JP4258158B2 - Planarization processing method and semiconductor device manufacturing method - Google Patents

Planarization processing method and semiconductor device manufacturing method Download PDF

Info

Publication number
JP4258158B2
JP4258158B2 JP2002059571A JP2002059571A JP4258158B2 JP 4258158 B2 JP4258158 B2 JP 4258158B2 JP 2002059571 A JP2002059571 A JP 2002059571A JP 2002059571 A JP2002059571 A JP 2002059571A JP 4258158 B2 JP4258158 B2 JP 4258158B2
Authority
JP
Japan
Prior art keywords
region
element region
forming
semiconductor device
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002059571A
Other languages
Japanese (ja)
Other versions
JP2002334925A (en
Inventor
友和 堀江
慎一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002059571A priority Critical patent/JP4258158B2/en
Publication of JP2002334925A publication Critical patent/JP2002334925A/en
Application granted granted Critical
Publication of JP4258158B2 publication Critical patent/JP4258158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置製造に係り、特に大面積の素子形成領域を有する半導体ウェハ上の被平坦化処理層を化学的機械的研磨により平坦化する際の平坦化処理方法及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体素子の微細化、高集積化に伴い、ゲート電極や配線の細線化、ピッチの縮小化は進む一方である。従って、ゲート電極や配線形成に必要なリソグラフィ技術の評価、素子としての製造に関する膜質などの諸条件の評価は重要であり、予め評価用ウェハで評価される。すなわち、評価用ウェハにおいて、実際の設計に則した寸法、ピッチ等、所条件を盛り込んだ様々な素子のパターンが形成され、製造工程の評価がなされるのである。このような評価用ウェハをTEG(Test Element Group)ウェハと呼ぶこともある。
【0003】
近年の微細化、高集積化に伴い配線層数は増大し、形成層間の平坦化処理には化学的機械的研磨、いわゆるCMP(Chemical Mechanical Polishing )技術は不可欠である。すなわち、被平坦化層の凹凸部に加わる研磨パッドの圧力差、および、スラリーによる選択比によって研磨レートの選択性が生じ、所定時間経過後には凹凸部をなだらかにする。
【0004】
上記評価用ウェハにおいてもCMP技術を用いて形成層間の平坦化処理が行われる。例えば、素子分離領域としてトレンチ素子分離絶縁膜を形成する場合について以下に説明する。
【0005】
図9(a),(b)は、それぞれ従来技術におけるトレンチ素子分離領域を形成する際の途中過程を示す断面図である。図9(a)に示すように、Si半導体基板91上に窒化膜(シリコン窒化膜等)92のマスクパターンを形成し、素子分離用のトレンチ93をエッチング形成する。トレンチ93を酸化した後(図示せず)、CVD(Chemical Vapor Deposition )法により酸化膜94を形成する。酸化膜94はトレンチ93の凹凸に従って堆積レベルが異なってくる。
【0006】
評価用ウェハ(91)にはゲート配線を所定ピッチで敷き詰める大面積の素子領域95が設けられる。これにより、他の領域に比べて大面積の素子領域95上の酸化膜94は高く堆積され、大面積の台状(凸部)領域941となる。
【0007】
CMPにおける研磨パッドでは、被平坦化処理層(酸化膜94)に対し、凸部には凹部に比べて大きな圧力がかかり、研磨レートは大きくなる。しかし、大面積の凸部では研磨パッドの圧力が分散し、研磨レートが小さくなるのが現状である。すなわち、素子領域95上の台状領域941は、その他の低い堆積レベルの細かな凹凸領域と同じようには平坦化できず、平坦化の誤差が大きくなる懸念がある。
【0008】
そこで、図9(b)に示すように、他の領域に比べて大面積の素子領域95上における酸化膜94の台状領域941に対しフォトリソグラフィ技術を用い、他の堆積レベルに近付けるように全体をある程度の深さエッチングする。凸部942は、レジストのマスクパターンの形成マージンにより形成されるものである。このような構成にしてからCMPを実施すれば、誤差の少ない平坦化レベルを実現することができる。そして図示しないが、窒化膜92をCMPのストッパ膜として検出し、その後に窒化膜を除去する。これにより、トレンチ93に酸化膜94が埋め込まれたトレンチ素子分離絶縁膜が形成される。
【0009】
【発明が解決しようとする課題】
しかしながら、上記図9(b)に示すような、大面積の酸化膜94の台状領域941への対策ではCMP特有のディシングの問題は避けられない。大面積の素子領域95には当然トレンチが存在し得ないから凹凸がほとんど無く、従ってディシングが起こる恐れがある。
【0010】
