JP3860013B2 - Multi-axis photoelectric sensor - Google Patents

Multi-axis photoelectric sensor Download PDF

Info

Publication number
JP3860013B2
JP3860013B2 JP2001331504A JP2001331504A JP3860013B2 JP 3860013 B2 JP3860013 B2 JP 3860013B2 JP 2001331504 A JP2001331504 A JP 2001331504A JP 2001331504 A JP2001331504 A JP 2001331504A JP 3860013 B2 JP3860013 B2 JP 3860013B2
Authority
JP
Japan
Prior art keywords
light
optical axis
projecting
interference
axis photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331504A
Other languages
Japanese (ja)
Other versions
JP2003133933A (en
Inventor
徹 和氣
Original Assignee
サンクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社 filed Critical サンクス株式会社
Priority to JP2001331504A priority Critical patent/JP3860013B2/en
Priority to CN 02143973 priority patent/CN1234020C/en
Priority to CA002409638A priority patent/CA2409638A1/en
Priority to EP05007438A priority patent/EP1548466A1/en
Priority to DE60212785T priority patent/DE60212785T2/en
Priority to AU2002301601A priority patent/AU2002301601B2/en
Priority to EP02023780A priority patent/EP1306693B1/en
Priority to AT02023780T priority patent/ATE331963T1/en
Priority to US10/281,121 priority patent/US6858832B2/en
Publication of JP2003133933A publication Critical patent/JP2003133933A/en
Application granted granted Critical
Publication of JP3860013B2 publication Critical patent/JP3860013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばプレス装置への侵入検出等に用いられる多光軸光電センサに係わり、特に干渉光による誤動作の防止を図ったものに関する。
【0002】
【従来の技術】
この種の多光軸光電センサとして、例えば特許第2911369号公報に開示されているものがある。このものは、複数の投光素子が備えられた投光器と各投光素子に対応して複数の受光素子を備えた受光器とが対向して配置されており、それぞれの投光素子と受光素子とが光軸を構成している。投光器に備えられた投光素子は所定の投光タイミングにて順次投光される投光スキャン動作を繰り返し行い、これと光軸を構成する受光素子からの受光信号に基づいて光軸の遮光を検出して、検出エリア内への物体侵入を検知するものである。
【0003】
ところで、より広い領域で物体の侵入を検出すべく複数台の多光軸光電センサを設置することがあり、図6に示すように多光軸光電センサ同士が近接した状態に配されることがある。このような場合、例えば上方に設置されている多光軸光電センサ61のいずれかの光軸が遮光検出を行なっているときに、下方に設置されている多光軸光電センサ62から投光された光が、上方の多光軸光電センサ61の受光素子に干渉光として入射することがある。すると、上方の多光軸光電センサ61の光軸が遮光されているのに、下方の多光軸光電センサ62からの光が干渉光として入射するために光軸の遮光状態を検出できないという誤動作を生じさせてしまうことになる。
【0004】
このような誤動作を防止するには、近接する多光軸光電センサ間では投光タイミングが重複しないように、投光スキャン動作を制御する必要がある。これには、2つの多光軸光電センサ61,62の内、一方をマスター局、他方をスレーブ局としてマスター局からスレーブ局に同期信号を送出し、スレーブ局ではマスター局とは異なる位相で投光スキャン動作が行われるようにする同期方式を採用することが一般的である。このようにすると、一方の多光軸光電センサ61における投光素子の点灯時に、他方の多光軸光電センサ62では受光信号の検出を行なわないから、誤動作を防止できるという利点がある。
【0005】
【発明が解決しようとする課題】
しかしながら、上述のような同期方式を採用すると、その配線作業が煩わしく、設置に伴う作業工数が多くなるという問題がある。
また、この種の多光軸光電センサでは、一般に、いずれの投光素子も点灯させていないタイミングで受光素子に受光信号が現れるか否かを検出して、干渉光の有無を判断する干渉光検出動作を行うようにしていることが多い。すると、同期方式で万一同期が外れて偶然に干渉光の検出タイミングと一致してしまうと、もともと同一周期で投光スキャン動作が行われているから、周期的に干渉光が検出されることになり、センサ異常と判断されてしまうことがある。
【0006】
本発明は上記のような事情に基づいて完成されたものであって、多光軸光電センサ間に同期線を配線しなくても、多光軸光電センサ間での相互干渉を防止することができる多光軸光電センサを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するための手段として、請求項1の発明は、複数の投光素子と、各投光素子に対向して複数の光軸を構成するように設けられた複数の受光素子と、前記投光素子群を所定のタイミングで順次点灯させる投光スキャン動作を所定の周期で繰り返させる投光制御手段と、前記各受光素子からの受光信号を、それと対向して前記光軸を形成する投光素子の点灯タイミングに一致させて検出することにより前記光軸における遮光状態を検出する遮光検出手段と、いずれの前記投光素子も点灯されていない時期において前記複数の光軸について各光軸ごとに前記受光素子からの受光信号に基づいて干渉光の存在を検出する干渉光検出手段とを備え、この干渉光検出手段によって干渉光が検出されたときには前記投光制御手段における前記投光スキャン動作中の前記投光素子の点灯間隔を変えずに、当該投光スキャン動作の開始タイミングを異ならせるようにしたところに特徴を有する。
