JP4254800B2 - 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法 - Google Patents

再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法 Download PDF

Info

Publication number
JP4254800B2
JP4254800B2 JP2006120933A JP2006120933A JP4254800B2 JP 4254800 B2 JP4254800 B2 JP 4254800B2 JP 2006120933 A JP2006120933 A JP 2006120933A JP 2006120933 A JP2006120933 A JP 2006120933A JP 4254800 B2 JP4254800 B2 JP 4254800B2
Authority
JP
Japan
Prior art keywords
value
sam
reproduction signal
reproduction
sam value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006120933A
Other languages
English (en)
Other versions
JP2006236575A (ja
Inventor
健介 藤本
俊司 吉村
敦 福本
靖人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006120933A priority Critical patent/JP4254800B2/ja
Publication of JP2006236575A publication Critical patent/JP2006236575A/ja
Application granted granted Critical
Publication of JP4254800B2 publication Critical patent/JP4254800B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

この発明は、記録媒体から再生された再生信号を適切に評価することができる再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法に関する。
データストレージ装置において実用的な意味で高密度記録を達成するためには、データストレージ装置の製造ばらつき、経時変化および温度変化、ならびに、そのデータストレージ装置で用いられる記録媒体のばらつきなどの因子に対して、ある程度のマージンが確保されていることが必要である。再生系において、そのデータストレージ装置自体が再生信号の品質評価値をリアルタイムに検出する手段を有すれば、その評価値に基づいて再生条件を自動調整し、上述のマージンを実質的に増大させることが可能となる。
このような評価値の検出は、正確であると同時に高速であることが要求される。再生信号の評価値として直接意味を持つ値は、再生データのエラーレートである。しかし、エラーレートを安定して測定するためには、比較的長時間が必要とされる。そこで、従来では、再生信号品質の評価値として、再生信号のジッタが利用されることが多かった。ジッタとは、再生信号を2値化する基準となる閾値を再生信号がよぎる時刻と、再生信号が2値に弁別される時刻との差のゆらぎ分であり、通常は標準偏差で表される。ジッタを用いた再生信号の評価は、本来、再生信号の2値化手段として閾値検出を用いることが前提とされている。
一方、近年では、LSI(Large Scale Integrated circuit)技術の発達などにより、高記録密度を達成するための再生信号の2値化手段として、ビタビ復号器のような最尤復号器を用いることが容易になった。最尤復号器では、データ間に相関を持たせて記録したデータ列を再生するときに、最も確からしい系列を検出することで2値化を行う。
しかしながら、従来では、このような最尤復号器を用いて再生信号を2値化するような場合でも、再生信号品質の評価値として、依然としてジッタが用いられることが多かった。このような組み合わせでは、評価値と実際のエラーレートの相関が低くなってしまう。そのため、ジッタに基づいて再生条件を調整しても、エラーレート最小となる条件からずれてしまうという問題点があった。
したがって、この発明の目的は、記録媒体から再生された再生信号の2値化に最尤復号器を用いた場合に、再生信号品質の評価を高速且つ適切に行うようにした再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法を提供することにある。
この発明は、上述した課題を解決するために、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された信号を評価する再生信号評価装置において、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出手段と、
2値化データ検出手段による検出結果に基づきSAM値を算出するSAM値算出手段と、
SAM算出手段により算出されたSAM値から所定の範囲内の値のSAM値を選別し、該選別されたSAM値を統計処理することによって再生信号の評価を行う再生信号評価手段と
を備え
再生信号評価手段は、
SAM値算出手段により算出されたSAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有するSAM値を選別し、統計処理として理想再生信号に対するSAM値の最小値と、選別されたSAM値との差の二乗の平均を求める処理を行うことを特徴とする再生信号評価装置である。
また、この発明は、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された信号を評価する再生信号評価方法において、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出のステップと、
2値化データ検出のステップによる検出結果に基づきSAM値を算出するSAM値算出のステップと、
SAM算出のステップにより算出されたSAM値から所定の範囲内の値のSAM値を選別し、該選別されたSAM値を統計処理することによって再生信号の評価を行う再生信号評価のステップと
を備え
再生信号評価のステップでは、
SAM算出のステップにより算出されたSAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有するSAM値を選別し、統計処理として理想再生信号に対するSAM値の最小値と、選別されたSAM値との差の二乗の平均を求める処理を行うことを特徴とする再生信号評価方法である。
また、この発明は、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生装置において、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生手段と、
再生手段により記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出手段と、
2値化データ検出手段による検出結果に基づきSAM値を算出するSAM値算出手段と、
SAM算出手段により算出されたSAM値から所定の範囲内の値のSAM値を選別し、該選別されたSAM値を統計処理することによって再生信号の評価を行う再生信号評価手段と、
再生信号評価手段による評価の結果に基づき再生手段の再生光出力を制御する再生制御手段と
を備え
再生信号評価手段は、
SAM値算出手段により算出されたSAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有するSAM値を選別し、統計処理として理想再生信号に対するSAM値の最小値と、選別されたSAM値との差の二乗の平均を求める処理を行うことを特徴とする再生装置である。
また、この発明は、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生方法において、
最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生のステップと、
再生のステップにより記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出のステップと、
2値化データ検出のステップによる検出結果に基づきSAM値を算出するSAM値算出のステップと、
SAM算出のステップにより算出されたSAM値から所定の範囲内の値のSAM値を選別し、該選別されたSAM値を統計処理することによって再生信号の評価を行う再生信号評価のステップと、
再生信号評価のステップによる評価の結果に基づき再生のステップの再生光出力を制御する再生制御のステップと
を備え
SAM算出のステップにより算出されたSAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有するSAM値を選別し、統計処理として理想再生信号に対するSAM値の最小値と、選別されたSAM値との差の二乗の平均を求める処理を行うことを特徴とする再生方法である。
また、この発明は、
最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録装置において、
最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録手段と、
記録手段によって記録媒体に記録された直後に該記録媒体から信号を再生する再生手段と、
再生手段により記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出手段と、