図10は、上記図9(b)に対しCMPを利用して平坦化し窒化膜92をCMPのストッパ膜として検出した際の断面図である。大面積の素子領域95上でディシングが生じ、他の領域に比べて早く窒化膜92が露出してしまい、CMP処理終了となる。この状態で窒化膜92の除去工程に移っても、窒化膜92上に酸化膜94が残留しているので窒化膜92は完全に除去されない。
【0011】
このような事態を避けるため、従来、CMP処理は窒化膜92を検出してからさらに窒化膜92上に残留した分の酸化膜94の除去を想定した時間、余儀なく過剰に実行していた。これにより、CMP効率の低下、研磨パッドの劣化の進行、トレンチ素子分離膜としての酸化膜(94)の膜厚ばらつきに影響を及ぼすといった問題がある。
【0012】
本発明は上記のような事情を考慮してなされたもので、凹凸の少ない大面積の領域を含む場合であってもディッシング等を低減することができ、少ない研磨量で膜厚ばらつきの少ない平坦化レベルを実現する平坦化前処理方法を提供しようとするものである。
【0013】
【課題を解決するための手段】
本発明に係る平坦化処理方法、及び、半導体装置の製造方法は、第1の領域と前記第1の領域よりも面積が広い第2の領域とを有する基板のうち、前記第1の領域と前記第2の領域との間に、前記第1の領域と前記第2の領域とを分離するためにトレンチを形成する工程と、
前記基板上と前記トレンチ内に絶縁膜を形成する工程と、
前記第2の領域の上の前記絶縁膜に、複数の凹凸を有するダミーパターンを形成する工程と、
化学的機械的研磨によって、前記絶縁膜を平坦化する工程と、を含む。
【0014】
上記本発明に係る平坦化処理方法、及び、半導体装置の製造方法によれば、複数の凹凸を有する所定深さのダミーパターンが台状の領域全体に形成される。これにより、研磨パッドにおける研磨レートの選択性が活かされ、かつスラリーが凹部全体に行き渡り、均一的なCMPを実現する。
【0015】
なお、上記ダミーパターンは、均一的なCMPを実現するために、好ましくは格子溝パターンをフォトリソグラフィ技術により形成する。あるいは複数の開口パターンをフォトリソグラフィ技術により形成することを特徴とする。また、この半導体装置の製造方法は、さらに、前記絶縁膜の平坦化工程の後に、さらに、前記第1の領域に第1の素子を形成し、前記第2の領域に前記第1の素子よりも大きい第2の素子を形成してもよい。
【0016】
【発明の実施の形態】
図1(a),(b)は、それぞれ本発明の一実施形態に係る半導体装置の製造方法に含まれる平坦化処理方法を工程順に示す断面図である。図1(a)に示すように、半導体ウェハ10において、下層形成部の凹凸(図示せず)の影響により凹凸を帯びた平坦化されるべき層11が、部分的に高さのある大面積の台状領域12を有している。点線Lで示す平坦化終了レベルまでCMPすなわち化学的機械的研磨により平坦化する処理に関し、台状領域12では絶縁膜11の研磨残り、台状領域12の周辺領域ではディッシングが懸念される。
【0017】
そこで、図1(b)に示すように、CMPの前処理として、この被平坦化処理層11の台状領域12に対し、複数の凹凸を有するように所定深さのダミーパターン13を形成する。ダミーパターン13は、例えばフォトリソグラフィ技術を用いて、台状領域12周辺の他の低い領域のレベル付近まで深くパターニングする。
【0018】
図1(b)に示すような前処理をしてからCMPを施すと、台状領域12全体に形成され複数の凹凸を有する所定深さのダミーパターン13によって、図示しない研磨パッドにおいて研磨レートの選択性が活かされ、また、スラリーが凹部全体に行き渡る。よって、平坦化終了レベルLまで、均一的なCMPを達成し、ディッシングを低減した膜厚誤差の少ない平坦化を実現することができる。
【0019】
図2、図3は、それぞれ図1(b)に示すようなCMP前処理として大面積の台状領域12に対して形成されるダミーパターン13の具体例を示す平面図である。
【0020】
図2では、格子溝パターン131をフォトリソグラフィ技術により形成する。また、図3では、複数の開口パターン132をフォトリソグラフィ技術により形成する。つまり斜線で示すパターン131、132はいずれも凹部となり、スラリーが凹部全体に行き渡りつつ、凸部で研磨パッドの圧力の分散を抑制し、均一なCMPを実現する。
【0021】
図4〜図8は、それぞれ本発明に係る半導体装置の製造方法を適用したトレンチ素子分離領域の形成を工程順に示す断面図である。図4に示すようにSi半導体基板41上にマスクパターンとなる窒化膜(シリコン窒化膜)42を形成し、素子分離用のトレンチ43をエッチング形成する。マスクパターンはシリコン窒化膜からなるものに限定されず、基板41のエッチング条件において、基板41と窒化膜42とのエッチングレート比(選択比)が高いものであればよい。また、絶縁膜45のエッチング条件において、マスクパターンは、絶縁膜45とマスクパターンとのエッチングレート比(選択比)が高いものがさらに好ましい。ここでは、周囲の素子領域A1に比べて大面積の素子領域A2が設けられる部分を含んでいる。
【0022】
次に、図5に示すように、トレンチ43を酸化し酸化膜44を形成した後、CVD(Chemical Vapor Deposition )法により絶縁膜45を形成する。例えば、絶縁膜45は、シリコン酸化膜である。絶縁膜45はトレンチ43の凹凸に従って堆積レベルが異なってくる。大面積の素子領域A2上の絶縁膜45は他の領域に比べて高く堆積され、大面積の台状(凸部)領域451となる。
【0023】
次に、図6に示すように、上記大面積の台状領域451に対し、複数の凹凸を有するように所定深さのダミーパターン46を形成する。ダミーパターン46は、例えばフォトリソグラフィ技術を用いて、台状領域451周辺の低い領域のレベル付近まで深くパターニングする。これにより、台状領域451の少なくとも一部に、複数の開口、もしくは、格子溝のパターンを形成してもよい。ダミーパターン46は、例えば前記図2、図3の例に示した形態をとる。