【0008】
請求項2の発明は、請求項1に記載のものにおいて、前記干渉光検出手段によって干渉光が検出されたときには投光スキャン動作の開始タイミングを、前記投光素子の点灯間隔の半分に相当する時間ずらすところに特徴を有する。
【0009】
【発明の作用及び効果】
<請求項1の発明>
例えば、多光軸光電センサ同士を近接して設置した場合、投光タイミングの周期が同一だと、一方の多光軸光電センサの投光タイミングと他方の多光軸光電センサの投光タイミングとが時間軸上に重複して相互干渉が発生する場合がある。本発明の多光軸光電センサでは、いずれの投光素子も点灯されていない時期受光信号からの受光信号があると、干渉光検出手段がこれに基づき干渉光が検出される。そして、その干渉光が検出されたときには、投光制御手段の投光スキャン動作の開始タイミングを異ならせる。この結果、双方の多光軸光電センサの投光タイミングが重複しなくなり、相互干渉を防止することが可能となる。
【0010】
<請求項2の発明>
投光スキャン動作の開始タイミングが、投光素子の点灯間隔の半分に相当する時間ずらされると、互いの投光タイミングの時間的な位置関係は最も離隔することになる。これによって、相互干渉のおそれを確実に回避することができる。
【0011】
【発明の実施の形態】
本発明の一実施形態を図1ないし図5によって説明する。
本実施形態の多光軸光電センサ1は図1に示すように、投光器2と受光器3とを対向させた状態で構成され、例えば、4チャンネルの光軸Lを有する。投光器2のうち受光器3と対向する面には、各チャンネル毎に1個(計4個)のLED21a〜21dが上下方向に一列に配置され、受光器3のうち投光器2と対向する面にはLED21a〜21dと対をなすフォトダイオード31a〜31d(PD31a〜31dと称する)が同じく上下方向に配されている。従って、LED21a〜21dは投光素子に相当し、PD31a〜31dは投光素子と対となって光軸を構成する受光素子に相当する。また、図1中の下方には多光軸光電センサ10が近接して配置されている。
【0012】
図2には、本実施形態の多光軸光電センサ1の電気的構成を示す。投光器2にはLED21a〜21dを点灯させるための駆動回路22a〜22dが備えられ、各駆動回路22a〜22dはAND回路23a〜23dからの信号を受けるとLED21a〜21dに駆動電流を供給する。AND回路23a〜23dにはシフトレジスタ24及び投光側CPU25からの出力信号が入力され、双方からの信号が入力されると駆動回路23a〜23dに信号を送出するようになっている。投光側CPU25は後述する受光器3に備えられた受光側CPU35から投光タイミング信号Stを受けとり、この投光タイミング信号Stをシフトレジスタ24及びAND回路23a〜23dに出力する。
【0013】
この投光タイミング信号Stは所定周期のパルス信号であって、LED21a〜21dの点灯タイミングを決定するために受光側CPU35によって生成される。投光タイミング信号Stの1周期(長さT)内には4個のパルスが時間taを空けて等間隔に発生し、4番目のパルスの後、所定長さの休止期間tbが設けられている。これにより、4個のLED21a〜21dが上から下へと順次点灯される投光スキャン動作が周期T毎に繰り返し行なわれる。従って、AND回路23a〜23d、シフトレジスタ24、投光側CPU25及び受光側CPU35が投光素子群を所定のタイミングで順次点灯させる投光制御手段を構成する。
【0014】
一方、受光器3には、PD31a〜31dからの受光信号を所定の増幅率で増幅する受光アンプ32a〜32dがそれぞれ備えられている。受光アンプ32a〜32dから出力される受光信号はアナログスイッチ33a〜33dを介し、共通の信号線にまとめられてコンパレータ34に取り込まれる。この受光信号がコンパレータ34に設定されている基準値を上回ると受光側CPU35に入光検出信号Sdが入力され、入光したことが検出される。
【0015】
受光側CPU35は前述の投光タイミング信号Stと周期及び位相が一致した遮光検出タイミング信号Srと、この遮光検出タイミング信号Srよりも位相が僅かに進んだ干渉光検出タイミング信号Siとをシフトレジスタ36に送出している。受光側CPU35から遮光検出タイミング信号Sr及び干渉光検出タイミング信号Siを受けたシフトレジスタ36は、これに接続された各アナログスイッチ33a〜33dをオン状態にするためのゲート制御信号をアナログスイッチ33aからアナログスイッチ33dへと順次送出し、各PD31a〜31dからの受光信号をコンパレータ34に入力される。すると、遮光検出タイミング信号Srが送出されたときには、各LED21a〜21dが点灯状態にあるから、コンパレータ34からの入光検出信号の有無によって遮光検出が行なわれ、干渉光検出タイミング信号Siが送出されたときには、LED21a〜21dが非点灯状態であるから、コンパレータ34からの入光検出信号の有無によって干渉光の検出が行なわれる。
【0016】
以下、受光側CPU35の動作について図3〜図5をも参照して説明する。まず、多光軸光電センサ1の電源をオンすると、図2に示すように受光側CPU35は投光側CPU25に投光タイミング信号Stを送出して、投光スキャン動作を周期Tで繰り返し行なわせる。また、受光側CPU35は、遮光検出タイミング信号Sr及び干渉光検出タイミング信号Siをシフトレジスタ36に送出してアナログスイッチ33a〜33dを順次オン状態にさせ、各PD31a〜31dからの受光信号をコンパレータ34に入力して遮光検出及び干渉検出を行なう。
【0017】
<遮光検出>
図3のタイムチャートにおいて遮光検出タイミング信号Srのレベルがハイレベル(H)であるときには図4に示す遮光検出ルーチンが実行される。例えば、光軸を遮る物体がない場合には各PD31a〜31dにはLED21a〜21dからの光が入光するため、全てのPD31a〜31dの遮光検出においてコンパレータ34から入光検出信号が受光側CPU35に出力される。従って、受光側CPU35は全てのPD31a〜31dが入光状態であると判断する(ステップS41でNo)。
ここで、PD31aから構成される光軸が物体によって遮られた場合、PD31aが接続されているアナログスイッチ33aをオン状態にしても、コンパレータ34からは入光検出信号が出力されず非入光状態と判断し(ステップS41でYes)遮光検出のカウントがされる(ステップS42)。PD31b〜31dについてはLED21b〜21dからの光が入射するためステップS41でNoとなる。そして、次の周期となって、繰り返しPD31a〜31dの遮光検出が行なわれる。PD31aの遮光検出時では、コンパレータ34から入光検出信号が出力されないため非入光状態と判断される(ステップS41でYes)。すると、遮光検出のカウントが追加され(ステップS42)、PD31aから構成される光軸について2回連続して遮光状態であると判断されるので(ステップS43でYes)、出力回路37に信号を送出して(ステップS44)遮光状態であることの処理を行なわせる。尚、最下段のPD31dについての遮光検出が終了すると(ステップS45でYes)遮光検出のカウントがリセットされ、再び上記動作が繰り返される。これより、アナログスイッチ33a〜33d、コンパレータ34、受光側CPU35及びシフトレジスタ36が各光軸における遮光状態を検出する遮光検出手段として機能することが明らかとなる。
【0018】
<干渉光検出>
一方、干渉光検出タイミング信号SiのレベルがHであるときには図5に示す干渉光検出ルーチンが実行される。通常は、多光軸光電センサ1の遮光検出タイミング信号Srと他の多光軸光電センサ10の遮光検出タイミング信号は非同期で位相がずれているから、多光軸光電センサ1の遮光検出タイミングに多光軸光電センサ10の投光素子からの光は入射しない(図3中の期間Aに相当する)。従って、干渉光検出タイミングにおいて、各PD31a〜31dからの受光信号がアナログスイッチ33a〜33dによって順次有効化されてもコンパレータ34からは入光検出信号は出力されないため、いずれのPD31a〜31dについても非入光状態と判断して(ステップS51でNo)、結局、干渉光が入射したと判断されない。
【0019】
逆に、各多光軸光電センサ1,10はそれぞれ独立して動作しているため、例えば、多光軸光電センサ10の遮光検出タイミングが遅れることによって多光軸光電センサ1の遮光検出タイミングに近づいていき、やがて、多光軸光電センサ1の干渉光検出タイミングと時間軸上で重複することがある。すると、多光軸光電センサ1が干渉光検出タイミングとなっているときに多光軸光電センサ10の投光素子からの光が入射する(図3中の期間Bに相当する)。まず、最上段の光軸にあるPD31aに干渉光が入射したと判断され(ステップS51でYes)、入光検出がカウントされる(ステップS52)。続いて、次の光軸にあるPD31bについても同様に光が入射していると判断され(ステップS51でYes)、入光検出のカウントがされる(ステップS52)。以降、PD31c、31dについても同様に光が入射していると判断される(ステップS51でYes、ステップS52)。そして、再び、PD31a〜31dについての干渉光検出が行なわれ、最下段のPD31dについての干渉光検出が終了したところで(ステップS53でYes)、各光軸について干渉光検出のカウントから干渉光入射の判断をする。結局、いずれの光軸も2回カウントされているので干渉光が入射したと判断される(ステップS54でYes)。すると、次の干渉光検出タイミング信号Siのパルスが発生するまでの休止期間tbが遮光検出タイミング信号Srの隣接するパルス間の時間taの半分だけ短縮され休止期間tcとなる(ステップS55)。これによって遮光検出タイミング信号Srのパルス列が休止期間tbを短縮していない場合の遮光検出タイミング信号(図中最上段)のパルス列と比べて図3の左方向にずれることになる。また、上記動作から明らかなように、アナログスイッチ33a〜33d、コンパレータ34、受光側CPU35及びシフトレジスタ36は投光制御手段の投光スキャン動作の開始タイミングを異ならせる干渉光検出手段として機能する。
【0020】
このように、本実施形態の多光軸光電センサ1によれば、干渉光検出において、同一の光軸について光が2回連続して入射すると、休止期間tbを遮光検出タイミング信号Srの隣接するパルス間の時間taの半分の時間に相当する時間だけ短くする。この結果、他の多光軸光電センサ10から出射される周期的な干渉光であれば、以降の遮光検出タイミングと干渉光とは時間軸上において最も離隔した位置関係となり、干渉光の入射を回避して相互干渉を確実に防止することができる。また、他の多光軸光電センサ10とは独立して動作しているために、他の多光軸光電センサ10と同期をとるための同期線が必要なく、配線の取りまわしを簡略化することも可能となる。
【0021】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、同一の光軸について干渉光が2回連続で検出されたことを条件に休止期間を短く変更していたが、例えば、干渉光が1回又は連続して3回以上検出されたことを条件に休止期間T2を変更するようにしてもよい。
【0022】
(2)休止期間tbを短く変更することに限らず、長く変更するようにしても同様の効果が得られる。
【図面の簡単な説明】
【図1】多光軸光電センサの構成斜視図
【図2】多光軸光電センサの電気的構成を示す回路図
【図3】多光軸光電センサの動作を示すタイムチャート
【図4】遮光検出ルーチンのフローチャート
【図5】干渉光検出ルーチンのフローチャート
【図6】従来の多光軸光電センサの構成斜視図
【符号の説明】
21a〜21d…LED
25…投光側CPU
31a〜31d…PD
33a〜33d…アナログスイッチ
34…コンパレータ
35…受光側CPU
36…シフトレジスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-optical axis photoelectric sensor used for detecting, for example, intrusion into a press device, and more particularly to a device that prevents malfunction due to interference light.
[0002]
[Prior art]
An example of this type of multi-optical axis photoelectric sensor is disclosed in Japanese Patent No. 2911369. In this device, a light projector having a plurality of light projecting elements and a light receiver having a plurality of light receiving elements corresponding to each light projecting element are arranged to face each other. Constitutes the optical axis. The light projecting element provided in the light projector repeatedly performs a light projecting scan operation in which light is sequentially projected at a predetermined light projecting timing, and shields the optical axis based on this and a light reception signal from a light receiving element constituting the optical axis. It detects and detects the object intrusion into the detection area.