2値化データ検出手段による検出結果に基づきSAM値を算出するSAM値算出手段と、
SAM算出手段により算出されたSAM値から所定の範囲内の値のSAM値を選別し、該選別されたSAM値を統計処理することによって再生信号の評価を行う再生信号評価手段と、
再生信号評価手段による評価の結果に基づき記録手段の記録光出力を制御する記録制御手段と
を備え
再生信号評価手段は、
SAM値算出手段により算出されたSAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有するSAM値を選別し、統計処理として理想再生信号に対するSAM値の最小値と、選別されたSAM値との差の二乗の平均を求める処理を行うことを特徴とする記録装置である。
また、この発明は、
最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録方法において、
最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録のステップと、
記録のステップによって記録媒体に記録された直後に該記録媒体から信号を再生する再生のステップと、
再生のステップにより記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出のステップと、
2値化データ検出のステップによる検出結果に基づきSAM値を算出するSAM値算出のステップと、
SAM算出のステップにより算出されたSAM値から所定の範囲内の値のSAM値を選別し、該選別されたSAM値を統計処理することによって再生信号の評価を行う再生信号評価のステップと、
再生信号評価のステップによる評価の結果に基づき記録のステップの記録光出力を制御する記録制御のステップと
を備え
SAM算出のステップにより算出されたSAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有するSAM値を選別し、統計処理として理想再生信号に対するSAM値の最小値と、選別されたSAM値との差の二乗の平均を求める処理を行うことを特徴とする記録方法である。
上述したように、この発明は、最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出し、検出結果に基づき算出されたSAM値から所定の範囲内の値のSAM値を選別し、選別されたSAM値を統計処理することによって再生信号の評価を行うようにしているため、再生信号の評価を略リアルタイムで行うことができると共に、より高精度で評価値を得ることができる。
この発明は、上述のように、最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出し、検出結果に基づき算出されたSAM値から所定の範囲内の値のSAM値を選別し、選別されたSAM値を統計処理することによって再生信号の評価を行うようにしているため、再生信号の評価を略リアルタイムで行うことができると共に、より高精度で評価値を得ることができる効果がある。
以下、この発明の実施の第1の形態について説明する。この発明には、最尤復号器を用いた再生系に適合する評価値を、SAM(Sequenced Amplitude Margin)と称される値に基づいて得ている。SAMは、最尤復号器において、正しいパス・メトリックとそれに最も近い他のパス・メトリックとの差であり、例えば、Tim Perkins and Zachary A.Keirn、"A Window-Margin-Like Procedure for Evaluating PRML Channel Performance"、IEEE Trans.Magn.Vol.31、No.2、pp1109-1114に報告されている。従来では、SAMは、ストレージオシロスコープなどを用いた評価システムで、一旦取り込んだデータをコンピュータで計算するといった手法で求められていた。この発明では、SAMの計算をデータ記録・再生装置自体で略リアルタイムに行い得られたSAM値に基づき、再生信号評価値を得るようにしている。
SAMは、最尤復号器が誤った2値化データ系列を出力してしまうまで許容されるノイズマージンである。実際には、再生信号処理過程において、完全に正しい2値化データ系列を小さい遅延時間で得ることは困難である。そのため、最尤復号器が最も確からしいと判断したデータ系列の確からしさの度合い(パスメトリックMr)と、誤りと判断したデータ系列の確からしさの度合い(パスメトリックMw)との差(Mr−Mw)を、SAM値とすることが実用的である。通常、再生信号品質を評価したい状況では、最尤復号器が最も確からしいと判断したデータ系列の誤り率は小さいと考えられるので、このような方法で求めたSAM値と厳密な意味でのSAM値との差は、小さい。
次に、この実施の第1の形態による最尤復号器とSAM計算部について説明する。この実施の第1の形態では、最尤復号器としてビタビ復号器を用いる。なお、以下では、変調符号にRLL(1,7)符号(最小ラン制限=1)、最尤復号器としてPR(1,2,1)ビタビ復号器を用いるものとして説明する。
図1は、RLL(1,7)とPR(1,2,1)の組み合わせに対応するトレリス線図を示す。図1では、時刻kから時刻k+1への状態遷移が表されている。状態S00、S01、S10およびS11は、現時点より過去2ビット分のデータの組み合わせで決まる状態である。値akは、2値データを表し、値ykは、理想再生信号を表す。
図2は、図1のトレリス線図に基づくビタビ復号器100の一例の構成を示す。例えば光磁気ディスクなどの記録媒体から再生ヘッドにより再生された再生信号が、ブランチメトリック計算回路105に供給される。ブランチメトリック計算回路105では、4種類の理想再生信号レベルに対する実際の再生信号のメトリックがチャネルビット毎に計算される。
実際のビタビ復号器では、メトリックとして、理想再生信号ykと実際の再生信号zkとの間のユークリッド距離×(−1)が採用されることが多い。すなわち、理想再生信号レベルyに対するブランチメトリックBM(y)としては、
BM(y)=−(y−zk2 ・・・(1)
を計算すればよい。
一方、パスメトリックメモリ130は、後述する方法で選択されたトレリス上のパス、すなわち、データ系列のパターンに対応するブランチメトリックの累積値が記憶される。パスメトリックメモリ130では、パスが最終的に辿り着く状態の種類に対応して、4つの値が記憶される。図2では、パスメトリックメモリ130内の領域PMM(11)、PMM(10)、PMM(01)およびPMM(00)に、対応する4つの値がそれぞれ記憶されるように示されている。すなわち、状態S11の値が領域PMM(11)に記憶される。同様に、状態S10の値が領域PMM(10)に記憶され、状態S01の値が領域PMM(01)に記憶され、状態S00の値が領域PMM(00)に記憶される。
なお、以下では、領域PMM(11)、PMM(10)、PMM(01)およびPMM(00)に記憶された値そのものを、それぞれPMM(11)、PMM(10)、PMM(01)およびPMM(00)と称する。
時刻kからk+1に移るときは、以下の式(2)〜(5)に従って、パスメトリックメモリ130の各領域PMM(11)、PMM(10)、PMM(01)およびPMM(00)に記憶された値が更新される。なお、式(2)〜(5)では、時刻kにおいて、最終的に状態S00に辿り着くパスに対応するパスメトリックを、PM(00)kのように表記する。
PMM(00)k+1=max{PMM(00)k+BM(−2),PMM(10)k+BM(−1)} ・・・(2)
PMM(01)k+1=PMM(00)k+BM(−1) ・・・(3)
PMM(10)k+1=PMM(11)k+BM(+1) ・・・(4)
PMM(11)k+1=max{PMM(01)k+BM(+1),PMM(11)k+BM(+2)} ・・・(5)
なお、式(2)および(5)において、max{X,Y}は、XとYとを比較し、値が大きい方が選択されることを示す。
図2の構成では、加算器110A〜110Cおよび120A〜120C、比較器112および122、ならびに、選択器113および123により、ブランチメトリック計算回路105で求められたブランチメトリックBM(+2)、BM(+1)、BM(−1)およびBM(−2)と、パスメトリックメモリ130の各領域に記憶された値PMM(11)、PMM(10)、PMM(01)およびPMM(00)とを用いて上述の式(2)〜(5)の演算が行われ、パスメトリックメモリ130の記憶内容が更新される。
例えば、式(5)は、選択器113は、加算器110Aおよび110Bの出力が比較器112で比較され、その比較結果に基づき加算器110Aおよび110Bの出力が選択器113で選択されることで求められる。式(2)も同様にして、加算器120Aおよび120Bの出力を比較器122で比較し、比較結果に基づき加算器120Aおよび120Bの出力を選択器123で選択することで求められる。
PMM(00)およびPMM(11)が更新される際に、それぞれ2つの候補値のうち、パスメトリックが大きくなる方が比較器112および122で選択される。この選択が繰り返されることにより、4つの状態それぞれに達するいずれのパスも、ある程度の時間を遡ったところでは、同じパスが共有されることになる。この共有された部分は、ビタビ復号器100によって最も確からしいと推定されたパスである。比較器112および122による選択結果に基づき、残されたパスがパスメモリ140に記憶され、そのパスに対応した2値化データがパスメモリ140から出力される。
なお、上述した式(2)〜(5)に従ってパスメトリックメモリ130の記憶内容を更新し続けると、パスメトリックの値は、全体的に増加していく傾向を示す。このため、パスメトリックメモリ130のオーバーフローを防止するための仕組みが必要とされる。この仕組みに関して、幾つかの方法が提案されているが、この発明の本質的な部分とは直接関係しないので、ここでの説明を省略する。
