JP2007129583A - Multiple-optical-axis photoelectric sensor - Google Patents

Multiple-optical-axis photoelectric sensor Download PDF

Info

Publication number
JP2007129583A
JP2007129583A JP2005321447A JP2005321447A JP2007129583A JP 2007129583 A JP2007129583 A JP 2007129583A JP 2005321447 A JP2005321447 A JP 2005321447A JP 2005321447 A JP2005321447 A JP 2005321447A JP 2007129583 A JP2007129583 A JP 2007129583A
Authority
JP
Japan
Prior art keywords
light
optical axis
disturbance
detected
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321447A
Other languages
Japanese (ja)
Other versions
JP4743759B2 (en
Inventor
Toru Wake
徹 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2005321447A priority Critical patent/JP4743759B2/en
Publication of JP2007129583A publication Critical patent/JP2007129583A/en
Application granted granted Critical
Publication of JP4743759B2 publication Critical patent/JP4743759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple-optical-axis photoelectric sensor capable of determining that ambient light is emitted by the same type of multiple-optical-axis photoelectric sensor, and also, capable of preventing occurrence of malfunctions due to the light emitted by the same type of multiple-optical-axis photoelectric sensor. <P>SOLUTION: The multiple-optical-axis photoelectric sensor is provided with an ambient-light detection means which detects the presence of the ambient light for each optical axis L on the basis of detection of a light-receiving signal, in at least either of a inspection period immediately before t5 a light-emission period of a light-projecting element, and that of immediately after the light-emission period of the light-projecting element regarding the light-receiving element constituting the optical axis L while being paired with the light-projecting element; an ambient-light type determination means which executes light-reception retry operation for allowing the light-receiving element in an optical axis L2 with detected ambient light to receive light again, without executing light emission of the light-projecting element in an optical axis L3 subsequent to the light emission of the light-projecting element in the optical axis L2 with detected ambient light, when the ambient light (a1) is detected by the ambient-light detection means, and also, determines types of ambient light on the basis of whether or not a light-receiving signal of the light-receiving element constituting the optical axis with detected ambient light is detected in the inspection period when executing the light-reception retry operation; and a cycle adjusting means for changing the next scan cycle when the light-receiving signal is detected by the ambient-light type determination means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は多光軸光電センサに関する。   The present invention relates to a multi-optical axis photoelectric sensor.

例えば、物体が検出エリアに侵入したことを検出する多光軸光電センサが知られている。この多光軸光電センサは、複数の投光素子を有する投光器と、この複数の投光素子とそれぞれ対向して光軸を構成するように配置された複数の受光素子を有する受光器とを備えている。この多光軸光電センサは、各投光素子が対向する受光素子に対して所定の投光周期で順次発光してこの受光素子が受光する投受光動作を繰り返すと共にこの受光素子の受光信号に基づいて各光軸の遮光を検出し、検出エリア内への侵入物体を検出するものである。   For example, a multi-optical axis photoelectric sensor that detects that an object has entered a detection area is known. The multi-optical axis photoelectric sensor includes a projector having a plurality of light projecting elements, and a light receiver having a plurality of light receiving elements arranged so as to constitute an optical axis so as to face the plurality of light projecting elements, respectively. ing. This multi-optical axis photoelectric sensor repeats the light projecting / receiving operation in which the light receiving elements sequentially emit light at a predetermined light projecting period and receive light by the light receiving elements, and based on the light reception signal of the light receiving elements. Thus, the light shielding of each optical axis is detected, and an intruding object into the detection area is detected.

この多光軸光電センサは、より広い領域で物体が侵入したことを検出するため、複数台数が近接して配置されることがある。このように、多光軸センサを複数台配置する場合には、近接して配置された同種類の多光軸光電センサが放つ光が受光素子に入射して誤動作することが懸念される。   A plurality of multi-optical axis photoelectric sensors may be arranged close to each other in order to detect that an object has entered in a wider area. As described above, when a plurality of multi-optical axis sensors are arranged, there is a concern that the light emitted by the same type of multi-optical axis photoelectric sensors arranged close to each other enters the light receiving element and malfunctions.

しかも、この外乱光には同種類の多光軸光電センサが放つ光の他にも様々なものがある。例えば、この外乱光には、工場内の照明のように侵入物体の検出に対して継続的に影響を与えるものや、溶接作業の際に発生する一時的な光、警告灯のように周期的に発生させる光があり、これらの光は、多光軸光電センサの一部の受光素子だけに入光することがある。また、この外乱光には、工場内を巡回する搬送車の回転灯が発する光のように、不特定の方向から受光素子に入光するものがある。従って、このような外乱光が受光素子に入光して誤動作することを防止する必要があり、そのための技術として特許文献1及び特許文献2が知られている。   Moreover, there are various types of disturbance light in addition to the light emitted by the same type of multi-optical axis photoelectric sensor. For example, this disturbance light has a continuous influence on the detection of an intruding object such as lighting in a factory, or is a periodic light such as a temporary light generated during welding work or a warning light. In some cases, the light is incident on only a part of the light receiving elements of the multi-optical axis photoelectric sensor. In addition, the disturbance light includes light that enters the light receiving element from an unspecified direction, such as light emitted from a rotating light of a transport vehicle that circulates in the factory. Therefore, it is necessary to prevent such disturbance light from entering the light receiving element and malfunctioning, and Patent Documents 1 and 2 are known as techniques for that purpose.

特許文献1に記載された多光軸光電センサにおいては、各投光素子の発光期間の直前及び直後のいずれか一方の所定期間内に外乱光の有無を判定し、外乱光が検出されたと判断したときに、外乱光が検出された光軸を再度投受光させるリトライ動作を、予め設定されたリトライ可能回数を限度として繰り返し行うものである。この多光軸光電センサは、リトライ動作の際の受光信号の受光レベルに基づいて外乱光が検出されないと判断されたときに、次の光軸の投受光動作を行うようにし、外乱光の影響を受けて物体が検出エリアにないと判断して誤動作することを防止している。   In the multi-optical axis photoelectric sensor described in Patent Document 1, the presence / absence of disturbance light is determined within one predetermined period immediately before and immediately after the light emission period of each light projecting element, and it is determined that disturbance light has been detected. In this case, the retry operation for projecting and receiving again the optical axis in which the disturbance light is detected is repeatedly performed up to a preset number of retries possible. This multi-optical axis photoelectric sensor performs the light projecting / receiving operation of the next optical axis when it is determined that the disturbance light is not detected based on the light reception level of the light reception signal at the time of the retry operation. Accordingly, it is determined that the object is not in the detection area, and malfunction is prevented.

また、特許文献2に記載された多光軸光電センサにおいては、各投光素子の投光期間の直近の期間内に所定回数を超える外乱光が検出されたときは前記投受光動作の周期を変更し、外乱光の発光周期と前記投受光動作の周期とが一致することを防ぎ、この外乱光によって、物体が検出エリアにないと判断して誤動作することを防止している。
特開2003−347916公報 特開2005−114551公報
Further, in the multi-optical axis photoelectric sensor described in Patent Document 2, when disturbance light exceeding a predetermined number of times is detected within a period nearest to the light projecting period of each light projecting element, the cycle of the light projecting / receiving operation is set. The disturbance light emission period and the light projecting / receiving operation period are prevented from matching, and the disturbance light prevents the object from being erroneously determined to be out of the detection area.
JP 2003-347916 A JP-A-2005-114551

しかしながら、特許文献1に記載された多光軸光電センサにおいては、一時的に発生する外乱光を、単一の光軸の投光素子の投光動作の直前等で検出した場合であっても、リトライ動作の際には一時的に発生した外乱光が検出されないから、外乱光の影響を排除して次の光軸以降の投受光動作を順次行うことができるが、同種類の多光軸光電センサが放つ光にように周期的に発生する外乱光に対しては、次の投受光動作の際にも前記投光素子の投光動作の直前等で再び同種類の多光軸光電センサが放つ光が検出されてリトライ動作を行わなければならないという問題がある。特に、外乱光が繰り返して検出される光軸においては、リトライ動作を繰り返すことにより投光素子が投光を繰り返すことになり、この投光素子が、他の光軸を構成する投光素子に比べて著しく劣化していまうという問題がある。   However, in the multi-optical axis photoelectric sensor described in Patent Document 1, even when the disturbance light temporarily generated is detected immediately before the light projecting operation of the light projecting element having a single optical axis, etc. Since the disturbance light temporarily generated during the retry operation is not detected, the influence of the disturbance light can be eliminated and the light projecting and receiving operations after the next optical axis can be performed sequentially. For disturbance light periodically generated like light emitted by the photoelectric sensor, the same type of multi-optical axis photoelectric sensor is again used immediately before the light projecting operation of the light projecting element during the next light projecting / receiving operation. There is a problem that the light emitted from the camera must be detected and a retry operation must be performed. In particular, in the optical axis where disturbance light is repeatedly detected, the light projecting element repeats light projection by repeating the retry operation, and this light projecting element becomes a light projecting element constituting another optical axis. There is a problem that it is significantly deteriorated.

さらに、特許文献2に記載された多光軸光電センサでは、同種類の多光軸光電センサが近接して配置される状況によっては、同種類の多光軸光電センサが放つ光が単一の光軸の投光素子の投光期間の直近の期間内に所定回数を超えて検出されることがあり、この同種類の多光軸光電センサが放つ光が他の光軸において検出されない場合であっても、すべての光軸の投光素子の投光期間の直近の期間内に同種類の多光軸光電センサが放つ光が検出されることになると判断し、前記投受光動作の周期を変更してしまうことになる。   Furthermore, in the multi-optical axis photoelectric sensor described in Patent Document 2, depending on the situation in which the same type of multi-optical axis photoelectric sensor is disposed in proximity, the light emitted by the same type of multi-optical axis photoelectric sensor is a single light. In the case where the light emitted by this same type of multi-optical axis photoelectric sensor is not detected on the other optical axis, it may be detected more than a predetermined number of times within the immediate period of the light projecting period of the light projecting element of the optical axis. Even in such a case, it is determined that light emitted by the same type of multi-optical axis photoelectric sensor will be detected within the most recent period of the light projecting period of the light projecting elements of all the optical axes, and the cycle of the light projecting / receiving operation is determined. Will change.

本発明は、このような状況に鑑み提案されたものであって、外乱光が同種類の多光軸光電センサが放つ光であることを判定すると共に、この同種類の多光軸光電センサが放つ光によって誤動作することを防止することができる多光軸光電センサを提供することを目的とする。   The present invention has been proposed in view of such a situation, and it is determined that disturbance light is light emitted by the same type of multi-optical axis photoelectric sensor, and the same type of multi-optical axis photoelectric sensor is provided. An object of the present invention is to provide a multi-optical axis photoelectric sensor that can prevent malfunction due to emitted light.

請求項1の発明は、複数の投光素子を有する投光器と、前記複数の投光素子を所定の投光周期で順次発光させる投光スキャン動作を所定のスキャン周期で繰り返す投光制御手段と、前記複数の投光素子とそれぞれ対向して光軸を構成するように配置された複数の受光素子を有する受光器と、前記複数の投光素子のうちのいずれかが発光するときに、それと対をなして前記光軸を構成する前記受光素子について、前記受光素子からの受光信号を検出することで前記光軸の遮光判定を行う遮光判定手段と、前記複数の投光素子のうちのいずれかが発光するときに、それと対をなして前記光軸を構成する前記受光素子について、前記投光素子の発光期間の直前及び直後の少なくともいずれか一方の検査期間おいて、前記受光素子からの受光信号を検出することに基づいて各光軸毎に外乱光の有無を検出する外乱光検出手段と、前記外乱光検出手段によって前記外乱光が検出されたことを条件に、その外乱光が検出された光軸の次の光軸における前記投光素子の発光を行わないと共にこの投光素子と対向する前記受光素子が受光を行わずに、前記外乱光が検出された光軸における前記受光素子において再度受光をさせる受光リトライ動作を行い、前記受光リトライ動作の際に前記検査期間において前記外乱光が検出された光軸を構成する前記受光素子について受光信号が検出されたか否かに基づいて外乱光の種別を判定する外乱光種別判定手段と、前記外乱光種別判定手段によって前記受光信号が検出された場合には次回の前記スキャン周期を変更し前記外乱光種別判定手段によって前記受光信号が検出されない場合には次回の前記スキャン周期を変更しない周期調整手段と、を備える多光軸光電センサである。   The invention of claim 1 is a projector having a plurality of light projecting elements, and a light projecting control means for repeating a light projecting scan operation of sequentially emitting the plurality of light projecting elements at a predetermined light projecting period at a predetermined scan period, A light receiver having a plurality of light receiving elements arranged so as to constitute an optical axis facing the plurality of light projecting elements, respectively, and when any one of the plurality of light projecting elements emits light, The light receiving element constituting the optical axis and detecting a light reception signal from the light receiving element to detect light blocking of the optical axis, and any one of the plurality of light projecting elements When the light emitting element emits light, light reception from the light receiving element is performed in the inspection period immediately before and immediately after the light emitting period of the light projecting element with respect to the light receiving element that forms a pair with the optical axis. Check the signal Disturbance light detecting means for detecting the presence or absence of disturbance light for each optical axis based on, and the optical axis on which the disturbance light is detected on condition that the disturbance light is detected by the disturbance light detection means The light projecting element on the next optical axis does not emit light, and the light receiving element facing the light projecting element does not receive light, and the light receiving element on the optical axis where the disturbance light is detected receives light again. The type of disturbance light is determined based on whether or not a light reception signal is detected for the light receiving element constituting the optical axis in which the disturbance light is detected in the inspection period during the light reception retry operation. When the received light signal is detected by the disturbance light type determination means for determining and the disturbance light type determination means, the next scan cycle is changed and the light reception signal is determined by the disturbance light type determination means. Signal is a multi-optical axis photoelectric sensor and a cycle adjusting unit which does not change the next time of the scan cycle if not detected.