[0003]
By the way, a plurality of multi-optical axis photoelectric sensors may be installed in order to detect intrusion of an object in a wider area, and the multi-optical axis photoelectric sensors may be arranged close to each other as shown in FIG. is there. In such a case, for example, when any one of the optical axes of the multi-optical axis photoelectric sensor 61 installed at the upper side is performing light-shielding detection, light is projected from the multi-optical axis photoelectric sensor 62 installed at the lower side. Light may enter the light receiving element of the upper multi-optical axis photoelectric sensor 61 as interference light. Then, although the optical axis of the upper multi-optical axis photoelectric sensor 61 is shielded from light, the light from the lower multi-optical axis photoelectric sensor 62 enters as interference light, so that the malfunction of the optical axis cannot be detected. Will be caused.
[0004]
In order to prevent such a malfunction, it is necessary to control the light projection scan operation so that the light projection timing does not overlap between adjacent multi-optical axis photoelectric sensors. For this purpose, one of the two multi-optical axis photoelectric sensors 61 and 62 is set as a master station and the other is set as a slave station, and a synchronization signal is transmitted from the master station to the slave station. It is common to employ a synchronization method that allows an optical scanning operation to be performed. In this way, when the light projecting element in one of the multi-optical axis photoelectric sensors 61 is turned on, the other multi-optical axis photoelectric sensor 62 does not detect the light reception signal, so that there is an advantage that malfunction can be prevented.
[0005]
[Problems to be solved by the invention]
However, when the synchronization method as described above is adopted, the wiring work is troublesome, and there is a problem that the number of work steps accompanying installation increases.
Also, in this type of multi-optical axis photoelectric sensor, in general, interference light that detects whether or not a light reception signal appears on the light receiving element at a timing when none of the light projecting elements is turned on, and determines the presence or absence of interference light. In many cases, the detection operation is performed. Then, if the synchronization method is out of sync and accidentally coincides with the interference light detection timing, the light projection scan operation is originally performed in the same cycle, so interference light is periodically detected. Therefore, it may be determined that the sensor is abnormal.