図2において、加算器110Aおよび110Bの出力は、上述したように比較器112に供給されると共に、差分器111に供給される。差分器111では、加算器110Aおよび110Bの出力の差分、すなわち、比較器112で比較される値の差分が求められる。差分器111で求められた差分値は、パスメトリック差(11)として出力される。同様にして、加算器120Aおよび120Bの出力は、比較器122に供給されると共に差分器121に供給され、加算器120Aおよび120Bの出力の差分、すなわち、比較器122で比較される値の差分がパスメトリック差(00)として出力される。これら、パスメトリック差(11)および(00)は、SAMの計算のために用いられる。
SAM計算部の具体的な構成に先立って、先ず、SAM計算のアルゴリズムについて説明する。ここでいうSAMとは、上述したように、ビタビ復号器が最も確からしいと判断したデータ系列のパスメトリックと、誤りだと判断したデータ系列のパスメトリックの差である。ビタビ復号器100が出力したデータ系列2ビットが0→0であった場合、対応するトレリス上の状態は、状態S00→S00、或いは状態S10→S00のように遷移している筈である。例えば状態S00を通過するパスが選択された場合には、それが状態S00から遷移したのか、状態S10から遷移したのかが判断されたことを意味する。このとき、その根拠とされたパスメトリックの差は、パスメトリック差(00)である。同様に、データ系列2ビットが1→1であった場合、パス選択の根拠とされるパスメトリックの差は、パスメトリック差(11)である。
一方、例えばデータ系列2ビットが0→1であった場合は、状態が状態S00→S01に遷移したことに対応しており、状態S01を通過するパスは、選択の余地無く状態S00→S01→S11である。同様に、データ系列2ビットが1→0であった場合は、パスは選択の余地無く状態S11→S10→S00を通過している。以上をまとめると、SAM値としては、データ系列に応じて図3に示されるように出力すればよい。
図4は、SAM計算部200の一例の構成を示す。ビタビ復号器100から出力されたパスメトリック差(11)およびパスメトリック差(00)が、シフトレジスタ210および211を介して選択回路212の2つの選択入力端にそれぞれ入力される。シフトレジスタ210および211は、パスメトリック差(00)および(11)が計算されるタイミングと、2値化データが出力されるタイミングとの差を補償するためのものである。
また、ビタビ復号器100のパスメモリ140から出力された2値化データは、D−フリップフロップ回路213によって1クロック遅延された値と共に選択回路212に入力される。選択回路212では、上述した図3に従い、2値化データで示されるデータ系列に基づきパスメトリック差(11)および(00)が選択されSAM値として出力されると共に、SAM値の有効/無効を示すSAM有効信号が出力される。SAM有効信号は、例えばSAM値が有効のときに”H(ハイレベル)”状態とされ、SAM値が無効のときに”L(ローレベル)”状態とされる信号である。
ところで、記録系や再生系で用いる変調符号にラン制限が無い場合、理想信号に対するSAM値は、データ系列のパターンによらず一定であり、再生信号が劣化するに従いSAM値の分散が大きくなる。また、再生信号の劣化の程度によらず、SAMの平均値は、理想信号に対するSAM値に近い値となることが知られている。したがって、このような系においては、統計処理としてSAM値の分散あるいは標準偏差を計算することにより、ちょうど閾値検出を用いた再生系におけるジッタのように、最尤復号器を用いた再生系における評価値として取り扱うことができる。
一方、ラン制限のある変調符号に対応した最尤復号器を用いた再生系では、理想信号に対するSAM値は、データパターンによって変化する。したがって、SAM値の分散を計算しても、その値は、再生信号品質の評価値として有効に扱えない。なお、ラン制限のある変調符号に対応した最尤復号器は、実質的には、大部分が最小ラン制限のみに対応したものである。
この発明によれば、計算されたSAM値のうち、限定された範囲の値のみを取り出し、それらに対して所定の統計処理を行うことにより再生信号評価値を得ることができる。より具体的には、SAM値の選別条件として、理想再生信号に対するSAM値の最小値以下の値とし、理想再生信号に対するSAM値の最小値と選別されたSAM値との差の二乗の平均を求め、これを再生信号評価値とする。
図5は、SAM計算部200から出力されたSAM値から再生評価値を求める評価値計算回路300の一例の構成を示す。定数発生回路311は、理想再生信号に対するSAM値の最小値を発生させる。例えば、図1のトレリス線図に従ったビタビ復号器については、理想再生信号に対するSAM値の最小値が6となる。減算器310の一方および他方の入力端に、SAM計算部200の選択回路212から出力されたSAM値と、定数発生回路311で発生された、理想再生信号に対するSAM値の最小値とがそれぞれ入力される。
減算器310から出力された、定数発生回路311の出力値からSAM値が差し引かれた差分値は、二乗回路312によって二乗され、平均化回路315に供給される。平均化回路315は、AND回路314から供給されたイネーブル信号が”H”状態で、二乗回路312の出力値を平均化する。二乗回路312の出力値の平均値は、再生信号評価値として平均化回路315から出力される。
なお、平均化回路315は、一定時間内あるいは一定サンプル数の二乗回路312の出力値を平均化することで平均値を算出してもよいし、二乗回路312の出力値の移動平均を計算するようにしてもよい。
一方、SAM値と定数発生回路311の出力値は、比較器313によって比較される。比較器313の出力は、AND回路314の一方の入力端に入力される。AND回路314の他方の入力端には、SAM計算部200の選択回路212から出力されたSAM有効信号が供給される。比較器313による比較の結果、(SAM値)≦(定数発生回路311の出力値)であれば、比較器313の出力が例えば”H”状態とされる。
したがって、SAM有効信号がSAM値が有効であることを示す値(”H”)であり、且つ、(SAM値)≦(定数発生回路311の出力値)であれば、AND回路314から出力されるイネーブル信号が”H”状態とされ、平均化回路315によって、二乗回路312の出力値が平均化される。
なお、SAM値が定数発生回路311の出力値よりも大きい場合は、イネーブル信号が”L”状態となり、二乗回路312の出力値は無視される。そのため、このときには正しく二乗計算をする必要は無い。
図6および図7は、再生信号評価値として、従来技術で説明したジッタを用いた場合と、この発明の実施の第1の形態による値を用いた場合とを比較した実験結果を示す。図6は、ジッタを再生信号評価値とした場合の、再生信号評価値と再生信号のビットエラーレートとの相関の例を示す。図7は、この発明の実施の第1の形態による再生信号評価値と再生信号のビットエラーレートの相関の例を示す。
実験に用いた再生系は、磁気超解像光磁気ディスクが記録媒体として用いられており、ビットエラーレートは、再生レーザパワーに大きく依存する。実験は、再生レーザパワーを変化させながらエラーレートと再生信号評価値との相関を調べることで行った。図6および図7において、データ点の傍らに記した数値は、再生レーザパワーを示す。
図6に示される、ジッタを再生信号評価値とした場合では、再生信号評価値とビットエラーレートとの相関が図7の例よりも低いことがわかる。ジッタが最小となるように再生系を調整すると、ビットエラーレートが最小になる状態とずれてしまう。これに対して、図7に示される、この発明の実施の第1の形態による再生信号評価値では、再生信号評価値とエラーレートとの相関が測定範囲全体において図6の例よりも高いことがわかる。したがって、再生信号評価値が最小になるように再生系を調整することにより、ビットエラーレートを最小とすることができる。
次に、この発明の実施の第1の形態の変形例について説明する。この変形例では、入力されたSAM値において、理想再生信号に対するSAM値の最小値以下となる値の出現頻度が、理想再生信号に対するSAM値の最小値の出現頻度に等しくなるように、入力されたSAM値に係数を乗ずる。係数を乗ぜられた入力SAM値を補正された新たなSAM値として、上述の実施の第1の形態で図5を用いて説明したのと同様な処理をすることにより、再生信号評価値とビットエラーレートとの、さらに高い相関が得られる。
図8は、この変形例による評価値計算回路300’の一例の構成を示す。この評価値計算回路300’は、上述した実施の第1の形態による評価値計算回路300に対し、イネーブル信号に基づく係数を、入力されるSAM値に乗ずるようにしている。なお、図8において、上述の図5と共通する部分には同一の番号を付し、詳細な説明を省略する。
SAM計算部200から出力されたSAM値は、乗算器350で係数を乗ぜられて評価値計算回路300’に入力され、図5を用いて説明したように、評価値計算回路300’内において減算器310および比較器313にそれぞれ入力される。
入力されるSAM値に対して乗算器350で乗ぜられる係数は、以下のようにして求められる。乗算器350に入力される係数は、平均化回路315による二乗回路312の出力の平均化処理がイネーブル信号により有効とされる頻度が一定となるようなフィードバックをかけることによって制御される。
より具体的には、AND回路314の出力が頻度計測回路351に入力され、AND回路314の出力が”H”状態となり平均化回路315がイネーブルとされた頻度が計測される。計測された頻度は、減算器353に供給され、定数発生回路352から出力された目標頻度が計測された頻度から減ぜられる。目標頻度は、理想再生信号に対するSAM値の最小値の出現頻度であり、シミュレーションなどにより予め求められた値である。この減算器353の出力がローパスフィルタ354を介して加算器356に供給され、定数発生回路355から出力された定数「1」が加算され、乗算器350に対する係数とされる。
図9および図10は、上述した実施の第1の形態とこの実施の第1の形態の変形例による、再生信号評価値とビットエラーレートの一例の相関を示す。図9は、上述した実施の第1の形態による実験結果であり、実施の第1の形態の変形例によるSAM値の補正が行われていない。また、図10は、この実施の第1の形態の変形例による、SAM値の補正を行った場合の実験結果である。実験において、再生系は、上述した図6および図7に結果を示した実験と同様に、磁気超解像光磁気ディスクを用い、再生レーザーパワーPrを変化させて、再生信号評価値とエラーレートとを測定した。さらに、同じ再生レーザーパワーに対して再生系の電気回路の等化器の周波数特性を変化させることにより、異なる再生条件での実験値を得ている。
図9および図10中、「計算」と示したデータは、計算機シミュレーションにより理想再生信号に白色ノイズを加えた場合の再生信号評価値とエラーレートの関係である。図10に示されるSAM値に補正を加えた結果は、計算機シミュレーション結果にも良く合致し、図9に示されるSAM補正を行わない結果よりも、明らかに再生信号評価値とエラーレートとの相関が高くなっていることがわかる。
次に、この発明の実施の第2の形態について説明する。この実施の第2の形態は、上述した実施の第1の形態および実施の第1の形態の変形例を記録再生装置に対して適用した例である。図11は、この実施の第2の形態による記録再生装置の一例の構成を示す。この記録再生装置は、データを符号化するエンコーダ51と、光磁気ディスク9の信号記録面に磁界を印加する磁気ヘッド8と、エンコーダ51からのデータ24に基づいて磁気ヘッド8に変調された磁界を発生させる磁界変調ドライバ6とを有している。
エンコーダ51は、記録時のエンコードのプロセスに用いられ、外部から入力されるデータに所定の処理を施すデータ入力部1と、データ入力部1からのデータ21にIDおよび誤り探索コード(error detection code;EDC)をエンコードするID、EDCエンコード部2と、ID、EDCエンコード部2からのデータに誤り訂正コード(error correction code; ECC)をエンコードするECCエンコード部3と、ECCエンコード部3からのデータ22を記憶するメモリ4と、メモリ4からのデータ23を所定の方式に変調する変調部5とを有している。
図示せぬ外部ブロックより入力されたデータ20がデータ入力部1に入力される。データ20は、データ入力部1からデータ21とされて出力され、ID、EDCエンコード部2に送られる。ID、EDCエンコード部2では、光磁気ディスク9に記録するIDと再生時に再生信号のチェックを行うためのEDC信号がデータ21に付加される。
ID、EDCエンコード部2の出力がECCエンコード部3に供給され、エラー訂正のためのパリティが付加され、データ22とされて出力される。データ22は、一旦メモリ4に格納され、上述のようにして外部ブロックから転送され処理された時間のズレが吸収される。データ22が処理による時間のズレを吸収された信号23は、メモリ4から変調部5に読み出される。
信号23は、変調部5で光磁気ディスク9に記録するための信号24に変調され出力される。例えば、変調部5では、最低ランが1以上の変調符号を用いて、信号23が信号24に変調される。信号24は、磁界変調ドライバ6に送られる。磁界変調ドライバ6では、信号24に基づき磁界ヘッド8を駆動して光磁気ディスク9に記録するために十分な磁界を発生させて、光磁気ディスク9にデータを記録する。
また、この記録再生装置は、光磁気ディスク9を回転駆動するスピンドルモータ11と、光磁気ディスク9の信号記録面にレーザ光を集光して照射すると共に戻り光を受光する光学系10と、光学系10からのRF信号を増幅するRFアンプ部33と、RFアンプ部33からの信号に基づいて光学系10およびスピンドルモータ11にサーボをかけるサーボ回路12とを有している。
光磁気ディスク9に記録されている信号が光学系10により読み出され、再生信号34としてRFアンプ部33に供給される。RFアンプ部33では、供給された再生信号34に基づき、RF信号35、光磁気ディスク9にカッティングされているウォブリングアドレスのADIP(ADdress In Pre-groove)信号36、フォーカスエラー、トラッキングエラー等についてのサーボエラー信号37が生成される。生成されたこれらの信号は、それぞれサーボ回路12、RF信号復調部13、ADIP信号復調部38に送られる。
サーボ回路12では、再生信号34が適切な状態になるように、光学系10およびスピンドルモータ11を制御する。スピンドルモータ11は、ディスク9が適切な回転数で回転するように制御される。
さらに、この記録再生装置は、RFアンプ部33から出力されたRF信号35を復号するデコーダ52と、RFアンプ部33から出力されたADIP信号36を処理するADIP信号部53とを有している。
デコーダ52は、再生の際のデコードのプロセスに用いられるものであり、RFアンプ部33にて増幅されたRF信号35を復調するRF信号復調部13と、RF信号復調部13からのデータ25に基づいてIDをデコードするIDデコード部14と、RF信号復調部13からのデータ26およびIDデコード部14からのデータ27を記憶するメモリ14とを有している。
RF信号35は、RF信号復調部13において変調部5と逆の処理により復調が施される。RF信号35がRF信号復調部13で復調されることで得られた信号25および26は、IDデコード部14およびメモリ15へとそれぞれ送られる。
IDデコード部14では、RF信号復調部13から出力された信号25から、ID、EDCエンコード部2で付加されたIDが検出される。検出されたIDに基づき、RF信号復調部13から出力された信号26をメモリ15に格納するためのアドレス27が決定される。
デコーダ52は、さらに、メモリ15から読み出されたデータ28からECCをデコードするECCデコード部16と、ECCデコード部16からECCがデコードされて出力されたデータ29からEDCをデコードするEDCデコード部17と、EDCデコード部17からEDCがデコードされて出力されたデータ30に所定の処理を施してデータ31として外部に出力するデータ出力部18とを有する。
RF信号復調部13から出力され、アドレス27に従いメモリ15に一旦格納された信号26は、データ28としてECCデコード部16に読み出される。データ28は、ECCデコード部16でECCがデコードされ、エラー訂正が施され、EDCデコード部17に供給される。EDCデコード部17では、エラー訂正されたデータ29が正しいかどうかのチェックを行う。データ29がチェックされたデータ30は、データ出力部18に送られ、図示せぬ外部ブロックへ出力データ31として転送される。
ADIP信号部53は、記録および/または再生の際に用いられるものであって、RFアンプ部33から出力されたADIP信号の復調を行うADIP信号復調部38と、ADIP信号復調部38からADIP信号が復調されたデータ40からADIPをデコードするADIPデコード部39とを有している。
ADIP信号復調部38でADIP信号を復調することで、ディスクにカッティングされたデータ列からなるデータ40が得られる。さらに、ADIPデコード部39で、データ40に対してエラーのチェックを行うことでアドレス情報41が得られる。このアドレス情報41は、MCU部42へ送られ、記録および再生時の基準として使われる。
この記録再生装置は、各部を制御するコントロール部19と、このコントロール部19を制御するMCU部42とを有する。MCU部42は、外部ブロックとの通信43に基づきコントロール部19へ指示32を出す。コントロール部19は、ハードウェアとして構成され、MCU部42からの制御に基づいて、細かいタイミング信号を各ブロックへ送る。
上述の記録再生装置において、この発明の実施の第1の形態および実施の第1の形態の変形例による構成は、例えばRF信号復調部13に適用される。すなわち、RF信号復調部13に、ビタビ復号器100、SAM計算部200および評価値計算回路300が含まれる。光学系10により光磁気ディスク9から再生された再生信号34がRFアンプ部33で所定に増幅され、RF信号35とされてRF信号復調部13に供給される。RF信号35は、ビタビ復号器100に供給され、2値化データに復号される。復号された2値化データ列は、例えばメモリ15に格納される。
一方、ビタビ復号器100において得られたパスメトリック差(00)および(11)、ならびに、2値化データがSAM計算部200に供給されSAM値およびSAM有効信号が求められる。SAM値およびSAM有効信号は、評価値計算回路300に供給され、上述のようにして再生信号評価値が得られる。再生信号評価値は、例えばコントロール部19に供給される。コントロール部19では、供給されたこの再生信号評価値に基づき、例えば光学系10によるレーザパワー(再生パワー)が最適になるように、サーボ回路12に対して制御信号を送る。
なお、この構成は、光磁気ディスク9からのデータの再生時だけでなく、光磁気ディスク9に対するデータの記録時にも適用することができる。記録の際には、磁界ヘッド8により光磁気ディスク9に記録が行われた直後に、光学系10による記録信号の再生を行い、上述のようにして再生信号評価値を得る。この再生信号評価値に基づき例えば磁界変調ドライバ6を制御することで、記録パワーを最適にし、光磁気ディスク9に対する記録を適切に制御することができる。