【0024】
次に、図7に示すようにCMPを施す。台状領域451全体に形成され複数の凹凸を有する所定深さのダミーパターン46によって、図示しない研磨パッドにおいて研磨レートの選択性が活かされ、また、スラリーが凹部全体に行き渡る。これにより、CMPのストッパ膜となる窒化膜42の露出検出まで、均一的なCMPを達成し、ディッシングを低減した膜厚誤差の少ない平坦化を実現することができる。このストッパ膜42は、窒化膜からなるものに限定されず、絶縁膜45のエッチング条件において、絶縁膜45とストッパ膜42とのエッチングレート比(選択比)が高いものであればよい。その後、図8に示すように、シリコン窒化膜42の除去工程を経て、トレンチ43に酸化膜45が埋め込まれたトレンチ素子分離絶縁膜が形成される。
次に、周辺の素子領域A1と大面積の素子領域A2にそれぞれ素子を形成する。大面積の素子領域A2に設けられる素子の幅のほうが、周辺の素子領域A1に設けられる素子の幅よりも大きくてもよい。それぞれの素子は、ゲート電極を有するMISトランジスタでもよい。この場合、素子領域A2中のゲート電極の幅は、素子領域A1のゲート電極の幅よりも大きくてもよい。
【0025】
上記構成によれば、ストッパ膜の露出検出によるCMP処理終了時、ストッパ膜上への絶縁膜45残留はほとんどなくなり、従来に比べて残留絶縁膜45の除去は非常に制御し易い。よって、CMP効率の低下、研磨パッドの劣化を最小限に抑えつつ、より適切な状態でストッパ膜の除去工程に移行できる。よって、トレンチ素子分離膜としての絶縁膜45の膜厚ばらつきの影響は非常に小さいものとなり、以降の素子製造工程に高信頼性を保つことができる。
【0026】
なお、本発明の平坦化前処理方法は、上記実施形態に限らず、ディッシングの問題が懸念される被平坦化処理層の平坦化終了レベルより一様に高い台状の領域に対し、有効である。すなわち、上記問題の領域にCMPの前の段階で複数の凹凸を有するように所定深さのダミーパターンを形成しておくことによって、CMPにおいて研磨残りやディッシングを低減することができ、より精度の高い平坦化レベルを実現することができる。
【0027】
【発明の効果】
以上説明したように本発明によれば、ディッシングの懸念があるある大面積の台状領域に対し複数の凹凸を有する所定深さのダミーパターンを形成する。これにより、研磨パッドにおいて研磨レートの選択性が活かされ、また、スラリーが凹部全体に行き渡る。よって、平坦化終了レベルLまで、均一的なCMPを達成スラリーが凹部全体に行き渡る。この結果、凹凸の少ない大面積の領域を含んでいても研磨残りやディッシングを低減することができ、少ない研磨量で膜厚ばらつきの少ない平坦化レベルを実現する平坦化前処理方法を提供することができる。
【図面の簡単な説明】
【図1】 (a),(b)は、それぞれ本発明の一実施形態に係る平坦化前処理方法を工程順に示す断面図である。
【図2】 図1(b)に示すようなCMP前処理として大面積の台状領域に対して形成されるダミーパターンの第1の具体例を示す平面図である。
【図3】 図1(b)に示すようなCMP前処理として大面積の台状領域に対して形成されるダミーパターンの第2の具体例を示す平面図である。
【図4】 本発明に係る平坦化前処理方法を適用したトレンチ素子分離領域の形成を工程順に示す第1の断面図である。
【図5】 本発明に係る平坦化前処理方法を適用したトレンチ素子分離領域の形成を工程順に示す図4に続く第2の断面図である。
【図6】 本発明に係る平坦化前処理方法を適用したトレンチ素子分離領域の形成を工程順に示す図5に続く第3の断面図である。
【図7】 本発明に係る平坦化前処理方法を適用したトレンチ素子分離領域の形成を工程順に示す図6に続く第4の断面図である。
【図8】 本発明に係る平坦化前処理方法を適用したトレンチ素子分離領域の形成を工程順に示す図7に続く第5の断面図である。
【図9】 (a),(b)は、それぞれ従来技術におけるトレンチ素子分離領域を形成する際の途中過程を示す断面図である。
【図10】 図9(b)に対しCMPを利用して平坦化し窒化膜をCMPのストッパ膜として検出した際の断面図である。
【符号の説明】
10…半導体ウェハ
11…被平坦化処理層
12,451,941…台状領域
942…凸部
13,46…ダミーパターン
131…格子溝パターン
132…開口パターン
41…Si半導体基板
42…窒化膜(シリコン窒化膜等)
43…トレンチ
44,45…酸化膜
A1,A2…素子領域
L…平坦化終了レベル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to semiconductor device manufacturing, and in particular, a planarization processing method and a semiconductor device manufacturing method for planarizing a planarization processing layer on a semiconductor wafer having a large-area element formation region by chemical mechanical polishing. About.
[0002]
[Prior art]
As semiconductor devices are miniaturized and highly integrated, gate electrodes and wirings are becoming thinner and pitches are being reduced. Therefore, it is important to evaluate the lithography technique necessary for forming the gate electrode and the wiring and the conditions such as the film quality related to the manufacture as the element, and are evaluated in advance with the evaluation wafer. That is, in the evaluation wafer, patterns of various elements including conditions such as dimensions and pitches according to the actual design are formed, and the manufacturing process is evaluated. Such an evaluation wafer may be called a TEG (Test Element Group) wafer.
[0003]
With the recent miniaturization and higher integration, the number of wiring layers has increased, and chemical mechanical polishing, so-called CMP (Chemical Mechanical Polishing) technology is indispensable for planarization treatment between formation layers. That is, the selectivity of the polishing rate is generated by the pressure difference of the polishing pad applied to the uneven portion of the planarized layer and the selection ratio depending on the slurry, and the uneven portion is made smooth after a predetermined time.
[0004]
The evaluation wafer is also planarized between the formation layers using the CMP technique. For example, a case where a trench element isolation insulating film is formed as the element isolation region will be described below.
[0005]
9 (a) and 9 (b) are cross-sectional views showing intermediate processes when forming a trench element isolation region in the prior art. As shown in FIG. 9A, a mask pattern of a nitride film (silicon nitride film or the like) 92 is formed on a Si semiconductor substrate 91, and an element isolation trench 93 is formed by etching. After the trench 93 is oxidized (not shown), an oxide film 94 is formed by a CVD (Chemical Vapor Deposition) method. The deposition level of the oxide film 94 varies according to the unevenness of the trench 93.
[0006]
The evaluation wafer (91) is provided with a large element region 95 in which gate wirings are spread at a predetermined pitch. As a result, the oxide film 94 on the element region 95 having a large area is deposited higher than the other regions, and a large area of the trapezoidal (convex portion) region 941 is formed.
[0007]
In the polishing pad in CMP, a larger pressure is applied to the convex portion than the concave portion with respect to the planarized layer (oxide film 94), and the polishing rate is increased. However, the present situation is that the pressure of the polishing pad is dispersed in the convex portion having a large area, and the polishing rate is reduced. That is, the trapezoidal region 941 on the element region 95 cannot be flattened in the same manner as other fine uneven regions of low deposition level, and there is a concern that the flattening error may increase.