[0006]
The present invention has been completed based on the above circumstances, and can prevent mutual interference between multi-optical axis photoelectric sensors without wiring a synchronization line between the multi-optical axis photoelectric sensors. An object of the present invention is to provide a multi-optical axis photoelectric sensor that can be used.
[0007]
[Means for Solving the Problems]
As a means for achieving the above object, the invention of claim 1 includes a plurality of light projecting elements, and a plurality of light receiving elements provided so as to constitute a plurality of optical axes opposite to the light projecting elements. A light projecting control means for repeating a light projecting scan operation for sequentially lighting the light projecting element group at a predetermined timing at a predetermined period; and a light receiving signal from each of the light receiving elements is formed so as to face the light emitting signal. A light-blocking detecting means for detecting a light-blocking state on the optical axis by detecting the light-projecting element in accordance with a lighting timing of the light-projecting element , and each light for the plurality of optical axes at a time when none of the light-projecting elements is lit. for each axis and a interference light detecting means for detecting the presence of the interference light based on a photodetection signal from the photodetection element, before the light projecting control means when the interference light is detected by the interference light detecting means Without changing the lighting interval of the light emitting element in the light-projecting scanning operation, characterized in it was made different start timings of the light projecting scanning operation.
[0008]
According to a second aspect of the present invention, in the first aspect, when the interference light is detected by the interference light detecting means, the start timing of the light projection scan operation corresponds to half of the lighting interval of the light projecting element. It is characterized by the time shift.
[0009]
[Action and effect of the invention]
<Invention of Claim 1>
For example, when the multi-optical axis photoelectric sensors are installed close to each other and the period of the light projection timing is the same, the light projection timing of one multi-optical axis photoelectric sensor and the light projection timing of the other multi-optical axis photoelectric sensor are May overlap on the time axis and cause mutual interference. In the multi-optical axis photoelectric sensor of the present invention, when there is a light reception signal from a time light reception signal when none of the light projecting elements is lit, the interference light detection means detects the interference light based on this. When the interference light is detected, the start timing of the light projection scanning operation of the light projection control unit is varied. As a result, the light projection timings of both multi-optical axis photoelectric sensors do not overlap, and mutual interference can be prevented.
[0010]
<Invention of Claim 2>
If the start timing of the light projection scan operation is shifted by a time corresponding to half the lighting interval of the light projecting elements, the temporal positional relationship between the light projection timings is farthest away. Thereby, the possibility of mutual interference can be reliably avoided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the multi-optical axis photoelectric sensor 1 of the present embodiment is configured with a projector 2 and a light receiver 3 facing each other, and has, for example, a four-channel optical axis L. On the surface of the light projector 2 facing the light receiver 3, one LED (a total of four) LEDs 21 a to 21 d are arranged in a line in the vertical direction for each channel, and on the surface of the light receiver 3 facing the light projector 2. The photodiodes 31a to 31d (referred to as PDs 31a to 31d) paired with the LEDs 21a to 21d are also arranged in the vertical direction. Accordingly, the LEDs 21a to 21d correspond to light projecting elements, and the PDs 31a to 31d correspond to light receiving elements that form a pair with the light projecting elements and constitute an optical axis. In addition, a multi-optical axis photoelectric sensor 10 is disposed close to the lower part in FIG.
[0012]
FIG. 2 shows an electrical configuration of the multi-optical axis photoelectric sensor 1 of the present embodiment. The projector 2 is provided with drive circuits 22a to 22d for lighting the LEDs 21a to 21d, and each drive circuit 22a to 22d supplies a drive current to the LEDs 21a to 21d when receiving signals from the AND circuits 23a to 23d. Output signals from the shift register 24 and the light-projecting CPU 25 are input to the AND circuits 23a to 23d. When signals from both are input, signals are sent to the drive circuits 23a to 23d. The light projection side CPU 25 receives a light projection timing signal St from a light reception side CPU 35 provided in the light receiver 3 described later, and outputs this light projection timing signal St to the shift register 24 and the AND circuits 23a to 23d.
[0013]
The light projection timing signal St is a pulse signal having a predetermined cycle, and is generated by the light receiving side CPU 35 in order to determine the lighting timing of the LEDs 21a to 21d. Within one cycle (length T) of the projection timing signal St, four pulses are generated at equal intervals with a time ta, and after the fourth pulse, a pause period tb of a predetermined length is provided. Yes. Thereby, the light projection scanning operation in which the four LEDs 21a to 21d are sequentially turned on from the top to the bottom is repeatedly performed every period T. Therefore, the AND circuits 23a to 23d, the shift register 24, the light emitting side CPU 25, and the light receiving side CPU 35 constitute a light projecting control means for sequentially lighting the light projecting element group at a predetermined timing.
[0014]
On the other hand, the light receiver 3 includes light receiving amplifiers 32a to 32d for amplifying light reception signals from the PDs 31a to 31d at a predetermined amplification rate, respectively. The light receiving signals output from the light receiving amplifiers 32a to 32d are collected into a common signal line and taken into the comparator 34 via the analog switches 33a to 33d. When this light reception signal exceeds the reference value set in the comparator 34, the light incident detection signal Sd is input to the light receiving side CPU 35, and it is detected that light has entered.
[0015]
The light-receiving side CPU 35 shifts the light-shielding detection timing signal Sr whose cycle and phase coincide with those of the light-projecting timing signal St and the interference light detection timing signal Si whose phase is slightly advanced from the light-shielding detection timing signal Sr. Is being sent to. The shift register 36 that has received the light shielding detection timing signal Sr and the interference light detection timing signal Si from the light receiving side CPU 35 receives a gate control signal from the analog switch 33a for turning on the analog switches 33a to 33d connected thereto. The signals are sequentially sent to the analog switch 33d, and the received light signals from the PDs 31a to 31d are input to the comparator 34. Then, when the light shielding detection timing signal Sr is sent, each of the LEDs 21a to 21d is in a lighting state. Since the LEDs 21a to 21d are not lit, the interference light is detected depending on the presence or absence of the light incident detection signal from the comparator 34.
[0016]
Hereinafter, the operation of the light receiving side CPU 35 will be described with reference to FIGS. First, when the power of the multi-optical axis photoelectric sensor 1 is turned on, the light receiving side CPU 35 sends a light projection timing signal St to the light projecting side CPU 25 as shown in FIG. . In addition, the light receiving side CPU 35 sends the light shielding detection timing signal Sr and the interference light detection timing signal Si to the shift register 36 to sequentially turn on the analog switches 33a to 33d, and receives the light receiving signals from the PDs 31a to 31d as comparators 34. To detect light and detect interference.
[0017]
<Shading detection>
In the time chart of FIG. 3, when the level of the light blocking detection timing signal Sr is high (H), the light blocking detection routine shown in FIG. 4 is executed. For example, when there is no object that blocks the optical axis, the light from the LEDs 21a to 21d enters each of the PDs 31a to 31d. Is output. Therefore, the light receiving side CPU 35 determines that all the PDs 31a to 31d are in the light incident state (No in step S41).
Here, when the optical axis composed of the PD 31a is obstructed by an object, even if the analog switch 33a to which the PD 31a is connected is turned on, the light incident detection signal is not output from the comparator 34 and the light is not incident. (Yes in step S41), the light shielding detection is counted (step S42). Since the light from the LEDs 21b to 21d is incident on the PDs 31b to 31d, No is obtained in step S41. In the next cycle, the light shielding detection of the PDs 31a to 31d is repeatedly performed. At the time of detecting the light shielding of the PD 31a, since the light incident detection signal is not output from the comparator 34, it is determined that the light is not incident (Yes in step S41). Then, a count for detecting light shielding is added (step S42), and it is determined that the light axis constituted by the PD 31a is in a light shielding state twice (Yes in step S43), and a signal is sent to the output circuit 37. (Step S44), the process of being in the light shielding state is performed. When the light shielding detection for the lowermost PD 31d is completed (Yes in step S45), the light shielding detection count is reset, and the above operation is repeated again. As a result, it becomes clear that the analog switches 33a to 33d, the comparator 34, the light receiving side CPU 35, and the shift register 36 function as a light blocking detection unit that detects a light blocking state on each optical axis.
[0018]
<Interference light detection>
On the other hand, when the level of the interference light detection timing signal Si is H, the interference light detection routine shown in FIG. Normally, the light-shielding detection timing signal Sr of the multi-optical axis photoelectric sensor 1 and the light-shielding detection timing signals of the other multi-optical axis photoelectric sensors 10 are asynchronously out of phase, so The light from the light projecting element of the multi-optical axis photoelectric sensor 10 does not enter (corresponding to the period A in FIG. 3). Therefore, at the interference light detection timing, even if the light reception signals from the PDs 31a to 31d are sequentially enabled by the analog switches 33a to 33d, no light incident detection signal is output from the comparator 34. It is determined that the light is incident (No in step S51), and it is not determined that interference light has been incident.
[0019]
On the other hand, since each multi-optical axis photoelectric sensor 1 and 10 operates independently, for example, the light-shielding detection timing of the multi-optical axis photoelectric sensor 1 is delayed by the delay of the light-shielding detection timing of the multi-optical axis photoelectric sensor 10. In time, the interference light detection timing of the multi-optical axis photoelectric sensor 1 may overlap with the time axis. Then, light from the light projecting element of the multi-optical axis photoelectric sensor 10 enters when the multi-optical axis photoelectric sensor 1 is at the interference light detection timing (corresponding to a period B in FIG. 3). First, it is determined that interference light has entered the PD 31a on the uppermost optical axis (Yes in step S51), and incident light detection is counted (step S52). Subsequently, similarly, it is determined that the light is incident on the PD 31b on the next optical axis (Yes in Step S51), and the incident light detection is counted (Step S52). Thereafter, it is determined that the light is incident on the PDs 31c and 31d as well (Yes in step S51, step S52). Then, interference light detection is performed again for the PDs 31a to 31d, and when interference light detection for the lowermost PD 31d is completed (Yes in step S53), the interference light incident count is determined based on the interference light detection count for each optical axis. Make a decision. Eventually, since any optical axis is counted twice, it is determined that the interference light is incident (Yes in step S54). Then, the pause period tb until the next pulse of the interference light detection timing signal Si is generated is shortened by half of the time ta between adjacent pulses of the light shielding detection timing signal Sr to become a pause period tc (step S55). As a result, the pulse train of the light shielding detection timing signal Sr is shifted to the left in FIG. 3 compared to the pulse train of the light shielding detection timing signal (the uppermost stage in the figure) when the pause period tb is not shortened. As is clear from the above operation, the analog switches 33a to 33d, the comparator 34, the light receiving side CPU 35, and the shift register 36 function as interference light detection means that varies the start timing of the light projection scan operation of the light projection control means.
[0020]
As described above, according to the multi-optical axis photoelectric sensor 1 of the present embodiment, in the interference light detection, when light is incident twice on the same optical axis, the pause period tb is adjacent to the light-shielding detection timing signal Sr. The time is shortened by a time corresponding to half the time ta between pulses. As a result, if the periodic interference light emitted from the other multi-optical axis photoelectric sensor 10, the subsequent light shielding detection timing and the interference light are in the most separated positional relationship on the time axis, and the interference light is not incident. By avoiding this, mutual interference can be surely prevented. In addition, since it operates independently of the other multi-optical axis photoelectric sensors 10, there is no need for a synchronization line for synchronizing with the other multi-optical axis photoelectric sensors 10, and the wiring arrangement is simplified. Is also possible.
[0021]
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the above embodiment, the pause period is changed to be short on the condition that the interference light is continuously detected twice for the same optical axis. For example, the interference light is once or continuously three times. The pause period T2 may be changed on condition that the above is detected.
[0022]
(2) The same effect can be obtained not only by changing the suspension period tb to be shorter but also by changing it longer .
[Brief description of the drawings]
FIG. 1 is a perspective view showing the configuration of a multi-optical axis photoelectric sensor. FIG. 2 is a circuit diagram showing the electrical configuration of the multi-optical axis photoelectric sensor. FIG. 3 is a time chart showing the operation of the multi-optical axis photoelectric sensor. Flowchart of detection routine [FIG. 5] Flowchart of interference light detection routine [FIG. 6] Configuration perspective view of a conventional multi-optical axis photoelectric sensor [Explanation of symbols]
21a-21d ... LED
25: CPU on the light emitting side
31a-31d ... PD
33a to 33d ... Analog switch 34 ... Comparator 35 ... Light receiving side CPU
36: Shift register

Claims (2)

複数の投光素子と、各投光素子に対向して複数の光軸を構成するように設けられた複数の受光素子と、前記投光素子群を所定のタイミングで順次点灯させる投光スキャン動作を所定の周期で繰り返させる投光制御手段と、前記各受光素子からの受光信号を、それと対向して前記光軸を形成する投光素子の点灯タイミングに一致させて検出することにより前記光軸における遮光状態を検出する遮光検出手段と、いずれの前記投光素子も点灯されていない時期において前記複数の光軸について各光軸ごとに前記受光素子からの受光信号に基づいて干渉光の存在を検出する干渉光検出手段とを備え、この干渉光検出手段によって干渉光が検出されたときには前記投光制御手段における前記投光スキャン動作中の前記投光素子の点灯間隔を変えずに、当該投光スキャン動作の開始タイミングを異ならせるようにしたことを特徴とする多光軸光電センサ。A plurality of light projecting elements, a plurality of light receiving elements provided so as to constitute a plurality of optical axes facing each of the light projecting elements, and a light projecting scan operation for sequentially lighting the light projecting element group at a predetermined timing And a light-projecting control means for repeating the light-receiving signal from each of the light-receiving elements and detecting the light-receiving signal in correspondence with the lighting timing of the light-projecting element that forms the optical axis facing the light-receiving signal. A light-blocking detecting means for detecting a light-blocking state in the light source, and the presence of interference light based on a light-receiving signal from the light-receiving element for each of the plurality of optical axes at a time when none of the light projecting elements is lit. a interference light detecting means detect, without changing the lighting interval of the light emitting element in the light-projecting scanning operation in the light emitting control means when the interference light is detected by the interference light detecting means, Multi-optical axis photoelectric sensor being characterized in that so as to vary the start timing of the-projecting optical scanning operation. 前記干渉光検出手段によって干渉光が検出されたときには投光スキャン動作の開始タイミングを、前記投光素子の点灯間隔の半分に相当する時間ずらすことを特徴とする請求項1記載の多光軸光電センサ。  2. The multi-optical axis photoelectric sensor according to claim 1, wherein when the interference light is detected by the interference light detection means, the start timing of the light projection scanning operation is shifted by a time corresponding to half of the lighting interval of the light projecting element. Sensor.