上述の記録時および再生時にこの発明を適用した場合の制御について、より詳細に説明する。なお、以下の説明では、上述した実施の第1の形態においてSAM値に基づいて計算された再生信号評価値を、簡単のため、SAM値と呼ぶことにする。この実施の第2の形態では、所定のSAMの基準値SAMthを予め設定し、再生時あるいは記録時に得られるSAM値とこの基準値SAMthとを比較する。比較の結果、再生時あるいは記録時に得られたSAM値が基準値SAMthを下回るような再生あるいは記録パワーのうち、最も低い値のパワー値Pthに所定の係数を乗じた値を、再生パワーあるいは記録パワーとしている。
このとき、基準値SAMthは、エラーレートの最小値を与えるSAM値ではないので、パワー値Pthも、エラーレートの最小値を与えない。しかしながら、基準値SAMthとして適当な値を選択した場合、選択された基準値SAMthと、エラーレートを最小にする最適パワー値Poとの間には、所定の対応関係、例えば比例関係があることが分かっている。したがって、基準値SAMthに基づき得られたパワー値Pthに所定の係数を乗ずることで、最適パワー値Poが得られる。基準値SAMthとパワー値Pthとの対応関係は、例えば実験によって求めることができる。
先ず、再生時の制御について説明する。図12は、SAM値を用いて再生パワーを設定する処理の一例のフローチャートである。最初のステップS10で、再生パワーPRが初期設定される。次のステップS11では、初期設定された再生パワーPRでのSAM値が測定される。ステップS12では、ステップS11での測定結果と、予め設定された基準値SAMthとが比較される。比較の結果、測定されたSAM値≦基準値SAMthでないと判断されれば、すなわち、SAM値>基準値SAMthであると判断されれば、処理はステップS13に移行し、再生パワーPRが増加される。そして、処理がステップS11に戻され、増加された再生パワーPRで再びSAM値が測定される。
一方、ステップS12で、測定されたSAM値≦基準値SAMthであると判断されれば、処理はステップS14に移行する。ステップS14では、ステップS12でSAM値≦基準値SAMthとなったときの再生パワーPRをパワー値PRthとして、パワー値PRthに対して所定の係数kに1を加えた値(1+k)を乗じる。この乗算の結果の(1+k)PRthが最適再生パワーPRoとされる。
次のステップS15で、最適再生パワーPRoがサーボ回路12によって光学系10に対して設定され、ステップS16で、最適再生パワーPRoにより光磁気ディスク9からのデータの再生が開始される。
図13は、再生パワーPRに対するSAM値とエラーレートの一例の測定結果を示す。このように、黒丸(●)で示されるSAM値と白丸(○)で示されるエラーレートとは、再生パワーPRに対して相関があることが分かる。ここで、例えば基準値SAMthを0.7に設定した場合、対応する再生パワーPRthは、略2.0mWとなる。一方、SAM値が最小となる最適再生パワーPRoは、略2.2mWである。したがって、この例では、(1+0.1)×2.0mW=2.2mWから、係数k=0.1と求めることができる。
なお、このときに、再生パワーPRを振ってSAM値を測定し、最適パワー値PRoを求める方法も考えられる。しかしながら、この方法は、最適パワー値PRoが得られるまでに時間がかるということと、再生パワーPRを最適パワー値PRoを越えて振らなければならないので、光磁気ディスク9に対してダメージを与えるおそれがあるなどの理由により、好ましくない。
次に、記録時の制御について説明する。図14は、SAM値を用いて記録パワーを設定する処理の一例のフローチャートである。この図14のフローチャートは、上述した図12のフローチャートに一旦光磁気ディスク9に記録したデータを再生してSAM値を求める処理(ステップS21)が加わる以外は、図12のフローチャートと略同様である。
最初のステップS20で、記録パワーPWが初期設定され、ステップS21で、初期設定された記録パワーPWで光磁気ディスク9に対する記録が行われる。記録されたデータは、例えば直後に再生され、SAM値が測定される(ステップS22)。ステップS23では、ステップS22での測定結果と、予め設定された基準値SAMthとが比較される。比較の結果、測定されたSAM値≦基準値SAMthでないと判断されれば処理はステップS24に移行し、記録パワーPWが増加される。そして、処理がステップS21に戻され、増加された記録パワーPWで再び記録がなされ、記録の直後に再生されSAM値が測定される。
一方、ステップS23で、測定されたSAM値≦基準値SAMthであると判断されれば、処理はステップS25に移行する。ステップS25では、ステップS23でSAM値≦基準値SAMthとなったときの記録パワーPWをパワー値PWthとして、パワー値PWthに所定の係数kに1を加えた値(1+k)を乗じる。この乗算の結果の(1+k)PWthが最適記録パワーPWoとされる。
次のステップS26で、最適記録パワーPWoが磁界変調ドライバ6に設定され、ステップS27で、最適記録パワーPWoにより光磁気ディスク9に対するデータの記録が開始される。
図15は、記録パワーPWに対するSAM値とエラーレートの一例の測定結果を示す。このように、黒丸(●)で示されるSAM値と白丸(○)で示されるエラーレートとは、記録パワーPWに対して相関があることが分かる。ここで、例えば基準値SAMthを0.6に設定した場合、対応する記録パワーPWthは、略10mWとなる。一方、SAM値が最小となる最適記録パワーPWoは、略11mWである。したがって、この例では、(1+0.1)×10mW=11mWから、係数k=0.1と求めることができる。
次に、この発明の実施の第3の形態について説明する。この実施の第3の形態は、上述の実施の第1の形態および第1の形態の変形例をより改良した例である。上述の実施の第1の形態による方法では、SAM値の選別の際に、統計処理に有効であるSAMサンプルの略半分を棄ててしまっている。すなわち、図5に示されるように、SAM値の選別の際に、定数発生回路311で発生された定数(理想再生信号に対するSAM値の最小値)とSAM値とが比較され、SAM値が定数以下の値のときに、平均化回路315による処理がなされ、再生信号評価値が出力される。したがって、SAM値が定数を越える値のときのSAMサンプルが棄てられることになる。
一方、上述した図8に示される実施の第1の形態の変形例による構成では、より正確なSAM評価値を得ることができる。しかしながら、この図8の構成では、定数発生回路352の設定値が記録される信号の変調符号の特性に依存するため、変調符号の変更に対応するためには、この定数を変調符号の変更に応じて設定する必要があった。
最小ラン制限が1以上の変調符号を採用した再生系では、理想的に等化されノイズの無い再生信号に対してSAMを計算した場合においても、データパターンによってSAM値が異なるという特性がある。そのため、等化誤差やノイズの影響による信号劣化を評価するために、単純にSAM値の標準偏差を求めるという方法を採れない。そこで、上述の実施の第1の形態および第1の形態の変形例では、理想再生信号に対するSAMの最小値以下のSAM値と、その最小値の差の二乗平均を計算することによって、再生信号評価値を得るようにしていた。
これに対して、この実施の第3の形態では、検出されたデータ列のパターンマッチングを行い、理想的再生波形であればSAMが最小となるパターンに対してのみ、SAMの計算を行うようにしている。
図16は、時刻kから時刻k+5までのトレリス線図を示す。時刻k+5において理想的再生信号に対するSAM値が最小となるのは、図16中の太実線のパスメトリックと破線のパスメトリックとが比較された場合か、再生信号の極性が逆、すなわち、図16で示したパスが上下逆になったものかの何れかの場合である。
先ず、図16の太実線で示されるパスが正しいと判定された場合のSAMの計算方法について説明する。時刻k+2から時刻k+5までの太線のパスのパスメトリックPMMCおよび破線のパスのパスメトリックPMMWは、式(6)および式(7)でそれぞれ求められる。
Figure 0004254800
Figure 0004254800
したがって、このときのSAM値は、式(8)のようになる。
Figure 0004254800
一方、図16に破線で示されるパスが正しいと判定された場合は、上述の式(6)および式(7)においてパスメトリックPMMCとPMMWとを入れ替えればよい。したがって、SAMは、式(9)のようになる。
Figure 0004254800
式(8)および式(9)の何れにしても、最尤復号器で検出されたデータ列に基づいてSAMを求めているので、SAM値としては、式(10)のようにして絶対値を求めればよい。
Figure 0004254800
なお、実施の第1の形態において既に述べたが、このような、最尤復号器により最も確からしいと判断されたデータ系列の確からしさの度合いと、誤りであると判断されたデータ系列の確からしさの度合いの差分により求められたSAM値は、厳密には近似的な値である。
次に、SAM値として図16の太実線のパスと破線のパスとが比較される条件について説明する。図16によれば、太実線および破線のパスは、何れも時刻k+2において状態S00を通過している。この場合、時刻kから時刻k+2の間でどのパスが選択されても、データ{ak,ak+1}は、必ず{0,0}である。したがって、{ak,ak+1,ak+2,ak+3,ak+4}が{0,0,1,1,1}であれば太実線のパスが選択され、{0,0,0,1,1}であれば破線のパスが選択されたということが分かる。
太実線のパスが選択されたとき、時刻k+5で比較されるパスが破線のパスでは無い場合も有り得るが、これは、再生波形の歪みが大きい場合であり、通常は無視できる。破線のパスが選択された場合についても、同様である。また、図16の例とは再生信号の極性が逆の場合も同様に考えることができる。したがって、次に示す式(11)を求めることが必要となる。
Figure 0004254800
図17は、上述したこの実施の第3の形態による方法でSAMを計算する一例の構成を示す。例えば光磁気ディスクなどの記録媒体から再生ヘッドにより再生された再生信号が遅延回路400、400、・・・に供給され所定の遅延を与えられると共に、最尤復号器405に供給される。なお、ここでは、再生信号は、PLL(Phase Locked Loop)などによって再生成されたチャネルクロックを用いてA/D(Analog/Digital)変換された多ビットのディジタル信号が想定されている。
図17中に「D」で表される遅延回路400、400、・・・および遅延回路406A〜406Dは、入力された信号に対して1クロック分の遅延を与える1クロック遅延素子である。遅延回路400、400、・・・は、それぞれ例えばDフリップフロップを用いることができる。遅延回路400、400、・・・は、再生信号の、後述する最尤復号器405で2値データが検出されるまでの遅延と、SAM有効信号を生成するための遅延とを補償するためのものである。遅延回路400、400、・・・の段数は、SAMが計算されてSAM値が出力されるタイミングと、SAM有効信号が出力されるタイミングとが一致するように、設定される。
遅延回路400、400、・・・で所定に遅延を与えられた再生信号は、遅延回路401A、401B、倍数回路402、加算器403および絶対値化回路404からなるSAM計算回路に供給される。SAM計算回路では、遅延回路401A、401B、倍数回路402および加算器403により、供給された再生信号に基づきyk+2+2yk+3+yk+4が求められる。加算器403の出力が絶対値化回路404に供給され、yk+2+2yk+3+yk+4の計算結果が負数であった場合は、正数に変換される。
なお、このSAM計算回路で求められるSAM値は、上述した式(5)による値の1/2であるが、これはディジタル回路においてどのビットを1の桁と見なすかの問題であり、本質的な違いは無い。
一方、最尤復号器405に供給された再生信号は、例えば実施の第1の形態で上述した図2の構成に基づき2値データが検出される。検出された2値データは、そのまま出力されると共に、遅延回路406A、406B、406Cおよび406Dに供給され、4クロック分まで遅延される。遅延回路406A、406Bおよび406Dの入力および遅延回路406Dの出力がそれぞれ取り出され、データ列{ak,ak+1,ak+3,ak+4}として比較器407および408にそれぞれ供給される。
比較器407では、このデータ列{ak,ak+1,ak+3,ak+4}がデータ列{0,0,1,1}と比較される。同様に、比較器408では、データ列{ak,ak+1,ak+3,ak+4}がデータ列{1,1,0,0}と比較される。比較器407および408の比較結果は、OR回路409に供給され、OR回路409の出力がSAM値が有効であることを示すSAM有効信号として出力される。すなわち、データ列{ak,ak+1,ak+3,ak+4}がデータ列{0,0,1,1}または{1,1,0,0}の何れかと一致したときに、上述した絶対値化回路404から出力されたSAM値が有効であるとされる。
絶対値化回路404から出力されるSAM値の標準偏差を再生信号評価値として用いることができる。しかしながら、標準偏差を、ハードウェアを用いて正確に計算することは、回路規模が大きくなり過ぎ、実用的でないといえる。以下に、ハードウェア化が容易であることを考慮した再生信号評価値の計算方法について説明する。
再生信号評価値を計算する第1の方法について説明する。想定される記録再生状態の変化の範囲ではSAMの平均値の変化が小さいと考えられる系では、単純に、期待されるSAMの平均値を定数とし、この定数と各SAM値との差の二乗の平均を計算した計算結果を、再生信号評価値として用いることができる。
図18は、この第1の方法による再生信号評価値計算回路の一例の構成を示す。図17の絶対値化回路404から出力されるSAM値が加算器420に供給される。一方、定数発生回路421では、上述した、期待されるSAMの平均値が定数として発生される。定数発生回路421で発生されたこの定数は、加算器420に負入力として供給され、SAM値からこの定数が減算される。加算器420の出力は、二乗回路422に供給されて二乗され、平均化回路423に供給される。平均化回路423では、OR回路409から出力されるSAM有効信号が有効を示したときの二乗回路422の出力値を平均化する。この平均値が最新号品質評価値として出力される。
なお、平均化回路423は、一定時間内あるいは一定サンプル数の二乗回路422の出力値の平均値を算出してもよいし、二乗回路422の出力値の移動平均を算出するようにしてもよい。
再生信号評価値を計算する第2の方法について説明する。第2の方法は、SAMの平均値が予め予想できない場合に適用できる再生信号評価値の計算方法である。図19は、この第2の方法による再生信号評価計算回路の一例の構成を示す。なお、図19において、上述した図18と共通する部分には同一の符号を付し、詳細な説明を省略する。図19中、破線で囲まれた部分は、上述した図18と同一の構成である。
図17の絶対値化回路404から出力されるSAM値が乗算器430により係数を乗ぜられて加算器420に供給される。乗算回路430に入力される係数は、乗算器430の出力と、定数発生回路421で発生された定数との差の平均が0になるようなフィードバックをかけることにより制御される。
すなわち、加算器420の出力がローパスフィルタ435に供給される。ローパスフィルタ435は、SAM有効信号がイネーブル信号として入力され、SAM有効信号がSAM値の有効を示すときの加算器420の出力を積分する。ローパスフィルタ435の出力が加算器436に負入力として供給され、加算器436で、定数発生回路437により発生された定数(+1)からローパスフィルタ435の出力が減算される。この加算器436の出力が乗算器430の係数とされる。
このような制御を行うことで、乗算器430の出力は、平均値が定数発生回路421で定数として設定された値に略等しくなるように規格化されたSAMと見なすことができる。そのため、平均化回路423の出力は、規格化されたSAMの分散に略等しくなり、これを再生信号評価値として利用することができる。
なお、SAMの分布は、ガウス分布のような平均値に対して対象な分布である場合が多い。そのため、この性質を利用して、ローパスフィルタ435の入力部で、負の値は全て(−1)、正の値は全て(+1)に変換することにより、評価値の精度は同等に保ちながら回路を簡略化することができる。
この実施の第3の形態による再生信号評価値の計算方法およびその計算を行うための構成は、上述した実施の第1の形態および第1の形態の変形例と同様、実施の第2の形態による記録再生装置に適用可能なものである。すなわち、この実施の第3の形態の構成および方法により得られた再生信号評価値に基づき、実施の第2の形態による記録再生装置における再生を制御することができる。
例えば、この実施の第3の形態による図17、ならびに、図18あるいは図19の構成が上述の図11におけるRF信号復調部に適用される。再生時には、光学系10により光磁気ディスク9から再生された再生信号34がRFアンプ部33で所定に増幅され、RF信号35とされてRF信号復調部13に供給される。RF信号35は、RF信号復調部13で復調され再生信号26とされ出力される。このとき、RF信号復調部13において、RF信号35が復調された信号に対して、上述したようにPLLなどにより再生成されたチャネルクロックを用いてA/D変換が施され、再生信号26は、多ビットのディジタル信号として出力されるものとする。
この再生信号26が図17で示される構成に入力される。入力された再生信号26に基づきSAM値が得られる。また、最尤復号器405において得られた2値データ列に基づきSAM有効信号が出力されると共に、2値データ列は、上述のようにメモリ15に格納される。SAM値およびSAM有効信号は、図18または図19に示される構成に入力され、上述のようにして再生信号評価値が得られる。再生信号評価値は、例えばコントロール部19に供給される。コントロール部19では、供給されたこの再生信号評価値に基づき、例えば光学系10によるレーザパワー(再生パワー)が最適になるように、サーボ回路12に対して制御信号を送る。再生パワーの制御は、上述した図12のフローチャートに基づき行うことができる。
記録時には、磁界ヘッド8により光磁気ディスク9に記録が行われた直後に、光学系10による記録信号の再生を行い、上述のようにして再生信号評価値を得る。この再生信号評価値に基づき例えば磁界変調ドライバ6を制御することで、記録パワーを最適にし、光磁気ディスク9に対する記録を適切に制御することができる。記録パワーの制御は、上述した図14のフローチャートに基づき行うことができる。
上述では、この発明が光磁気ディスクや磁気超解像光磁気ディスクの記録再生を行う装置に適用されるように説明したが、これはこの例に限定されない。この発明は、ハードディスク装置など、最尤復号器を用いて再生信号を復号化する他の装置にも適用可能なものである。
以上説明したように、この発明では、パスメトリックメモリを更新する際に比較された値を用いて再生信号評価値を求めるようにしているため、再生信号のエラーレートとの相関がより高い再生信号評価値を、より高速に得ることができる。
また、この発明を記録および/または再生装置に適用し、この発明により得られた再生信号評価値に基づきデータの記録および/または再生装置を調整することにより、より高い信頼性で高密度記録を実現することができる。
さらに、この発明の実施の第3の形態では、検出されたデータ列に対してパターンマッチングを行うことで再生信号評価値を求めている。そのため、より多くのデータを有効に用いて信頼性の高い再生信号評価値を求めることができるという効果がある。さらにまた、パターンマッチングを用いているため、記録される信号の変調符号の特性に依存せずに、再生信号評価値を求めることができる。
RLL(1,7)とPR(1,2,1)の組み合わせに対応するトレリス線図である。 RLL(1,7)とPR(1,2,1)の組み合わせに対応するトレリス線図に基づくビタビ復号器の一例の構成を示すブロック図である。 SAM値の出力の例を示す略線図である。 SAM計算部の一例の構成を示すブロック図である。 実施の第1の形態による評価値計算回路の一例の構成を示すブロック図である。 再生信号評価値としてジッタを用いた場合の再生信号評価値とビットエラーレートとの一例の相関を示す略線図である。 再生信号評価値としてこの発明の実施の第1の形態による値を用いた場合の再生信号評価値とビットエラーレートとの一例の相関を示す略線図である。 実施の第1の形態の変形例による評価値計算回路の一例の構成を示すブロック図である。 実施の第1の形態による再生信号評価値とビットエラーレートとの一例の相関を示す略線図である。 実施の第1の形態の変形例による再生信号評価値とビットエラーレートとの一例の相関を示す略線図である。 実施の第1の形態および実施の第1の形態の変形例に適用可能な記録再生装置の一例の構成を示すブロック図である。 SAM値を用いて再生パワーを設定する処理の一例のフローチャートである。 再生パワーPRに対するSAM値とエラーレートの一例の測定結果を示す略線図である。 SAM値を用いて記録パワーを設定する処理の一例のフローチャートである。 記録パワーPWに対するSAM値とエラーレートの一例の測定結果を示す略線図である。 RLL(1,7)とPR(1,2,1)の組み合わせに対応する、時刻kから時刻k+5までのトレリス線図である。 実施の第3の形態による方法でSAMを計算する一例の構成を示すブロック図である。 実施の第3の形態の第1の方法による再生信号評価値計算回路の一例の構成を示すブロック図である。 実施の第3の形態の第2の方法による再生信号評価値計算回路の一例の構成を示すブロック図である。
符号の説明
100 ビタビ復号器
105 ブランチメトリック計算回路
111,121 差分器
130 パスメトリックメモリ
140 パスメモリ
200 SAM計算部
212 選択回路
300,300’ 評価値計算回路
310 減算器
311 定数発生回路
312 二乗回路
313 比較器
314 AND回路
315 平均化回路
350 乗算器
351 頻度計測回路
352 定数発生回路
353 減算器
405 最尤復号器
404 絶対値化回路
407,408 比較器
421 定数発生回路
422 二乗回路
423 平均化回路
435 ローパスフィルタ
437 定数発生回路

Claims (16)

  1. 最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された信号を評価する再生信号評価装置において、
    最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出手段と、
    上記2値化データ検出手段による検出結果に基づきSAM値を算出するSAM値算出手段と、
    上記SAM算出手段により算出された上記SAM値から所定の範囲内の値の上記SAM値を選別し、該選別されたSAM値を統計処理することによって上記再生信号の評価を行う再生信号評価手段と
    を備え
    上記再生信号評価手段は、
    上記SAM値算出手段により算出された上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うことを特徴とする再生信号評価装置。
  2. 請求項1に記載の再生信号評価装置において、
    上記再生信号評価手段に入力される上記SAM値に対して係数を乗ずる係数乗算手段をさらに備え、
    上記再生信号評価手段は、
    上記係数乗算手段により上記係数が乗ぜられた上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うようにされ、
    上記理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値が上記選別される頻度と、上記理想再生信号に対するSAM値の最小値の出現頻度とが等しくなるように上記係数を制御するようにしたことを特徴とする再生信号評価装置。
  3. 請求項1に記載の再生信号評価装置において、
    上記2値化データで示されるデータ系列に対応するパスメトリック差を演算するパスメトリック差演算手段をさらに備え、
    上記SAM値算出手段は、
    上記2値化データに基づき上記データ系列に対応して上記パスメトリック差を選択して上記SAM値を算出する
    ことを特徴とする再生信号評価装置。
  4. 最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された信号を評価する再生信号評価方法において、
    最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出のステップと、
    上記2値化データ検出のステップによる検出結果に基づきSAM値を算出するSAM値算出のステップと、
    上記SAM算出のステップにより算出された上記SAM値から所定の範囲内の値の上記SAM値を選別し、該選別されたSAM値を統計処理することによって上記再生信号の評価を行う再生信号評価のステップと
    を備え
    上記再生信号評価のステップでは、
    上記SAM算出のステップにより算出された上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うことを特徴とする再生信号評価方法。
  5. 最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生装置において、
    最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生手段と、
    上記再生手段により上記記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出手段と、
    上記2値化データ検出手段による検出結果に基づきSAM値を算出するSAM値算出手段と、
    上記SAM算出手段により算出された上記SAM値から所定の範囲内の値の上記SAM値を選別し、該選別されたSAM値を統計処理することによって上記再生信号の評価を行う再生信号評価手段と、
    上記再生信号評価手段による上記評価の結果に基づき上記再生手段の再生光出力を制御する再生制御手段と
    を備え
    上記再生信号評価手段は、
    上記SAM値算出手段により算出された上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うことを特徴とする再生装置。
  6. 請求項に記載の再生装置において、
    上記再生信号評価手段に入力される上記SAM値に対して係数を乗ずる係数乗算手段をさらに備え、
    上記再生信号評価手段は、
    上記係数乗算手段により上記係数が乗ぜられた上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うようにされ、
    上記理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値が上記選別される頻度と、上記理想再生信号に対するSAM値の最小値の出現頻度とが等しくなるように上記係数を制御するようにしたことを特徴とする再生装置。
  7. 請求項に記載の再生装置において、
    上記記録媒体は記録されたデータを光を用いて再生する光記録媒体または光磁気記録媒体であって、
    上記記録媒体に一定の出力によって記録されたデータを異なる再生光出力で再生したときの再生信号の品質を上記SAM値算出手段で算出された上記SAM値を用いて上記再生信号評価手段により評価し、該評価の結果に基づき上記記録媒体に記録されたデータを再生するための最適再生光出力を決定するようにしたことを特徴とする再生装置。
  8. 請求項に記載の再生装置において、
    上記再生時に得られる上記SAM値が予め決められたSAM基準値以下になる上記再生光出力のうち最も低い上記再生光出力に所定の係数を乗じた値を上記最適再生光出力とすることを特徴とする再生装置。
  9. 請求項に記載の再生装置において、
    上記2値化データで示されるデータ系列に対応するパスメトリック差を演算するパスメトリック差演算手段をさらに備え、
    上記SAM値算出手段は、
    上記2値化データに基づき上記データ系列に対応して上記パスメトリック差を選択して上記SAM値を算出する
    ことを特徴とする再生装置。
  10. 最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生方法において、
    最小ランが1以上の変調符号を用いて変調されたデータが記録された記録媒体から信号を再生する再生のステップと、
    上記再生のステップにより上記記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出のステップと、
    上記2値化データ検出のステップによる検出結果に基づきSAM値を算出するSAM値算出のステップと、
    上記SAM算出のステップにより算出された上記SAM値から所定の範囲内の値の上記SAM値を選別し、該選別されたSAM値を統計処理することによって上記再生信号の評価を行う再生信号評価のステップと、
    上記再生信号評価のステップによる上記評価の結果に基づき上記再生のステップの再生光出力を制御する再生制御のステップと
    を備え
    上記SAM算出のステップにより算出された上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うことを特徴とする再生方法。
  11. 最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録装置において、
    最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録手段と、
    上記記録手段によって上記記録媒体に記録された直後に該記録媒体から信号を再生する再生手段と、
    上記再生手段により上記記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出手段と、
    上記2値化データ検出手段による検出結果に基づきSAM値を算出するSAM値算出手段と、
    上記SAM算出手段により算出された上記SAM値から所定の範囲内の値の上記SAM値を選別し、該選別されたSAM値を統計処理することによって上記再生信号の評価を行う再生信号評価手段と、
    上記再生信号評価手段による上記評価の結果に基づき上記記録手段の記録光出力を制御する記録制御手段と
    を備え
    上記再生信号評価手段は、
    上記SAM値算出手段により算出された上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うことを特徴とする記録装置。
  12. 請求項11に記載の記録装置において、
    上記再生信号評価手段に入力される上記SAM値に対して係数を乗ずる係数乗算手段をさらに備え、
    上記再生信号評価手段は、
    上記係数乗算手段により上記係数が乗ぜられた上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うようにされ、
    上記理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値が上記選別される頻度と、上記理想再生信号に対するSAM値の最小値の出現頻度とが等しくなるように上記係数を制御するようにしたことを特徴とする記録装置。
  13. 請求項11に記載の記録装置において、
    上記記録媒体は記録されたデータを光を用いて再生する光記録媒体または光磁気記録媒体であって、
    上記記録媒体に異なる記録出力によって記録されたデータを再生したときの再生信号の品質を上記SAM値算出手段で算出された上記SAM値を用いて上記再生信号評価手段により評価し、該評価の結果に基づき上記記録媒体にデータを記録するための最適記録出力を決定するようにしたことを特徴とする記録装置。
  14. 請求項13に記載の記録装置において、
    上記再生時に得られる上記SAM値が予め決められたSAM基準値以下になる上記記録出力のうち最も低い上記記録出力に所定の係数を乗じた値を上記最適記録出力とすることを特徴とする記録装置。
  15. 請求項11に記載の記録装置において、
    上記2値化データで示されるデータ系列に対応するパスメトリック差を演算するパスメトリック差演算手段をさらに備え、
    上記SAM値算出手段は、
    上記2値化データに基づき上記データ系列に対応して上記パスメトリック差を選択して上記SAM値を算出する
    ことを特徴とする記録装置。
  16. 最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録方法において、
    最小ランが1以上の変調符号を用いてデータを変調して記録媒体に記録する記録のステップと、
    上記記録のステップによって上記記録媒体に記録された直後に該記録媒体から信号を再生する再生のステップと、
    上記再生のステップにより上記記録媒体から再生された再生信号を最尤復号によって復号化し2値化データを検出する2値化データ検出のステップと、
    上記2値化データ検出のステップによる検出結果に基づきSAM値を算出するSAM値算出のステップと、
    上記SAM算出のステップにより算出された上記SAM値から所定の範囲内の値の上記SAM値を選別し、該選別されたSAM値を統計処理することによって上記再生信号の評価を行う再生信号評価のステップと、
    上記再生信号評価のステップによる上記評価の結果に基づき上記記録のステップの記録光出力を制御する記録制御のステップと
    を備え
    上記SAM算出のステップにより算出された上記SAM値のうち、理想再生信号に対するSAM値の最小値以下の値を有する上記SAM値を上記選別し、上記統計処理として上記理想再生信号に対するSAM値の最小値と、上記選別された上記SAM値との差の二乗の平均を求める処理を行うことを特徴とする記録方法。
JP2006120933A 2000-12-15 2006-04-25 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法 Expired - Fee Related JP4254800B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120933A JP4254800B2 (ja) 2000-12-15 2006-04-25 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000382595 2000-12-15
JP2006120933A JP4254800B2 (ja) 2000-12-15 2006-04-25 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001246697A Division JP3855702B2 (ja) 2000-12-15 2001-08-15 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法

Publications (2)

Publication Number Publication Date
JP2006236575A JP2006236575A (ja) 2006-09-07
JP4254800B2 true JP4254800B2 (ja) 2009-04-15

Family

ID=37044005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120933A Expired - Fee Related JP4254800B2 (ja) 2000-12-15 2006-04-25 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法

Country Status (1)

Country Link
JP (1) JP4254800B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047592B (zh) * 2021-11-11 2022-10-18 湖北华鑫光电有限公司 一种防止进水的镜头结构及包括该镜头的检测装置

Also Published As

Publication number Publication date
JP2006236575A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
JP3855702B2 (ja) 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法
JP4313755B2 (ja) 再生信号の評価方法および光ディスク装置
JP3926688B2 (ja) 再生信号品質評価方法および情報再生装置
US7664208B2 (en) Evaluating device, reproducing device, and evaluating method
JP3855361B2 (ja) 情報再生装置および再生方法
JP4048571B2 (ja) 情報再生装置および再生方法
JP2009110656A (ja) 再生信号の評価方法および光ディスク装置
US6721254B1 (en) Drive device
US7460451B2 (en) Information-reproducing apparatus equipped with PLL circuit
US6731699B2 (en) Detector, reproduction system, receiver and method
JP4254800B2 (ja) 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法
JP4103152B2 (ja) 情報再生装置および再生方法
JP4254801B2 (ja) 再生信号評価装置および方法、再生装置および方法、ならびに、記録装置および方法
JP4501960B2 (ja) ビタビ検出器、及び、情報再生装置
JPH1186443A (ja) 情報再生装置および再生方法
JPH10320920A (ja) 情報再生装置および再生方法
JP4048576B2 (ja) 情報再生装置および再生方法
JP3843536B2 (ja) 情報再生装置および再生方法
JPH11328875A (ja) 情報再生装置および再生方法
JP3855358B2 (ja) 情報再生装置および再生方法
JPH11339401A (ja) 情報再生装置および再生方法
JP2004118899A (ja) 記録再生装置およびその再記録処理方法
JP3948088B2 (ja) 情報再生装置および再生方法
JP2007042181A (ja) 自動等化器及び自動等化方法、並びに再生装置
JP4225324B2 (ja) 情報再生装置および情報再生方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees