキャン動
作後としたが、これに限られず、1回でも、上記以上の
回数の異常スキャン動作後であってもよい。この回数を
適宜設定することで、「回路異常」、「外乱光検出」毎
に検出精度の調整を任意に行うことができる。
<Other Embodiments> The present invention is not limited to the embodiments. For example, the following embodiments are also included in the technical scope of the present invention. Various changes can be made without departing from the scope of the invention. (1) In the above embodiment, the detection operations of “circuit abnormality” and “disturbance light detection” are respectively performed after the abnormal scan operation twice and three times. However, the present invention is not limited to this. May be performed after the abnormal scan operation. By appropriately setting the number of times, the detection accuracy can be arbitrarily adjusted for each of “circuit abnormality” and “disturbance light detection”.

【0023】(2)上記実施形態では、多光軸光電セン
サは4本の光軸L1,L2,L3,4から構成されたも
のとしたが、複数の光軸から構成されたものであれば、
4本より多くても少なくてもよい。
(2) In the above embodiment, the multi-optical axis photoelectric sensor is constituted by the four optical axes L1, L2, L3, and 4. However, if it is constituted by a plurality of optical axes, ,
It may be more or less than four.

【0024】(3)上記実施形態では、「非発光タイミ
ング」は各投光素子21の発光タイミングの直前とした
が、これに限らず、各受光素子11に対して、その受光
素子11と同一光軸を構成する投光素子21が発光して
いない時期であればよい。
(3) In the above embodiment, the “non-light-emission timing” is immediately before the light-emission timing of each light-emitting element 21. However, the present invention is not limited to this. It is sufficient that the light emitting element 21 constituting the optical axis is not emitting light.

【0025】(4)上記実施形態とは異なり、各非発光
タイミングに複数のスイッチ素子SWを同時に有効化す
る構成であってもよい。このようにすれば、上記瞬間的
な外乱光にもより瞬時に対処することが可能になる。
(4) Unlike the above embodiment, a configuration may be adopted in which a plurality of switch elements SW are simultaneously enabled at each non-light emitting timing. This makes it possible to more instantaneously cope with the instantaneous disturbance light.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る多光軸光電センサの
電気的構成図
FIG. 1 is an electrical configuration diagram of a multi-optical axis photoelectric sensor according to an embodiment of the present invention.

【図2】「被検出物体検出」を説明するためのタイミン
グチャート図
FIG. 2 is a timing chart for explaining “detected object detection”;

【図3】「回路異常」検出を説明するためのタイミング
チャート図
FIG. 3 is a timing chart for explaining “circuit abnormality” detection;

【図4】「外乱光検出」を説明するためのタイミングチ
ャート図
FIG. 4 is a timing chart for explaining “disturbance light detection”.

【図5】瞬間的な外乱光が入射した場合を説明するため
のタイミングチャート図
FIG. 5 is a timing chart for explaining a case where momentary disturbance light is incident.

【符号の説明】[Explanation of symbols]

11…受光素子 13…コンパレータ 15…検出用シフトレジスタ 16…異常検出用シフトレジスタ 21…投光素子 A1,A2,A3,A4…検出用信号 B1,B2,B3、B4…異常用信号 14…CPU L1,L2,L3,L4…光軸 S1,S2,S3,S4…受信信号 SC…出力信号 SW1,SW2,SW3,SW4…スイッチ素子 X…発光タイミング信号 DESCRIPTION OF SYMBOLS 11 ... Light receiving element 13 ... Comparator 15 ... Detection shift register 16 ... Abnormality detection shift register 21 ... Light emitting element A1, A2, A3, A4 ... Detection signal B1, B2, B3, B4 ... Abnormality signal 14 ... CPU L1, L2, L3, L4: Optical axis S1, S2, S3, S4: Received signal SC: Output signal SW1, SW2, SW3, SW4: Switch element X: Light emission timing signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の投光素子に対向させて複数の受光
素子を設けることで複数本の光軸が構成されるように
し、前記複数の投光素子を順次発光させると共に、前記
受光素子から出力される受光信号を、対応する投光素子
の発光タイミングで有効化して前記受光素子に前記投光
素子からの光が入射するか否かを判断して前記各光軸毎
の遮光状態を検出する多光軸光電センサにおいて、 前記複数の受光素子からの各信号を、その受光素子が属
する光軸の投光素子が発光していない時期に有効化する
検査タイミング制御手段と、 この検査タイミング制御手段によって有効化された前記
受光素子からの受光信号に基づき、一の光軸に属する受
光素子が入光状態にあり、かつ、その受光素子が属する
光軸に隣接する光軸の受光素子が遮光状態にあることが
検出されたときに異常と判断する回路異常検出手段と、 前記検査タイミング制御手段によって有効化された前記
受光素子からの受光信号に基づき、隣接する光軸に属す
る複数の受光素子が入光状態にあることが検出されたと
きに異常と判断する外乱光異常検出手段とを備えること
を特徴とする多光軸光電センサ。
A plurality of light receiving elements are provided in opposition to a plurality of light emitting elements so that a plurality of optical axes are formed, and the plurality of light emitting elements sequentially emit light, and a plurality of light axes are emitted from the light receiving elements. The output light receiving signal is enabled at the light emission timing of the corresponding light emitting element, and it is determined whether or not light from the light emitting element is incident on the light receiving element, and the light blocking state of each optical axis is detected. Inspection timing control means for validating each signal from the plurality of light receiving elements when the light emitting element of the optical axis to which the light receiving element belongs does not emit light; Based on the light receiving signal from the light receiving element activated by the means, a light receiving element belonging to one optical axis is in a light-in state, and a light receiving element in an optical axis adjacent to the optical axis to which the light receiving element belongs is blocked. In state Circuit abnormality detecting means for determining that an abnormality has occurred when the light is detected, and a plurality of light receiving elements belonging to adjacent optical axes are in a light-in state based on a light receiving signal from the light receiving element validated by the inspection timing control means. A multi-optical axis photoelectric sensor, comprising: a disturbance light abnormality detecting means for judging an abnormality when it is detected that there is an abnormality in the optical axis.
【請求項2】 検査タイミング制御手段は、前記各受光
素子からの受光信号を各光軸毎に順次有効化するスキャ
ン動作を繰り返すようにされ、前記回路異常検出手段お
よび外乱光異常検出手段はともに所定スキャン回数以上
続けて異常と判断されたことを条件に動作し、かつ、前
記回路異常検出手段が動作するスキャン回数は前記外乱
光異常検出手段のそれより小さいことを特徴とする請求
項1に記載の多光軸光電センサ。
2. The inspection timing control means repeats a scanning operation for sequentially validating light receiving signals from the light receiving elements for each optical axis, and both the circuit abnormality detecting means and the disturbance light abnormality detecting means are provided. The method according to claim 1, wherein the operation is performed on the condition that it is determined that the abnormality has continued for a predetermined number of scans or more, and the number of scans at which the circuit abnormality detection means operates is smaller than that of the disturbance light abnormality detection means. The multi-optical axis photoelectric sensor according to the above.
JP2000401313A 2000-12-28 2000-12-28 Many optic axes photoelectric sensor Pending JP2002204151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401313A JP2002204151A (en) 2000-12-28 2000-12-28 Many optic axes photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401313A JP2002204151A (en) 2000-12-28 2000-12-28 Many optic axes photoelectric sensor

Publications (1)

Publication Number Publication Date
JP2002204151A true JP2002204151A (en) 2002-07-19

Family

ID=18865767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401313A Pending JP2002204151A (en) 2000-12-28 2000-12-28 Many optic axes photoelectric sensor

Country Status (1)

Country Link
JP (1) JP2002204151A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359547A (en) * 2001-06-01 2002-12-13 Sunx Ltd Multi-optical axis photoelectric switch
JP2007129583A (en) * 2005-11-04 2007-05-24 Sunx Ltd Multiple-optical-axis photoelectric sensor
JP2007150986A (en) * 2005-11-30 2007-06-14 Omron Corp Sensor apparatus
JP2019158600A (en) * 2018-03-13 2019-09-19 オムロン株式会社 Determination device, multi-axis photoelectric sensor, method of controlling determination device, information processing program, and recording medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359547A (en) * 2001-06-01 2002-12-13 Sunx Ltd Multi-optical axis photoelectric switch
JP4688123B2 (en) * 2001-06-01 2011-05-25 パナソニック電工Sunx株式会社 Multi-optical axis photoelectric switch
JP2007129583A (en) * 2005-11-04 2007-05-24 Sunx Ltd Multiple-optical-axis photoelectric sensor
JP2007150986A (en) * 2005-11-30 2007-06-14 Omron Corp Sensor apparatus
JP2019158600A (en) * 2018-03-13 2019-09-19 オムロン株式会社 Determination device, multi-axis photoelectric sensor, method of controlling determination device, information processing program, and recording medium
WO2019176305A1 (en) * 2018-03-13 2019-09-19 オムロン株式会社 Determination device, multiple optical-axis photoelectric sensor, determination device control method, information processing program, and recording medium
KR20200027026A (en) * 2018-03-13 2020-03-11 오므론 가부시키가이샤 Judgment apparatus, multi-axis photoelectric sensor, control method of judging apparatus, information processing program, and recording medium
KR102251301B1 (en) 2018-03-13 2021-05-12 오므론 가부시키가이샤 Judgment device, multi-beam photoelectric sensor, control method of judging device, information processing program, and recording medium
US11169301B2 (en) 2018-03-13 2021-11-09 Omron Oorporation Determination device, multiple optical-axis photoelectric sensor, determination device control method, information processing program, and recording medium

Similar Documents

Publication Publication Date Title
JP2018152819A (en) Photoelectronic sensor
JP2002204151A (en) Many optic axes photoelectric sensor
US6858832B2 (en) Photoelectric sensor having time changing means
JPH0575421A (en) Multi-axis photoelectric switch
JP3860013B2 (en) Multi-axis photoelectric sensor
JP2004214899A (en) Multi optical axis photoelectric sensor
JP2003133934A (en) Photoelectric switch
JP4134518B2 (en) Multi-axis photoelectric sensor
JP2519310Y2 (en) Multi-axis photoelectric switch
JP3833929B2 (en) Multi-axis photoelectric sensor
JP4743759B2 (en) Multi-axis photoelectric sensor
JP3825671B2 (en) Multi-axis photoelectric sensor
JP4278567B2 (en) Multi-axis photoelectric sensor
JP2002323574A (en) Multiple optical axial photoelectric sensor
JP2003099201A (en) Optical touch panel device
JP2515124Y2 (en) Multi-optical axis photoelectric switch
JP3062265B2 (en) Photoelectric switch
JP2513335Y2 (en) Multi-axis photoelectric switch
JP3857607B2 (en) Multi-axis photoelectric sensor
JP4394591B2 (en) Multi-axis photoelectric sensor
JP2515125Y2 (en) Multi-optical axis photoelectric switch
JP3347199B2 (en) Multi-optical axis photoelectric switch
JP2012199823A (en) Multiple optical axis photoelectric sensor
JP3961880B2 (en) Multi-optical axis photoelectric switch
JPH1079657A (en) Multiple optical axis photoelectric switch

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710