JP2001331504A 2001-10-29 2001-10-29 Multi-axis photoelectric sensor Expired - Fee Related JP3860013B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001331504A JP3860013B2 (en) 2001-10-29 2001-10-29 Multi-axis photoelectric sensor
CN 02143973 CN1234020C (en) 2001-10-29 2002-09-29 Multiple-optical axis photoelectronic sensor
CA002409638A CA2409638A1 (en) 2001-10-29 2002-10-24 Photoelectric sensor
DE60212785T DE60212785T2 (en) 2001-10-29 2002-10-25 Photoelectric multi-axis sensor with interference light detection
EP05007438A EP1548466A1 (en) 2001-10-29 2002-10-25 Multiple-axis photoelectric sensor with interfering light detection means
AU2002301601A AU2002301601B2 (en) 2001-10-29 2002-10-25 Photoelectric Sensor
EP02023780A EP1306693B1 (en) 2001-10-29 2002-10-25 Multiple-axis photoelectric sensor with interfering light detection means
AT02023780T ATE331963T1 (en) 2001-10-29 2002-10-25 PHOTOELECTRIC MULTI-AXIS SENSOR WITH INTERFERENCE LIGHT DETECTION
US10/281,121 US6858832B2 (en) 2001-10-29 2002-10-28 Photoelectric sensor having time changing means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331504A JP3860013B2 (en) 2001-10-29 2001-10-29 Multi-axis photoelectric sensor

Publications (2)

Publication Number Publication Date
JP2003133933A JP2003133933A (en) 2003-05-09
JP3860013B2 true JP3860013B2 (en) 2006-12-20

Family

ID=19147071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331504A Expired - Fee Related JP3860013B2 (en) 2001-10-29 2001-10-29 Multi-axis photoelectric sensor

Country Status (2)

Country Link
JP (1) JP3860013B2 (en)
CN (1) CN1234020C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009862B2 (en) * 2003-09-30 2007-11-21 オムロン株式会社 Multi-axis photoelectric sensor
JP5182064B2 (en) * 2008-12-19 2013-04-10 オムロン株式会社 Multi-axis photoelectric sensor
JP5970230B2 (en) * 2012-05-08 2016-08-17 アツミ電氣株式会社 Ranging type security sensor
RU2015129552A (en) * 2012-12-18 2017-01-25 Конинклейке Филипс Н.В. SENSOR TRANSMISSION MANAGEMENT
JP6291993B2 (en) * 2014-04-18 2018-03-14 オムロン株式会社 Multi-axis photoelectric sensor
CN106569286B (en) * 2016-10-27 2019-04-16 合肥欣奕华智能机器有限公司 A kind of photoelectric detection system
JP6878931B2 (en) 2017-02-08 2021-06-02 オムロン株式会社 Sensor control device and sensor system
CN109581895B (en) * 2018-11-23 2020-08-25 华自科技股份有限公司 Test tool control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN1417562A (en) 2003-05-14
JP2003133933A (en) 2003-05-09
CN1234020C (en) 2005-12-28

Similar Documents

Publication Publication Date Title
US7326910B2 (en) Multiple-optical-axis photoelectric sensor
US9798040B2 (en) Method for synchronizing optical units of a photoelectric barrier and light curtain
JP3860013B2 (en) Multi-axis photoelectric sensor
EP2584703B1 (en) Photoelectric switch
US6858832B2 (en) Photoelectric sensor having time changing means
JP5022767B2 (en) Multi-axis photoelectric sensor
JP2018152819A (en) Photoelectronic sensor
JP4278567B2 (en) Multi-axis photoelectric sensor
JP4846325B2 (en) Multi-optical axis photoelectric sensor, projector, and light receiver
JP4047710B2 (en) Multi-axis photoelectric sensor
JP2519310Y2 (en) Multi-axis photoelectric switch
JP4576065B2 (en) Photoelectric sensor
JP4394591B2 (en) Multi-axis photoelectric sensor
JP3833929B2 (en) Multi-axis photoelectric sensor
JP2005098874A (en) Infrared detection sensor
JP2002204151A (en) Many optic axes photoelectric sensor
JP2513335Y2 (en) Multi-axis photoelectric switch
JP2544069B2 (en) Multi-optical axis photoelectric switch
JP3851817B2 (en) Photoelectric sensor system and photoelectric sensor
JP4018515B2 (en) Multi-optical axis photoelectric switch and interference state canceling method of multi-optical axis photoelectric switch
JP4893782B2 (en) Multi-axis photoelectric sensor
JP3899422B2 (en) Photoelectric sensor
JP2605033B2 (en) Photoelectric switch
JPH0846505A (en) Multi-optical axis photoelectric sensor
JPH05136678A (en) Photoelectric switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Ref document number: 3860013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees