JP4268447B2 - Substrate holder, substrate processing apparatus, substrate inspection apparatus, and methods of use thereof - Google Patents

Substrate holder, substrate processing apparatus, substrate inspection apparatus, and methods of use thereof Download PDF

Info

Publication number
JP4268447B2
JP4268447B2 JP2003136427A JP2003136427A JP4268447B2 JP 4268447 B2 JP4268447 B2 JP 4268447B2 JP 2003136427 A JP2003136427 A JP 2003136427A JP 2003136427 A JP2003136427 A JP 2003136427A JP 4268447 B2 JP4268447 B2 JP 4268447B2
Authority
JP
Japan
Prior art keywords
substrate
fluid layer
contact
inspection
plate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003136427A
Other languages
Japanese (ja)
Other versions
JP2004342771A (en
Inventor
竜 大田黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003136427A priority Critical patent/JP4268447B2/en
Priority to TW093113262A priority patent/TWI242634B/en
Priority to CNB2004100382055A priority patent/CN100378944C/en
Priority to KR1020040034012A priority patent/KR100809648B1/en
Publication of JP2004342771A publication Critical patent/JP2004342771A/en
Application granted granted Critical
Publication of JP4268447B2 publication Critical patent/JP4268447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B9/00Undergarments
    • A41B9/001Underpants or briefs
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B2400/00Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
    • A41B2400/38Shaping the contour of the body or adjusting the figure
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B2400/00Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
    • A41B2400/44Donning facilities
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B2400/00Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
    • A41B2400/60Moisture handling or wicking function
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B2500/00Materials for shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass

Description

【0001】
【発明が属する技術分野】
本発明は、基板をプレート面上に安定的に保持させる基板保持具、基板処理装置、基板検査装置及びこれらの使用方法に関する。
【0002】
【従来の技術】
基板保持具に基板を保持させた状態で、基板の測定や処理,検査等を行うことが、例えば半導体製造の分野において一般的に採用されている。
そして、この半導体製造の分野で、例えば、フォトマスク,レチクル等の基板の表面に形成されたパターンを精密に測定、処理,検査等する際には、前記基板保持具に保持された基板がたわみなく、平坦であることが求められる。
しかし、基板の周縁部分や側面部分を支持する方法や、基板の表面,裏面を三点で支持する方法による従来の基板保持具では、自重等により基板にたわみが生じ、精密な測定が困難になるという問題があった。
そのため、従来から、このような基板のたわみを抑制したり、たわみを補正したりして、可能な限り測定等を高精度に行うことのできるようにした技術が種々提案されている(例えば、特許文献1,2参照)。
【0003】
【特許文献1】
特開平9−61111号公報
【特許文献2】
特開平6−20904号公報
【0004】
特許文献1に記載の技術においては、基板を載置するための枠状のXYステージを有していて、このXYステージに載置した基板を、検出光学系からなる検出系で、基板の表面に形成されたパターンを検出するようにしている。この場合、枠状のXYステージに基板を載置すると、基板の中央部分がXYステージの中央部分に落ち込んで湾曲状にたわむため、前記検出系をXYステージの下方に配置し、レチクルのパターン面を下方に向けて、レチクルが露光装置に載置されるのと同一の状態でレチクルのパターン座標を測定するようにして、たわみの影響を除去している。
【0005】
特許文献2に記載の技術においては、特に基板内の温度分布のむらによる基板のたわみが測定結果に及ぼす影響を除去するために、基板の温度測定を行い、この測定結果と基板の熱膨張係数とに基づいて補正を行い、前記温度むらによる影響を除去している。
しかし、これら特許文献に記載の技術は、いずれも基板がたわむことを前提条件としているため、測定等の精度の向上にも限界があるという問題がある。
【0006】
そこで、基板がたわまないように、高剛性かつ高精度の平坦面を有するプレートの上に基板を載置し、かつ、このプレートの前記平坦面にバキュームチャック等で基板を押し付けて測定等を行う方法も考えられている。
しかし、この方法によっても、基板の平坦度が、基板を載置する前記プレートの平坦面の平坦度と密接に関連するため、プレートがたわんだり、プレートの平坦面に僅かでもゆがみがあったりすると、これらが基板の平坦度に反映されて、精密な測定等が困難になるという問題がある。
また、基板をプレートにバキュームチャックにより吸着させる場合に、プレートの平坦面と基板との間にパーティクルやエア溜まりが生じると、当該部分で基板にたわみが生じ、精密な測定が困難になるという問題がある。
このような問題が生じると、測定の再現性が得られなくなるという問題も生じる。すなわち、プレート上に載置された基板は、基板自身が有する本来の形状ではなく変形しているため、次のような問題が生じる。
例えば、基板の平坦度等の形状測定を、同一の基板について複数回行った場合、プレートに載置する度に基板の変形度が異なるため、測定再現性が得られず、さらに、測定精度の低下をも引き起こす。
また、フォトマスク等のように、基板上にパターン等が存在する場合には、プレート上に載置された基板が変形すると、それに伴い、パターン寸法やパターン形状も変形してしまう。その結果として、パターン等の測長精度や、座標測定精度が低下してしまう。
さらに、基板の検査・測定における再現性や精度は、上述の基板の変形のほかに、基板の移動によっても低下する。
またさらに、近年、液晶ガラス基板や、液晶装置製造用のフォトマスク等の基板に代表されるように、基板サイズが大型化(例えば、一辺が300mm以上の方形基板)している傾向がある。これに伴い、基板自身の自重による変形度(たわみ量等)が大きくなり、また、基板の表面積が大きくなるため、上述のような問題がさらに顕著となる。
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたもので、基板自身が有する本来の形状から変形(たわみ)を生じさせることなく、かつ、位置決めした状態で移動させることなく、基板(特に大型の基板)を保持することができ、再現性や精度を向上させて、測定や処理、検査等を高精度に行うことができるようにする基板保持具、基板処理装置、基板検査装置及びこれらの使用方法の提供を目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために本発明の基板保持具は、一辺300mm以上の方形基板をプレート面上の所定位置で安定的に保持させる基板保持具であって、前記基板の下面と前記プレート面との間に介在し、前記基板を浮上させるための流体層を形成する流体層形成手段と、前記流体層によって浮上した前記基板を安定的に保持させる複数の位置決め手段を有し、前記複数の位置決め手段は、弾性体と、この弾性体に取り付けられ、前記基板に当接する当接部材を有するとともに、前記当接部材の移動方向が異なるように配置され、前記基板が前記流体層によって浮上させられ、前記流体層の圧力と前記基板の自重とが釣り合った状態で、前記基板の下面に前記当接部材が当接して、前記基板を前記プレート面上の所定位置に位置決めする構成としてある。
この構成によれば、流体層が一様な力でプレート面と非接触状態に基板を持ち上げるので、自重による基板のたわみを無くすことができる。また、位置決め手段を有しているので、基板の移動を規制することができる。さらに、位置決め手段は、流体層により浮上している基板に、プレート面側から基板に当接して所定位置に位置決めするので、位置決め手段が基板に当接することによる影響を最小にすることができる。
なお、前記流体層を形成する流体としては、液体であってもよいが、エアや窒素等の気体を利用することで、後工程で流体を除去する作業が不要になるという利点がある。また、基板としては、例えば、フォトマスクブランクやフォトマスク又はこれらに用いられるガラス基板であってもよい。ガラス基板の材料としては、例えば、合成石英やフッ素ドープの石英などが挙げられる。
【0009】
上記した位置決め手段は、前記プレート面に設けられた弾性体と、この弾性体に取り付けられ、前記基板に当接する当接部材とから構成され、浮上状態の前記基板の下面に前記当接部材が当接することにより、前記基板の移動を規制するものを用いている。
したがって、基板と位置決め手段とを常時当接状態に保つことができる。すなわち、流体層によって基板が浮上すると、これにともなって、弾性体の弾発力により、当接部材も基板に当接したままの状態で上昇する。流体層による基板の浮上高さ位置と、弾性体の弾発力とを適切に調整することで、測定等に影響を与えない最小の範囲で、基板の位置決めと固定を行うことが可能になる。
【0010】
前記複数の位置決め手段を、前記当接部材の移動方向が直交するように配置することもできる。
また、前記当接部材を、減圧吸着部材を有する構成とすることもできる。
なお、当接部材の進退移動は、モータやアクチュエータ等の駆動体によって行ってもよいが、手動によって行うようにしてもよい。
【0011】
上記構成の基板保持具は、平坦度を高精度に維持した状態で基板を保持する必要のあるあらゆる装置に適用が可能である。
例えば、基板保持具によって位置決め・保持された前記基板の表面に、電子線やレーザー光等の処理光を照射する照射手段を有する基板処理装置に、上記構成の基板保持具を適用することが可能である。
この種の基板処理装置としては、例えば、例えば、フォトレジストがコーティングされたフォトマスクブランク等の基板を用い、これにレーザー光を照射してパターンを形成するための描画装置又は露光装置が挙げられる。
パターンを形成する工程において、形成されるパターンの精度は、パターンを形成するための基板の保持状態に大きく依存する。例えば、パターンを形成する工程において、パターンを形成するための基板(例えば、フォトマスクブランク、半導体基板)が変形していると、形成されるパターンは、基板の変形度に応じて形成されることになる。
さらに、パターンを形成するための基板が、パターンを形成する工程中に移動してしまうと、形成されるパターンの位置精度が低下してしまう。特に、フォトマスクを製造する上で、描画装置又は露光装置を用いてパターンを形成する工程は、最も重要な工程であり、フォトマスクの品質は、この工程でほぼ決定されると言えるえるほどである。同様に、フォトマスクのパターンを半導体基板に転写する工程は、半導体製造において、非常に重要な工程である。
そのため、基板をたわむことなく(変形することなく)、かつ、移動させることなく(位置決めして)保持することができる本発明の基板保持具は、レーザー光を照射してパターンを形成するための描画装置又は露光装置等に用いると、特に効果的である。
この他の基板処理装置として、レーザービームを用いて、イオン注入による照射損傷や注入不純物の活性化、及び、多結晶シリコンを再結晶化させることにより単結晶シリコンを作るSOI(Silicon on Insulator)技術等のアニール処理装置や、半導体基板上に選択的成膜を行うCVD処理装置が挙げられる。
【0012】
また、上記構成の基板保持具は、前記基板保持具によって位置決め・保持された前記基板の表面に検査光を照射する検査光照射手段と、前記検査光に基づく前記基板の表面の光を検出する光検出手段とを備えた基板検査装置にも適用が可能である。
この種の基板検査装置としては、例えば、基板の平坦度を測定する検査装置や基板表面に形成されたパターンの測定を行う座標測定装置が挙げられる。
本発明の基板保持具を用いて、たわむことなく(変形することなく)、かつ、移動させることなく(位置決めして)保持された基板は、平坦度を測定する際、基板自信が有する本来の平坦度を測定することが可能であり、再現性、精度良く平坦度測定を行うことができる。
また、フォトマスク等のような基板上のパターンの座標測定を行う際、たわむことなく(変形することなく)、かつ、位置決めした状態で移動させることなく、基板を保持することにより、本来のパターン寸法やパターン形状のまま、変形のない状態でパターンの測長や座標測定か可能となるため、再現性、精度良く座標測定を行うことができる。
【0013】
本発明の目的は、請求項7又は8に記載の基板保持方法によっても達成が可能である。
すなわち、本発明の基板保持方法は、一辺300mm以上の方形基板をプレート面上の所定位置で安定的に保持させる基板保持方法であって、前記基板と前記プレート面との間に流体層を形成して、前記基板を一面側から浮上させる流体層形成工程と、前記基板が前記流体層によって浮上し、前記流体層の圧力と前記基板の自重とが釣り合った状態で、前記基板の少なくとも下面に、弾性体に取り付けられた複数の当接部材を当接させて、前記基板を前記プレート面とほぼ平行な平面内で位置決めする位置決め工程とを有し、前記位置決め工程では、移動方向が異なるように配置された複数の前記当接部材を、前記基板の下面に当接させて、前記基板を前記プレート上の所定の位置に位置決めする位置決め工程とを有する方法である。
本発明の基板保持方法は、平坦度を高精度に維持した状態で基板を保持する必要のあるあらゆる方法に適用が可能で、例えば、前記基板保持方法を用いて位置決め・保持された前記基板の表面に電子線又はレーザー光等の処理光を照射する照射工程を設けた基板処理方法や、前記基板保持方法を用いて位置決め・保持された前記基板の表面に検査光を照射する検査光照射工程を設けた基板検査方法にも適用が可能である。
【0014】
【発明の実施の形態】
以下、本発明の好適な実施形態を、図面を参照しながら詳細に説明する。
なお、以下の説明では、基板として、フォトマスクやレチクル等に使用されるガラス基板を例に挙げて説明するが、本発明は、このようなガラス基板に限らず、Cr膜,MoSi膜等の透過率制御膜や、ITO膜等を備えたガラス基板や、樹脂基板,金属基板等、あらゆる種類の基板に適用が可能である。また、以下に説明するガラス基板の材料としては、例えば、合成石英やフッ素ドープの石英等が挙げられる。
【0015】
[基板保持具の説明]
図1は、本発明の第一の実施形態にかかる基板保持具の構成を説明する一部破断の斜視図、図2は、プレート面と基板との間に流体層が形成された状態を示す基板保持具の断面図である。
この第一の実施形態の基板保持具1は、水平面内に平坦状の表面(以下、プレート面という)11aを有するステージ11と、このステージのプレート面11aに載置されるガラス基板Sと相似形に形成され、ガラス基板Sを囲堯するようにステージ11上に設けられたガイドフレーム12とを有している。
【0016】
ステージ11の内部には、圧縮エアを貯留するためのエア室11dが形成されている。エア室11dには、図示しないブロワー等のエア供給手段に接続されていて、このエア供給手段から供給されたエアが一定の圧力に保たれるようになっている。また、プレート面11aには、エア室11dまで貫通するエア吹き出し孔11bが多数形成されていて、エア室11d内のエアがこのエア吹き出し孔11bの各々から、実質的に均等な流速で吹き出されるようになっている。なお、図1の基板保持具1では、図示の便宜上、6行4列のエア吹き出し孔11bを図示しているが、エア吹き出し孔11bの配置形態及び個数はこれに限られるものではない。
この実施形態では、前記したエア供給手段と、エア室11d及びエア吹き出し孔11bとで、ガラス基板Sとプレート面11aとの間に流体層を形成してガラス基板Sを浮上させる流体層形成手段が構成されている。
【0017】
図2に示すように、プレート面11a上にガラス基板Sを載置した状態でエア供給手段を駆動させてエア室11d内にエアを供給すると、エア室11d内のエアが、エア吹き出し孔11bからガラス基板Sの下面に向けて吹き出される。ガラス基板Sの下面に向けて吹き出されたエアは、ガラス基板Sの周縁に向かって流れ、ガイドフレーム12とガラス基板Sの周縁との間の隙間から大気中に放出される。これにより、ガラス基板Sとプレート面11aとの間に流体層(エア層)が形成される。
ガラス基板Sが所定の高さ位置まで浮上すると、流体層を形成しているエアの圧力とガラス基板Sの自重とが釣り合って、ガラス基板Sが当該高さ位置で保持される。
【0018】
プレート面11aの複数箇所(この実施形態では三箇所)には、凹所11cが形成されている。浮上状態のガラス基板Sの位置決めを行うための位置決め手段13は、この凹所11cの中に設けられる(図1参照)。
以下、図3を参照しながら、この実施形態における位置決め手段13の構成及び作用を説明する。
図3は、この実施形態における位置決め手段の構成及び作用を説明する部分拡大断面図である。
図3(a)は、基板保持具1にガラス基板Sを供給する前の状態を示している。図3(a)に示すように、位置決め手段13は、凹所11cの底部に一方の裾部が片持ち状態で取り付けられた山形の板ばね15と、この板ばね15の頂部に取り付けられ、ガラス基板Sの下面に当接する当接部材14とから構成されている。当接部材14は、ガラス基板Sの下面を傷つけることが無く、かつ、ガラス基板Sとの間で容易に滑りが生じないような材質のもので形成するのが好ましく、例えば、ウレタン樹脂やゴム等で形成するとよい。また、板ばね15の弾発力は、基板Sの自重に対して十分に小さいものを選択するとよい。好ましくは、流体層による基板Sの浮上高さ位置に応じて、基板Sにひずみを与えない最小の範囲で、板ばね15の弾発力を適切に選択するのがよい。
【0019】
図3(b)は、基板保持具1にガラス基板Sを供給したときの状態を示している。図3(b)に示すように、エア吹き出し孔11b(図1及び図2参照)からエアを吹き出させない状態でプレート面11aにガラス基板Sを載置すると、ガラス基板Sの自重によって、当接部材14が板ばね15の弾発力に抗して凹所11c側に押し戻され、凹所11Cに格納された状態になる。
図3(c)は、エア吹き出し孔11bからエアを吹き出させてガラス基板Sを浮上させた状態を示している。
図3(c)に示すように、エア吹き出し孔11bからエアを吹き出させてガラス基板Sを浮上させると、この浮上にともなって、当接部材14がガラス基板Sに当接した状態で上昇する。
このとき、板ばね15の弾性は、ガラス基板Sに当接部材14を必要以上に押し付けることなく、かつ、ガラス基板Sの移動を規制することができる程度のものとしてあるので、板ばね15の弾発力によってガラス基板Sが部分的にたわむという不都合を回避することができる。
【0020】
なお、この実施形態のような板ばね15を用いた位置決め手段13の場合、ガラス基板Sの移動を抑制することのできる方向が、直線方向に制限される。つまり、図3(a)に示すように、当接部材14はY軸方向(図3の紙面に直交する方向)には移動しないものの、板ばね15の変形にともなってX軸方向に僅かながら移動するので、単一の位置決め手段13では、基板SのX軸方向及びY軸方向の位置決めを行うことは困難である。
そこで、図4に示すように、三つの位置決め手段(以下、図4において三つの位置決め手段をそれぞれ符号13A,13B,13Cで示す)を、当接部材14の移動方向が直交するように配置する。すなわち、二つの位置決め手段13A,13Bの板ばね15の方向をX軸方向に差し向け、残りの位置決め手段13Cの板ばね15の方向をY軸方向に差し向ける。このようにすることで、板ばね15がX軸方向を向く二つの位置決め手段13A,13Bがガラス基板のY軸方向の移動を規制し、板ばね15がY軸方向を向く位置決め手段13Cが、ガラス基板SのX軸方向の移動を規制する。これによって、ガラス基板SをX−Y平面内で位置決めすることができる。
さらに、ガラス基板Sにたわみや浮上などの不安定要因を生じさせない程度の吸着力でガラス基板Sを軽く固定する減圧吸着機構を当接部材14に設けることによって、より高精度に位置決めを行うことができるようになる。
【0021】
なお、位置決め手段は上記構成のものに限られず、ガラス基板Sにたわみ等を与えることなく、浮上状態のガラス基板SのX軸方向及びY軸方向の移動を規制して位置決めを行うことができるのであれば、他の構成のものを用いてもよい。また、上記の説明では、エア吹き出し孔11bからエアを吹き出させない状態でプレート面11aにガラス基板Sを載置し、しかる後にエア吹き出し孔11bからエアを吹き出させてガラス基板Sを浮上させるようにしているが、エア吹き出し孔11bからエアを吹き出させた状態でガラス基板Sをプレート面11a上に供給するようにしてもよい。
図5及び図6は他の構成の位置決め手段を利用した本発明の第二の実施形態にかかる基板保持具の説明図で、図5は、その平面図、図6は、この第二の実施形態の位置決め手段による基板保持の手順を説明する断面図である。
【0022】
この実施形態において位置決め手段23は、ステージ21上に設けられたガイドフレーム22に取り付けられている。
位置決め手段23は、浮上状態の基板Sの周囲方向からガラス基板Sの側面に当接する進退移動自在な当接部材25と、この当接部材25をガラス基板Sに対して進退移動させるソレノイド等の駆動体24とから構成されている。
当接部材25は、矩形状のガラス基板Sの四周囲からガラス基板Sの側面に当接することができるように、矩形状のガイドフレーム22の各辺に複数個(図5に示す例では、短辺に二つずつ、長辺に四つずつ)ずつ配置されている。駆動体24は、当接部材25の各々に対応して設けられている。
なお、ガイドフレーム22の各辺に単一の駆動体を配置し、この単一の駆動体で同じ辺に配置された複数の当接部材25を同時に進退移動させるように構成してもよい。
駆動体24の制御は、図示しない制御装置の駆動指令によって制御される。駆動体24を駆動させて当接部材25を進退移動させるタイミングは、例えば、エアの吹き出し開始から所定時間経過後に駆動体24を駆動させるようにしてもよいし、光電センサ等を設けて、所定の高さ位置まで浮上した基板Sを前記光電センサが検出したときに、駆動体24を駆動させるようにしてもよい。
【0023】
図6(a)に示すように、駆動体24を停止させた状態、つまり、当接部材25をガラス基板Sに干渉しない位置まで後退させた状態で、ガラス基板Sを基板保持具に2供給する。
図6(b)に示すように、エア室21dのエアをエア吹き出し孔21bから吹き出させ、ガラス基板Sが所定の高さ位置まで浮上したところで、図6(c)に示すように駆動体24を駆動させる。
これにより、当接部材25がガラス基板Sの周囲からガラス基板Sの側面に当接して、ガラス基板SのX軸方向及びY軸方向の移動を規制する。
なお、当接部材25が当接することによるガラス基板Sの部分的なたわみを可能な限り小さくするために、駆動体24が駆動したときに当接部材25の先端がガラス基板Sの側面に軽く接触する程度に、当接部材25のストロークを予め調整しておくのが好ましい。
【0024】
[基板処理装置の説明]
上記構成の基板保持具1,2は、フォトマスクブランクやフォトマスク等を製造する際に用いる基板処理装置に利用することができる。
この場合、基板処理装置は、基板保持具1,2によって位置決め・保持された前記基板の表面に、電子線又はレーザー光を照射する照射手段を備え、この照射手段からの電子線又はレーザー光の照射により、基板にパターンを描画したり、基板に形成されたパターンを修正したりするなど、所定の処理を施す。
このような基板処理装置としては、例えば、フォトレジストがコーティングされたフォトマスクブランク等の基板を用い、これにレーザー光を照射してパターン形成するための描画装置又は露光装置が挙げられる。
【0025】
[基板検査装置の説明]
次に、基板を検査する基板検査装置について説明する。
以下の説明では、基板の平坦度を検査する検査装置を例に挙げて説明する。また、この種の検査装置としては、斜入射干渉方式と垂直入射干渉方式とが知られているが、以下の説明では斜入射干渉方式を例に挙げて説明する。
【0026】
斜入射干渉方式では、図7に示すように、例えば検査光の光源としてHe−Neレーザーを用い、このレーザーの平行光束の光路差が使用波長の整数倍になるとき現れる明暗縞(干渉縞)を読むことにより平坦度を測定する。
斜入射干渉方式の基板検査装置5は、図7(a)に示すように、レーザーの電源部51と、He−Neレーザー光を発生させるレーザー管52と、所定波長のレーザー光のみを透過させるためのフィルタ53と、レーザー光を拡散させるための対物レンズ54及び拡散板55と、この拡散板55を駆動させるモータ56と、拡散されたレーザー光を平行な光束にするコリメータレンズ57と、プリズム原器58と、フレネル板60と、スクリーン61と、レーザー光の光路を調整するための複数のミラーM1〜M5から概略構成されている。
【0027】
図7(b)は、平行光束と光路差との関係を示す図で、図7(a)の試料(ガラス基板S)及びプリズム原器58部分の拡大図である。
図7(b)からわかるように、光路差δは、空気の屈折率をn、プリズムの屈折率をnとしたときに、次の式で表すことができる。
【0028】
δ=n(P1P2−P2P3)−nTP3
なお、P1P2,P2P3及びTP3は、図7(b)中の各ポイント間の距離を示している。
ここで、
P1P2=2n/cosθ’
TP3=P1P3sinθ=2dtanθ’・sinθ より
δ=2n/cosθ’−2dtanθ’・sinθ
sinθ’=nsinθより、
δ=2ncosθ’+λ・β/2π
P3での位相変化β=πであるので、
δ=2ncosθ’+λ/2
この光路差が、使用波長の整数倍になるとき干渉縞が生じるので、縞が生じる基板Sの表面の高さdは、
=λ/2ncosθ’・(m−1/2) m:整数
となる。
すなわち、平坦度の測定は、レーザーの平行光束の光路差が使用波長の整数倍になるときに現れる干渉縞を利用するため、測定中に基板を移動させることなく保持する必要がある。また、平坦度の測定は、基板自身が有する本来の形状にて行う必要がある。そのため、位置決めした状態で移動させることなく、かつ、基板をたわみなく、つまり変形なく保持することができる本発明の基板保持具を、平坦度の測定に適用することで、平坦度測定の再現性および精度を効果的に向上させることができる。
【0029】
本発明の好適な実施形態について説明したが、本発明は上記の実施形態によりなんら限定されるものではない。
例えば、第一の実施形態において位置決め手段13は三箇所に設けるものとして説明したが、四箇所以上としてもよい。また、弾性体として板ばね15を用いているが、基板Sの所定方向の移動を規制することができるのであれば、つる巻きばね等、他の形態のばねを用いることができる。
また、第二の実施形態において、位置決め手段23は、ソレノイドによって当接部材を進退移動させているが、当接部材を進退移動させることができるのであれば、駆動体はソレノイドに限らずシリンダやモータ等であってもよい。さらに、第二の実施形態では、駆動体によって当接部材を進退移動させているが、手動操作によって当接部材を進退移動させるようにしてもよい。
【0030】
また、上記の説明では、ガラス基板Sを浮上させるためにエアを使用しているが、装置や基板の種類,用途等によっては、窒素ガスその他の不活性ガスを使用してもよい。さらに、ガラス基板Sを浮上させるための流体として、エア等の気体を例に挙げて説明したが、気体に限らず水等の液体を用いてもよい。この場合、用いる液体としてガラス基板Sよりも比重の大きいものを選択することで、ガラス基板Sに浮力が生じ、より効果的にガラス基板Sを浮上させることが可能となる。ただし、エア等の気体を用いると、次工程で流体を除去する等の作業が不要になるという利点がある。
また、本発明は、未処理のガラス基板に限らず、例えば、Cr膜,MoSi膜等の透過率制御膜や、ITO膜等を備えたガラス基板にも適用が可能である。
【0031】
【発明の効果】
本発明によれば、エア等の流体を用いてプレート面から基板を浮上させて、かつ、基板の下面又は側面から当接部材を当接させて位置決めを行っているので、基板のたわみを最小に抑制することができ、基板自身の有する平坦度を維持した状態で測定や処理、検査等を高精度に行うことができる。特に、本発明は、自重によってたわみが生じやすい大型の基板に適用することで、その効果が大である。
【図面の簡単な説明】
【図1】本発明の第一の実施形態にかかる基板保持具の構成を説明する一部破断の斜視図である。
【図2】プレート面と基板との間に流体層が形成された状態を示す基板保持具の断面図である。
【図3】第一の実施形態における位置決め手段の構成及び作用を説明する拡大図である。
【図4】位置決め手段の配置形態を説明する平面図である。
【図5】他の位置決め手段を利用した本発明の第二の実施形態にかかる基板保持具の説明図で、その平面図である。
【図6】他の位置決め手段を利用した本発明の第二の実施形態にかかる基板保持具の説明図で、基板保持の手順を説明する断面図である。
【図7】基板検査装置の一例を示す概略図である。
【符号の説明】
1,2 基板保持具
11,21 ステージ
11a,21a プレート面
11b,21b エア吹き出し孔
11c 凹所
11d,21d エア室
12,22 ガイドフレーム
13,23 位置決め手段
14 当接部材
15 板ばね(弾性体)
24 駆動体
25 当接部材
[0001]
[Technical field to which the invention belongs]
The present invention relates to a substrate holder that stably holds a substrate on a plate surface, a substrate processing apparatus, a substrate inspection apparatus, and methods for using them.
[0002]
[Prior art]
It is generally employed in the field of semiconductor manufacturing, for example, to perform measurement, processing, inspection and the like of a substrate with the substrate held by the substrate holder.
In this semiconductor manufacturing field, for example, when a pattern formed on the surface of a substrate such as a photomask or reticle is precisely measured, processed, or inspected, the substrate held by the substrate holder is bent. And is required to be flat.
However, conventional substrate holders that support the peripheral and side surfaces of the substrate and support the front and back surfaces of the substrate at three points cause the substrate to bend due to its own weight, making accurate measurements difficult. There was a problem of becoming.
For this reason, conventionally, various technologies have been proposed that can suppress the deflection of the substrate or correct the deflection so that the measurement or the like can be performed as accurately as possible (for example, (See Patent Documents 1 and 2).
[0003]
[Patent Document 1]
JP-A-9-61111
[Patent Document 2]
Japanese Patent Laid-Open No. 6-20904
[0004]
In the technique described in Patent Literature 1, a frame-shaped XY stage for placing a substrate is provided, and the substrate placed on the XY stage is detected by a detection system including a detection optical system. The pattern formed in the above is detected. In this case, when the substrate is placed on the frame-shaped XY stage, the central portion of the substrate falls into the central portion of the XY stage and bends in a curved shape. Therefore, the detection system is disposed below the XY stage, and the pattern surface of the reticle The pattern coordinate of the reticle is measured in the same state as that when the reticle is placed on the exposure apparatus, and the influence of deflection is removed.
[0005]
In the technique described in Patent Document 2, in order to remove the influence of the deflection of the substrate due to the uneven temperature distribution in the substrate on the measurement result, the temperature of the substrate is measured, and the measurement result and the thermal expansion coefficient of the substrate are calculated. Is corrected to eliminate the influence of the temperature unevenness.
However, since all of the techniques described in these patent documents are based on the premise that the substrate bends, there is a problem in that there is a limit in improving the accuracy of measurement and the like.
[0006]
Therefore, the substrate is placed on a plate having a flat surface with high rigidity and high accuracy so that the substrate does not bend, and the substrate is pressed against the flat surface of the plate with a vacuum chuck or the like. A way to do this is also considered.
However, even with this method, since the flatness of the substrate is closely related to the flatness of the flat surface of the plate on which the substrate is placed, the plate may be bent or the flat surface of the plate may be slightly distorted. These are reflected in the flatness of the substrate, which makes it difficult to perform precise measurement.
In addition, when a substrate is adsorbed to a plate by a vacuum chuck, if particles or air pools occur between the flat surface of the plate and the substrate, the substrate will bend at that portion, making accurate measurement difficult. There is.
When such a problem occurs, there also arises a problem that measurement reproducibility cannot be obtained. That is, since the substrate placed on the plate is deformed instead of the original shape of the substrate itself, the following problems arise.
For example, when shape measurement such as flatness of a substrate is performed a plurality of times on the same substrate, the degree of deformation of the substrate differs every time it is placed on a plate, so measurement reproducibility cannot be obtained, and measurement accuracy is further improved. It also causes a decline.
Further, when a pattern or the like is present on the substrate, such as a photomask, when the substrate placed on the plate is deformed, the pattern dimensions and pattern shape are also deformed accordingly. As a result, pattern measurement accuracy and coordinate measurement accuracy are degraded.
Further, the reproducibility and accuracy in the inspection / measurement of the substrate is reduced by the movement of the substrate in addition to the deformation of the substrate.
Furthermore, in recent years, as typified by substrates such as liquid crystal glass substrates and photomasks for manufacturing liquid crystal devices, the substrate size tends to increase (for example, a rectangular substrate having a side of 300 mm or more). As a result, the degree of deformation (such as the amount of deflection) due to the weight of the substrate itself increases, and the surface area of the substrate increases, so that the above-described problem becomes more prominent.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems, and does not cause deformation (deflection) from the original shape of the substrate itself and does not move in a positioned state (particularly, A substrate holder, a substrate processing apparatus, a substrate inspection apparatus, and the like, which can hold a large substrate), improve reproducibility and accuracy, and perform measurement, processing, inspection, etc. with high accuracy The purpose is to provide usage of
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, the substrate holder of the present invention has a side of 300 mm or more.squareA substrate holder for stably holding a substrate at a predetermined position on a plate surface, wherein the fluid layer is interposed between a lower surface of the substrate and the plate surface and forms a fluid layer for levitating the substrate By the forming means and the fluid layerSurfacedTo stably hold the substratepluralPositioning means,pluralThe positioning means has an elastic body and an abutting member attached to the elastic body and abutting against the substrate.And the abutting member is disposed so that the moving direction is different, and the substrate isThe contact member is brought into contact with the lower surface of the substrate in a state where the pressure of the fluid layer and the weight of the substrate are balanced, and the substrate is placed at a predetermined position on the plate surface. It is configured to position.
  According to this configuration, since the fluid layer lifts the substrate in a non-contact state with the plate surface with a uniform force, it is possible to eliminate the deflection of the substrate due to its own weight. Moreover, since the positioning means is provided, the movement of the substrate can be restricted. Further, since the positioning means abuts the substrate floating on the fluid layer from the plate surface side and positions the substrate at a predetermined position, the influence of the positioning means abutting on the substrate can be minimized.
  The fluid forming the fluid layer may be a liquid, but using a gas such as air or nitrogen has the advantage of eliminating the need to remove the fluid in a subsequent process. Moreover, as a board | substrate, a photomask blank, a photomask, or the glass substrate used for these may be sufficient, for example. Examples of the glass substrate material include synthetic quartz and fluorine-doped quartz.
[0009]
  The positioning means includes an elastic body provided on the plate surface and a contact member attached to the elastic body and contacting the substrate, and the contact member is disposed on the lower surface of the floating substrate. Use the one that regulates the movement of the substrate by abutmenting.
  Therefore,The substrate and the positioning means can always be kept in contact with each other. That is, when the substrate is lifted by the fluid layer, the contact member also rises in a state of being in contact with the substrate due to the elastic force of the elastic body. By properly adjusting the floating height position of the substrate by the fluid layer and the elastic force of the elastic body, it becomes possible to position and fix the substrate within the minimum range that does not affect measurement etc. .
[0010]
  The plurality of positioning means are arranged so that the moving directions of the contact members are orthogonal to each other.You can also
  Further, the contact member may have a reduced pressure adsorbing member.
  The advancing / retreating movement of the contact member may be performed by a driving body such as a motor or an actuator, but may be performed manually.
[0011]
The substrate holder configured as described above can be applied to any apparatus that needs to hold a substrate while maintaining flatness with high accuracy.
For example, the substrate holder having the above-described configuration can be applied to a substrate processing apparatus having irradiation means for irradiating the surface of the substrate positioned and held by the substrate holder with processing light such as an electron beam or laser light. It is.
Examples of this type of substrate processing apparatus include, for example, a drawing apparatus or an exposure apparatus for forming a pattern by irradiating a laser beam on a substrate such as a photomask blank coated with a photoresist. .
In the process of forming a pattern, the accuracy of the pattern to be formed greatly depends on the holding state of the substrate for forming the pattern. For example, in the process of forming a pattern, if the substrate for forming the pattern (for example, a photomask blank or a semiconductor substrate) is deformed, the pattern to be formed is formed according to the degree of deformation of the substrate. become.
Furthermore, if the substrate for forming the pattern moves during the process of forming the pattern, the positional accuracy of the pattern to be formed is lowered. In particular, in manufacturing a photomask, the process of forming a pattern using a drawing apparatus or an exposure apparatus is the most important process, and it can be said that the quality of the photomask is almost determined in this process. is there. Similarly, the process of transferring a photomask pattern to a semiconductor substrate is a very important process in semiconductor manufacturing.
Therefore, the substrate holder of the present invention that can hold the substrate without being bent (deformed) and without being moved (positioned) is provided for forming a pattern by irradiating a laser beam. It is particularly effective when used in a drawing apparatus or an exposure apparatus.
As another substrate processing apparatus, SOI (Silicon on Insulator) technology for producing single crystal silicon by irradiating irradiation damage by ion implantation, activating implanted impurities, and recrystallizing polycrystalline silicon using a laser beam. An annealing treatment apparatus such as the above, and a CVD treatment apparatus that selectively forms a film on a semiconductor substrate.
[0012]
The substrate holder configured as described above detects inspection light irradiation means for irradiating inspection light onto the surface of the substrate positioned and held by the substrate holder, and detects light on the surface of the substrate based on the inspection light. The present invention can also be applied to a substrate inspection apparatus provided with a light detection means.
Examples of this type of substrate inspection device include an inspection device that measures the flatness of a substrate and a coordinate measurement device that measures a pattern formed on the surface of the substrate.
Using the substrate holder of the present invention, the substrate held without being bent (deformed) and not moved (positioned) is the original one that the substrate has confidence when measuring the flatness. Flatness can be measured, and flatness can be measured with high reproducibility and accuracy.
In addition, when measuring the coordinates of a pattern on a substrate such as a photomask, the original pattern can be obtained by holding the substrate without bending (without deformation) and without moving in a positioned state. Since it is possible to perform pattern length measurement and coordinate measurement without deformation in the dimensions and pattern shape, coordinate measurement can be performed with high reproducibility and accuracy.
[0013]
  The object of the present invention can also be achieved by the substrate holding method according to claim 7 or 8.
  That is, the substrate holding method of the present invention has a side of 300 mm or more.squareA substrate holding method for stably holding a substrate at a predetermined position on a plate surface, wherein a fluid layer is formed between the substrate and the plate surface, and the substrate is floated from one surface side. When,The substrate isLevitated by the fluid layer and attached to an elastic body on at least the lower surface of the substrate in a state where the pressure of the fluid layer and the weight of the substrate are balancedpluralAbut the abutment member,The substrateA positioning step for positioning in a plane substantially parallel to the plate surface;In the positioning step, the plurality of contact members arranged so as to move in different directions are brought into contact with the lower surface of the substrate to position the substrate at a predetermined position on the plate.A positioning step.
  The substrate holding method of the present invention can be applied to any method that needs to hold a substrate while maintaining flatness with high accuracy. For example, the substrate holding method of the substrate positioned and held using the substrate holding method can be applied. A substrate processing method provided with an irradiation step for irradiating the surface with processing light such as an electron beam or a laser beam, or an inspection light irradiation step for irradiating the surface of the substrate positioned and held using the substrate holding method with inspection light The present invention can also be applied to a substrate inspection method provided with.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
In the following description, a glass substrate used for a photomask, a reticle, or the like will be described as an example of the substrate. However, the present invention is not limited to such a glass substrate, but a Cr film, a MoSi film, or the like. The present invention can be applied to all types of substrates such as a transmittance control film, a glass substrate provided with an ITO film, a resin substrate, and a metal substrate. Examples of the glass substrate material described below include synthetic quartz and fluorine-doped quartz.
[0015]
[Description of substrate holder]