[0008]
Therefore, as shown in FIG. 9B, the photolithography technique is used for the trapezoidal region 941 of the oxide film 94 on the element region 95 having a larger area than other regions so as to be close to other deposition levels. The whole is etched to a certain depth. The convex portion 942 is formed by a formation margin of a resist mask pattern. If CMP is performed after such a configuration, a flattening level with less error can be realized. Although not shown, the nitride film 92 is detected as a CMP stopper film, and then the nitride film is removed. Thereby, a trench element isolation insulating film in which the oxide film 94 is embedded in the trench 93 is formed.
[0009]
[Problems to be solved by the invention]
However, as shown in FIG. 9B, the countermeasure for the trapezoidal region 941 of the large-area oxide film 94 inevitably has a problem of dicing unique to CMP. Since the large element region 95 naturally cannot have a trench, there is almost no unevenness, and therefore there is a risk of dishing.
[0010]
FIG. 10 is a cross-sectional view when FIG. 9B is planarized using CMP and the nitride film 92 is detected as a CMP stopper film. Dicing occurs on the large element region 95, and the nitride film 92 is exposed earlier than the other regions, and the CMP process is completed. Even if the nitride film 92 is removed in this state, the nitride film 92 is not completely removed because the oxide film 94 remains on the nitride film 92.
[0011]
Conventionally, in order to avoid such a situation, the CMP process has been excessively performed for a period of time assuming that the oxide film 94 remaining on the nitride film 92 is further removed after the nitride film 92 is detected. As a result, there is a problem that the CMP efficiency is lowered, the deterioration of the polishing pad is progressed, and the film thickness variation of the oxide film (94) as the trench element isolation film is affected.
[0012]
The present invention has been made in consideration of the above-described circumstances, and can reduce dishing and the like even when including a large-area region with little unevenness, and a flat surface with little film thickness variation with a small amount of polishing. It is an object of the present invention to provide a pre-planarization processing method that realizes a smoothing level.
[0013]
[Means for Solving the Problems]
The planarization method and the semiconductor device manufacturing method according to the present invention include a first region and a first region out of a substrate having a first region and a second region having a larger area than the first region. Forming a trench between the second region to separate the first region and the second region;
Forming an insulating film on the substrate and in the trench;
Forming a dummy pattern having a plurality of irregularities on the insulating film on the second region;
Flattening the insulating film by chemical mechanical polishing.
[0014]
According to the planarization processing method and the semiconductor device manufacturing method according to the present invention, a dummy pattern having a plurality of irregularities and having a predetermined depth is formed over the entire trapezoidal region. As a result, the selectivity of the polishing rate in the polishing pad is utilized, and the slurry is spread over the entire recess, thereby realizing uniform CMP.
[0015]
The dummy pattern is preferably formed by a photolithography technique in order to realize uniform CMP. Alternatively, a plurality of opening patterns are formed by a photolithography technique. Further, in this method of manufacturing a semiconductor device, after the step of planarizing the insulating film, the first element is further formed in the first region, and the first element is formed in the second region. A larger second element may be formed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1A and 1B are cross-sectional views illustrating a planarization method included in a method for manufacturing a semiconductor device according to an embodiment of the present invention in order of steps. As shown in FIG. 1 (a), in the semiconductor wafer 10, the layer 11 to be flattened with unevenness due to the unevenness (not shown) of the lower layer forming portion has a large area with a partial height. The trapezoidal region 12 is provided. Regarding the process of flattening by CMP, that is, chemical mechanical polishing, to the flattening end level indicated by the dotted line L, the insulating film 11 remains unpolished in the trapezoidal region 12, and dishing may occur in the peripheral region of the trapezoidal region 12.
[0017]
Therefore, as shown in FIG. 1B, as a pre-process of CMP, a dummy pattern 13 having a predetermined depth is formed on the platform region 12 of the planarized layer 11 so as to have a plurality of irregularities. . The dummy pattern 13 is patterned deeply to the vicinity of the level of another low region around the trapezoidal region 12 by using, for example, a photolithography technique.
[0018]
When the CMP is performed after the pretreatment as shown in FIG. 1B, the polishing rate of the polishing pad (not shown) is reduced by the dummy pattern 13 having a predetermined depth formed on the entire plate-like region 12 and having a plurality of irregularities. Selectivity is utilized, and the slurry spreads throughout the recess. Therefore, uniform CMP can be achieved up to the planarization end level L, and planarization with reduced film thickness error with reduced dishing can be realized.
[0019]
2 and 3 are plan views showing specific examples of the dummy pattern 13 formed on the large area of the trapezoidal region 12 as the CMP pretreatment as shown in FIG.
[0020]
In FIG. 2, the lattice groove pattern 131 is formed by photolithography. In FIG. 3, a plurality of opening patterns 132 are formed by a photolithography technique. That is, the hatched patterns 131 and 132 are both concave portions, and the slurry spreads over the entire concave portion, while suppressing the dispersion of the pressure of the polishing pad at the convex portions, thereby realizing uniform CMP.
[0021]
4 to 8 are cross-sectional views showing, in the order of steps, the formation of the trench element isolation region to which the semiconductor device manufacturing method according to the present invention is applied. As shown in FIG. 4, a nitride film (silicon nitride film) 42 serving as a mask pattern is formed on a Si semiconductor substrate 41, and a trench 43 for element isolation is formed by etching. The mask pattern is not limited to that made of a silicon nitride film, and it is sufficient if the etching rate ratio (selection ratio) between the substrate 41 and the nitride film 42 is high under the etching conditions of the substrate 41. Further, under the etching conditions of the insulating film 45, it is more preferable that the mask pattern has a high etching rate ratio (selection ratio) between the insulating film 45 and the mask pattern. Here, it includes a portion where an element region A2 having a larger area than the surrounding element region A1 is provided.
[0022]
Next, as shown in FIG. 5, after the trench 43 is oxidized to form an oxide film 44, an insulating film 45 is formed by a CVD (Chemical Vapor Deposition) method. For example, the insulating film 45 is a silicon oxide film. The insulating film 45 has different deposition levels according to the unevenness of the trench 43. The insulating film 45 on the large-area element region A <b> 2 is deposited higher than the other regions, and becomes a large-area trapezoidal (convex) region 451.
[0023]
Next, as shown in FIG. 6, a dummy pattern 46 having a predetermined depth is formed so as to have a plurality of irregularities in the large area of the trapezoidal region 451. The dummy pattern 46 is patterned deeply to a level near a low region around the trapezoidal region 451 using, for example, a photolithography technique. Thus, a plurality of openings or lattice groove patterns may be formed in at least a part of the trapezoidal region 451. The dummy pattern 46 takes the form shown in the examples of FIGS.
[0024]
Next, CMP is performed as shown in FIG. The dummy pattern 46 of a predetermined depth having a plurality of irregularities formed over the entire trapezoidal region 451 makes use of the selectivity of the polishing rate in a polishing pad (not shown), and the slurry spreads over the entire recess. Thus, uniform CMP can be achieved up to detection of exposure of the nitride film 42 serving as a CMP stopper film, and flattening with reduced film thickness error with reduced dishing can be realized. The stopper film 42 is not limited to a nitride film, and it is sufficient that the etching rate ratio (selection ratio) between the insulating film 45 and the stopper film 42 is high under the etching conditions of the insulating film 45. Thereafter, as shown in FIG. 8, a trench element isolation insulating film in which the oxide film 45 is buried in the trench 43 is formed through a process of removing the silicon nitride film 42.
Next, an element is formed in each of the peripheral element region A1 and the large-area element region A2. The width of the element provided in the large-area element region A2 may be larger than the width of the element provided in the peripheral element region A1. Each element may be a MIS transistor having a gate electrode. In this case, the width of the gate electrode in the element region A2 may be larger than the width of the gate electrode in the element region A1.
[0025]
According to the above configuration, at the end of the CMP process by detecting the exposure of the stopper film, the insulating film 45 is hardly left on the stopper film, and the removal of the remaining insulating film 45 is very easy to control compared to the conventional case. Therefore, it is possible to shift to the stopper film removal process in a more appropriate state while minimizing the decrease in CMP efficiency and the deterioration of the polishing pad. Therefore, the influence of the film thickness variation of the insulating film 45 as the trench element isolation film is very small, and high reliability can be maintained in the subsequent element manufacturing process.
[0026]
Note that the pre-planarization processing method of the present invention is not limited to the above-described embodiment, and is effective for a trapezoidal region that is uniformly higher than the planarization end level of the planarization processing layer in which the problem of dishing is a concern. is there. That is, by forming a dummy pattern having a predetermined depth so as to have a plurality of projections and depressions at the stage before CMP in the above problem area, polishing residue and dishing can be reduced in CMP, and more accurate. A high level of planarization can be achieved.
[0027]
【The invention's effect】
As described above, according to the present invention, a dummy pattern having a predetermined depth and having a plurality of projections and depressions is formed on a large area of a trapezoidal area having a dishing concern. Thereby, the selectivity of the polishing rate is utilized in the polishing pad, and the slurry is spread over the entire recess. Therefore, uniform CMP is achieved up to the flattening end level L, and the slurry spreads over the entire recess. As a result, there is provided a pre-planarization pretreatment method that can reduce polishing residue and dishing even when including a large-area region with little unevenness, and realizes a flattening level with little film thickness variation with a small amount of polishing. Can do.
[Brief description of the drawings]
FIGS. 1A and 1B are cross-sectional views showing a planarization pretreatment method according to an embodiment of the present invention in the order of steps.
FIG. 2 is a plan view showing a first specific example of a dummy pattern formed for a large area of a trapezoidal region as a CMP pretreatment as shown in FIG.
FIG. 3 is a plan view showing a second specific example of a dummy pattern formed for a large area of a trapezoidal region as a CMP pretreatment as shown in FIG.
FIG. 4 is a first cross-sectional view showing the formation of a trench element isolation region to which the planarization pretreatment method according to the present invention is applied in the order of steps.
FIG. 5 is a second cross-sectional view subsequent to FIG. 4 showing the formation of the trench isolation region to which the planarization pretreatment method according to the present invention is applied in the order of steps;
6 is a third cross-sectional view subsequent to FIG. 5 showing the formation of the trench isolation region to which the pre-planarization processing method according to the present invention is applied in the order of steps;
7 is a fourth cross-sectional view subsequent to FIG. 6 illustrating the formation of the trench isolation region to which the planarization pretreatment method according to the present invention is applied in the order of steps;
FIG. 8 is a fifth cross-sectional view subsequent to FIG. 7 showing the formation of the trench isolation region to which the planarization pretreatment method according to the present invention is applied in the order of steps;
FIGS. 9A and 9B are cross-sectional views showing intermediate processes when forming a trench isolation region in the prior art. FIGS.
FIG. 10B is a cross-sectional view when FIG. 9B is planarized using CMP and a nitride film is detected as a stopper film for CMP.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Semiconductor wafer 11 ... Planarization process layer 12,451,941 ... Platform region 942 ... Convex part 13,46 ... Dummy pattern 131 ... Lattice groove pattern 132 ... Opening pattern 41 ... Si semiconductor substrate 42 ... Nitride film (silicon Nitride film etc.)
43 ... Trench 44, 45 ... Oxide films A1, A2 ... Element region L ... Planarization end level

Claims (8)

表面上に幅W1を有する第1の素子領域と、前記幅W1よりも大きい幅W2を有する第2の素子領域とを備える半導体基板に、前記第1の素子領域と前記第2の素子領域との間に位置するトレンチを形成する工程と、
記トレンチ内、前記第1の素子領域上及び前記第2の素子領域上に絶縁膜を形成することにより、前記第2の素子領域上に台状領域を形成する工程と、
前記台状領域に所定の深さを有するダミーパターンを複数形成する工程と、
前記絶縁膜に、化学的機械的研磨を行なう工程と、を含むことを特徴とする平坦化処理方法。
A semiconductor substrate comprising a first element region having a width W1 on the surface and a second element region having a width W2 larger than the width W1 , and the first element region and the second element region forming a preparative wrench located between,
Before Symbol trench, by forming an insulating film on said first element region and said second element region, forming the base-like region in the second element region,
Forming a plurality of dummy patterns having a predetermined depth in the trapezoidal region ;
Wherein the insulating film, flattening processing method which comprises a step of performing chemical mechanical polishing, a.
前記ダミーパターンは、格子溝パターンをフォトリソグラフィ技術により形成することを特徴とする請求項1記載の平坦化処理方法。  The planarization method according to claim 1, wherein the dummy pattern is a lattice groove pattern formed by a photolithography technique. 前記ダミーパターンは、複数の開口パターンをフォトリソグラフィ技術により形成することを特徴とする請求項1記載の平坦化処理方法。  The planarization method according to claim 1, wherein the dummy pattern is formed with a plurality of opening patterns by a photolithography technique. 表面上に幅W1を有する第1の素子領域と、前記幅W1よりも大きい幅W2を有する第2の素子領域とを備える半導体基板に、前記第1の素子領域と前記第2の素子領域との間に位置するトレンチを形成する工程と、
記トレンチ内、前記第1の素子領域上及び前記第2素子領域上に絶縁膜を形成することにより、前記第2の素子領域上に台状領域を形成する工程と、
前記台状領域に所定の深さを有するダミーパターンを複数形成する工程と、
前記絶縁膜に、化学的機械的研磨を行なう工程と、を含むことを特徴とする半導体装置の製造方法。
A semiconductor substrate comprising a first element region having a width W1 on the surface and a second element region having a width W2 larger than the width W1 , and the first element region and the second element region forming a preparative wrench located between,
Before Symbol trench, by forming an insulating film on said first element region and said second element region, forming the base-like region in the second element region,
Forming a plurality of dummy patterns having a predetermined depth in the trapezoidal region ;
Wherein the insulating film, a method of manufacturing a semiconductor device which comprises a step of performing chemical mechanical polishing, a.
記第1の素子領域に、第1のゲート幅を有する第1の素子を形成し、前記第2の素子領域に、前記第1のゲート幅よりも大きい第2のゲート幅を有する第2の素子を形成する工程をさらに含むことを特徴とする請求項4記載の半導体装置の製造方法。 Before SL first device region, the first element having a first gate width formed in said second element region, the having a greater than the first gate width second gate width 2 5. The method of manufacturing a semiconductor device according to claim 4 , further comprising a step of forming the element. 前記第1の素子領域および前記第2の素子領域に、トランジスタを形成する工程を更に含むことを特徴とする請求項5記載の半導体装置の製造方法。6. The method of manufacturing a semiconductor device according to claim 5, further comprising a step of forming a transistor in the first element region and the second element region. 前記ダミーパターンは、格子溝パターンをフォトリソグラフィ技術により形成することを特徴とする請求項4記載の半導体装置の製造方法。  5. The method of manufacturing a semiconductor device according to claim 4, wherein the dummy pattern is formed by forming a lattice groove pattern by a photolithography technique. 前記ダミーパターンは、複数の開口パターンをフォトリソグラフィ技術により形成することを特徴とする請求項4記載の半導体装置の製造方法。  5. The method of manufacturing a semiconductor device according to claim 4, wherein the dummy pattern includes a plurality of opening patterns formed by a photolithography technique.
JP2002059571A 2001-03-05 2002-03-05 Planarization processing method and semiconductor device manufacturing method Expired - Fee Related JP4258158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059571A JP4258158B2 (en) 2001-03-05 2002-03-05 Planarization processing method and semiconductor device manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001060623 2001-03-05
JP2001-60623 2001-03-05
JP2002059571A JP4258158B2 (en) 2001-03-05 2002-03-05 Planarization processing method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2002334925A JP2002334925A (en) 2002-11-22
JP4258158B2 true JP4258158B2 (en) 2009-04-30

Family

ID=26610649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059571A Expired - Fee Related JP4258158B2 (en) 2001-03-05 2002-03-05 Planarization processing method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4258158B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111527A (en) 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device / generating method of mask pattern
KR100546330B1 (en) * 2003-06-03 2006-01-26 삼성전자주식회사 Semiconductor device having measuring pattern to improve measuring reliability and Method of measuring semiconductor device using the measuring pattern
JP5770267B2 (en) * 2011-04-13 2015-08-26 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP6127500B2 (en) * 2012-12-21 2017-05-17 セイコーエプソン株式会社 Electro-optical device manufacturing method, electro-optical device, and electronic apparatus

Also Published As

Publication number Publication date
JP2002334925A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
US5923993A (en) Method for fabricating dishing free shallow isolation trenches
JP4836304B2 (en) Semiconductor device
JP4663694B2 (en) Manufacturing method of semiconductor device
JP3946880B2 (en) Contact plug forming method for semiconductor device
JP3302142B2 (en) Method for manufacturing semiconductor device
JP4258158B2 (en) Planarization processing method and semiconductor device manufacturing method
KR100726746B1 (en) Semiconductor device fabrication method
JP3958199B2 (en) Semiconductor device and manufacturing method of semiconductor device
US6475879B2 (en) Semiconductor wafer, method for processing the same and method for manufacturing semiconductor device
US6617663B2 (en) Methods of manufacturing semiconductor devices
US7601622B2 (en) Method of forming fine patterns in semiconductor device and method of forming gate using the same
US6518633B2 (en) Semiconductor device and method for manufacturing the same
JP2002270688A (en) Manufacturing method of semiconductor device
JP2006202968A (en) Manufacturing method of semiconductor device
KR100995142B1 (en) Method of fabricating contact hole in semiconductor device
US6960411B2 (en) Mask with extended mask clear-out window and method of dummy exposure using the same
US6991993B2 (en) Method of fabricating trench isolation structure of a semiconductor device
KR100561524B1 (en) Method for fabricating shallow trench isolation
US8932937B2 (en) Photoresist mask-free oxide define region (ODR)
KR100518244B1 (en) Method of manufacturing alignment keys
KR101026371B1 (en) Method for forming Gate
KR100800667B1 (en) Method for fabricating semiconductor device
KR100572493B1 (en) Method for manufacturing pad in semiconductor device
US6482075B1 (en) Process for planarizing an isolation structure in a substrate
JP2004103691A (en) Process for fabricating semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees