JP2519310Y2 - Multi-axis photoelectric switch - Google Patents

Multi-axis photoelectric switch

Info

Publication number
JP2519310Y2
JP2519310Y2 JP1990058055U JP5805590U JP2519310Y2 JP 2519310 Y2 JP2519310 Y2 JP 2519310Y2 JP 1990058055 U JP1990058055 U JP 1990058055U JP 5805590 U JP5805590 U JP 5805590U JP 2519310 Y2 JP2519310 Y2 JP 2519310Y2
Authority
JP
Japan
Prior art keywords
light
synchronization
light receiving
signal
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990058055U
Other languages
Japanese (ja)
Other versions
JPH0419830U (en
Inventor
悟 市村
Original Assignee
サンクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社 filed Critical サンクス株式会社
Priority to JP1990058055U priority Critical patent/JP2519310Y2/en
Publication of JPH0419830U publication Critical patent/JPH0419830U/ja
Application granted granted Critical
Publication of JP2519310Y2 publication Critical patent/JP2519310Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [考案の目的] (産業上の利用分野) 本考案は複数対の投光素子及び受光素子を備え、いず
れかの光軸が遮光されたことに基づき動作する多光軸式
光電スイッチに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial field of application) The present invention is a multi-light system that includes a plurality of pairs of light projecting elements and light receiving elements and operates based on the fact that one of the optical axes is shielded. The present invention relates to a shaft type photoelectric switch.

(従来の技術) この種の光電スイッチは、広い範囲で物体の有無を検
出できるため、例えばプレス装置の安全装置として利用
される。その基本的構成は、検出物が通過する領域に複
数本の光軸を構成するように対をなして投光素子及び受
光素子を設け、あたかも複数の透過形光電スイッチを組
合わせた形とするのである。この構成では、1つの光軸
に検出物が侵入してその光軸が遮られたとしても、遮ら
れた光軸の受光素子に隣の光軸の投光素子からの光が入
射して入光状態と見なされたのでは、検出物の進入を確
実に検出することができない。このため従来は、複数の
投光素子を所定のタイミングで順次発光させると共に、
受光回路側に投光タイミングに対応する同期信号を信号
ケーブルを介して送り、発光している投光素子に対応す
る受光素子のみを有効化する構成としていた。
(Prior Art) This type of photoelectric switch can detect the presence or absence of an object in a wide range, and thus is used as a safety device of a press machine, for example. Its basic structure is to provide a light projecting element and a light receiving element in a pair so as to form a plurality of optical axes in a region through which an object to be detected passes, and to form a combination of a plurality of transmissive photoelectric switches. Of. With this configuration, even if the detected object enters one optical axis and the optical axis is blocked, the light from the light projecting element of the adjacent optical axis enters the light receiving element of the blocked optical axis. If it is regarded as a light state, it is not possible to reliably detect the entry of the detection object. Therefore, conventionally, a plurality of light emitting elements are sequentially made to emit light at a predetermined timing, and
A synchronous signal corresponding to the light emitting timing is sent to the light receiving circuit side via a signal cable, and only the light receiving element corresponding to the light emitting element emitting light is made effective.

しかし、この構成では、投光装置と受光装置とを信号
ケーブルにて接続する必要があるため、設置時の配線作
業が相当に面倒になるという大きな欠点があった。
However, this configuration has a big drawback that the wiring work at the time of installation is considerably troublesome because it is necessary to connect the light projecting device and the light receiving device with a signal cable.

そこで、本出願人は、投光・受光装置間のワイヤレス
化を可能にする技術を開発し、既に出願した(特願昭61
-199863号)。これは、物体検出用の複数対の投光素子
及び受光素子に加えて同期用の投光素子及び受光素子を
設け、この同期用投光素子及び受光素子を利用して光信
号で同期信号を受光装置に送信する構成である。受光装
置は、同期用受光素子が同期用の光信号を受けたことを
検出する度に、受光回路に投光タイミングに対応する同
期信号を出力するようになっている。これによれば、受
光装置に同期信号を送るための信号ケーブルが不要にな
り、機器設置の自由度が高まるという利点がある。
Therefore, the present applicant has developed a technology that enables a wireless connection between the light projecting device and the light receiving device, and has already filed an application (Japanese Patent Application No.
-199863). In this system, in addition to a plurality of pairs of light emitting elements and light receiving elements for object detection, a light emitting element and a light receiving element for synchronization are provided, and the light emitting element and the light receiving element for synchronization are used to generate a synchronization signal as an optical signal. This is a configuration for transmitting to the light receiving device. The light receiving device outputs a synchronization signal corresponding to the light emitting timing to the light receiving circuit each time the synchronization light receiving element detects that the synchronization light signal has been received. According to this, there is an advantage that a signal cable for transmitting a synchronization signal to the light receiving device is not required, and the degree of freedom in equipment installation is increased.

(考案が解決しようとする課題) ところで、この種の光電スイッチでは、溶接のスパッ
タアーク等の極めて強い光が受光素子に入光すると、誤
動作を引起こす可能性がある。強い光が受光素子に入光
すると、その受光素子は飽和状態になってしまうため、
その直後に同期信号によってその受光素子が有効化され
たとしても、受光素子からの信号は遮光状態と同等にな
ってしまい、物体が光軸内に進入したと判定されてしま
うのである。また、同期信号を光信号によって受光装置
に送信する構成では、同期用受光素子がスパッタアーク
よって飽和してしまった場合には、受光回路に同期信号
を出力することができなくなるため、正確な検出が不可
能になるという問題を生ずる。
(Problems to be solved by the invention) By the way, in this type of photoelectric switch, if extremely strong light such as welding spatter arc enters the light receiving element, it may cause malfunction. When strong light enters the light receiving element, the light receiving element becomes saturated,
Immediately after that, even if the light receiving element is validated by the synchronization signal, the signal from the light receiving element becomes equivalent to the light-shielded state, and it is determined that the object has entered the optical axis. Further, in the configuration in which the synchronizing signal is transmitted to the light receiving device by an optical signal, if the synchronizing light receiving element is saturated by the sputter arc, the synchronizing signal cannot be output to the light receiving circuit, and therefore accurate detection is possible. Will be impossible.

そこで、本考案の目的は、投光・受光装置間のワイヤ
レス化を可能にしながら、スパッタアーク等の強烈な外
乱光によって誤動作を起こすことを防止でき、しかも確
実な同期をとることができる多光軸式光電スイッチを提
供するにある。
Therefore, an object of the present invention is to enable a wireless connection between a light projecting device and a light receiving device, while preventing malfunction due to intense ambient light such as spatter arc, and moreover, it is possible to achieve reliable synchronization. It is to provide an axial photoelectric switch.

[考案の構成] (課題を解決するための手段) 本考案の多光軸式光電スイッチは、検出用の光軸を構
成するように対をなして設けられた検出用投光素子及び
受光素子と、同期用の光軸を構成するように対をなして
設けられた同期用投光素子及び受光素子と、同期用投光
素子の発光時間を検出用投光素子の発光時間よりも長く
して各投光素子を所定の投光タイミングで繰返し走査す
るように発光させる投光回路と、同期用受光素子が所定
時間継続して受光状態となったことを検出する度に前記
投光タイミングに対応した同期信号を出力する同期信号
生成手段と、各検出用受光素子からの受光信号を同期信
号と同期をとりつつ取込むことにより各光軸の遮光状態
を検出する判定手段とを設け、判定手段は、各光軸の状
態を少なくとも前回の走査時について記憶し遮光状態が
複数回数の走査にわたって繰返されたことを条件に判定
を行うように構成され、同期信号生成手段は、前記同期
用受光素子が所定時間継続して受光状態となった後にお
いて前記同期用投光素子の発光タイミング周期が経過し
ても同期用受光素子が所定時間継続した受光状態となら
なかったときにはその前において所定時間継続して受光
状態となった前記同期用受光素子からの受光信号に基づ
くタイミングで同期信号を出力する構成とされていると
ころに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The multi-optical axis photoelectric switch of the present invention comprises a detection light projecting element and a light receiving element which are provided in pairs so as to form an optical axis for detection. And a synchronization light-projecting element and a light-receiving element provided in pairs so as to form an optical axis for synchronization, and the light emission time of the light-emitting element for synchronization is set longer than the light-emission time of the light-emitting element for detection. And a light projecting circuit that causes each light projecting element to emit light so as to repeatedly scan at a predetermined light projecting timing, and the light projecting timing is set every time it is detected that the synchronization light receiving element is in a light receiving state for a predetermined time. A determination is made by providing a synchronization signal generation unit that outputs a corresponding synchronization signal and a determination unit that detects the light-shielded state of each optical axis by capturing the light reception signal from each detection light receiving element in synchronization with the synchronization signal. Means to scan the state of each optical axis at least in the previous scan Is configured to perform determination on the condition that the light-shielded state is repeated over a plurality of times of scanning, and the synchronization signal generation means is configured to detect the synchronization light-receiving element after the synchronization light-receiving element is in the light-reception state for a predetermined time. If the light receiving element for synchronization does not reach the light receiving state that continues for a predetermined time even after the light emission timing period of the light emitting element for synchronization elapses, from the light receiving element for synchronization that continues to be in the light receiving state for a predetermined time before that. It is characterized in that it is configured to output a synchronization signal at a timing based on the received light signal of.

(作用) 同期用投光素子から投光される光信号は、検出用投光
素子から投光される光信号に比べて発光期間を長くされ
ている。このため、同期用受光素子に同期用投光素子か
らの光信号が入光したときには、同期信号生成手段にお
いて同期用受光素子が所定時間継続して受光状態となっ
たことが検出されて投光回路における投光タイミングに
対応した同期信号が判定手段に出力される。しかし、検
出用投光素子からの光信号が同期用受光素子に入光した
ときには、その光信号の発光期間は短いから同期用受光
素子が所定時間継続して受光状態となったことが検出さ
れず、同期信号は判定手段に与えられない。こうして同
期用の光信号と検出用の光信号とは明確に区別される。
(Operation) The light signal emitted from the synchronizing light emitting element has a longer light emission period than the light signal emitted from the detecting light emitting element. Therefore, when an optical signal from the synchronizing light emitting element enters the synchronizing light receiving element, the synchronizing signal generating means detects that the synchronizing light receiving element has been in the light receiving state for a predetermined period of time and emits light. A synchronization signal corresponding to the light emission timing in the circuit is output to the determination means. However, when the optical signal from the detecting light emitting element enters the synchronizing light receiving element, it is detected that the synchronizing light receiving element has been in the light receiving state for a predetermined time because the light emitting period of the optical signal is short. Therefore, the synchronization signal is not given to the judging means. In this way, the optical signal for synchronization and the optical signal for detection are clearly distinguished.

一方、判定手段は、検出用受光素子からの受光信号を
同期信号と同期をとりつつ取込むことにより各光軸の遮
光状態を検出し、しかも、各光軸の状態を少なくとも前
回の走査時について記憶し遮光状態が複数回数の走査に
わたって繰返されたことを条件に判定を行うように構成
されされている。従って、スパッタアークによって検出
用受光素子が一時的に飽和状態となってその光軸が遮光
状態と検出されても、その後の走査時に入光状態に戻る
から、誤判定は回避される。
On the other hand, the determination means detects the light shielding state of each optical axis by capturing the light reception signal from the detection light receiving element in synchronization with the synchronization signal, and moreover, determines the state of each optical axis at least at the time of the previous scanning. The determination is made on the condition that the stored light-shielded state is repeated over a plurality of times of scanning. Therefore, even if the detection light-receiving element is temporarily saturated by the sputter arc and its optical axis is detected to be in the light-shielded state, the light-receiving state is returned to during the subsequent scanning, so that an erroneous determination is avoided.

また、同期用受光素子がスパッタアークによって一時
的に飽和状態となって同期用投光素子からの光信号を受
信できなくなっても、同期信号生成手段は、同期用受光
素子が所定時間継続した受光状態とならなかったときに
はその前に入力された同期用受光素子からの受光信号に
基づくタイミングで同期信号を出力する構成とされてい
るから、判定手段において、検出用受光素子からの受光
信号をその同期信号と同期をとりつつ取込むことにより
光軸の遮光状態を検出することができる。
Further, even if the synchronizing light receiving element is temporarily saturated by the sputter arc and cannot receive the optical signal from the synchronizing light projecting element, the synchronizing signal generating means receives the light received by the synchronizing light receiving element for a predetermined time. When the state does not occur, the synchronizing signal is output at a timing based on the received light signal from the synchronizing light receiving element that is input before that state. By capturing while synchronizing with the synchronizing signal, the light blocking state of the optical axis can be detected.

(実施例) 以下本考案の一実施例について図面を参照して説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the drawings.

[1]投光装置 まず、投光回路11について述べるに、これは1個の同
期用投光素子12及び計3個の検出用投光素子13,14,15を
備え、各投光素子12〜15は検出物の通過領域を横切って
光を投射するように設けられている。これらを制御する
ためにはCPU16、シフトレジスタ17及び4個のアンドゲ
ート18が図示の通りに設けられ、このうちCPU16からは
第2図(A)に示すような投光信号SAが出力され、また
CPU16からの信号を受けて動作するシフトレジスタ17の
各出力ラインには同図(B)〜(E)に示す選択信号SB
〜SEが出力される。従って、各投光素子12〜15を駆動す
るための駆動回路19には、同図(F)〜(I)に示す駆
動信号SF〜SIが与えられることになり、各投光素子12〜
15がこれに基づくタイミングで繰返し走査されるように
発光される。そのうち特に同期用投光素子12から発せら
れる同期用光信号は検出用投光素子13〜15から発せられ
る検出用光信号に比べて発光期間が長くなるようにして
いる。具体的には、本実施例では投光信号SAのうち同期
用光信号のためのパルス群PSは例えば100KHZの周波数で
オンオフを繰り返すバースト信号となっており、その発
光期間は約100μsecであり、また、投光信号SAのうち検
出用光信号のためのパルスPDは単発パルスで、その光信
号の発光期間は同期用光信号の1/10に相当する約10μse
cとなっている。
[1] Projecting Device First, the projecting circuit 11 will be described. This is provided with one synchronizing projecting element 12 and a total of three detecting projecting elements 13, 14, 15 and each projecting element 12 is provided. ˜15 are provided so as to project light across the passage area of the object to be detected. In order to control these, a CPU 16, a shift register 17, and four AND gates 18 are provided as shown in the figure. Of these, the CPU 16 outputs a light emission signal S A as shown in FIG. 2 (A). ,Also
FIG Each output line of the shift register 17 which operates in response to a signal from CPU 16 (B) selection signal S B shown in ~ (E)
~ S E is output. Accordingly, the drive circuits 19 for driving the respective light projecting elements 12 to 15 are supplied with the drive signals S F to S I shown in FIGS. ~
15 is emitted so as to be repeatedly scanned at a timing based on this. Especially, the synchronizing light signal emitted from the synchronizing light projecting element 12 has a longer light emission period than the detecting light signals emitted from the detecting light projecting elements 13 to 15. Specifically, in this embodiment, the pulse group P S for the synchronizing optical signal of the light projecting signal S A is a burst signal that repeatedly turns on and off at a frequency of 100 KHZ, for example, and its light emitting period is about 100 μsec. Also, the pulse P D for the detection light signal of the light projection signal S A is a single-shot pulse, and the light emission period of the light signal is about 10 μse, which corresponds to 1/10 of the synchronization light signal.
It is c.

[2]受光装置 次に、受光回路21について述べるに、これは上記した
同期用及び検出用の各投光素子12〜15と対をなす同期用
受光素子22と検出用受光素子23〜25とを備える。同期用
投光素子12と同期用受光素子22とで同期用の光軸が形成
され、検出用投光素子13〜15と検出用受光素子23〜25と
で第1ないし第3の3本の検出用の光軸が形成される。
[2] Light-Receiving Device Next, the light-receiving circuit 21 will be described. It comprises a light-receiving element for synchronization 22 and a light-receiving element for detection 23 to 25 which are paired with the light-emitting elements 12 to 15 for synchronization and detection. Equipped with. The synchronizing light projecting element 12 and the synchronizing light receiving element 22 form an optical axis for synchronization, and the detecting light projecting elements 13 to 15 and the detecting light receiving elements 23 to 25 form the first to third three lines. An optical axis for detection is formed.

各受光素子22〜25は例えばフォトダイオードから構成
され、前記投光素子12〜15からの光信号を受光信号に光
電変換する。それらの受光信号は4個の受光アンプ26〜
29にて増幅され,選択的に有効化されるアナログスイッ
チ30を介してコンパレータ31に入力され、コンパレータ
31からの出力信号はCPU32及びオフディレイ回路33に与
えられる。コンパレータ31は受光信号SRを基準レベルと
比較することにより波形を整形する機能を有し、例えば
第3図(R)に示すような受光信号SRが与えられたとき
には同図(S)に示すような整形信号SSを出力する。ま
た、オフディレイ回路33は、コンパレータ31からの整形
信号SSのオフタイミングを遅らせる機能を有し、従っ
て、整形信号SSのうち同期用光信号に対応するは同図
(T)に示すような幅の十分に広いパルス(同期トリガ
信号T)に変換され、検出用光信号に対応する部分はパ
ルス幅が極僅かに広がるだけとなる。
Each of the light receiving elements 22 to 25 is composed of a photodiode, for example, and photoelectrically converts the optical signal from the light projecting elements 12 to 15 into a light receiving signal. These light receiving signals are received by four light receiving amplifiers 26-
The signal is input to the comparator 31 via the analog switch 30 which is amplified by 29 and is selectively activated.
The output signal from 31 is provided to the CPU 32 and the off delay circuit 33. The comparator 31 has a function of shaping the waveform by comparing the received light signal S R with a reference level. For example, when the received light signal S R as shown in FIG. The shaped signal S S as shown is output. Further, the off-delay circuit 33 has a function of delaying the off-timing of the shaping signal S S from the comparator 31, and therefore, the shaping signal S S corresponding to the synchronizing optical signal is as shown in FIG. The pulse width is converted into a sufficiently wide pulse (synchronization trigger signal T) having a wide width, and the pulse width of the portion corresponding to the optical signal for detection is slightly increased.

さて、CPU32は次に述べるように同期信号生成手段及
び判定手段を構成するもので、第4図に示した機能を有
する。即ち、受光回路21の電源を投入した直後の初期状
態では、CPU32はシフトレジスタ34に信号を与えて同期
用受光素子22に対応するアナログスイッチ30を導通状態
にして同期トリガ信号Tの検出を待つ(ステップa)。
この同期トリガ信号Tは、同期用受光素子22が所定時間
継続して受光状態となることにより、オフディレイ回路
33からCPU32に幅の広いパルスが入力されることに基づ
き検出される。ステップaにて同期トリガ信号Tが検出
されると、CPU32はその検出タイミングに応じて投光回
路11における投光タイミングに対応した第3図(U)に
示すような同期信号SUを生成する。また、これに併せて
シフトレジスタ34に信号が与えられ、その出力ラインか
ら第3図(O)〜(Q)に示すようなゲートオープン信
号SO〜SQが出力されるため、対応する各アナログスイッ
チ30が導通状態になって各受光素子23〜25からの受光信
号SK,SL,SMがコンパレータ31を介してCPU32に入力され
る。そして、コンパレータ31にて波形整形された整形信
号SSがCPU32内で同期信号SUと同期をとりつつ取込まれ
ることにより、対応する光軸が遮光状態か否かが検出さ
れる(ステップb〜d)。この後、再び同期トリガ信号
Tの検出状態になり(ステップe)、それを検出すると
同期タイミングを更新し(ステップf)、再びCPU32は
その同期タイミングに基づく同期信号SUを生成する。こ
の結果、シフトレジスタ34からゲートオープン信号SO
SQが第3図(O)〜(Q)に示すように出力され、対応
する各アナログスイッチ30が導通状態になって各受光素
子23〜25からの受光信号SK,SL,SMがコンパレータ31を介
してCPU32に入力され、同期信号SUと同期をとりつつ取
込むことにより、対応する光軸についての遮光状態の検
出が繰返される(ステップb〜d)。
Now, the CPU 32 constitutes the synchronizing signal generating means and the judging means as described below, and has the function shown in FIG. That is, in the initial state immediately after the light receiving circuit 21 is powered on, the CPU 32 gives a signal to the shift register 34 to make the analog switch 30 corresponding to the light receiving element for synchronization 22 conductive and wait for the detection of the synchronization trigger signal T. (Step a).
This synchronization trigger signal T is supplied to the off-delay circuit when the synchronization light-receiving element 22 continues to receive light for a predetermined time.
It is detected based on the input of a wide pulse from 33 to the CPU 32. When the sync trigger signal T is detected in step a, the CPU 32 generates a sync signal S U as shown in FIG. 3 (U) corresponding to the light projection timing in the light projecting circuit 11 according to the detection timing. . In addition, a signal is given to the shift register 34 at the same time, and gate open signals S O to S Q as shown in FIGS. The analog switch 30 becomes conductive and the light receiving signals S K , S L and S M from the respective light receiving elements 23 to 25 are input to the CPU 32 via the comparator 31. Then, the shaping signal S S whose waveform has been shaped by the comparator 31 is taken in the CPU 32 in synchronism with the synchronization signal S U , whereby it is detected whether or not the corresponding optical axis is in the light-shielded state (step b). ~ D). After that, the synchronization trigger signal T is again detected (step e), and when it is detected, the synchronization timing is updated (step f), and the CPU 32 again generates the synchronization signal S U based on the synchronization timing. As a result, the gate open signal S O ~
S Q is output as shown in FIGS. 3 (O) to (Q), the corresponding analog switches 30 are turned on, and the light receiving signals S K , S L , S M from the light receiving elements 23 to 25 are output. Is input to the CPU 32 via the comparator 31 and is captured in synchronization with the synchronization signal S U , whereby the detection of the light-shielded state for the corresponding optical axis is repeated (steps b to d).

このような各光軸についての遮光状態の検出が各走査
毎に繰返される際、同期用及び検出用の各光軸について
の状態はCPU32内のレジスタ(図示せず)に記憶され、
前回と今回の双方の走査時についていずれも入光状態で
ある場合に(ステップgにて「yes」)、出力回路35に
信号を与えて出力オンとする。また、前回と今回の双方
の走査時について少なくとも1回が遮光状態である場合
には(ステップgにて「no」)、次のステップhに移っ
て、検出用光軸が2回連続して遮光状態であったか否か
が判断される。ここで検出用光軸が2回連続して遮光状
態であった場合には(ステップhにて「yes」)、出力
回路35に信号を与えて出力オフとし、1回だけ遮光状態
であった場合には(ステップhにて「no」)、遮光状態
であったにも関わらず出力オフとせず同期トリガ信号T
の検出状態になる(ステップe)。ここで、所定の時間
TOが計測され(ステップi)、その時間TO内で同期トリ
ガ信号Tが検出されると、前述したようにステップfに
移って同期タイミングを更新し、その同期タイミングに
基づく同期信号SUが生成される。また、同期用光軸が遮
光状態にあり、時間TO内に同期トリガ信号Tが検出され
なければ(ステップiにて「yes」)、ステップjに示
すように、前回と今回の双方の走査時についていずれも
同期用光軸が遮光状態であった場合に出力オフとされ
る。また、今回の走査時についてのみ遮光状態であった
場合には(ステップiにて「no」)、同期タイミングの
更新を行うことなく、即ち、前回に入力された同期用受
光素子22からの受光信号SJに基づくタイミングで、同期
信号SUを生成して検出用光軸の状態を検出する。
When the detection of the light shielding state for each optical axis is repeated for each scanning, the states for each optical axis for synchronization and detection are stored in a register (not shown) in the CPU 32,
When both the previous scanning and the current scanning are in the light entering state (“yes” in step g), a signal is given to the output circuit 35 to turn on the output. If the light is blocked at least once in both the previous scanning and the current scanning (“no” in step g), the process moves to the next step h, and the detection optical axis continues twice. It is determined whether or not it is in the light-shielded state. If the detection optical axis is in the light-shielded state twice in succession (“yes” in step h), a signal is given to the output circuit 35 to turn off the output, and the light-shielded state is set only once. In the case (“no” in step h), the output is not turned off even though the light is shielded, and the synchronization trigger signal T
Is detected (step e). Where the predetermined time
When T O is measured (step i) and the synchronization trigger signal T is detected within the time T O , the process moves to step f to update the synchronization timing as described above, and the synchronization signal S U based on the synchronization timing is updated. Is generated. If the synchronization optical axis is in the light-shielded state and the synchronization trigger signal T is not detected within the time T O (“yes” in step i), as shown in step j, both the previous scanning and the current scanning are performed. At any time, the output is turned off when the synchronizing optical axis is in the light-shielded state. Further, when the light-shielding state is present only during the current scanning (“no” in step i), the synchronization timing is not updated, that is, the light received from the synchronization light-receiving element 22 input last time is received. The synchronization signal S U is generated at the timing based on the signal S J to detect the state of the detection optical axis.

[3]作用 (イ)さて、上記構成において、いずれの光軸内にも検
出物が進入していない場合には、同期トリガ信号Tが周
期的に検出され、その度に同期タイミングが更新(ステ
ップf)されて同期信号SUが順次生成される。そして、
各走査毎に検出用光軸において常に入光状態と検出され
るから(ステップgにて「yes」)、出力回路35は出力
オンとなる。
[3] Action (a) In the above configuration, when the detected object does not enter any optical axis, the synchronization trigger signal T is periodically detected, and the synchronization timing is updated each time ( In step f), the synchronization signal S U is sequentially generated. And
Since the light entering state is always detected on the detection optical axis for each scan (“yes” in step g), the output circuit 35 turns on the output.

(ロ)上述の状態から検出用光軸に検出物が進入する
と、その光軸は遮光状態と検出される。この場合は、複
数回の走査にわたって遮光状態が続くから、ステップh
にて「yes」となり、出力回路35は出力オフとなる。
(B) When the detection object enters the detection optical axis from the above-mentioned state, the optical axis is detected as a light-shielded state. In this case, since the light blocking state continues for a plurality of times of scanning, step h
Then, the output becomes "yes" and the output of the output circuit 35 is turned off.

(ハ)また、同期用光軸に検出物が進入した場合には、
ステップgにて「no」、ステップhにて「no」、ステッ
プeにて「no」、ステップiにて「yes」となる。そし
て、この場合にも複数回の走査にわたって遮光状態が続
くから、ステップjにて「yes」となり、出力回路35は
出力オフとなる。
(C) In addition, if a detected object enters the optical axis for synchronization,
“No” in step g, “no” in step h, “no” in step e, and “yes” in step i. Also in this case, since the light-shielding state continues for a plurality of times of scanning, the result is "yes" in step j, and the output of the output circuit 35 is turned off.

(ニ)次に、同期用及び検出用の各光軸のいずれにも検
出物が進入していない場合において、例えばスパッタア
ーク等の強烈な光が例えば検出用受光素子23〜25のいず
れかが有効化されている瞬間に入光したとする。この場
合には、その受光素子が飽和してしまうため、その直後
に検出用投光素子13〜15からの検出用光信号が検出用受
光素子23〜25に入光したとしても、十分なレベルの受光
信号が得られず、CPU32はその光軸について遮光状態に
あると検出することがある。しかし、その受光素子は、
その後、直ちに飽和状態から回復するため、次の走査時
には受光信号が発生して入光状態と検出される。このた
め、ステップhにおいて「no」となるから、出力回路35
はオフされず、スパッタアークによる誤動作が回避され
る。
(D) Next, when the object to be detected does not enter any of the synchronizing and detecting optical axes, intense light such as spatter arc is detected by one of the detecting light receiving elements 23 to 25. It is assumed that the light enters at the moment when it is activated. In this case, since the light receiving element is saturated, even if the detection light signals from the detection light projecting elements 13 to 15 enter the detection light receiving elements 23 to 25 immediately after that, a sufficient level is obtained. In some cases, the light receiving signal of is not obtained, and the CPU 32 may detect that the optical axis is in the light blocking state. However, the light receiving element
After that, since the saturated state is immediately recovered, a light receiving signal is generated at the time of the next scanning, and the light entering state is detected. For this reason, the output circuit 35 becomes "no" at step h.
Is not turned off, and malfunction due to sputter arc is avoided.

また、スパッタアークが同期用受光素子22に入射した
場合には、やはりその受光素子22が飽和するため、同期
用光信号が同期用受光素子22に入光しても同期トリガ信
号Tが検出されずに遮光状態と見なされることがある。
この場合にも、そのような遮光状態と見なされる状態は
一過性であるから、次の走査時に同期用光信号が同期用
受光素子22に入光して同期トリガ信号Tが検出される。
このため、ステップjにて「no」となり、出力回路35は
オフされず、やはりスパッタアークによる誤動作が回避
される。さらに、上述のように同期用受光素子22の飽和
によって同期トリガ信号Tが検出されない事態となって
も、CPU32は前回に入力された同期用受光素子22からの
受光信号SJに基づくタイミングで同期信号SUを生成する
から、次回の走行時における検出用光軸の状態の検出に
支障はなく、検出領域への物体の進入を確実に検出する
ことができる。
Further, when the sputter arc is incident on the light receiving element 22 for synchronization, the light receiving element 22 is also saturated, so that the synchronization trigger signal T is detected even when the light signal for synchronization enters the light receiving element for synchronization 22. Instead, it may be regarded as a light-shielded state.
In this case as well, since such a light-shielded state is transient, the synchronization optical signal enters the synchronization light-receiving element 22 and the synchronization trigger signal T is detected during the next scanning.
For this reason, the output of the output circuit 35 is "no" in step j, the output circuit 35 is not turned off, and the malfunction due to the sputter arc is also avoided. Further, even if the synchronization trigger signal T is not detected due to the saturation of the synchronization light receiving element 22 as described above, the CPU 32 synchronizes at the timing based on the light reception signal S J from the synchronization light receiving element 22 input last time. Since the signal S U is generated, there is no problem in detecting the state of the detection optical axis at the time of the next traveling, and it is possible to reliably detect the entry of the object into the detection area.

なお、上記実施例では、検出用光軸を3本とした例を
示したが、本考案はこれに限られず、検出領域の広さや
必要とされる密度に応じて適宜その本数は設定すればよ
いものである。また、各光軸において2回連続して遮光
状態が検出されたときに物体の進入があったと判定する
ようにしたが、これに限られず、その回数は受光素子の
飽和状態からの回復スピード等を考慮して適宜選定すれ
ばよいものである。さらに、上記実施例では、各光軸に
おいて2回連続して入光したか否かの判断(ステップ
g)は、1走査が終了した時点で行うようにしたが、こ
れに限られず、各光軸の状態を検出する度に各光軸にお
いて2回連続して入光したか否かを判断するようにして
もよい。その他、本考案は上記し且つ図面に示す実施例
に限定されるものではなく、要旨を逸脱しない範囲内で
種々変更して実施することができる。
In the above embodiment, the example in which the number of the optical axes for detection is three is shown, but the present invention is not limited to this, and the number of the optical axes may be appropriately set according to the size of the detection region and the required density. It's good. Further, although it is determined that the object has entered when the light blocking state is detected twice consecutively in each optical axis, the number of times is not limited to this, and the number of times is the recovery speed of the light receiving element from the saturated state or the like. It may be appropriately selected in consideration of the above. Further, in the above-described embodiment, the determination as to whether or not the light has entered the optical axis twice consecutively (step g) is made at the time point when one scanning is completed, but the present invention is not limited to this, and each light is not limited. Each time the state of the axis is detected, it may be determined whether or not the light is continuously input twice in each optical axis. Besides, the present invention is not limited to the embodiments described above and shown in the drawings, and various modifications can be carried out without departing from the scope of the invention.

[考案の効果] 本考案は以上述べたように、投光・受光装置間のワイ
ヤレス化を可能にしながら、スパッタアーク等の強烈な
外乱光によって誤動作を起こすことを防止でき、しかも
確実な同期をとることができるという優れた効果を奏す
る。
[Effects of the Invention] As described above, the present invention enables wireless connection between the light emitting and receiving devices, and at the same time, prevents malfunction due to intense ambient light such as spatter arc and ensures reliable synchronization. It has an excellent effect that it can be taken.

【図面の簡単な説明】[Brief description of drawings]

図面は本考案の一実施例を示し、第1図は全体のブロッ
ク図、第2図は投光回路の各部の電圧波形図、第3図は
受光回路の各部の電圧波形図、第4図はフローチャート
である。 図面中、11は投光回路、12は同期用投光素子、13〜15は
検出用投光素子、21は受光回路、22は同期用受光素子、
23〜25は同期用受光素子、32はCPU(同期信号生成手
段、判定手段)である。
FIG. 1 shows an embodiment of the present invention, FIG. 1 is an overall block diagram, FIG. 2 is a voltage waveform diagram of each part of a light projecting circuit, FIG. 3 is a voltage waveform diagram of each part of a light receiving circuit, and FIG. Is a flowchart. In the drawing, 11 is a light emitting circuit, 12 is a light emitting element for synchronization, 13 to 15 are light emitting elements for detection, 21 is a light receiving circuit, 22 is a light receiving element for synchronization,
23 to 25 are light receiving elements for synchronization, and 32 is a CPU (synchronization signal generation means, determination means).

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】検出用の光軸を構成するように対をなして
設けられた検出用投光素子及び受光素子と、 同期用の光軸を構成するように対をなして設けられた同
期用投光素子及び受光素子と、 前記同期用投光素子の発光時間を前記検出用投光素子の
発光時間よりも長くして各投光素子を所定の投光タイミ
ングで繰返し走査するように発光させる投光回路と、 前記同期用受光素子が所定時間継続して受光状態となっ
たことを検出する度に前記投光タイミングに対応した同
期信号を出力する同期信号生成手段と、 前記各検出用受光素子からの受光信号を前記同期信号と
同期をとりつつ取込むことにより前記光軸の遮光状態を
検出する判定手段とを具備し、 前記判定手段は、前記各光軸の状態を少なくとも前回の
走査時について記憶し遮光状態が複数回数の走査にわた
って繰返されたことを条件に判定を行うように構成さ
れ、 前記同期信号生成手段は、前記同期用受光素子が所定時
間継続して受光状態となった後において前記同期用投光
素子の発光タイミング周期が経過しても前記同期用用受
光素子が所定時間継続した受光状態とならなかったとき
にはその前において所定時間継続して受光状態となった
前記同期用受光素子からの受光信号に基づくタイミング
で同期信号を出力する構成とされていることを特徴とす
る多光軸式光電スイッチ。
1. A detection light-emitting element and a light-receiving element, which are provided as a pair so as to form an optical axis for detection, and a synchronization which is provided as a pair so as to form an optical axis for synchronization. The light emitting element and the light receiving element for light emission, and the light emitting time of the synchronizing light emitting element are set to be longer than the light emitting time of the light emitting element for detection, and light is emitted so that each light emitting element is repeatedly scanned at a predetermined light emitting timing. A light projecting circuit, a sync signal generating unit that outputs a sync signal corresponding to the light projecting timing each time the sync light receiving element detects that the light receiving element has been in a light receiving state for a predetermined time, And a determination means for detecting a light blocking state of the optical axis by capturing a light reception signal from a light receiving element in synchronization with the synchronization signal, wherein the determination means determines at least the state of each of the optical axes from the previous state. Memorize when scanning and the light blocking state is duplicated. The synchronization signal generating means is configured to make a determination under the condition that the synchronization light receiving element has been repeated over a number of times of scanning, and the synchronization light emitting element is provided with the synchronization light emitting element after the synchronization light receiving element is in a light receiving state for a predetermined time. If the light receiving element for synchronization does not reach the light receiving state that continues for a predetermined time even after the light emission timing cycle of, the light receiving signal from the light receiving element for synchronization that continues to be the light receiving state for the predetermined time before A multi-optical axis type photoelectric switch, which is configured to output a synchronization signal at a timing based on the above.
JP1990058055U 1990-05-31 1990-05-31 Multi-axis photoelectric switch Expired - Lifetime JP2519310Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990058055U JP2519310Y2 (en) 1990-05-31 1990-05-31 Multi-axis photoelectric switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990058055U JP2519310Y2 (en) 1990-05-31 1990-05-31 Multi-axis photoelectric switch

Publications (2)

Publication Number Publication Date
JPH0419830U JPH0419830U (en) 1992-02-19
JP2519310Y2 true JP2519310Y2 (en) 1996-12-04

Family

ID=31583319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990058055U Expired - Lifetime JP2519310Y2 (en) 1990-05-31 1990-05-31 Multi-axis photoelectric switch

Country Status (1)

Country Link
JP (1) JP2519310Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772452B2 (en) * 1992-10-21 1998-07-02 サンクス 株式会社 Multi-optical axis photoelectric switch
JP2544069B2 (en) * 1992-10-21 1996-10-16 サンクス株式会社 Multi-optical axis photoelectric switch
JP2008089366A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Dispenser
JP5726586B2 (en) * 2011-03-22 2015-06-03 パナソニック デバイスSunx株式会社 Multi-axis photoelectric sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322973A (en) * 1975-10-15 1978-03-02 Mitsubishi Electric Corp Controlling device fo r vehicle
JPS5282066A (en) * 1975-12-27 1977-07-08 Omron Tateisi Electronics Co Circuit for photoelectric switch
JPS6084012A (en) * 1983-10-14 1985-05-13 Omron Tateisi Electronics Co Contactless switch
JPS6356015A (en) * 1986-08-26 1988-03-10 Sankusu Kk Multi optical axis type photoelectric switch

Also Published As

Publication number Publication date
JPH0419830U (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US9798040B2 (en) Method for synchronizing optical units of a photoelectric barrier and light curtain
JPH06242240A (en) Distance measuring apparatus
JP2519310Y2 (en) Multi-axis photoelectric switch
JP3860013B2 (en) Multi-axis photoelectric sensor
JPH07264036A (en) Multiple optical axes photoelectric switch
JP2568118Y2 (en) Photoelectric switch
JP2513335Y2 (en) Multi-axis photoelectric switch
JP4134518B2 (en) Multi-axis photoelectric sensor
JP2004214899A (en) Multi optical axis photoelectric sensor
JP3548754B2 (en) Multi-optical axis photoelectric sensor
JP2549809Y2 (en) Multi-optical axis photoelectric switch device
JP2772452B2 (en) Multi-optical axis photoelectric switch
JP2544069B2 (en) Multi-optical axis photoelectric switch
JPH0727859A (en) Distance measuring instrument
JP3833929B2 (en) Multi-axis photoelectric sensor
JP2002204151A (en) Many optic axes photoelectric sensor
JP2515136B2 (en) Reflective photoelectric detector
JP3347199B2 (en) Multi-optical axis photoelectric switch
JPH02285277A (en) Photoelectric switch equipped with mutual interference preventing function
JP4777538B2 (en) Photoelectric sensor
JPH07240135A (en) Multiple optical axial type photoelectric switch
JP2004186744A (en) Multiple optical axis photoelectric sensor
JP3572168B2 (en) Vehicle detector
JPH07264035A (en) Photoelectric switch
JPH0846505A (en) Multi-optical axis photoelectric sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term