FIG. 1 is a partially broken perspective view illustrating a configuration of a substrate holder according to a first embodiment of the present invention, and FIG. 2 illustrates a state in which a fluid layer is formed between a plate surface and a substrate. It is sectional drawing of a board | substrate holder.
The substrate holder 1 of the first embodiment is similar to a stage 11 having a flat surface (hereinafter referred to as a plate surface) 11a in a horizontal plane and a glass substrate S placed on the plate surface 11a of the stage. And a guide frame 12 provided on the stage 11 so as to surround the glass substrate S.
[0016]
An air chamber 11 d for storing compressed air is formed inside the stage 11. The air chamber 11d is connected to an air supply means such as a blower (not shown) so that the air supplied from the air supply means is maintained at a constant pressure. The plate surface 11a is formed with a large number of air blowing holes 11b penetrating to the air chamber 11d, and the air in the air chamber 11d is blown out from each of the air blowing holes 11b at a substantially uniform flow rate. It has become so. In the substrate holder 1 of FIG. 1, for convenience of illustration, six rows and four columns of air blowing holes 11b are illustrated, but the arrangement and number of the air blowing holes 11b are not limited thereto.
In this embodiment, a fluid layer forming means that floats the glass substrate S by forming a fluid layer between the glass substrate S and the plate surface 11a by the air supply means, the air chamber 11d, and the air blowing hole 11b. Is configured.
[0017]
As shown in FIG. 2, when the air supply means is driven in a state where the glass substrate S is placed on the plate surface 11a to supply air into the air chamber 11d, the air in the air chamber 11d becomes the air blowing hole 11b. To the bottom surface of the glass substrate S. The air blown toward the lower surface of the glass substrate S flows toward the periphery of the glass substrate S, and is released into the atmosphere from the gap between the guide frame 12 and the periphery of the glass substrate S. Thereby, a fluid layer (air layer) is formed between the glass substrate S and the plate surface 11a.
When the glass substrate S rises to a predetermined height position, the pressure of the air forming the fluid layer and the weight of the glass substrate S are balanced, and the glass substrate S is held at the height position.
[0018]
Concave portions 11c are formed at a plurality of locations (three locations in this embodiment) on the plate surface 11a. Positioning means 13 for positioning the glass substrate S in the floating state is provided in the recess 11c (see FIG. 1).
Hereinafter, the configuration and operation of the positioning means 13 in this embodiment will be described with reference to FIG.
FIG. 3 is a partially enlarged cross-sectional view for explaining the configuration and operation of the positioning means in this embodiment.
FIG. 3A shows a state before the glass substrate S is supplied to the substrate holder 1. As shown in FIG. 3 (a), the positioning means 13 is attached to a mountain-shaped leaf spring 15 having one skirt attached to the bottom of the recess 11c in a cantilevered state, and the top of the leaf spring 15. The contact member 14 is in contact with the lower surface of the glass substrate S. The contact member 14 is preferably formed of a material that does not damage the lower surface of the glass substrate S and does not easily slip between the glass substrate S, for example, urethane resin or rubber. It is good to form by etc. The elastic force of the leaf spring 15 may be selected to be sufficiently small with respect to the weight of the substrate S. Preferably, the elastic force of the leaf spring 15 is appropriately selected within a minimum range in which the substrate S is not distorted according to the flying height position of the substrate S by the fluid layer.
[0019]
FIG. 3B shows a state when the glass substrate S is supplied to the substrate holder 1. As shown in FIG. 3B, when the glass substrate S is placed on the plate surface 11a in a state where air is not blown out from the air blowing hole 11b (see FIGS. 1 and 2), the glass substrate S comes into contact with its own weight. The member 14 is pushed back toward the recess 11c against the elastic force of the leaf spring 15 and is stored in the recess 11C.
FIG. 3C shows a state in which air is blown out from the air blowing hole 11b and the glass substrate S is floated.
As shown in FIG. 3 (c), when air is blown out from the air blowing hole 11b to raise the glass substrate S, the contact member 14 rises in a state of being in contact with the glass substrate S along with the rising. .
At this time, the elasticity of the leaf spring 15 is such that the movement of the glass substrate S can be restricted without pressing the contact member 14 against the glass substrate S more than necessary. The inconvenience that the glass substrate S is partially bent by the elastic force can be avoided.
[0020]
In addition, in the case of the positioning means 13 using the leaf | plate spring 15 like this embodiment, the direction which can suppress the movement of the glass substrate S is restrict | limited to a linear direction. That is, as shown in FIG. 3A, the contact member 14 does not move in the Y-axis direction (direction perpendicular to the paper surface of FIG. 3), but slightly in the X-axis direction as the leaf spring 15 is deformed. Since it moves, it is difficult for the single positioning means 13 to position the substrate S in the X-axis direction and the Y-axis direction.
Therefore, as shown in FIG. 4, three positioning means (hereinafter, the three positioning means are indicated by reference numerals 13A, 13B, and 13C in FIG. 4) are arranged so that the moving direction of the contact member 14 is orthogonal. . That is, the direction of the leaf spring 15 of the two positioning means 13A and 13B is directed in the X-axis direction, and the direction of the leaf spring 15 of the remaining positioning means 13C is directed in the Y-axis direction. By doing so, the two positioning means 13A, 13B in which the leaf spring 15 faces the X-axis direction restricts the movement of the glass substrate in the Y-axis direction, and the positioning means 13C in which the leaf spring 15 faces the Y-axis direction, The movement of the glass substrate S in the X-axis direction is restricted. Thereby, the glass substrate S can be positioned in the XY plane.
Furthermore, positioning can be performed with higher accuracy by providing the contact member 14 with a reduced-pressure suction mechanism that lightly fixes the glass substrate S with an attractive force that does not cause instability factors such as deflection and levitation to the glass substrate S. Will be able to.
[0021]
The positioning means is not limited to the one having the above-described configuration, and positioning can be performed by restricting movement of the floating glass substrate S in the X-axis direction and the Y-axis direction without giving deflection to the glass substrate S. In this case, another configuration may be used. In the above description, the glass substrate S is placed on the plate surface 11a without blowing air from the air blowing hole 11b, and then the glass substrate S is floated by blowing air from the air blowing hole 11b. However, the glass substrate S may be supplied onto the plate surface 11a in a state where air is blown out from the air blowing holes 11b.
5 and 6 are explanatory views of a substrate holder according to the second embodiment of the present invention using positioning means of another configuration, FIG. 5 is a plan view thereof, and FIG. 6 is the second embodiment. It is sectional drawing explaining the procedure of the board | substrate holding | maintenance by the positioning means of a form.
[0022]
In this embodiment, the positioning means 23 is attached to a guide frame 22 provided on the stage 21.
The positioning means 23 includes a contact member 25 that can move forward and backward in contact with the side surface of the glass substrate S from the peripheral direction of the floating substrate S, and a solenoid that moves the contact member 25 forward and backward with respect to the glass substrate S. It is comprised from the drive body 24. FIG.
There are a plurality of contact members 25 on each side of the rectangular guide frame 22 (in the example shown in FIG. 5) so that the contact members 25 can contact the side surfaces of the glass substrate S from the four circumferences of the rectangular glass substrate S. Two on the short side and four on the long side). The driving body 24 is provided corresponding to each of the contact members 25.
A single driving body may be arranged on each side of the guide frame 22, and a plurality of contact members 25 arranged on the same side may be moved forward and backward simultaneously by this single driving body.
The drive body 24 is controlled by a drive command from a control device (not shown). For example, the timing of moving the contact member 25 forward and backward by driving the drive body 24 may be such that the drive body 24 is driven after a lapse of a predetermined time from the start of air blowing, a photoelectric sensor or the like is provided, The driving body 24 may be driven when the photoelectric sensor detects the substrate S that has floated to the height position.
[0023]
6A, two glass substrates S are supplied to the substrate holder in a state in which the driving body 24 is stopped, that is, in a state in which the contact member 25 is retracted to a position where it does not interfere with the glass substrate S. To do.
As shown in FIG. 6B, when the air in the air chamber 21d is blown out from the air blowing hole 21b and the glass substrate S is lifted to a predetermined height position, as shown in FIG. Drive.
Thereby, the contact member 25 contacts the side surface of the glass substrate S from the periphery of the glass substrate S, thereby restricting the movement of the glass substrate S in the X-axis direction and the Y-axis direction.
In order to minimize the partial deflection of the glass substrate S caused by the contact of the contact member 25, the tip of the contact member 25 is lightly placed on the side surface of the glass substrate S when the driving body 24 is driven. It is preferable to adjust the stroke of the abutting member 25 in advance so as to make contact.
[0024]
[Description of substrate processing apparatus]
The substrate holders 1 and 2 having the above configuration can be used in a substrate processing apparatus used when manufacturing a photomask blank, a photomask, or the like.
In this case, the substrate processing apparatus includes irradiation means for irradiating the surface of the substrate positioned and held by the substrate holders 1 and 2 with an electron beam or a laser beam, and the electron beam or the laser beam from the irradiation means. By irradiation, a predetermined process such as drawing a pattern on the substrate or correcting the pattern formed on the substrate is performed.
Examples of such a substrate processing apparatus include a drawing apparatus or an exposure apparatus for forming a pattern by irradiating a laser beam on a substrate such as a photomask blank coated with a photoresist.
[0025]
[Description of board inspection equipment]
Next, a substrate inspection apparatus for inspecting a substrate will be described.
In the following description, an inspection apparatus for inspecting the flatness of a substrate will be described as an example. As this type of inspection apparatus, an oblique incidence interference method and a normal incidence interference method are known. In the following description, an oblique incidence interference method will be described as an example.
[0026]
In the oblique incidence interference method, as shown in FIG. 7, for example, a He-Ne laser is used as a light source for inspection light, and light and dark stripes (interference fringes) appearing when the optical path difference of the parallel light flux of this laser becomes an integral multiple of the wavelength used. Measure the flatness by reading.
As shown in FIG. 7A, the oblique incidence interference type substrate inspection apparatus 5 transmits only a laser power source 51, a laser tube 52 that generates He—Ne laser light, and laser light having a predetermined wavelength. Filter 53, objective lens 54 and diffuser plate 55 for diffusing the laser beam, motor 56 for driving the diffuser plate 55, collimator lens 57 for converting the diffused laser beam into a parallel beam, and prism The main unit 58, the Fresnel plate 60, the screen 61, and a plurality of mirrors M1 to M5 for adjusting the optical path of the laser beam are schematically configured.
[0027]
FIG. 7B is a diagram showing the relationship between the parallel light flux and the optical path difference, and is an enlarged view of the sample (glass substrate S) and prism master 58 portion of FIG. 7A.
As can be seen from FIG. 7 (b), the optical path difference δ represents the refractive index of air as n.0When the refractive index of the prism is n, it can be expressed by the following formula.
[0028]
δ = n0(P1P2-P2P3) -nTP3
Note that P1P2, P2P3, and TP3 indicate distances between the points in FIG. 7B.
here,
P1P2 = 2n0/ Cosθ ’
TP3 = P1P3sinθ = 2d0From tanθ ’and sinθ
δ = 2n0/ Cosθ'-2d0tanθ ’・ sinθ
n0From sinθ ′ = nsinθ,
δ = 2n0d0cosθ '+ λ ・ β / 2π
Since the phase change β = π at P3,
δ = 2n0d0cosθ '+ λ / 2
When this optical path difference is an integral multiple of the wavelength used, interference fringes are generated, so the surface height d of the substrate S where the fringes occur0Is
d0= Λ / 2n0cos θ ′ · (m−1 / 2) m: integer
It becomes.
In other words, the flatness measurement uses interference fringes that appear when the optical path difference of the parallel light flux of the laser is an integral multiple of the wavelength used, and therefore must be held without moving the substrate during the measurement. Further, the flatness measurement needs to be performed in the original shape of the substrate itself. Therefore, reproducibility of flatness measurement is achieved by applying the substrate holder of the present invention that can hold a substrate without being moved in a positioned state and without bending, that is, without deformation, to the measurement of flatness. And the accuracy can be improved effectively.
[0029]
Although preferred embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments.
For example, in the first embodiment, the positioning means 13 has been described as being provided at three locations, but may be four or more locations. Moreover, although the leaf | plate spring 15 is used as an elastic body, if the movement of the board | substrate S in the predetermined direction can be controlled, other forms of springs, such as a helical spring, can be used.
In the second embodiment, the positioning means 23 moves the abutting member forward and backward by a solenoid. However, as long as the abutting member can be moved forward and backward, the driving body is not limited to a solenoid, but a cylinder or It may be a motor or the like. Furthermore, in the second embodiment, the contact member is moved forward and backward by the driving body, but the contact member may be moved forward and backward by a manual operation.
[0030]
In the above description, air is used to float the glass substrate S. However, nitrogen gas or other inert gas may be used depending on the type of device, the substrate, or the like. Furthermore, as a fluid for floating the glass substrate S, a gas such as air has been described as an example. However, the fluid is not limited to a gas and may be a liquid such as water. In this case, by selecting a liquid having a specific gravity larger than that of the glass substrate S as a liquid to be used, buoyancy is generated in the glass substrate S, and the glass substrate S can be levitated more effectively. However, when a gas such as air is used, there is an advantage that an operation such as removing a fluid in the next process becomes unnecessary.
The present invention is not limited to an untreated glass substrate, and can be applied to a glass substrate provided with a transmittance control film such as a Cr film or a MoSi film, an ITO film, or the like.
[0031]
【The invention's effect】
According to the present invention, since the substrate is floated from the plate surface using a fluid such as air and the contact member is contacted from the lower surface or the side surface of the substrate, positioning of the substrate is minimized. Measurement, processing, inspection and the like can be performed with high accuracy while maintaining the flatness of the substrate itself. In particular, the present invention has a great effect when applied to a large substrate that is likely to bend due to its own weight.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view illustrating a configuration of a substrate holder according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the substrate holder showing a state in which a fluid layer is formed between the plate surface and the substrate.
FIG. 3 is an enlarged view for explaining the configuration and operation of the positioning means in the first embodiment.
FIG. 4 is a plan view illustrating an arrangement form of positioning means.
FIG. 5 is an explanatory view of a substrate holder according to a second embodiment of the present invention using other positioning means, and is a plan view thereof.
FIG. 6 is an explanatory view of a substrate holder according to a second embodiment of the present invention using other positioning means, and is a sectional view for explaining a substrate holding procedure.
FIG. 7 is a schematic view showing an example of a substrate inspection apparatus.
[Explanation of symbols]
1, 2 Substrate holder
11, 21 stages
11a, 21a Plate surface
11b, 21b Air outlet hole
11c recess
11d, 21d air chamber
12,22 Guide frame
13, 23 Positioning means
14 Contact member
15 Leaf spring (elastic body)
24 Driving body
25 Contact member

Claims (10)

一辺300mm以上の方形基板をプレート面上の所定位置で安定的に保持させる基板保持具であって、
前記基板の下面と前記プレート面との間に介在し、前記基板を浮上させるための流体層を形成する流体層形成手段と、
前記流体層によって浮上した前記基板を安定的に保持させる複数の位置決め手段を有し、
前記複数の位置決め手段は、弾性体と、この弾性体に取り付けられ、前記基板に当接する当接部材を有するとともに、前記当接部材の移動方向が異なるように配置され、前記基板が前記流体層によって浮上させられ、前記流体層の圧力と前記基板の自重とが釣り合った状態で、前記基板の下面に前記当接部材が当接して、前記基板を前記プレート面上の所定位置に位置決めすることを特徴とする基板保持具。
A substrate holder for stably holding a rectangular substrate having a side of 300 mm or more at a predetermined position on a plate surface,
A fluid layer forming means interposed between the lower surface of the substrate and the plate surface to form a fluid layer for levitating the substrate;
A plurality of positioning means for stably holding the substrate levitated by the fluid layer;
Wherein the plurality of positioning means, and the elastic member is attached to the elastic member, as well as have a contact with the contact member to the substrate, the person moving direction of the contact member is arranged to be different, the substrate is the fluid The contact member is brought into contact with the lower surface of the substrate in a state where the pressure of the fluid layer and the weight of the substrate are balanced, and the substrate is positioned at a predetermined position on the plate surface. A substrate holder characterized by that.
前記流体層を形成する流体として気体を用い、前記弾性体として板ばねを用いることを特徴とする請求項1に記載の基板保持具。  The substrate holder according to claim 1, wherein a gas is used as the fluid forming the fluid layer, and a leaf spring is used as the elastic body. 前記複数の位置決め手段を、前記当接部材の移動方向が直交するように配置したことを特徴とする請求項1又は2に記載の基板保持具。The substrate holder according to claim 1, wherein the plurality of positioning means are arranged so that the moving directions of the contact members are orthogonal to each other . 前記当接部材は、減圧吸着部材を有することを特徴とする請求項1〜3のいずれかに記載の基板保持具。  The substrate holder according to claim 1, wherein the contact member includes a reduced-pressure adsorption member. 請求項1〜4のいずれかに記載の基板保持具を有する基板処理装置であって、
前記基板保持具によって位置決め・保持された前記基板の表面に、電子線又はレーザー光を照射する照射手段を有することを特徴とする基板処理装置。
A substrate processing apparatus having the substrate holder according to claim 1,
An apparatus for processing a substrate, comprising: irradiation means for irradiating an electron beam or a laser beam on the surface of the substrate positioned and held by the substrate holder.
請求項1〜4のいずれかに記載の基板保持具を有する基板検査装置であって、
前記基板保持具によって位置決め・保持された前記基板の表面に検査光を照射する検査光照射手段と、
前記検査光に基づく前記基板の表面の光を検出する光検出手段と、
を有することを特徴とする基板検査装置。
A substrate inspection apparatus having the substrate holder according to claim 1,
Inspection light irradiation means for irradiating the surface of the substrate positioned and held by the substrate holder with inspection light;
Light detecting means for detecting light on the surface of the substrate based on the inspection light;
A board inspection apparatus comprising:
一辺300mm以上の方形基板をプレート面上の所定位置で安定的に保持させる基板保持方法であって、
前記基板と前記プレート面との間に流体層を形成して、前記基板を一面側から浮上させる流体層形成工程と、
前記基板が前記流体層によって浮上し、前記流体層の圧力と前記基板の自重とが釣り合った状態で、前記基板の少なくとも下面に、弾性体に取り付けられた複数の当接部材を当接させて、前記基板を前記プレート面とほぼ平行な平面内で位置決めする位置決め工程とを有し、
前記位置決め工程では、移動方向が異なるように配置された複数の前記当接部材を、前記基板の下面に当接させて、前記基板を前記プレート上の所定の位置に位置決めすることを特徴とする基板保持方法。
A substrate holding method for stably holding a rectangular substrate having a side of 300 mm or more at a predetermined position on a plate surface,
A fluid layer forming step of forming a fluid layer between the substrate and the plate surface, and floating the substrate from one surface side;
The substrate is levitated by the fluid layer, and a plurality of contact members attached to an elastic body are brought into contact with at least the lower surface of the substrate in a state where the pressure of the fluid layer and the weight of the substrate are balanced. Positioning the substrate in a plane substantially parallel to the plate surface ,
In the positioning step, the plurality of contact members arranged so as to have different movement directions are brought into contact with the lower surface of the substrate to position the substrate at a predetermined position on the plate. Substrate holding method.
前記基板がフォトマスクブランク又はフォトマスク若しくはこれらに用いられる基板であることを特徴とする請求項7に記載の基板保持方法。  The substrate holding method according to claim 7, wherein the substrate is a photomask blank, a photomask, or a substrate used therefor. 請求項7又は8に記載の基板保持方法を利用した基板処理方法であって、
前記基板保持方法を用いて位置決め・保持された前記基板の表面に処理光を照射する照射工程を設けたことを特徴とする基板処理方法。
A substrate processing method using the substrate holding method according to claim 7 or 8,
A substrate processing method comprising: irradiating a surface of the substrate positioned and held using the substrate holding method with a processing light.
請求項7又は8に記載の基板保持方法を利用した基板検査方法であって、
前記基板保持方法を用いて位置決め・保持された前記基板の表面に検査光を照射する検査光照射工程を設けたことを特徴とする基板検査方法。
A substrate inspection method using the substrate holding method according to claim 7 or 8,
An inspection light irradiation step of irradiating inspection light onto the surface of the substrate positioned and held by using the substrate holding method.
JP2003136427A 2003-05-14 2003-05-14 Substrate holder, substrate processing apparatus, substrate inspection apparatus, and methods of use thereof Expired - Lifetime JP4268447B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003136427A JP4268447B2 (en) 2003-05-14 2003-05-14 Substrate holder, substrate processing apparatus, substrate inspection apparatus, and methods of use thereof
TW093113262A TWI242634B (en) 2003-05-14 2004-05-12 Substrate holder, substrate processing apparatus, substrate inspection device and method of using the same
CNB2004100382055A CN100378944C (en) 2003-05-14 2004-05-13 Base board holding appliance,base board processing device, base board checking device and use method
KR1020040034012A KR100809648B1 (en) 2003-05-14 2004-05-13 Substrate holding tool, substrate treating apparatus, substrate testing apparatus, and method for using these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136427A JP4268447B2 (en) 2003-05-14 2003-05-14 Substrate holder, substrate processing apparatus, substrate inspection apparatus, and methods of use thereof

Publications (2)

Publication Number Publication Date
JP2004342771A JP2004342771A (en) 2004-12-02
JP4268447B2 true JP4268447B2 (en) 2009-05-27

Family

ID=33526396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136427A Expired - Lifetime JP4268447B2 (en) 2003-05-14 2003-05-14 Substrate holder, substrate processing apparatus, substrate inspection apparatus, and methods of use thereof

Country Status (4)

Country Link
JP (1) JP4268447B2 (en)
KR (1) KR100809648B1 (en)
CN (1) CN100378944C (en)
TW (1) TWI242634B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830053B1 (en) * 2007-03-29 2008-05-16 주식회사 피앤드엠 Chuck for carrying substrate of non-contact type
KR100849084B1 (en) * 2007-05-22 2008-07-30 위아무역주식회사 Glass board align unit
JP2010040788A (en) * 2008-08-05 2010-02-18 Olympus Corp Lift device and substrate inspection device
CN102014361B (en) 2009-09-07 2014-02-19 华为技术有限公司 Authentication authorization accounting (AAA) session updating method, device and system
KR101190967B1 (en) 2009-12-22 2012-10-12 크루셜엠스 주식회사 Supply and an adhesion system consecutive both tape automation for a cellular phone case
CN202257028U (en) * 2011-09-13 2012-05-30 深圳市华星光电技术有限公司 Lcd exposure platform device and exposure system
KR101412114B1 (en) 2012-11-20 2014-06-26 리노정밀(주) Apparatus for testing
KR101716803B1 (en) 2014-12-18 2017-03-15 이채갑 Probe device
JP6018659B2 (en) * 2015-02-27 2016-11-02 株式会社日本製鋼所 Atmosphere forming apparatus and levitation conveyance method
JP6874314B2 (en) * 2016-09-30 2021-05-19 株式会社ニコン Object holding device, exposure device, flat panel display manufacturing method, and device manufacturing method
CN108766901B (en) * 2018-06-26 2020-07-31 上海华力微电子有限公司 Method for detecting flatness of wafer worktable
KR20210040684A (en) * 2019-10-04 2021-04-14 (주)포인트엔지니어링 Micro led display manufacturing device and method of manufacturing micro led display
KR102378017B1 (en) 2020-06-19 2022-03-25 리노정밀(주) Connector Jig and Conducting Wire Connecting Device and Connection Method of Such Connector Jig
KR20220086749A (en) 2020-12-16 2022-06-24 리노정밀(주) Substrate Inspection Apparatus for Easy Inspection

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325916A (en) * 1986-07-17 1988-02-03 Sharp Corp Vaepor growth apparatus
JPH028121A (en) * 1988-06-22 1990-01-11 Hitachi Electron Eng Co Ltd Wafer conveyor
JPH05299492A (en) * 1992-04-17 1993-11-12 Nachi Fujikoshi Corp Wafer positioning apparatus
JPH0620904A (en) * 1992-07-03 1994-01-28 Seiko Epson Corp Coordinate measuring device
JPH06340333A (en) * 1993-05-31 1994-12-13 Hitachi Ltd Conveying device by gas flow
JPH07124837A (en) * 1993-10-29 1995-05-16 Nachi Fujikoshi Corp Positioning method and device for plate glass
JPH0846017A (en) * 1994-07-29 1996-02-16 Sony Corp Apparatus and method for positioning of board
JPH0961111A (en) * 1995-08-28 1997-03-07 Nikon Corp Method and device for measuring pattern coordinates
JP3691146B2 (en) * 1996-02-06 2005-08-31 東芝機械株式会社 XY stage and method for inspecting flat inspection object
JPH11165868A (en) * 1997-12-06 1999-06-22 Horiba Ltd Plate member holding device
JP2000062951A (en) * 1998-08-19 2000-02-29 Daiichi Shisetsu Kogyo Kk Conveying apparatus
JP2000216208A (en) * 1999-01-20 2000-08-04 Hitachi Ltd Method and system for visual inspection and manufacture of semiconductor device
JP3602359B2 (en) * 1999-02-10 2004-12-15 エスペック株式会社 Positioning device for flat work
TWI368757B (en) * 2003-04-30 2012-07-21 Olympus Corp Device for floating a substrate

Also Published As

Publication number Publication date
CN1551327A (en) 2004-12-01
JP2004342771A (en) 2004-12-02
KR100809648B1 (en) 2008-03-05
TWI242634B (en) 2005-11-01
KR20040098586A (en) 2004-11-20
CN100378944C (en) 2008-04-02
TW200506315A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP4268447B2 (en) Substrate holder, substrate processing apparatus, substrate inspection apparatus, and methods of use thereof
US8153336B2 (en) Photomask substrate, photomask substrate forming member, photomask substrate fabricating method, photomask, and exposing method that uses the photomask
JP7068378B2 (en) Board holder, lithography equipment and device manufacturing method
TWI644178B (en) Substrate holding method and apparatus, exposing method and apparatus, and device manufacturing method
TW490733B (en) Substrate holding apparatus and exposure apparatus including substrate-holding apparatus
JP4362732B2 (en) Large glass substrate for photomask and manufacturing method thereof, computer-readable recording medium, and mother glass exposure method
US20030179354A1 (en) Mask-holding apparatus for a light exposure apparatus and related scanning-exposure method
TWI703412B (en) Tool for modifying a support surface
US7549141B2 (en) Photomask, photomask manufacturing method, and photomask processing device
JP2013110162A (en) Imprint device and method of manufacturing articles
US20210366792A1 (en) Backside deposition tuning of stress to control wafer bow in semiconductor processing
JP4005910B2 (en) Pattern drawing method and drawing apparatus
TWI506355B (en) Photomask substrate, method of manufacturing a photomask substrate, photomask blank, photomask, pattern transfer method, method of manufacturing liquid crystal display, and proximity gap evaluating method
JP2001127144A (en) Method and device for holding substrate with suction and exposing device and device manufacturing method using the device
TWI463274B (en) Lithographic apparatus and substrate handling method
JPH0831515B2 (en) Substrate suction device
JP3713497B2 (en) Attitude control mechanism and exposure method for pellicle structure
JP2004163366A (en) Measuring method, method and apparatus for holding substrate, and aligner
TW201732997A (en) Substrate holding device, drawing device, photomask inspection device, and method of manufacturing a photomask
JP2017116868A (en) Lithography device, article manufacturing method, stage device, and measuring device
JPS6330781B2 (en)
JP2021068878A (en) Substrate holding device
JPH06216221A (en) Positioning apparatus
JPS59121950A (en) Fixing method of sample
JPH05100416A (en) Mask holder and holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Ref document number: 4268447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term