請求項2の発明は、請求項1において、前記外乱光種別判定手段は、前記外乱光検出手段によって前記外乱光が検出された光軸における前記受光リトライ動作を行う際に、少なくとも最初の前記受光リトライ動作において、前記外乱光が検出された光軸における前記投光素子の発光を行わずに、この投光素子と対向する前記受光素子が受光動作を行う多光軸光電センサである。   According to a second aspect of the present invention, in the first aspect, the disturbance light type determination unit performs at least the first light reception when performing the light reception retry operation on the optical axis where the disturbance light is detected by the disturbance light detection unit. In the retry operation, the light projecting element does not emit light on the optical axis where the disturbance light is detected, and the light receiving element facing the light projecting element performs a light receiving operation.

請求項3の発明は、請求項1又は請求項2において、前記外乱光検出手段は、前記投光素子の発光期間の直前及び直後の期間おいて、前記受光素子からの受光信号を検出することに基づいて各光軸毎に外乱光の有無を検出し、前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直前の期間において検出した場合と前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直後の期間において検出した場合とでは、前記周期調整手段が前記スキャン周期をそれぞれ異なる周期に変更する多光軸光電センサである。   According to a third aspect of the present invention, in the first or second aspect, the disturbance light detecting means detects a light reception signal from the light receiving element in a period immediately before and immediately after a light emission period of the light projecting element. The presence or absence of disturbing light is detected for each optical axis based on the above, and the disturbing light detecting means detects the disturbing light in the period immediately before the light emitting period of the light projecting element and the disturbing light detecting means In the case where light is detected in a period immediately after the light emission period of the light projecting element, the period adjusting unit is a multi-optical axis photoelectric sensor that changes the scan period to a different period.

請求項4の発明は、請求項1ないし請求項3のいずれかにおいて、前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直前において検出した場合には、前記周期調整手段が前記スキャン周期を短くし、前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直後において検出した場合には、前記周期調整手段が前記スキャン周期を長くする多光軸光電センサである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, when the disturbance light detection unit detects the disturbance light immediately before the light emission period of the light projecting element, the period adjustment unit includes: When the disturbance light detection means detects the disturbance light immediately after the light emission period of the light projecting element, the period adjustment means is a multi-optical axis photoelectric sensor that lengthens the scan period. is there.

請求項5の発明は、請求項1ないし請求項4のいずれかにおいて、前記受光リトライ動作を予め定めたリトライ可能回数を限度として行わせる受光リトライ動作制限手段を備える多光軸光電センサである。   A fifth aspect of the present invention is the multi-optical axis photoelectric sensor according to any one of the first to fourth aspects, further comprising a light receiving retry operation limiting means for performing the light receiving retry operation up to a predetermined number of retryable times.

請求項6の発明は、請求項5において、前記リトライ可能回数は、全光軸についての合計リトライ動作回数である多光軸光電センサである。   A sixth aspect of the present invention is the multi-optical axis photoelectric sensor according to the fifth aspect, wherein the number of retries is a total number of retry operations for all optical axes.

請求項7の発明は、請求項1ないし請求項6のいずれかにおいて、前記受光リトライ動作の回数が前記リトライ可能回数に到達しかつ最後の前記受光リトライ動作を行ったときに前記外乱光判定手段によって前記外乱光が検出された場合には、前記外乱光を検出した異常状態であることを知らせる異常検出信号を出力する異常検出信号出力手段を備える多光軸光電センサである。   According to a seventh aspect of the present invention, the disturbance light determining means according to any one of the first to sixth aspects, wherein the number of times of the light receiving retry operation reaches the retry possible number of times and the last light receiving retry operation is performed. When the disturbance light is detected, the multi-optical axis photoelectric sensor is provided with an abnormality detection signal output means for outputting an abnormality detection signal notifying that the disturbance light is detected in an abnormal state.

<請求項1の発明>
本発明によれば、外乱光が検出された光軸の次の光軸における投光素子の発光を行わないと共にこの投光素子と対向する前記受光素子が受光を行わずに、外乱光が検出された光軸における受光素子において再度受光をさせる受光リトライ動作を行い、受光リトライ動作の際に検査期間において外乱光が検出された光軸を構成する受光素子について受光信号が検出されたか否かに基づいて外乱光の種別を判定する外乱光種別判定手段を設けたから、前記受光リトライ動作の際に検出された受光信号に基づいて、所定の投光周期毎に発光する光(例えば同種類の多光軸光電センサが放つ光)を検出した否かを判定することができる。
また、外乱光種別判定手段によって受光信号が検出された場合には、周期調整手段が次回のスキャン周期を変更するから、変更後のスキャン周期を、例えば同機種の多光軸光電センサのスキャン周期とは異なるものにすることができ、受光素子の受光時間と同種類の多光軸光電センサが放つ光の発光時間とが一致しないようにし、検出エリア内に侵入物体があるにもかかわらず、近接して配置された同種類の多光軸光電センサが放つ光を受光し、検出エリア内に物体がないと判断して誤動作することを防止することができる。
<Invention of Claim 1>
According to the present invention, disturbance light is detected without the light emitting element emitting light on the optical axis next to the optical axis where disturbance light is detected, and the light receiving element facing the light projecting element does not receive light. Whether or not a light receiving signal is detected for the light receiving element that constitutes the optical axis in which disturbance light is detected during the inspection period during the light receiving retry operation. Based on the received light signal detected at the time of the light receiving retry operation, the light (for example, the same type of light) Whether or not the light emitted from the optical axis photoelectric sensor is detected can be determined.
In addition, when the received light signal is detected by the disturbance light type determination unit, the cycle adjustment unit changes the next scan cycle, so that the changed scan cycle can be changed to, for example, the scan cycle of a multi-optical axis photoelectric sensor of the same model. The light receiving time of the light receiving element and the light emitting time of light emitted by the same type of multi-optical axis photoelectric sensor do not match, and there are intruding objects in the detection area, It is possible to prevent light from being emitted by the same type of multi-optical axis photoelectric sensors arranged in close proximity and determining that there is no object in the detection area, thereby preventing malfunction.

<請求項2の発明>
請求項2の発明によれば、外乱光種別判定手段は、外乱光検出手段によって外乱光が検出された光軸における受光リトライ動作を行う際に、少なくとも最初の前記受光リトライ動作において、外乱光が検出された光軸における投光素子の発光を行わずに、この投光素子と対向する受光素子が受光動作を行うから、外乱光が検出された光軸の受光素子が、この受光素子と対向する投光素子が放つ光を受光することなく外乱光を受光することができ、外乱光に起因した受光信号に基づいて、この外乱光が所定の投光周期毎に発光する光(例えば同種類の多光軸光電センサが放つ光)であるか否かを判定することができる。
また、受光リトライ動作を行う際には、少なくとも最初の前記受光リトライ動作において、外乱光が検出された光軸の投光素子を発光させないから、従来の多光軸光電センサのように、外乱光が検出された光軸の投光素子が再投光を繰り返すことがなく、投光素子の劣化が著しく進むことを抑えることができる。
<Invention of Claim 2>
According to the invention of claim 2, when the disturbance light type determination means performs the light reception retry operation on the optical axis in which the disturbance light is detected by the disturbance light detection means, the disturbance light is at least in the first light reception retry operation. Since the light receiving element facing the light projecting element does not emit light at the detected optical axis, the light receiving element facing the light projecting element performs the light receiving operation, so the light receiving element of the optical axis where the disturbance light is detected faces the light receiving element. The light emitted by the light projecting element can be received without receiving the light emitted from the light projecting element. Based on the light reception signal caused by the disturbance light, the disturbance light is emitted at a predetermined light projection period (for example, the same type). It is possible to determine whether or not the light is emitted from the multi-optical axis photoelectric sensor.
In addition, when performing the light receiving retry operation, since the light projecting element of the optical axis where the disturbance light is detected is not emitted at least in the first light receiving retry operation, the disturbance light is not used as in the conventional multi-optical axis photoelectric sensor. The light projecting element of the optical axis in which the light is detected does not repeat reprojection, and the deterioration of the light projecting element can be suppressed from proceeding remarkably.

<請求項3,4の発明>
請求項3の発明によれば、外乱光検出手段が外乱光を投光素子の発光期間の直前の期間において検出した場合と外乱光検出手段が外乱光を投光素子の発光期間の直後の期間において検出した場合とでは、周期調整手段がスキャン周期をそれぞれ異なる周期に変更することが望ましく、特に請求項4の発明のように、外乱光検出手段が外乱光を投光素子の発光期間の直前において検出した場合に、周期調整手段がスキャン周期を短くすれば、各投光素子の発光地点を、外乱光が各投光素子の発光地点に接近する方向とは反対の方向に移動されることができ、短縮されたスキャン周期が同種類の多光軸光電センサのスキャン周期に一致することを避けることができる。
一方、外乱光検出手段が外乱光を投光素子の発光期間の直後において検出した場合には、周期調整手段がスキャン周期を長くするから、各投光素子の発光地点を、外乱光が各投光素子の発光地点に接近する方向とは反対の方向に移動させることができ、広げられたスキャン周期が同種類の多光軸光電センサのスキャン周期に一致することを避けることができる。
<Invention of Claims 3 and 4>
According to the invention of claim 3, when the disturbance light detecting means detects disturbance light in a period immediately before the light emitting period of the light projecting element, and when the disturbance light detecting means detects disturbance light in a period immediately after the light emitting period of the light projecting element. The period adjusting means preferably changes the scanning period to a different period. In particular, as in the invention of claim 4, the disturbance light detecting means detects the disturbance light immediately before the light emitting period of the light projecting element. If the period adjusting means shortens the scanning cycle when detected in, the light emitting point of each light projecting element is moved in the direction opposite to the direction in which the ambient light approaches the light emitting point of each light projecting element. Therefore, it is possible to avoid that the shortened scan cycle matches the scan cycle of the same type of multi-optical axis photoelectric sensor.
On the other hand, when the disturbance light detecting means detects the disturbance light immediately after the light emitting period of the light projecting element, the period adjusting means lengthens the scan period. The optical element can be moved in a direction opposite to the direction of approaching the light emitting point of the optical element, and the widened scanning period can be prevented from matching the scanning period of the same type of multi-optical axis photoelectric sensor.

<請求項5の発明>
請求項5の発明によれば、受光リトライ動作を予め定めたリトライ可能回数を限度として行わせる受光リトライ動作制限手段を備えるから、複数の受光リトライ動作において、外乱光の種類が、例えば蛍光灯や警告灯が発する光であるか同種類の多光軸光電センサが放つ光であるかを判定し、同種類の多光軸光電センサが放つ光を検出する確率を高めることができる。
<Invention of Claim 5>
According to the fifth aspect of the present invention, since the light receiving retry operation limiting means for performing the light receiving retry operation as a limit of the predetermined number of retries is provided, in the plurality of light receiving retry operations, the type of disturbance light is, for example, a fluorescent lamp, It is possible to determine whether the light emitted from the warning light or the light emitted from the same type of multi-optical axis photoelectric sensor, and to increase the probability of detecting the light emitted from the same type of multi-optical axis photoelectric sensor.

<請求項6の発明>
請求項6の発明によれば、リトライ可能回数は、全光軸についての合計リトライ動作回数であるから、外乱光が集中して検出される光軸についても、継続して受光リトライ動作を行うことができ、各光軸毎にリトライ可能回数を定める場合に比べて、全光軸における受光リトライ動作を、外乱光の検出状態に応じて効率的に行うことができる。
<Invention of Claim 6>
According to the sixth aspect of the present invention, since the number of retries is the total number of retries for all the optical axes, the light receiving retries are continuously performed even for the optical axis in which disturbance light is concentrated and detected. Compared with the case where the number of retries is determined for each optical axis, the light receiving retry operation for all the optical axes can be efficiently performed according to the detection state of disturbance light.

<請求項7の発明>
請求項7の発明によれば、受光リトライ動作の回数がリトライ可能回数に到達しかつ最後の前記受光リトライ動作を行ったときに外乱光判定手段によって外乱光が検出された場合には、外乱光を検出した異常状態であることを知らせる異常検出信号を出力する異常検出信号出力手段を備えるから、異常状態となって遮光判定動作を行うことができなくなるおそれがあることを知らせて多光軸光電センサの点検を促すようにさせることができる。
<Invention of Claim 7>
According to the seventh aspect of the present invention, in the case where disturbance light is detected by the disturbance light determination means when the number of light reception retry operations reaches the number of possible retry operations and the last light reception retry operation is performed, disturbance light is detected. Since there is an abnormality detection signal output means for outputting an abnormality detection signal for informing that the abnormal state is detected, the multi-optical axis photoelectric device is informed that there is a possibility that the light shielding determination operation cannot be performed due to an abnormal state. It is possible to prompt the inspection of the sensor.

<実施形態1>
本発明の実施形態1を、図1ないし図6を参照しつつ説明する。本実施形態の多光軸光電センサ1は、図1に図示するように、投光器10が、所定の検出エリアを挟んで受光器30と対向して配置されている。投光器10には、例えば10個の投光素子T(T1〜T10、例えば発光ダイオード)が一列に配列されている。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 6. In the multi-optical axis photoelectric sensor 1 of the present embodiment, as shown in FIG. 1, the projector 10 is disposed to face the light receiver 30 with a predetermined detection area interposed therebetween. For example, ten projector elements T (T1 to T10, for example, light emitting diodes) are arranged in a row in the projector 10.

受光器30には、図示するように、10個の投光素子Tのそれぞれと対向する10個の受光素子J(J1〜J10、例えばフォトダイオード)が配列されている。なお、以下の説明で用いる文字Nは、図示する光軸L(L1〜L10)の任意の順位(1〜10)を示す。光軸Lの任意の順位は、後述するシフトレジスタ13,35のカウンタの値と対応するものである。   As shown in the drawing, ten light receiving elements J (J1 to J10, for example, photodiodes) facing each of the ten light projecting elements T are arranged in the light receiver 30. Note that the letter N used in the following description indicates an arbitrary order (1 to 10) of the optical axis L (L1 to L10) illustrated. The arbitrary order of the optical axis L corresponds to the counter value of the shift registers 13 and 35 described later.

各投光素子Tはそれぞれ駆動回路11に接続され、この駆動回路11は、AND回路12及び投光側シフトレジスタ13を介して投光側CPU14に接続されている。投光側CPU14は、受光器30が備える受光側CPU34が出力する同期信号Dを受信し、投光信号E(図1参照。)をAND回路12に送信すると共に、駆動回路制御信号を投光側シフトレジスタ13に送信する。   Each light projecting element T is connected to a driving circuit 11, and this driving circuit 11 is connected to a light projecting CPU 14 via an AND circuit 12 and a light projecting side shift register 13. The light emitting side CPU 14 receives the synchronization signal D output from the light receiving side CPU 34 provided in the light receiver 30, transmits the light projecting signal E (see FIG. 1) to the AND circuit 12, and projects the drive circuit control signal. To the side shift register 13.

投光信号Eは、各投光素子Tを所定の周期U(図3参照。)で投光させるための信号である。駆動回路制御信号は、各投光素子Tの投光タイミングを決定するための信号である。投光側シフトレジスタ13は、駆動回路制御信号を受信すると、カウンタの値に対応させて選択信号を各AND回路12に送信する。   The light projection signal E is a signal for causing each light projecting element T to project at a predetermined period U (see FIG. 3). The drive circuit control signal is a signal for determining the light projection timing of each light projecting element T. When receiving the drive circuit control signal, the light emitting side shift register 13 transmits a selection signal to each AND circuit 12 in correspondence with the value of the counter.

各AND回路12は、投光信号E及び選択信号を受信すると、各駆動回路11に信号を出力する。各駆動回路11は、各AND回路12からの信号を受信すると、各投光素子Tに駆動電流を供給する。各投光素子Tは、駆動電流が供給されることにより投光する。この多光軸光電センサ1は、投光信号E、駆動回路制御信号及び選択信号よって、10個の投光素子T1〜T10を所定の周期Uで順次投光させる投光スキャン動作を繰り返して行う。本実施形態では、上述したように、投光スキャン動作が、駆動回路11、AND回路12、投光側シフトレジスタ13 、投光側CPU14、受光側CPU34によって行われる。従って、駆動回路11、AND回路12、投光側シフトレジスタ13 、投光側CPU14、受光側CPU34は、本発明の投光制御手段を構成する。   Each AND circuit 12 outputs a signal to each drive circuit 11 when it receives the light projection signal E and the selection signal. Each drive circuit 11 supplies a drive current to each light projecting element T when receiving a signal from each AND circuit 12. Each light projecting element T emits light when supplied with a drive current. The multi-optical axis photoelectric sensor 1 repeatedly performs a light projection scanning operation of sequentially projecting ten light projecting elements T1 to T10 with a predetermined period U according to a light projection signal E, a drive circuit control signal, and a selection signal. . In the present embodiment, as described above, the light projecting scan operation is performed by the drive circuit 11, the AND circuit 12, the light projecting side shift register 13, the light projecting side CPU 14, and the light receiving side CPU 34. Accordingly, the drive circuit 11, the AND circuit 12, the light projecting side shift register 13, the light projecting side CPU 14, and the light receiving side CPU 34 constitute the light projecting control means of the present invention.

各受光素子Jは、それぞれ受光アンプ31に接続されると共に、各スイッチ素子32を介してA/D変換器33に接続されている。受光側CPU34は、A/D変換器33から出力される信号を受信し、この信号に基づいて受光があったか否かを検出する。   Each light receiving element J is connected to a light receiving amplifier 31 and also connected to an A / D converter 33 via each switch element 32. The light receiving side CPU 34 receives a signal output from the A / D converter 33 and detects whether or not light is received based on this signal.

受光側CPU34は、メモリ(図示せず。)に記憶されたプログラムによって、各投光素子Tに対する前記投光信号Eと周期及び位相を一致させた遮光検出タイミング、この遮光検出タイミング信号よりも位相が僅かに進んだ外乱光検出タイミング(後述する第1外乱光検出期間t5、検査期間)と、この遮光検出タイミング信号よりも位相が僅かに遅れた外乱光検出タイミング(第2外乱光検出期間t8、検査期間)とを含んだ時間に亘り各スイッチ素子32をON状態にするゲート制御信号を、受光側シフトレジスタ35に送信する。受光側シフトレジスタ35は、前記投光側シフトレジスタ13と同様に、選択信号を順次各スイッチ素子32に送信する。これにより、各受光素子Jからの受光信号が、A/D変換器33を介して受光側CPU34に送信される。   The light-receiving side CPU 34 uses a program stored in a memory (not shown) to detect the light-shielding detection timing at which the cycle and phase coincide with the light-projecting signal E for each light-projecting element T. Is slightly advanced in disturbance light detection timing (first disturbance light detection period t5, which will be described later, inspection period), and disturbance light detection timing (second disturbance light detection period t8 in which the phase is slightly delayed from this light shielding detection timing signal). A gate control signal for turning on each switch element 32 over a period of time including the inspection period) is transmitted to the light receiving side shift register 35. The light receiving side shift register 35 sequentially transmits selection signals to the respective switch elements 32 in the same manner as the light projecting side shift register 13. As a result, the light reception signal from each light receiving element J is transmitted to the light receiving side CPU 34 via the A / D converter 33.

受光側CPU34は、遮光検出タイミングにおいては、各投光素子Tが投光動作を行っており、A/D変換器33から送信された受光信号(受光量)が物体検出用閾値を超過した否かを判断して遮光判定を行う。この遮光判定は、受光アンプ31、スイッチ素子32、A/D変換器33、受光側CPU34、受光側シフトレジスタ35を用いて行われる。従って、受光アンプ31、スイッチ素子32、A/D変換器33、受光側CPU34、受光側シフトレジスタ35は、本発明の遮光判定手段を構成する。   The light receiving side CPU 34 determines whether or not the light projecting elements T perform the light projecting operation at the light shielding detection timing, and the light reception signal (the amount of received light) transmitted from the A / D converter 33 exceeds the object detection threshold. To determine whether to block the light. This light shielding determination is performed using the light receiving amplifier 31, the switch element 32, the A / D converter 33, the light receiving side CPU 34, and the light receiving side shift register 35. Accordingly, the light receiving amplifier 31, the switch element 32, the A / D converter 33, the light receiving side CPU 34, and the light receiving side shift register 35 constitute a light shielding determination unit of the present invention.

また、受光側CPU34は、外乱光検出タイミングにおいては、各投光素子Tが投光動作を行っておらず、A/D変換器33から送信された受光信号(受光量)が外乱光検知閾値を超過した否かを判断して外乱光の有無を検出する。この外乱光の有無の検出をする外乱光検出手段は、受光アンプ31、スイッチ素子32、A/D変換器33、受光側CPU34、受光側シフトレジスタ35によって構成される。   In the light receiving side CPU 34, at the disturbance light detection timing, each light projecting element T does not perform the light projecting operation, and the light reception signal (the amount of received light) transmitted from the A / D converter 33 is the disturbance light detection threshold value. The presence or absence of ambient light is detected by determining whether or not the above has been exceeded. The disturbance light detecting means for detecting the presence or absence of the disturbance light includes a light receiving amplifier 31, a switch element 32, an A / D converter 33, a light receiving side CPU 34, and a light receiving side shift register 35.

この受光側CPU34は、外乱光を各光軸Lにおいて検出したと判断した場合には、外乱光検出信号Gを投光側CPU14に送信する。この投光側CPU14は、外乱光検出信号Gを受信すると、カウンタロック信号を投光側シフトレジスタ13に送信し、カウンタの値が繰り上がること阻止する。その後、受光側CPU34は、外乱光を検出した光軸Lの投光素子Tが投光したときから前記周期Uが経過した遮光検出タイミング及び前記外乱光検出タイミングに亘り、ゲート制御信号を受光側シフトレジスタ35に送信する。シフトレジスタ35は、カウンタの値に対応した光軸(ここでは、外乱光が検出された光軸)に接続されるスイッチ素子32に選択信号を送信する。これにより、外乱光が検出された光軸の受光素子Jが再度受光する受光リトライ動作を行い、この受光素子Jからの受光信号が、A/D変換器33を介して受光側CPU34に送信され、受光側CPU34は、この受光信号に基づいて、外乱光が同種類の多光軸光電センサが放つ光であるか否かを判断する。この受光リトライ動作は、上述したように、受光アンプ31、スイッチ素子32、A/D変換器33、受光側CPU34、受光側シフトレジスタ35を用いて行われる。従って、受光アンプ31、スイッチ素子32、A/D変換器33、受光側CPU34、受光側シフトレジスタ35は、本発明の外乱光種別判定手段に相当する。その後、受光側CPU34は、同期信号Dを投光側CPU14に送信し、投光側CPU14が、投光信号EをAND回路12に送信する。このとき、投光信号Eが、投光側シフトレジスタ13によって選択信号が送信されて外乱光を検出した光軸Lに接続されたAND回路12に送信され、外乱光が検出された光軸Lの投光素子Tを投光させる。   When the light receiving side CPU 34 determines that disturbance light has been detected in each optical axis L, it transmits a disturbance light detection signal G to the light projection side CPU 14. When receiving the disturbance light detection signal G, the light emitting side CPU 14 transmits a counter lock signal to the light emitting side shift register 13 to prevent the counter value from being increased. Thereafter, the light receiving side CPU 34 receives the gate control signal from the light receiving side over the light blocking detection timing and the disturbance light detecting timing after the period U has elapsed since the light projecting element T of the optical axis L that detected the disturbance light is projected. Transmit to the shift register 35. The shift register 35 transmits a selection signal to the switch element 32 connected to the optical axis (here, the optical axis where disturbance light is detected) corresponding to the value of the counter. Thereby, the light receiving element J of the optical axis in which the disturbance light is detected performs a light receiving retry operation, and the light receiving signal from the light receiving element J is transmitted to the light receiving side CPU 34 via the A / D converter 33. Based on this light reception signal, the light receiving side CPU 34 determines whether or not the disturbance light is light emitted from the same type of multi-optical axis photoelectric sensor. As described above, this light receiving retry operation is performed using the light receiving amplifier 31, the switch element 32, the A / D converter 33, the light receiving side CPU 34, and the light receiving side shift register 35. Therefore, the light receiving amplifier 31, the switch element 32, the A / D converter 33, the light receiving side CPU 34, and the light receiving side shift register 35 correspond to the disturbance light type determining means of the present invention. Thereafter, the light receiving side CPU 34 transmits the synchronization signal D to the light projecting side CPU 14, and the light projecting side CPU 14 transmits the light projecting signal E to the AND circuit 12. At this time, the light projection signal E is transmitted to the AND circuit 12 connected to the optical axis L that has detected the disturbance light by the selection signal transmitted by the light projection side shift register 13, and the optical axis L from which the disturbance light has been detected. The light projecting element T is projected.

受光側CPU34は、いずれかの光軸Lで外乱光を検出した場合には、メモリ(図示せず。)に記憶されたプログラムによって、スキャン周期Tを変更し、前記同期信号Dを投光側CPU14に送信するタイミングを変更する。この受光側CPU34は、本発明の周期調整手段に相当する。   When the light receiving side CPU 34 detects disturbance light on any one of the optical axes L, the light receiving side CPU 34 changes the scan cycle T according to a program stored in a memory (not shown), and sends the synchronization signal D to the light emitting side. The timing to transmit to the CPU 14 is changed. The light receiving side CPU 34 corresponds to the period adjusting means of the present invention.

次に、本実施形態の多光軸光電センサ1の制御方法を説明する。投光側CPU14は、図2に示す各処理を実行する。多光軸光電センサ1の電源を投入すると、投光側CPU14が、投光側シフトレジスタ13のカウンタの値Nを「1」にセットする(S1)。このカウンタの値Nを「1」にセットすると、投光側シフトレジスタ13が、選択信号を、駆動回路11を介して投光素子T1と接続されたAND回路12に送信する。   Next, the control method of the multi-optical axis photoelectric sensor 1 of this embodiment is demonstrated. The light emitting side CPU 14 executes each process shown in FIG. When the power of the multi-optical axis photoelectric sensor 1 is turned on, the light emitting side CPU 14 sets the value N of the counter of the light emitting side shift register 13 to “1” (S1). When the value N of this counter is set to “1”, the light-projecting side shift register 13 transmits a selection signal to the AND circuit 12 connected to the light projecting element T1 via the drive circuit 11.

S1の後には、投光側CPU14が受光側CPU34によって送信される同期信号Dを受信することを待つ待機状態となり、この同期信号Dを受信したか否かが判断される(S2)。S2において同期信号Dを受信したと判断したときは、投光側CPU14が投光信号E(図1参照。)をAND回路12に出力する投光信号出力処理を行う(S3)。この投光信号出力処理(S3)によって、前記選択信号と投光信号Eとを受信したAND回路12及び前記駆動回路11に接続された投光素子T1が、図3(a)に図示するように、第1光軸L1の投光動作を行う。   After S1, it waits for the light emitting side CPU 14 to receive the synchronization signal D transmitted by the light receiving side CPU 34, and it is determined whether or not this synchronization signal D has been received (S2). When it is determined that the synchronization signal D has been received in S2, the light projection side CPU 14 performs a light projection signal output process for outputting the light projection signal E (see FIG. 1) to the AND circuit 12 (S3). The AND circuit 12 that has received the selection signal and the projection signal E by the projection signal output process (S3) and the projection element T1 connected to the drive circuit 11 are illustrated in FIG. In addition, the light projecting operation of the first optical axis L1 is performed.

投光信号出力処理(S3)の後には、後述するように受信側CPU34によって送信される外乱光検出信号Gを受信したか否かが判断される(S4)。S4において外乱光検出信号G(図1参照。)を受信しない(外乱光を検出しない)と判断したときは、投光側CPU14が、投光側シフトレジスタ13のカウンタの値Nに1を加算してこのカウンタの値Nを「2」にセットし(S5)、続いてこのカウンタの値Nが10を超過したか否かが判断される(S6)。   After the light projection signal output process (S3), it is determined whether or not the disturbance light detection signal G transmitted by the receiving CPU 34 is received (S4). When it is determined in S4 that the disturbance light detection signal G (see FIG. 1) is not received (no disturbance light is detected), the light emitting side CPU 14 adds 1 to the counter value N of the light emitting side shift register 13. Then, the value N of this counter is set to “2” (S5), and then it is determined whether or not the value N of this counter exceeds 10 (S6).

S6において、カウンタの値Nが10を超過していない(ここではカウンタの値Nが2)と判断したときは、投光側シフトレジスタ13が、選択信号を、駆動回路11を介して投光素子T2と接続されたAND回路12に送信し、待機状態となる。その後前記同期信号Dを受信したか否かが判断され(S2)、この同期信号Dを受信したときは、前記投光信号出力処理(S3)によって、投光素子T2が、図3(b)に図示するように、第2光軸L2の投光動作を行う。   In S6, when it is determined that the counter value N does not exceed 10 (here, the counter value N is 2), the light-projecting side shift register 13 projects the selection signal via the drive circuit 11. The data is transmitted to the AND circuit 12 connected to the element T2, and enters a standby state. Thereafter, it is determined whether or not the synchronization signal D has been received (S2). When this synchronization signal D is received, the light projecting element T2 is shown in FIG. 3B by the light projection signal output process (S3). As shown in FIG. 4, the light projecting operation of the second optical axis L2 is performed.

さらに、前記S4において外乱光検出信号Gを受信したか否かが判断され、外乱光検出信号Gを受信しないと判断したときは、投光側CPU14が、投光側シフトレジスタ13のカウンタの値Nに1を加算してこのカウンタの値Nが「3」にセットされ(S5)、前記投光信号出力処理(S3)によって、投光素子T3が、図3(c)に図示するように、第3光軸L3の投光動作を行う。このようにして、投光側CPU14が外乱光検出信号Gを受信しないと判断したときは、図3(a)ないし(j)から理解できるように、投光素子T1からT10が、前記投光信号Eの出力タイミングに同期して順番に1回ずつ投光動作を行って1周期(スキャン周期T15)の投光スキャン動作が終了する。   Further, in S4, it is determined whether or not the disturbance light detection signal G is received, and when it is determined that the disturbance light detection signal G is not received, the light emitting side CPU 14 determines the value of the counter of the light emitting side shift register 13 1 is added to N, and the value N of this counter is set to “3” (S5). As a result, the light projecting element T3 performs the light projecting signal output processing (S3) as shown in FIG. The light projecting operation of the third optical axis L3 is performed. As described above, when the light projection side CPU 14 determines that the disturbance light detection signal G is not received, the light projecting elements T1 to T10 have the light projecting elements as can be understood from FIGS. In synchronization with the output timing of the signal E, the light projecting operation is performed once in order, and the light projecting scan operation for one cycle (scan cycle T15) is completed.

また、前記S4において外乱光検出信号Gを受信したと判断したときは、投光動作待機処理(S7)を行う。この投光動作待機処理(S7)では、投光側CPU14が、メモリに記憶されたプログラムによって、前記投光信号Eを送信しないように制御する。投光側CPU14は、前記投光信号出力処理(S3)において、投光信号Eを送信しない状態に制御されているか否かを判断し、投光信号Eを送信しない状態に制御されていると判断したときは、この投光信号EをAND回路12に出力しない。   If it is determined in S4 that the ambient light detection signal G has been received, a light projection operation standby process (S7) is performed. In the light projection operation standby process (S7), the light projection side CPU 14 performs control so as not to transmit the light projection signal E by a program stored in the memory. The light projection CPU 14 determines whether or not the light projection signal output process (S3) is controlled so as not to transmit the light projection signal E, and is controlled so as not to transmit the light projection signal E. When it is determined, the light projection signal E is not output to the AND circuit 12.

一方、受光側CPU34は、図4及び図5に示す各処理を実行する。多光軸光電センサ1の電源を投入すると、受光側CPU34は、待機時間t2が経過したか否かを判断する(S9)。このS9においては、受光側CPU34が、図3(A)及び(J)に図示するように、次の周期の投光スキャン動作が開始されるまでの時間(待機時間t2)が経過したか否かを判断する。   On the other hand, the light receiving side CPU 34 executes each process shown in FIGS. When the power of the multi-optical axis photoelectric sensor 1 is turned on, the light receiving side CPU 34 determines whether or not the standby time t2 has elapsed (S9). In this S9, as shown in FIGS. 3A and 3J, whether or not the time (waiting time t2) until the light-emission scanning operation of the next cycle is started has elapsed. Determine whether.

S9において、待機時間t2が経過したと判断したときは、スキャン周期初期化処理(S10)を行う。このスキャン周期初期化処理(S10)では、受光側CPU34が、スキャン周期をT15に設定する。   In S9, when it is determined that the standby time t2 has elapsed, scan cycle initialization processing (S10) is performed. In this scan cycle initialization process (S10), the light receiving side CPU 34 sets the scan cycle to T15.

スキャン周期初期化処理(S10)の後には、受光側CPU34が、受光側シフトレジスタ35のカウンタの値Nを「1」にセットする(S11)。このカウンタの値Nを「1」にセットすると、受光側シフトレジスタ35が、選択信号S1(図1参照。)を、受光アンプ31を介して受光素子J1に接続されたスイッチ素子32に送信する。 これによって、スイッチ素子32がオン状態となり、図1及び図3(A)から理解できるように、受光素子J1(第1光軸L1)の受光信号が、A/D変換器33に送信される。   After the scan cycle initialization process (S10), the light receiving side CPU 34 sets the value N of the counter of the light receiving side shift register 35 to “1” (S11). When the value N of this counter is set to “1”, the light receiving side shift register 35 transmits the selection signal S1 (see FIG. 1) to the switch element 32 connected to the light receiving element J1 via the light receiving amplifier 31. . As a result, the switch element 32 is turned on, and the light receiving signal of the light receiving element J1 (first optical axis L1) is transmitted to the A / D converter 33, as can be understood from FIGS. 1 and 3A. .

S11では、さらにリトライ回数K(再投光回数)を「0」にセットし、その後待機状態となる。S11の後には、受光側CPU34が、予め定めた受光タイミングになったか否を判断し(S12)、受光側CPU34が受光タイミングになったと判断したときは、第1非投光時受光信号読込取処理(S13)を行う。この第1非投光時受光信号読込取処理(S13)では、受光側CPU34がA/D変換器33によって送信される前記受光信号をメモリ(図示せず。)に読み込む。読み込まれた受光信号の大きさは、投光素子T1が投光動作を開始する前(図6(A)中の第1外乱光検出期間t5)の受光素子J1の受光量(非投光時受光レベル)である。   In S11, the retry count K (re-projection count) is further set to “0”, and then a standby state is entered. After S11, the light receiving side CPU 34 determines whether or not a predetermined light receiving timing has been reached (S12), and when it is determined that the light receiving side CPU 34 has reached the light receiving timing, reading of the light receiving signal at the first non-light emitting time is read. Processing (S13) is performed. In the first non-light-projecting received light signal reading process (S13), the light receiving side CPU 34 reads the received light signal transmitted by the A / D converter 33 into a memory (not shown). The magnitude of the received light reception signal is the amount of light received by the light receiving element J1 before the light projecting element T1 starts the light projecting operation (first disturbance light detection period t5 in FIG. 6A) (when light is not projected). (Light reception level).

第1非投光時受光信号読込処理(S13)の後には、物体検出処理(S14)を行う。この物体検出処理(S14)では、受光側CPU34が前記同期信号Dを投光側CPU14に送信する。この場合には、図2の投光信号出力処理(S3)によって、図3(a)に図示するように、投光素子T1が投光動作を行う。さらに、この物体検出処理(S14)では、受光側CPU34が、投光素子T1の投光動作に同期してA/D変換器33によって送信される受光信号(図3(A)参照。)をメモリ(図示せず。)に読み込む。読み込まれた受光信号の大きさは、投光素子T1が投光動作を開始したときの受光素子J1の受光量(投光時受光レベル)である。そして、この物体検出処理(S14)では、メモリに読み込まれた投光時受光レベルを予め定めた物体検出用閾値と比較する。この受光側CPU34は、前記投光時受光レベルが物体検出用閾値を超過したと判断したときは物体が検出エリア内で検出されないと判断し、前記投光時受光レベルが物体検出用閾値を下回ったときは物体が検出エリア内で検出されたと判断する。   An object detection process (S14) is performed after the light reception signal reading process (S13) during the first non-light projection. In this object detection process (S14), the light receiving side CPU 34 transmits the synchronization signal D to the light projecting side CPU 14. In this case, the light projecting element T1 performs the light projecting operation as illustrated in FIG. 3A by the light projecting signal output process (S3) of FIG. Further, in the object detection process (S14), the light receiving side CPU 34 receives a light receiving signal (see FIG. 3A) transmitted by the A / D converter 33 in synchronization with the light projecting operation of the light projecting element T1. Read into memory (not shown). The magnitude of the received light reception signal is the amount of light received by the light receiving element J1 when the light projecting element T1 starts the light projecting operation (light reception level during light projection). In the object detection process (S14), the light reception level at the time of projection read into the memory is compared with a predetermined object detection threshold. The light-receiving side CPU 34 determines that the object is not detected in the detection area when the light reception level at the time of light projection exceeds the object detection threshold value, and the light reception level at the time of light projection is below the object detection threshold value. If it is determined that the object has been detected in the detection area.

物体検出処理(S14)の後には、外乱光を検出したか否かが判断される(S15)。S15では、受光側CPU34が、前記第1非投光時受光信号読込処理(S13)によってメモリに読み込まれた非投光時受光レベルを予め定めた外乱光検知閾値と比較し、非投光時受光レベルが外乱光検知閾値を超過した場合には、外乱光を検出したと判断する。   After the object detection process (S14), it is determined whether disturbance light has been detected (S15). In S15, the light receiving side CPU 34 compares the non-light emitting light reception level read into the memory by the first non-light emitting light reception signal reading process (S13) with a predetermined disturbance light detection threshold value, and the light is not emitted. When the received light level exceeds the disturbance light detection threshold, it is determined that disturbance light has been detected.

S15において、受光側CPU34が、外乱光を検出しないと判断したときは、受光側シフトレジスタ35のカウンタの値Nに1を加算してこのカウンタの値Nが「2」にセットされ(S16)、続いてこのカウンタの値Nが10を超過したか否かが判断される(S17)。   In S15, when the light receiving side CPU 34 determines that ambient light is not detected, 1 is added to the value N of the counter of the light receiving side shift register 35, and the value N of this counter is set to “2” (S16). Subsequently, it is determined whether or not the value N of the counter exceeds 10 (S17).

S17において、カウンタの値Nが10を超過していない(ここではカウンタの値Nが2)と判断したときは、図3(B)ないし(J)から理解できるように、各光軸L2〜L10に対し、上述した受光タイミングになったか否かの判断(S12)、第1非投光時受光信号読込処理(S13)、物体検出処理(S14)、外乱光を検出したか否かの判断(S15)、受光側シフトレジスタ35のカウンタの値Nに1を加算する処理(S16)をそれぞれ行う。このようにして、外乱光を検出しないと判断したときは、図3(A)〜(J)から理解できるように、前記同期信号Dの出力タイミングに同期して順番に1回ずつ受光動作を行って1周期の受光動作が終了する。   If it is determined in S17 that the counter value N does not exceed 10 (here, the counter value N is 2), as can be understood from FIGS. For L10, it is determined whether or not the above-described light reception timing has been reached (S12), the first non-light-projecting received light signal reading process (S13), the object detection process (S14), and whether or not ambient light has been detected. (S15), a process of adding 1 to the counter value N of the light receiving side shift register 35 (S16) is performed. Thus, when it is determined that ambient light is not detected, the light receiving operation is performed once in order in synchronization with the output timing of the synchronizing signal D, as can be understood from FIGS. This completes the light receiving operation for one cycle.

受光側CPU34は、前記S15において外乱光を検出したときに、図5のフローチャートに示すように、以下の処理を行う。ここでは、外乱光を、図6(a1)に図示するように、本実施形態の多光軸光電センサ1と同種類の多光軸光電センサが放つ光を例に挙げて説明する。この外乱光は、図示するように、スキャン周期がT15である投光スキャン動作によって発生する。   When detecting the disturbance light in S15, the light receiving side CPU 34 performs the following processing as shown in the flowchart of FIG. Here, disturbance light will be described by taking, as an example, light emitted by a multi-optical axis photoelectric sensor of the same type as the multi-optical axis photoelectric sensor 1 of the present embodiment, as illustrated in FIG. As shown in the figure, the disturbance light is generated by a light projection scanning operation with a scanning period of T15.

前記S15において、受光側CPU34が、図6(a1)、(b)及び(B)に例示するように、外乱光を投光素子T2(第2光軸L2)の投光動作の直前(第1外乱光検出期間t5)で検出したと判断したときは、後述するS22において設定されたリトライ(再受光)回数Kが、すべての光軸L1〜L10のリトライ可能回数(ここでは9回)を超過しているか否かを判断する(S18)。   In S15, the light-receiving side CPU 34 emits disturbance light immediately before the light projecting operation of the light projecting element T2 (second optical axis L2) as illustrated in FIGS. 6 (a1), (b), and (B). When it is determined that detection has been performed in one disturbance light detection period t5), the number of retries (re-light reception) K set in S22, which will be described later, is the number of retries possible for all optical axes L1 to L10 (here, 9 times) It is determined whether or not it exceeds (S18).

S18において、受光側CPU34によって、リトライ回数Kが前記可能回数を超過していないと判断されたときは、受光側CPU34が、外乱光を第1外乱光判定期間t5内において検出したか否かが判断される(S19)。S19においては、受光側CPU34が、前記第1非投光時受光信号読込処理(S13)によってメモリに読み込まれた非投光時受光レベルを予め定めた外乱光検知閾値と比較し、非投光時受光レベルが外乱光検知閾値を超過したと判断した場合には、外乱光を投光素子T1の投光動作の直前(第1外乱光判定期間t5)で検出したと判断する。   In S18, when the light receiving side CPU 34 determines that the number of retries K does not exceed the possible number of times, whether or not the light receiving side CPU 34 has detected disturbance light within the first disturbance light determination period t5. It is judged (S19). In S19, the light receiving side CPU 34 compares the non-light emitting light reception level read into the memory by the first non-light emitting light reception signal reading process (S13) with a predetermined disturbance light detection threshold, When it is determined that the hourly light reception level has exceeded the disturbance light detection threshold, it is determined that the disturbance light has been detected immediately before the light projection operation of the light projecting element T1 (first disturbance light determination period t5).

S19において、外乱光を投光素子T1の投光動作の直前(第1外乱光判定期間t5)で検出したと判断したときは、リトライ(再受光)処理(S20)を行う。このリトライ(再受光)処理(S20)では、受光側CPU34が、外乱光検出信号Gを投光側CPU14に送信し、投光素子T2,T3が投光を中止している期間(投光中止期間t6、図6(B)参照。)内における受光素子J2の受光信号の検出時間を、メモリ(図示せず。)に読み込む。投光中止期間t6は、各受光素子Jが受光動作を行う時間と同じ時間(外乱光判別時間)である。   If it is determined in S19 that disturbance light has been detected immediately before the light projection operation of the light projecting element T1 (first disturbance light determination period t5), a retry (re-light reception) process (S20) is performed. In this retry (re-light reception) process (S20), the light receiving side CPU 34 transmits the disturbance light detection signal G to the light projecting side CPU 14, and the light projecting elements T2 and T3 stop light projection (light projection stop). The detection time of the light receiving signal of the light receiving element J2 within the period t6 (see FIG. 6B) is read into a memory (not shown). The light projection stop period t6 is the same time (disturbance light discrimination time) as the time during which each light receiving element J performs the light receiving operation.

S20の後には、受光側CPU34が、このリトライ(再受光)処理(S20)での受光信号の検出時間が、第1外乱光検出期間t5において外乱光を検出した時から所定の時間が経過した時間であるか否かが判断される(S21)。ここでは、図6(B)に図示するように、外乱光を検出してから第1外乱光判定期間t7が経過したときに、再び外乱光を検出したか否かが判断される。この第1外乱光判定期間t7は、図6(a1),(a)等から理解できるように、各投光素子Tの投光間隔U(投光周期)と同じ期間に設定されている。   After S20, the light receiving side CPU 34 has detected a light receiving signal in the retry (re-light receiving) process (S20), and a predetermined time has elapsed since the disturbance light was detected in the first disturbance light detection period t5. It is determined whether it is time (S21). Here, as shown in FIG. 6B, when the first disturbance light determination period t7 has elapsed since the disturbance light was detected, it is determined whether the disturbance light has been detected again. As can be understood from FIGS. 6A1 and 6A, the first disturbance light determination period t7 is set to the same period as the light projection interval U (light projection period) of each light projecting element T.

S21において、受光側CPU34が、外乱光を第1外乱光判定期間t7が経過したときに再び検出したと判断したときは、図6(a1),(a)及び(b)から理解できるように、外乱光が同種類の多光軸光電センサが放つ光であると判断し、第1スキャン周期変更処理(S25)を行う。この第1スキャン周期変更処理(S25)では、図3(a)及び図6(a)から理解できるように、各光軸間の投光間隔Uを変更することなく前記スキャン周期をT15からT15−αに変更する。スキャン周期の関係は、T15>T15−αである。このαは、適宜の値に変更して定めることができる。なお、前記S19において、外乱光を投光素子T1の投光動作の直前で検出しないと判断したときは、前記S16及び前記S17のそれぞれの処理を行う。   In S21, when the light-receiving side CPU 34 determines that the disturbance light has been detected again when the first disturbance light determination period t7 has elapsed, as can be understood from FIGS. 6A1, 6A, and 6B. Then, it is determined that the disturbance light is light emitted from the same type of multi-optical axis photoelectric sensor, and the first scan cycle changing process (S25) is performed. In the first scan cycle changing process (S25), as can be understood from FIGS. 3A and 6A, the scan cycle is changed from T15 to T15 without changing the projection interval U between the optical axes. Change to -α. The relationship between the scan periods is T15> T15-α. This α can be determined by changing to an appropriate value. In S19, when it is determined that disturbance light is not detected immediately before the light projecting operation of the light projecting element T1, the processes of S16 and S17 are performed.

第1スキャン周期変更処理(S25)の後には、受光側CPU34のリトライカウンタの値に1を加算し(S22)、続いて再投受光処理(S23)を行う。この再投受光処理(S23)では、受光側CPU34が、前記同期信号Dを投光側CPU14に送信する。これによって、図6(b)に図示するように、投光素子T2(外乱光が検出された第2光軸L2)が再び投光動作を行う。さらに、この再投受光処理(S23)では、受光側CPU34が、図6(B)から理解できるように、投光素子T2の投光動作に同期して、この投光素子T2が投光を開始したときの受光素子J2の受光量をメモリに読み込む。   After the first scan cycle changing process (S25), 1 is added to the value of the retry counter of the light receiving side CPU 34 (S22), and then the reprojection / light receiving process (S23) is performed. In the re-projection / light-receiving process (S23), the light-receiving side CPU 34 transmits the synchronization signal D to the light-projecting side CPU 14. As a result, as shown in FIG. 6B, the light projecting element T2 (second optical axis L2 from which the disturbance light is detected) performs the light projecting operation again. Further, in the re-projection / light-receiving process (S23), as can be understood from FIG. 6B, the light-receiving side CPU 34 performs the light projection by the light projecting element T2 in synchronization with the light projecting operation of the light projecting element T2. The amount of light received by the light receiving element J2 at the start is read into the memory.

この再投受光処理(S23)の後には、再受光物体検出処理(S24)を行う。この再受光物体検出処理(S24)では、受光側CPU34が、再投受光処理(S23)によってメモリに読み込まれた受光素子J2の受光量を、予め定めた物体検出用閾値と比較する。この再受光物体検出処理(S24)では、上述した物体検出処理(S14)と同様の処理を行う。   After this re-projection / light-receiving process (S23), a re-light-receiving object detection process (S24) is performed. In the re-light-receiving object detection process (S24), the light-receiving side CPU 34 compares the amount of light received by the light receiving element J2 read into the memory by the re-projection / light-receiving process (S23) with a predetermined object detection threshold. In the re-light-receiving object detection process (S24), the same process as the object detection process (S14) described above is performed.

この再受光物体検出処理(S24)の後には、受光側CPU34が、上述したS16及びS17のそれぞれの処理を行う。なお、S21において、受光側CPU34が、外乱光を第1外乱光判定期間t7が経過したときに検出しないと判断したときは、外乱光が同種類の多光軸光電センサが放つ光ではないと判断し、上述した第1スキャン周期変更処理(S25)を行わず、上述した各処理(S22〜S24)を行う。   After the re-light-receiving object detection process (S24), the light-receiving side CPU 34 performs the processes of S16 and S17 described above. In S21, when the light receiving side CPU 34 determines that the disturbance light is not detected when the first disturbance light determination period t7 has elapsed, the disturbance light is not light emitted by the same type of multi-optical axis photoelectric sensor. The first scan cycle changing process (S25) described above is not performed, and the above-described processes (S22 to S24) are performed.

また、前記S18において、受光側CPU34が、リトライ回数Kが前記可能回数(ここでは9回)を超過していると判断したときは、異常検出信号出力処理(S26)を行う。この異常検出信号出力処理(S26)では、異常検出信号を、例えば動作表示灯の作動装置に送信し、この作動装置を駆動させて動作表示灯が点灯するように制御する。本実施形態の多光軸光電センサは、動作表示灯を点灯させることにより、リトライ回数が前記可能回数を超過したことを報知する。   In S18, when the light receiving side CPU 34 determines that the number of retries K exceeds the possible number (here, 9 times), an abnormality detection signal output process (S26) is performed. In the abnormality detection signal output process (S26), an abnormality detection signal is transmitted to, for example, an operation device for the operation indicator lamp, and the operation indicator is turned on by driving the actuator device. The multi-optical axis photoelectric sensor of this embodiment notifies that the number of retries has exceeded the possible number of times by turning on the operation indicator lamp.

本実施形態の多光軸光電センサ1では、受光側CPU34が、図5中のS19によって、外乱光を投光素子T2(第2光軸L2)の投光動作の直前(第1外乱光検出期間t5)で検出したと判断したときに、図5中のS21によって、リトライ(再受光)処理(S20)での受光信号の検出時間に基づき、外乱光を検出してから第1外乱光判定期間t7(前記投光間隔U)が経過したときに、再び外乱光を検出したか否かを判断する。このように、第1外乱光判定期間t7を、同種類の多光軸光電センサが備える投光素子の投光間隔Uと同じ期間に設定し、投光素子T2,T3の投光を中止させた状態で、受光側CPU34が、前記S21によって、再び外乱光を検出したか否かを判断すれば、受光側CPU34が、投光間隔Uで投光する同種類の多光軸センサが放つ光を検出したか否かを判断することができる。この多光軸光電センサでは、リトライ(再受光)処理(S20)の際に、外乱光が検出された第2光軸L2の投光素子T2が投光を中止させ、前記S21によって、この投光素子T2が投光を中止している期間(投光中止期間t6、図6(B)参照。)内における受光素子J2の受光信号の検出時間に基づき、外乱光が同種類の多光軸光電センサが放つ光であるか否かを判断するようにした。このため、受光素子J2が投光素子T2が放つ光を受光することなく外乱光を受光することができ、外乱光に起因した受光素子J2の受光信号に基づいて、外乱光が同種類の多光軸光電センサが放つ光であるか否かを判定することができる。加えて、リトライ(再受光)処理(S20)の際には外乱光が検出された第2光軸L2の投光素子T2が投光を中止させるから、従来の多光軸光電センサとは異なり、外乱光が検出された光軸の投光素子が再投光を繰り返すことがなく、投光素子の劣化が著しく進むことを抑えることができる。   In the multi-optical axis photoelectric sensor 1 of the present embodiment, the light-receiving side CPU 34 transmits disturbance light immediately before the light projecting operation of the light projecting element T2 (second optical axis L2) (first disturbance light detection) by S19 in FIG. When it is determined that the detection has occurred in the period t5), the first disturbance light determination is performed after detecting the disturbance light based on the detection time of the received light signal in the retry (re-light reception) processing (S20) in S21 in FIG. When the period t7 (the light projection interval U) has elapsed, it is determined again whether ambient light has been detected. In this way, the first disturbance light determination period t7 is set to the same period as the light projection interval U of the light projecting elements included in the same type of multi-optical axis photoelectric sensor, and the light projection of the light projecting elements T2 and T3 is stopped. In this state, if the light receiving side CPU 34 determines again whether or not ambient light has been detected in S21, the light emitted from the same type of multi-optical axis sensor that the light receiving side CPU 34 projects at the light projecting interval U is emitted. It can be determined whether or not is detected. In this multi-optical axis photoelectric sensor, during the retry (re-light reception) process (S20), the light projecting element T2 of the second optical axis L2 in which the disturbance light is detected stops the light projection, and the light is projected by S21. Based on the detection time of the light reception signal of the light receiving element J2 within the period during which the optical element T2 stops projecting light (projection halt period t6, see FIG. 6B), the disturbance light has the same type of multi-optical axis. Whether or not the light emitted from the photoelectric sensor is judged. For this reason, the light receiving element J2 can receive disturbance light without receiving the light emitted by the light projecting element T2, and the disturbance light has the same type of disturbance light based on the light reception signal of the light receiving element J2 caused by the disturbance light. It can be determined whether or not the light is emitted from the optical axis photoelectric sensor. In addition, unlike the conventional multi-optical axis photoelectric sensor, the light projecting element T2 of the second optical axis L2 in which the disturbance light is detected stops the light projection in the retry (re-light receiving) process (S20). In addition, the light projecting element having the optical axis in which the disturbance light is detected does not repeat light projection, and the deterioration of the light projecting element can be suppressed from proceeding remarkably.

さらに、この多光軸光電センサ1においては、受光側CPU34が、前記S21によって、同種類の多光軸センサが放つ光を検出したと判断したときは、前記第1スキャン周期変更処理(S25)によって、スキャン周期をT15からT15−αに変更する。このため、この多光軸光電センサ1においては、変更後のスキャン周期(T15−α)を、同種類の多光軸光電センサのスキャン周期(T15)と異ならせることができ、同種類の多光軸光電センサが放つ光が、投光素子T2(第2光軸L2)の投光動作の直前で検出されることを防ぐことができる。そこで、この多光軸光電センサ1においては、検出エリア内に物体があるにもかかわらず、同種類の多光軸光電センサが放つ光を受光素子J2が受光し、前記物体検出処理(S14)によって、物体が検出エリア内で検出されないと判断することを防止することができる。なお、この多光軸光電センサ1においては、スキャン周期(T15−α)を同種類の多光軸光電センサのスキャン周期(T15)と異ならせた状態に保つため、図6(a)から理解できるように、前記スキャン周期初期化処理(S10)によって、スキャン周期をT15−αからT15に変更し、投光スキャン動作を行う。   Further, in this multi-optical axis photoelectric sensor 1, when the light receiving side CPU 34 determines that the light emitted from the same type of multi-optical axis sensor is detected in S21, the first scan cycle changing process (S25). The scan period is changed from T15 to T15-α. For this reason, in this multi-optical axis photoelectric sensor 1, the changed scanning cycle (T15-α) can be made different from the scanning cycle (T15) of the same type of multi-optical axis photoelectric sensor. It is possible to prevent the light emitted from the optical axis photoelectric sensor from being detected immediately before the light projecting operation of the light projecting element T2 (second optical axis L2). Therefore, in this multi-optical axis photoelectric sensor 1, the light receiving element J2 receives the light emitted from the same type of multi-optical axis photoelectric sensor even if there is an object in the detection area, and the object detection process (S14). Therefore, it can be prevented that the object is not detected in the detection area. In this multi-optical axis photoelectric sensor 1, since the scan cycle (T15-α) is kept different from the scan cycle (T15) of the same type of multi-optical axis photoelectric sensor, it is understood from FIG. As can be done, the scan cycle is changed from T15-α to T15 by the scan cycle initialization process (S10), and the projection scan operation is performed.

本実施形態の多光軸光電センサ1においては、受光側CPU34が、図5中のS18によって、リトライ可能回数(ここでは9回)を超過していないと判断したときは、リトライ(再受光)処理(S20)によって、受光素子J2(外乱光が検出された第2光軸L2)が再び受光動作を行うようにした。そこで、複数回(ここでは9回)の受光リトライ動作(図5中のS18〜S20)において、外乱光の種類が、例えば蛍光灯や警告灯が発する光であるか同種類の多光軸光電センサが放つ光であるかを判定し、同種類の多光軸光電センサが放つ光を検出する確率を高めることができる。加えて、この多光軸光電センサ1においては、例えば、外乱光が投光素子T2(第2光軸L2)の投光動作の直前(第1外乱光検出期間t5)で集中して検出されることがあっても、図5中のS18〜S20によって、受光素子J2の受光リトライ動作をリトライ可能回数を超過しない範囲で継続して行うことができ、受光リトライ動作を、外乱光が検出される光軸に対して効率的に行うことができる。   In the multi-optical axis photoelectric sensor 1 of the present embodiment, when the light receiving side CPU 34 determines that the number of retryable times (here, 9 times) has not been exceeded by S18 in FIG. By the process (S20), the light receiving element J2 (second optical axis L2 from which the disturbance light is detected) performs the light receiving operation again. Therefore, in the light receiving retry operation (S18 to S20 in FIG. 5) a plurality of times (here, 9 times), the type of disturbance light is, for example, light emitted from a fluorescent lamp or a warning lamp, or the same type of multi-optical axis photoelectrics. It is possible to determine whether the light is emitted from the sensor and to increase the probability of detecting the light emitted from the same type of multi-optical axis photoelectric sensor. In addition, in this multi-optical axis photoelectric sensor 1, for example, disturbance light is concentrated and detected immediately before the light projection operation of the light projecting element T2 (second optical axis L2) (first disturbance light detection period t5). Even if there is a case, the light receiving retry operation of the light receiving element J2 can be continuously performed within the range not exceeding the retry possible number by S18 to S20 in FIG. 5, and the disturbance light is detected in the light receiving retry operation. Can be efficiently performed with respect to the optical axis.

本実施形態の多光軸光電センサ1においては、受光側CPU34が、図4中のS15によって、外乱光を検出したと判断し、図5中のS18によって、リトライ回数Kがリトライ可能回数(ここでは9回)を超過したと判断したときに、異常検出信号出力処理(S26)によって、異常検出信号を、例えば動作表示灯の作動装置に送信し、この作動装置を駆動させて動作表示灯が点灯するように制御する。そこで、この多光軸光電センサ1においては、動作表示灯を点灯させることによって、外乱光を連続して検出して侵入物体の検出ができなくなるおそれがあることや装置故障が生じることにより受光側CPU34が前記リトライ回数を超過したと判断して侵入物体の検出ができなくなるおそれがあることを知らせ、この多光軸光電センサ1の点検を促すようにさせることができる。   In the multi-optical axis photoelectric sensor 1 of the present embodiment, the light receiving side CPU 34 determines that disturbance light has been detected in S15 in FIG. 4, and the number of retries K is the number of retries (here, S18 in FIG. 5). 9 times), the abnormality detection signal is transmitted to, for example, the operation device of the operation indicator lamp by the abnormality detection signal output process (S26), and the operation indicator lamp is driven by driving the actuator device. Control to light up. Therefore, in this multi-optical axis photoelectric sensor 1, by turning on the operation indicator lamp, there is a possibility that disturbance light may be continuously detected and an intruding object may not be detected, or an apparatus failure may occur, so that the light receiving side The CPU 34 determines that the number of retries has been exceeded and informs that there is a possibility that the intruding object cannot be detected, and can prompt the inspection of the multi-optical axis photoelectric sensor 1.

また、本実施形態の多光軸光電センサ1においては、従来の多光軸光電センサとは異なり、外乱光検出期間(ここでは、第1外乱光検出期間t5)を、一般的に採用されている外乱光検出期間に比べて長くする必要がなく、外乱光検出期間を含むスキャン周期が長くなり、各光軸における遮光判定のための応答時間が遅れることを避けることができる。   In the multi-optical axis photoelectric sensor 1 of the present embodiment, unlike the conventional multi-optical axis photoelectric sensor, the disturbance light detection period (here, the first disturbance light detection period t5) is generally employed. It is not necessary to make it longer than the ambient light detection period, and the scan cycle including the ambient light detection period becomes longer, and it is possible to avoid delaying the response time for light shielding determination in each optical axis.

<実施形態2>
本発明の実施形態2を、図1及び図2,図7ないし図10を参照しつつ説明する。ここでは、実施形態1と同一の構成や制御方法は同一の符号を付しその説明を省略する。本実施形態の多光軸光電センサ1Aにおいては、外乱光を各投光素子T1〜T10の投光動作の直前及び直後で検出したか否かを判断する。投光側CPU14は、上述したように、図2に示す各処理を実行する。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIGS. 1, 2, and 7 to 10. FIG. Here, the same configurations and control methods as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. In the multi-optical axis photoelectric sensor 1A of the present embodiment, it is determined whether or not disturbance light is detected immediately before and after the light projecting operation of each of the light projecting elements T1 to T10. As described above, the light-projecting CPU 14 executes each process shown in FIG.

一方、受光側CPU34は、図7及び図8に示す各処理を実行する。図7に示すフローチャートは、第2非投光時受光信号読込処理(S13A)が、図4(実施形態1)に示すフローチャートとは異なる。この第2非投光時受光信号読込処理(S13A)では、受光側CPU34が、各投光素子Tの投光動作の直後(例えば、図10(B)中の第2外乱光検出期間t8)における各投光素子Tと対向する各受光素子Jの受光量(非投光時受光レベル)をメモリ(図示せず。)に読み込む。   On the other hand, the light receiving side CPU 34 executes each process shown in FIGS. The flowchart shown in FIG. 7 differs from the flowchart shown in FIG. 4 (Embodiment 1) in the second non-projection received light signal reading process (S13A). In the second non-light-projecting received light signal reading process (S13A), the light-receiving side CPU 34 immediately after the light projecting operation of each light projecting element T (for example, the second disturbance light detection period t8 in FIG. 10B). The amount of light received by each light receiving element J facing each light projecting element T (the light receiving level during non-light projection) is read into a memory (not shown).

図7中のS15において、受光側CPU34が、前記第1及び第2非投光時受光信号読込処理(S13,S13A)によってメモリに読み込まれた非投光時受光レベルを予め定めた外乱光検知閾値と比較し、非投光時受光レベルが外乱光検知閾値を超過したと判断した場合には、外乱光を検出したと判断する。このS15において、例えば第2光軸L2において外乱光を検出したと判断したときは、受光側CPU34が、前記リトライ回数Kがリトライ可能回数を超過しているか否かを判断し(S18)、リトライ回数Kが前記可能回数を超過していないと判断したときは、S19において、外乱光を第1外乱光判定期間t5内において検出したか否かを判断する。   In S15 in FIG. 7, the light-receiving side CPU 34 detects disturbance light in which the light-receiving level at the time of non-light-projection read into the memory by the first and second light-projection signals at the time of non-light-projection (S13, S13A) is determined in advance. If it is determined that the light reception level during non-projection exceeds the disturbance light detection threshold value as compared with the threshold value, it is determined that disturbance light has been detected. In S15, for example, when it is determined that disturbance light is detected on the second optical axis L2, the light receiving side CPU 34 determines whether or not the retry count K exceeds the number of retries possible (S18). If it is determined that the number K of times does not exceed the possible number of times, it is determined in S19 whether or not ambient light has been detected within the first ambient light determination period t5.

S19において、外乱光を第1外乱光判定期間t5内において検出したと判断し、受光側CPU34が、外乱光を投光素子T2の投光動作の直前で検出したと判断したときは、リトライ(再受光)処理(S20A)を行う。このリトライ(再受光)処理(S20A)では、受光側CPU34が、外乱光検出信号Gを投光側CPU14に送信し、投光素子T2,T3が投光を中止している期間(投光中止期間t9、図9(B)参照。)内における受光素子J2の受光信号の検出時間を、メモリ(図示せず。)に読み込む。投光中止期間t9は、各受光素子Jが受光動作を行う時間と同じ時間(外乱光判別時間)である。   In S19, when it is determined that the disturbance light is detected within the first disturbance light determination period t5, and the light receiving side CPU 34 determines that the disturbance light is detected immediately before the light projecting operation of the light projecting element T2, a retry ( Re-light reception) processing (S20A) is performed. In this retry (re-light reception) process (S20A), the light receiving side CPU 34 transmits a disturbance light detection signal G to the light projecting side CPU 14, and the light projecting elements T2 and T3 stop light projection (light projection stop). The detection time of the light reception signal of the light receiving element J2 within the period t9 (see FIG. 9B) is read into a memory (not shown). The light projection stop period t9 is the same time (disturbance light discrimination time) as the time during which each light receiving element J performs the light receiving operation.

リトライ(再受光)処理(S20A)の後に、リトライ(再受光)処理(S20A)での受光信号の検出時間に基づき、外乱光を検出してから第1外乱光判定期間t7(図9(B)参照。)が経過したときに、再び外乱光を検出したか否かが判断される(S21A)。   After the retry (re-light reception) process (S20A), based on the detection time of the light reception signal in the retry (re-light reception) process (S20A), the first disturbance light determination period t7 (FIG. 9B) ) See)), it is determined again whether ambient light has been detected (S21A).

S21Aにおいて、受光側CPU34が、外乱光を第1外乱光判定期間t7が経過したときに再び検出し、同種類の多光軸光電センサが放つ光を投光素子T2の投光動作の直前で検出することになると判断したときは、上述した第1スキャン周期変更処理(S25)及び上述した各処理(S22〜S24)を行い、図9(a)に図示するように、スキャン周期をT15からT15−αに変更する。なお、S21Aにおいて、外乱光を第1外乱光判定期間t7が経過したときに検出しないと判断したときは、外乱光が同種類の多光軸光電センサが放つ光ではないと判断し、第1スキャン周期変更処理(S25)を行わず、上述した各処理(S22〜S24)を行う。   In S21A, the light receiving side CPU 34 detects the disturbance light again when the first disturbance light determination period t7 has elapsed, and immediately before the light projecting operation of the light projecting element T2 emits the light emitted by the same type of multi-optical axis photoelectric sensor. When it is determined that detection is to be performed, the above-described first scan cycle changing process (S25) and the above-described processes (S22 to S24) are performed, and as illustrated in FIG. Change to T15-α. In S21A, when it is determined that the disturbance light is not detected when the first disturbance light determination period t7 has elapsed, it is determined that the disturbance light is not the light emitted by the same type of multi-optical axis photoelectric sensor. The above-described processes (S22 to S24) are performed without performing the scan cycle changing process (S25).

これに対し、S19において、受光側CPU34が、外乱光を第1外乱光判定期間t5内において検出しないと判断したときは、外乱光検出判断処理(S27)を行う。この外乱光検出判断処理(S27)では、外乱光を第2外乱光検出期間t8内において検出し、外乱光を投光素子T2の投光動作の直後で検出したことを判断する。この外乱光検出判断処理(S27)の後に、リトライ(再受光)処理(S20B)を行う。このリトライ(再受光)処理(S20B)では、受光側CPU34が、外乱光検出信号Gを投光側CPU14に送信し、投光素子T2,T3が投光を中止している期間(投光中止期間t9、図10(B)参照。)内における受光素子J2の受光信号の検出時間を、メモリ(図示せず。)に読み込む。   On the other hand, when the light receiving side CPU 34 determines in S19 that the disturbance light is not detected within the first disturbance light determination period t5, the disturbance light detection determination process (S27) is performed. In this disturbance light detection determination process (S27), the disturbance light is detected within the second disturbance light detection period t8, and it is determined that the disturbance light is detected immediately after the light projecting operation of the light projecting element T2. After the disturbance light detection determination process (S27), a retry (re-light reception) process (S20B) is performed. In this retry (re-light reception) process (S20B), the light receiving side CPU 34 transmits a disturbance light detection signal G to the light projecting side CPU 14, and the light projecting elements T2 and T3 stop light projection (light projection stop). The detection time of the light receiving signal of the light receiving element J2 within the period t9 (see FIG. 10B) is read into a memory (not shown).

リトライ(再受光)処理(S20B)の後に、リトライ(再受光)処理(S20B)での受光信号の検出時間に基づき、外乱光を検出してから第2外乱光判定期間t11(図10(B)参照。)が経過したときに、再び外乱光を検出したか否かを判断する(S28)。なお、この第2外乱光判定期間t11は、各投光素子Tの投光間隔Uと同じ期間に設定されている。   After the retry (re-light reception) process (S20B), based on the detection time of the received light signal in the retry (re-light reception) process (S20B), the disturbance light is detected and then the second disturbance light determination period t11 (FIG. 10B ) See)), it is determined again whether ambient light has been detected (S28). The second disturbance light determination period t11 is set to the same period as the light projection interval U of each light projecting element T.

S28において、受光側CPU34が、外乱光を第2外乱光判定期間t11が経過したときに再び検出し、同種類の多光軸光電センサが放つ光を投光素子T2の投光動作の直後で検出することになると判断したときは、第2スキャン周期変更処理(S30)を行う。この第2スキャン周期変更処理(S30)では、図10(a)から理解できるように、各光軸間の投光間隔Uを変更することなく前記スキャン周期をT15からT15+αに変更する。スキャン周期の関係は、T15+α>T15>T15−αである。なお、S28において、外乱光を第2外乱光判定期間t11が経過したときに検出しないと判断したときは、外乱光が同種類の多光軸光電センサが放つ光ではないと判断し、第2スキャン周期変更処理(S30)を行わず、上述した各処理(S22〜S24)を行う。   In S28, the light receiving side CPU 34 detects disturbance light again when the second disturbance light determination period t11 has elapsed, and immediately after the light projecting operation of the light projecting element T2 emits light emitted by the same type of multi-optical axis photoelectric sensor. When it is determined that detection is to be performed, second scan cycle change processing (S30) is performed. In the second scan cycle changing process (S30), as can be understood from FIG. 10A, the scan cycle is changed from T15 to T15 + α without changing the projection interval U between the optical axes. The relationship between the scan periods is T15 + α> T15> T15−α. In S28, when it is determined that the disturbance light is not detected when the second disturbance light determination period t11 has elapsed, it is determined that the disturbance light is not the light emitted by the same type of multi-optical axis photoelectric sensor, and the second The above-described processes (S22 to S24) are performed without performing the scan cycle changing process (S30).

本実施形態の多光軸光電センサ1Aでは、受信側CPU34が、図8中のS19によって、図9(a1),(b)及び(B)から理解できるように、外乱光を投光素子T2(第2光軸L2)の投光動作の直前(第1外乱光検出期間t5)で検出したと判断したときに、図8中のS21によって、リトライ(再受光)処理(S20A)での受光信号の検出時間に基づき、外乱光を検出してから第1外乱光判定期間t7(前記投光間隔U)が経過したときに、再び外乱光を検出したか否かを判断する。この多光軸光電センサ1Aは、受光側CPU34が、前記S21によって、外乱光を再び検出し、この外乱光が同種類の多光軸センサが放つ光であると判断したときは、前記第1スキャン周期変更処理(S25)によって、スキャン周期をT15からT15−αに変更する。このため、この多光軸光電センサ1Aにおいては、変更後のスキャン周期(T15−α)を、同種類の多光軸光電センサのスキャン周期(T15)と異ならせることができ、同種類の多光軸光電センサが放つ光が、投光素子T2(第2光軸L2)の投光動作の直前で検出されることを防ぐことができる。そこで、この多光軸光電センサ1Aにおいては、検出エリア内に物体があるにもかかわらず、同種類の多光軸光電センサが放つ光を受光素子J2が受光し、前記物体検出処理(S14)によって、物体が検出エリア内で検出されないと判断することを防止することができる。   In the multi-optical axis photoelectric sensor 1A of the present embodiment, the receiving side CPU 34 transmits disturbance light to the light projecting element T2 as can be understood from FIGS. 9A, 9B, and 9B by S19 in FIG. When it is determined that detection is performed immediately before the light projecting operation of (second optical axis L2) (first disturbance light detection period t5), the light reception in the retry (re-light reception) processing (S20A) is performed in S21 in FIG. Based on the signal detection time, when the first disturbance light determination period t7 (the light projection interval U) has elapsed since the disturbance light was detected, it is determined whether the disturbance light has been detected again. In the multi-optical axis photoelectric sensor 1A, when the light-receiving side CPU 34 detects disturbance light again in S21 and determines that the disturbance light is light emitted by the same type of multi-optical axis sensor, The scan cycle is changed from T15 to T15-α by the scan cycle change process (S25). For this reason, in this multi-optical axis photoelectric sensor 1A, the changed scan cycle (T15-α) can be made different from the scan cycle (T15) of the same type of multi-optical axis photoelectric sensor. It is possible to prevent the light emitted from the optical axis photoelectric sensor from being detected immediately before the light projecting operation of the light projecting element T2 (second optical axis L2). Therefore, in this multi-optical axis photoelectric sensor 1A, even though there is an object in the detection area, the light receiving element J2 receives the light emitted from the same type of multi-optical axis photoelectric sensor, and the object detection process (S14). Therefore, it can be prevented that the object is not detected in the detection area.

一方、この多光軸光電センサ1Aでは、受信側CPU34が、図8中の外乱光検出判断処理(S27)によって、図10(a1),(b)及び(B)から理解できるように、外乱光を投光素子T2(第2光軸L2)の投光動作の直後(第2外乱光判定期間t8)で検出したと判断したときに、図8中のS28によって、リトライ(再受光)処理(S20B)での受光信号の検出時間に基づき、外乱光を検出してから第2外乱光判定期間t11(前記投光間隔U)が経過したときに、再び外乱光を検出したか否かを判断する。この多光軸光電センサ1Aは、受光側CPU34が、前記S28によって、外乱光を再び検出し、この外乱光が同種類の多光軸センサが放つ光であると判断したときは、前記第2スキャン周期変更処理(S30)によって、スキャン周期をT15からT15+αに変更する。このため、この多光軸光電センサ1Aにおいては、変更後のスキャン周期(T15+α)を、同種類の多光軸光電センサのスキャン周期(T15)と異ならせることができ、同種類の多光軸光電センサが放つ光が、投光素子T2(第2光軸L2)の投光動作の直後で検出されることを防ぐことができる。そこで、この多光軸光電センサ1Aにおいては、同種類の多光軸光電センサが放つ光を投光素子T2(第2光軸L2)の投光動作の直前で検出した場合と同様に、前記物体検出処理(S14)によって、物体が検出エリア内で検出されないと判断することを防止することができる。   On the other hand, in this multi-optical axis photoelectric sensor 1A, as shown in FIGS. 10 (a1), 10 (b) and 10 (B), the receiving side CPU 34 can understand the disturbance by the disturbance light detection determination process (S27) in FIG. When it is determined that light is detected immediately after the light projecting operation of the light projecting element T2 (second optical axis L2) (second disturbance light determination period t8), a retry (re-light reception) process is performed in S28 in FIG. Based on the detection time of the received light signal in (S20B), whether or not the disturbance light is detected again when the second disturbance light determination period t11 (the light projection interval U) has elapsed since the disturbance light was detected. to decide. In the multi-optical axis photoelectric sensor 1A, when the light-receiving side CPU 34 detects disturbance light again in S28 and determines that the disturbance light is light emitted by the same type of multi-optical axis sensor, The scan cycle is changed from T15 to T15 + α by the scan cycle change process (S30). For this reason, in this multi-optical axis photoelectric sensor 1A, the changed scanning cycle (T15 + α) can be made different from the scanning cycle (T15) of the same type of multi-optical axis photoelectric sensor. It is possible to prevent the light emitted from the photoelectric sensor from being detected immediately after the light projecting operation of the light projecting element T2 (second optical axis L2). Therefore, in this multi-optical axis photoelectric sensor 1A, as in the case where the light emitted by the same type of multi-optical axis photoelectric sensor is detected immediately before the light projecting operation of the light projecting element T2 (second optical axis L2), By the object detection process (S14), it can be determined that an object is not detected in the detection area.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。なお、以下の説明では、上述した実施形態1及び実施形態2と同一の構成は同一の符号を付しその説明を省略する。
(1)上述した実施形態1及び実施形態2においては、例えば、外乱光を、各投光素子T1〜T10の投光動作の直前又は各投光素子T1〜T10の直前及び直後で検出するようにしたが、図11(a1)及び(b)に図示するように、例えば、同種類の多光軸センサが放つ光を第2光軸L2の投光動作の直後(第2外乱光検出期間t8)で検出したと判断したときに、(a)に図示するように、スキャン周期をT15からT15+αに変更するようにしてもよい。これによって、変更後のスキャン周期(T15+α)を、同種類の多光軸光電センサのスキャン周期(T15)と異ならせることができ、同種類の多光軸光電センサが放つ光を受光素子J2が受光し、物体が検出エリア内で検出されないと判断することを防止することができる。
(2)上述した実施形態1及び実施形態2においては、リトライ(再受光)処理を行う毎に受光側CPU34のリトライカウンタの値に1を加算したが、再投受光処理を行う毎にこのリトライカウンタの値に1を加算するようにしてもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention. In the following description, the same components as those in the first embodiment and the second embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
(1) In the first and second embodiments described above, for example, disturbance light is detected immediately before the light projecting operation of each of the light projecting elements T1 to T10 or just before and immediately after each of the light projecting elements T1 to T10. However, as shown in FIGS. 11A1 and 11B, for example, immediately after the light projecting operation of the second optical axis L2 (the second disturbance light detection period) When it is determined that the detection is made at t8), the scan cycle may be changed from T15 to T15 + α as shown in FIG. As a result, the changed scan cycle (T15 + α) can be made different from the scan cycle (T15) of the same type of multi-optical axis photoelectric sensor, and the light receiving element J2 emits the light emitted by the same type of multi-optical axis photoelectric sensor. It can prevent receiving light and determining that an object is not detected within a detection area.
(2) In the first and second embodiments described above, 1 is added to the value of the retry counter of the light receiving side CPU 34 every time the retry (re-light reception) process is performed, but this retry is performed every time the re-projection light reception process is performed. You may make it add 1 to the value of a counter.

本発明の実施形態1,2に係る多光軸光電センサの電気的構成図Electrical configuration diagram of multi-optical axis photoelectric sensor according to Embodiments 1 and 2 of the present invention 実施形態1,2に係る多光軸光電センサの投光側CPUの制御を示すフローチャート6 is a flowchart showing control of a light-projecting side CPU of a multi-optical axis photoelectric sensor according to Embodiments 1 and 2. 実施形態1に係る多光軸光電センサのタイミングチャートTiming chart of multi-optical axis photoelectric sensor according to Embodiment 1 受光側CPUの制御を示す第1フローチャートFirst flowchart showing control of light receiving side CPU その第2フローチャートThe second flowchart 第2光軸における投光動作の直前で外乱光を検出したときのタイミングチャートTiming chart when disturbance light is detected immediately before the light projecting operation on the second optical axis 実施形態2に係る多光軸光電センサの受光側CPUの制御を示す第1フローチャートFirst flowchart showing the control of the light receiving side CPU of the multi-optical axis photoelectric sensor according to the second embodiment. その第2フローチャートThe second flowchart 第2光軸における投光動作の直前で外乱光を検出したときのタイミングチャートTiming chart when disturbance light is detected immediately before the light projecting operation on the second optical axis 第2光軸における投光動作の直後で外乱光を検出したときのタイミングチャートTiming chart when disturbance light is detected immediately after the light projecting operation on the second optical axis 他の実施形態に係る多光軸光電センサのタイミングチャートTiming chart of multi-optical axis photoelectric sensor according to another embodiment

符号の説明Explanation of symbols

1,1A…多光軸光電センサ
10…投光器
11…駆動回路(投光制御手段)
12…AND回路(投光制御手段)
13…投光側シフトレジスタ(投光制御手段)
14…投光側CPU(投光制御手段)
30…受光器
31…受光アンプ(遮光判定手段,外乱光検出手段,外乱光種別判定手段)
32…スイッチ素子(遮光判定手段,外乱光検出手段,外乱光種別判定手段)
33…A/D変換器(遮光判定手段,外乱光検出手段,外乱光種別判定手段)
34…受光側CPU(投光制御手段,遮光判定手段,外乱光検出手段,外乱光種別判定手段,周期調整手段)
35…受光側シフトレジスタ(遮光判定手段,外乱光検出手段,外乱光種別判定手段)
J1〜J10…受光素子
L1〜L10…光軸
T1〜T10…投光素子
T15+α,T15,T15−α…スキャン周期
t5…第1外乱光検出期間(検査期間)
t6,t9…投光中止期間(外乱光判別時間)
t7…第1外乱光判定期間
t8…第2外乱光検出期間(検査期間)
t11…第2外乱光判定期間
U…投光間隔(投光周期)
DESCRIPTION OF SYMBOLS 1,1A ... Multi-optical axis photoelectric sensor 10 ... Light projector 11 ... Drive circuit (light projection control means)
12 ... AND circuit (light projection control means)
13 ... Projection side shift register (projection control means)
14 ... Projection side CPU (projection control means)
30... Light receiver 31... Light receiving amplifier (light shielding determination means, disturbance light detection means, disturbance light type determination means)
32 ... Switch element (light-shielding determination means, disturbance light detection means, disturbance light type determination means)
33... A / D converter (light shielding determination means, disturbance light detection means, disturbance light type determination means)
34. Light receiving side CPU (light projection control means, light shielding determination means, disturbance light detection means, disturbance light type determination means, period adjustment means)
35: Light-receiving side shift register (light-shielding determination means, disturbance light detection means, disturbance light type determination means)
J1 to J10 ... light receiving elements L1 to L10 ... optical axes T1 to T10 ... light projecting elements T15 + α, T15, T15-α ... scan period t5 ... first disturbance light detection period (inspection period)
t6, t9 ... Projection stop period (disturbance light discrimination time)
t7: First disturbance light determination period t8: Second disturbance light detection period (inspection period)
t11 ... Second disturbance light determination period U ... Projection interval (projection cycle)

Claims (7)

複数の投光素子を有する投光器と、
前記複数の投光素子を所定の投光周期で順次発光させる投光スキャン動作を所定のスキャン周期で繰り返す投光制御手段と、
前記複数の投光素子とそれぞれ対向して光軸を構成するように配置された複数の受光素子を有する受光器と、
前記複数の投光素子のうちのいずれかが発光するときに、それと対をなして前記光軸を構成する前記受光素子について、前記受光素子からの受光信号を検出することで前記光軸の遮光判定を行う遮光判定手段と、
前記複数の投光素子のうちのいずれかが発光するときに、それと対をなして前記光軸を構成する前記受光素子について、前記投光素子の発光期間の直前及び直後の少なくともいずれか一方の検査期間おいて、前記受光素子からの受光信号を検出することに基づいて各光軸毎に外乱光の有無を検出する外乱光検出手段と、
前記外乱光検出手段によって前記外乱光が検出されたことを条件に、その外乱光が検出された光軸の次の光軸における前記投光素子の発光を行わないと共にこの投光素子と対向する前記受光素子が受光を行わずに、前記外乱光が検出された光軸における前記受光素子において再度受光をさせる受光リトライ動作を行い、前記受光リトライ動作の際に前記検査期間において前記外乱光が検出された光軸を構成する前記受光素子について受光信号が検出されたか否かに基づいて外乱光の種別を判定する外乱光種別判定手段と、
前記外乱光種別判定手段によって前記受光信号が検出された場合には次回の前記スキャン周期を変更し前記外乱光種別判定手段によって前記受光信号が検出されない場合には次回の前記スキャン周期を変更しない周期調整手段と、
を備える多光軸光電センサ。
A projector having a plurality of projector elements;
A light projection control means for repeating a light projection scanning operation for sequentially emitting the plurality of light projecting elements at a predetermined light projection period at a predetermined scan period;
A light receiver having a plurality of light receiving elements arranged so as to constitute an optical axis facing the plurality of light projecting elements, respectively;
When any one of the plurality of light projecting elements emits light, the optical axis is shielded by detecting a light reception signal from the light receiving element for the light receiving element that forms a pair with the light projecting element. A shading determination means for performing the determination;
When any one of the plurality of light projecting elements emits light, the light receiving element that forms a pair with the light receiving element constitutes at least one of the light projecting elements immediately before and immediately after the light emitting period. In the inspection period, disturbance light detection means for detecting the presence or absence of disturbance light for each optical axis based on detecting a light reception signal from the light receiving element,
On the condition that the disturbance light is detected by the disturbance light detection means, the light projecting element does not emit light on the optical axis next to the optical axis where the disturbance light is detected and faces the light projecting element. The light receiving element performs light receiving retry operation for receiving light again in the light receiving element on the optical axis where the disturbance light is detected without receiving light, and the disturbance light is detected during the inspection period during the light receiving retry operation. Disturbance light type determination means for determining the type of disturbance light based on whether a light reception signal is detected for the light receiving element constituting the optical axis,
When the received light signal is detected by the disturbance light type determination unit, the next scan cycle is changed. When the received light signal is not detected by the disturbance light type determination unit, the next scan cycle is not changed. Adjusting means;
A multi-optical axis photoelectric sensor.
前記外乱光種別判定手段は、前記外乱光検出手段によって前記外乱光が検出された光軸における前記受光リトライ動作を行う際に、少なくとも最初の前記受光リトライ動作において、前記外乱光が検出された光軸における前記投光素子の発光を行わずに、この投光素子と対向する前記受光素子が受光動作を行う請求項1記載の多光軸光電センサ。   The disturbance light type determination means is a light in which the disturbance light is detected at least in the first light reception retry operation when performing the light reception retry operation on the optical axis where the disturbance light is detected by the disturbance light detection means. The multi-optical axis photoelectric sensor according to claim 1, wherein the light receiving element facing the light projecting element performs a light receiving operation without emitting light from the light projecting element on the shaft. 前記外乱光検出手段は、前記投光素子の発光期間の直前及び直後の期間おいて、前記受光素子からの受光信号を検出することに基づいて各光軸毎に外乱光の有無を検出し、前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直前の期間において検出した場合と前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直後の期間において検出した場合とでは、前記周期調整手段が前記スキャン周期をそれぞれ異なる周期に変更する請求項1又は請求項2記載の多光軸光電センサ。   The disturbance light detecting means detects the presence or absence of disturbance light for each optical axis based on detecting a light reception signal from the light receiving element in a period immediately before and after a light emission period of the light projecting element, When the disturbance light detection means detects the disturbance light in a period immediately before the light emission period of the light projecting element, and when the disturbance light detection means detects the disturbance light in a period immediately after the light emission period of the light projection element. 3. The multi-optical axis photoelectric sensor according to claim 1, wherein the period adjusting unit changes the scan period to a different period. 前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直前において検出した場合には、前記周期調整手段が前記スキャン周期を短くし、前記外乱光検出手段が前記外乱光を前記投光素子の発光期間の直後において検出した場合には、前記周期調整手段が前記スキャン周期を長くする請求項1ないし請求項3のいずれかに記載の多光軸光電センサ。   When the disturbance light detection means detects the disturbance light immediately before the light emission period of the light projecting element, the period adjustment means shortens the scan period, and the disturbance light detection means emits the disturbance light. The multi-optical axis photoelectric sensor according to any one of claims 1 to 3, wherein the cycle adjusting means lengthens the scan cycle when detected immediately after the light emission period of the optical element. 前記受光リトライ動作を予め定めたリトライ可能回数を限度として行わせる受光リトライ動作制限手段を備える請求項1ないし請求項4のいずれかに記載の多光軸光電センサ。   5. The multi-optical axis photoelectric sensor according to claim 1, further comprising: a light-reception retry operation limiting unit that performs the light-reception retry operation for a predetermined number of retryable times. 前記リトライ可能回数は、全光軸についての合計リトライ動作回数である請求項5記載の多光軸光電センサ。   The multi-optical axis photoelectric sensor according to claim 5, wherein the number of retries is the total number of retry operations for all optical axes. 前記受光リトライ動作の回数が前記リトライ可能回数に到達しかつ最後の前記受光リトライ動作を行ったときに前記外乱光判定手段によって前記外乱光が検出された場合には、前記外乱光を検出した異常状態であることを知らせる異常検出信号を出力する異常検出信号出力手段を備える請求項1ないし請求項6のいずれかに記載の多光軸光電センサ。   If the disturbance light is detected by the disturbance light determining means when the number of times of the light reception retry operation reaches the number of retryable times and the last light reception retry operation is performed, the abnormality that has detected the disturbance light is detected. The multi-optical axis photoelectric sensor according to any one of claims 1 to 6, further comprising an abnormality detection signal output means for outputting an abnormality detection signal for informing that a state is present.
JP2005321447A 2005-11-04 2005-11-04 Multi-axis photoelectric sensor Active JP4743759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321447A JP4743759B2 (en) 2005-11-04 2005-11-04 Multi-axis photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321447A JP4743759B2 (en) 2005-11-04 2005-11-04 Multi-axis photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2007129583A true JP2007129583A (en) 2007-05-24
JP4743759B2 JP4743759B2 (en) 2011-08-10

Family

ID=38151862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321447A Active JP4743759B2 (en) 2005-11-04 2005-11-04 Multi-axis photoelectric sensor

Country Status (1)

Country Link
JP (1) JP4743759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200534A (en) * 2021-12-09 2022-03-18 欧姆龙(上海)有限公司 Photoelectric sensor and control method thereof
CN114623851A (en) * 2022-03-08 2022-06-14 欧姆龙(上海)有限公司 Photoelectric sensor and control method thereof
CN114200534B (en) * 2021-12-09 2024-04-26 欧姆龙(上海)有限公司 Photoelectric sensor and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204151A (en) * 2000-12-28 2002-07-19 Sunx Ltd Many optic axes photoelectric sensor
JP2002217703A (en) * 2001-01-23 2002-08-02 Omron Corp Multi-optical axis photoelectric sensor
JP2003347916A (en) * 2002-05-24 2003-12-05 Sunx Ltd Multiple optical axis photoelectric switch
JP2005114551A (en) * 2003-10-08 2005-04-28 Omron Corp Multi-optical-axis photoelectric sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204151A (en) * 2000-12-28 2002-07-19 Sunx Ltd Many optic axes photoelectric sensor
JP2002217703A (en) * 2001-01-23 2002-08-02 Omron Corp Multi-optical axis photoelectric sensor
JP2003347916A (en) * 2002-05-24 2003-12-05 Sunx Ltd Multiple optical axis photoelectric switch
JP2005114551A (en) * 2003-10-08 2005-04-28 Omron Corp Multi-optical-axis photoelectric sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200534A (en) * 2021-12-09 2022-03-18 欧姆龙(上海)有限公司 Photoelectric sensor and control method thereof
CN114200534B (en) * 2021-12-09 2024-04-26 欧姆龙(上海)有限公司 Photoelectric sensor and control method thereof
CN114623851A (en) * 2022-03-08 2022-06-14 欧姆龙(上海)有限公司 Photoelectric sensor and control method thereof

Also Published As

Publication number Publication date
JP4743759B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US7741595B2 (en) Light grid for detecting objects in a monitored zone
JP6390985B2 (en) Light grid synchronization method
JP2008300201A (en) Multi-optical-axis photoelectric sensor
KR20160040421A (en) Sensor apparatus and hazard sensing system
JP2009124666A (en) Photoelectric sensor
US9360860B2 (en) Entry detection device, robot, and entry detection method
JP4743759B2 (en) Multi-axis photoelectric sensor
JP2008277163A (en) Multiple optical-axis photoelectric sensor
JP5960893B2 (en) Optical sensor
JP2009225012A (en) Intrusion detection apparatus
JP4394591B2 (en) Multi-axis photoelectric sensor
JP2002168967A (en) Object detection sensor
JP2010217003A (en) Photoelectric sensor and interference reducing method
JP4589739B2 (en) Reflective photoelectric switch
JP2002204151A (en) Many optic axes photoelectric sensor
JP7383986B2 (en) Status notification device, control method for status notification device, information processing program, and recording medium
JP2003289244A (en) Multiple optical axis photoelectric sensor
JP2007309917A (en) Photoelectric sensor with automatic sensitivity correction
JPH03218422A (en) Sensor
JP6117017B2 (en) Light beam scanning apparatus and image forming apparatus
JP2003133934A (en) Photoelectric switch
JP2020085657A (en) Displacement detector
JP5134926B2 (en) Monitoring system and controller
JP3961880B2 (en) Multi-optical axis photoelectric switch
JP5726586B2 (en) Multi-axis photoelectric sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250