JP4250809B2 - Lithium secondary battery and method of manufacturing positive electrode plate thereof - Google Patents

Lithium secondary battery and method of manufacturing positive electrode plate thereof Download PDF

Info

Publication number
JP4250809B2
JP4250809B2 JP14991699A JP14991699A JP4250809B2 JP 4250809 B2 JP4250809 B2 JP 4250809B2 JP 14991699 A JP14991699 A JP 14991699A JP 14991699 A JP14991699 A JP 14991699A JP 4250809 B2 JP4250809 B2 JP 4250809B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
battery
current collector
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14991699A
Other languages
Japanese (ja)
Other versions
JP2000048822A (en
Inventor
達也 橋本
頼人 大花
英也 浅野
祐之 村井
博 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP14991699A priority Critical patent/JP4250809B2/en
Publication of JP2000048822A publication Critical patent/JP2000048822A/en
Application granted granted Critical
Publication of JP4250809B2 publication Critical patent/JP4250809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池とその極板に関するものである。
【0002】
【従来の技術】
従来、繰り返し充放電の使用や電池組立工程注中の集電体からの活物質の剥離を防ぐために集電体表面にクロメート処理やコロナ放電処理を施すことが提案されている。(特開昭56−57261号公報、特開平7−135023号公報)また、リチウムイオン二次電池の極板製造に関して、活物質と結着剤及び増粘剤の濡れ性を改良する方法として、界面活性剤存在下で混練分散を行う方法が示されている。(特開平8−190912号公報)
【0003】
【発明が解決しようとする課題】
しかしながら、上記の電池用極板においては、活物質と結着剤及び増粘剤との濡れ性を改良すると共に、活物質を塗布した後の集電体と活物質との密着性を満足させることは困難であった。そのため、高温保存後や充放電を繰り返すうちに集電体から活物質が剥離、脱落して充放電容量が低下するといった問題があった。
【0004】
そこで、本発明は前記する従来からの課題を解決して活物質による集電体の腐食が少く、集電体からの活物質の剥離や、脱落が少くて放電容量が大きいリチウム二次電池を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明は、上記のような課題を解決するもので、集電体上への活物質を主成分とする合剤から成るペーストの塗布に先行して集電体表面にベーマイト処理を行うことを特徴とする電池用極板とそれを用いた電池を提供するものである。
【0006】
また、本発明は、金属箔よりなる集電体に正極活物質を含んだペーストを塗布した後に乾燥して製造するリチウム二次電池用極板の製造方法において、前記のペーストの塗布に先行して、表面にクロム酸化物層を形成するクロメート処理をした集電体を用いることとしたものである。
【0007】
【発明の実施の形態】
本発明は、正、負極のいずれか一方の極板の集電体表面にベーマイト処理を施すか、あるいは正極板の集電体表面にクロメート処理を施し、ついで集電体上に電極活物質を含んだ合剤から成るペーストを塗布した後、乾燥して極板を得るものである。この極板を使用した電池は充放電を繰り返して使用しても、充放電容量の劣化や負荷特性の劣化を小さく抑えることが可能である。
【0008】
【実施例】
以下、本発明の実施例として、リチウムイオン電池用正極集電体にベーマイト処理を施した場合について説明する。
【0009】
(実施例1)
本発明のリチウム二次電池の一実施の形態は図1に示すような円筒形リチウム二次電池で前記本発明により得られた極板群と電解液とこれらを収容する電池ケース4からなる。極板群は、シート状の前記正極用極板1とシート状の負極用極板2と正極用極板1と負極用極板2との間を絶縁するシート状のセパレータ3と正極リード7と負極リード8と上部絶縁板9と下部絶縁板10とからなる。セパレータ3は多孔質ポリエチレンフィルムであり、これらが重ねられ渦巻き状に巻回されて、円筒形の電池ケース4内に収容されている。
【0010】
電池ケース4は、耐有機電解液性のステンレス鋼板を深絞り成形して得ており、極板群、電解液挿入後、開口部は封口板5と電池ケース4との間を絶縁しガスシールするガスケット6により封口されている。
【0011】
まず、ベーマイト処理として正極集電体である30μmのアルミニウム箔上にトリエタノールアミン12cc/l溶液中に浸漬した後、100℃で4時間乾燥させ、表面改質させ、酸化被膜を形成した。このとき、被膜の厚みは0.5〜5.0μmが望ましい。これは、被膜の厚みが0.5μmより薄い場合は、表面を改質した効果が十分得られず、活物質との密着性がそれほどよくならないためであり、5.0μmより厚い場合は、同じ大きさの電池ケースに挿入できる活物質量が減少することによる電池容量の低下の影響が大きくなってしまうためである。
【0012】
次に、正極用極板1の製造方法を説明する。正極活物質としてLiCoO2粉末を50重量部、導電剤としてアセチレンブラックを1.5重量部、結着剤としてPTFE50重量部水溶液を7重量部、そして、増粘剤としてカルボキシメチルセルロース1重量部水溶液を41.5重量部を配合し、混合分散して正極用の活物質を主成分とする合剤から成るペーストを得た。この正極用ペーストを本発明のベーマイト処理をしたアルミニウム箔上にダイコーターを用いて両面に塗布して、乾燥後、さらにPTFEの溶融温度である200〜300℃で正極用極板を加熱して集電体と正極合剤層の密着性を改良させる。この後、厚み0.18mmに圧延し、切断して本発明のシート状の正極用極板1を作成した。
【0013】
負極用極板2の製造方法を説明する。負極活物質として鱗片状黒鉛粉末50重量部、増粘剤としてカルボキシメチルセルロース1重量部を水99重量部に溶解した水溶液45重量部、そして、結着剤としてスチレンブタジエンゴム5重量部を配合し混合分散して負極用ペーストを作成した。得られた負極用ペーストをダイコーターを用いて厚さ40μmの銅箔からなる負極用極板2を作成した。
【0014】
電解液は、炭酸エチレン30vol%と炭酸ジエチル50vol%とプロピオン酸メチル20vol%との混合液にLiPF6を1mol/lの濃度に溶解したものからなる。この電解液は、電池ケース内に収容され、正極活物質層および負極活物質層内に含浸されて、電池反応において、多孔質セパレータ3の微小孔を通して正極用極板1と負極用極板2との間のリチウムイオンの移動を担う。
【0015】
前記正極用極板1を用いて電池を作成し、そのサイクル特性を確認した。電池は、直径17mm、高さ50mmのサイズのものを作成した。
【0016】
その比較例として、正極集電体表面にベーマイト処理を行わず無処理である他は同様にして電池を作成した。
【0017】
本発明の電池と比較例の電池について、充電は4.1Vまで500mAの定電流で行い、4.1Vになった時点で4.1Vの定電圧充電に切り換え、充電時間の合計を2時間とし、放電は、20℃中で720mAで行い、放電電位が3.0Vになった時点で放電を終了して1サイクルとし、次の充電を開始した。このようにして、充放電を繰り返したときの前記本発明の電池と比較例の電池のサイクル寿命特性を縦軸に容量維持率、横軸にサイクル数をとって図2に示した。図2より本発明の電池は比較例の電池より充放電を繰り返しても容量の劣化が少なくサイクル特性に優れていることがわかった。
【0018】
これは、本発明の電池において、正極集電体表面にベーマイト処理を行うことで集電体表面が針状構造を有し、この部位に高分子であるPTFEが三次元的にからまり、アンカー効果が発現することで集電体と活物質を主成分とする合剤層との密着性が改良されるためと考えられる。これにより、充放電を繰り返して活物質を含む合剤層が膨張収縮しても合剤層が集電体からはがれにくくなる。
【0019】
また、これら本発明の電池と比較例の電池を充電状態で60℃中に20日間保存した後、常温で数回充放電を繰り返し、720mAで放電し、電圧が3.0Vに達するまでの容量を求め、その保存前の容量に対する割合を(表1)に示した。
【0020】
【表1】

Figure 0004250809
【0021】
(表1)に示すとおり、高温保存においても本発明の電池は容量の劣化が少ないことがわかった。
【0022】
本実施例ではリチウム二次電池用の正極用集電体にベーマイト処理を施した場合を示したが、ベーマイト処理を施すのは負極用集電体でもよくまた、他の電池系の極板に適用しても同様の効果が得られる。
【0023】
(実施例2)
正極用極板1の製造は実施例1のベーマイト処理したアルミニウム箔の代わりに、あらかじめクロム酸化物層を表面に形成するクロメート処理をしたアルミニウム箔を用いた以外は実施例1と同様に行った。
【0024】
負極用極板2に用いる負極用ペーストの製造は実施例1と同様に行った。得られた負極用ペーストをダイコーターを用いて厚さ50μmの銅箔からなる負極集電体の両面に塗布乾燥し、厚み0.2mmに圧延し、切断してシート状の負極用極板2を作製した。
【0025】
また、電解液は実施例1と同様のものを用いた。
【0026】
前記の正極用極板1を用いて実施例1と同様に電池を作製し、そのサイクル特性を確認した。電池は、直径17mm,高さ50mmの寸法のものを作製した。
【0027】
また、比較例として、正極集電体の表面にクロメート処理を行わず無処理である他は同じ製造方法で作製した正極板を用いたリチウム二次電池と、本発明の製造法により製造した正極板を備えたリチウム二次電池のサイクル寿命特性を図3に示す。
【0028】
実施例1と同様に、充電は500mAの定電流で行い4.1Vになった時点で4.1Vの定電圧充電に切り換え、合計2時間充電を行った。放電は20℃720mAで行い、放電電位が3.0Vになった時点で放電を終了し次の充電を開始した。この図より本発明の製造方法によるリチウム二次電池の正極用極板を備えた電池は、従来の方法により製造したリチウム二次電池の正極用極板を有する電池と比較して、充放電を繰り返しても容量の劣化が少なくサイクル特性に優れていることがわかる。
【0029】
これは、本発明の製造方法により得たリチウム二次電池の正極用極板を備えた電池は、正極集電体表面をクロメート処理を行うことで、クロメート処理した集電体表面の被膜は腐食するものの活物質を主成分とする合剤層が集電体に直接には接しないため合剤層による集電体の腐食を低減し、腐食反応時に界面付近で発生する水素ガスの生成を抑制することができるので正極合剤層と集電体との密着性が改良されたためで、これにより、充放電での正極合剤層の膨脹収縮によっても正極合剤層が集電体から剥れ難くなったことが原因である。
【0030】
また、正極集電体にアルミニウム箔を用いるとクロメート処理により、表面が適度に腐食されるため、その結果、表面にアンカー効果を生じ正極合剤層との密着が格段に改良される。他方、集電体に鉄箔を用いた場合にはクロメート処理によるアンカー効果は小さい。
【0031】
これらの正極用極板を備えたリチウム二次電池を充電状態で60℃20日間保存し、その後常温にて数回充放電を行った後、720mAで放電を行い電圧が3.0Vに達するまでの容量を求め、その保存前の容量に対する割合を(表2)に示した。
【0032】
【表2】
Figure 0004250809
【0033】
(表2)に示すとおり、高温保存においても本発明の製造方法により製造した正極用極板を備えたリチウム二次電池は容量の劣化が少なくなることが明らかとなった。
【0034】
【発明の効果】
以上説明したように本発明によれば、充放電を繰り返して使用する際、充放電容量の劣化や保存特性の劣化を極めて小さく抑えることができる。また、高温下に長期間放置するような厳しい条件下においても充放電容量の劣化を小さく抑えることができる。また、電池組立工程中の極板の集電体からの活物質を主成分とする合剤層の剥離が抑えられ、作業性を改善することができる。
【図面の簡単な説明】
【図1】本発明の一実施例による電池の断面図
【図2】サイクル寿命特性を比較した図
【図3】サイクル寿命特性を比較した図
【符号の説明】
1 正極用極板
2 負極用極板
3 セパレータ
4 電池ケース
5 封口板
6 ガスケット
7 正極リード
8 負極リード
9 上部絶縁板
10 下部絶縁板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery and its electrode plate.
[0002]
[Prior art]
Conventionally, it has been proposed to perform chromate treatment or corona discharge treatment on the surface of the current collector in order to prevent repeated use of charge / discharge and separation of the active material from the current collector during the battery assembly process. (JP-A-56-57261, JP-A-7-135023) Further, as a method for improving the wettability of the active material, the binder and the thickener with respect to the production of the electrode plate of the lithium ion secondary battery, A method of kneading and dispersing in the presence of a surfactant is shown. (Japanese Patent Laid-Open No. 8-190912)
[0003]
[Problems to be solved by the invention]
However, in the above-described electrode plate for a battery, the wettability between the active material, the binder, and the thickener is improved, and the adhesion between the current collector and the active material after applying the active material is satisfied. It was difficult. For this reason, there is a problem that the active material is peeled off from the current collector and dropped off after being stored at high temperature or repeatedly being charged and discharged, resulting in a decrease in charge / discharge capacity.
[0004]
Accordingly, the present invention solves the above-described conventional problems by providing a lithium secondary battery with a small discharge capacity due to less corrosion of the current collector due to the active material, less detachment of the active material from the current collector, and falling off. It is something to be offered.
[0005]
[Means for Solving the Problems]
The present invention solves the problems as described above, and performs a boehmite treatment on the surface of the current collector prior to application of a paste composed of a mixture mainly composed of an active material on the current collector. The present invention provides a battery electrode plate and a battery using the same.
[0006]
Further, the present invention provides a method for producing an electrode plate for a lithium secondary battery, which is produced by applying a paste containing a positive electrode active material to a current collector made of a metal foil and then drying the paste. Thus, a current collector having a chromate treatment for forming a chromium oxide layer on the surface is used.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the surface of the current collector of either the positive electrode or the negative electrode is subjected to boehmite treatment, or the surface of the current collector of the positive electrode plate is subjected to chromate treatment, and then the electrode active material is placed on the current collector. After applying the paste composed of the mixture, the electrode plate is obtained by drying. Even if the battery using this electrode plate is repeatedly charged and discharged, deterioration of charge / discharge capacity and load characteristics can be kept small.
[0008]
【Example】
Hereinafter, as an example of the present invention, a case where a boehmite treatment is performed on a positive electrode current collector for a lithium ion battery will be described.
[0009]
Example 1
One embodiment of the lithium secondary battery of the present invention comprises a cylindrical lithium secondary battery as shown in FIG. 1 and an electrode plate group obtained by the present invention, an electrolytic solution, and a battery case 4 that accommodates them. The electrode plate group includes a sheet-like positive electrode plate 1, a sheet-like negative electrode plate 2, a sheet-like separator 3 that insulates between the positive electrode plate 1 and the negative electrode plate 2, and a positive electrode lead 7. And a negative electrode lead 8, an upper insulating plate 9, and a lower insulating plate 10. The separator 3 is a porous polyethylene film, and these are overlapped and wound in a spiral shape, and are accommodated in a cylindrical battery case 4.
[0010]
The battery case 4 is obtained by deep-drawing a stainless steel plate resistant to organic electrolyte, and after the electrode plate group and the electrolyte are inserted, the opening is insulated between the sealing plate 5 and the battery case 4 to provide a gas seal. The gasket 6 is sealed.
[0011]
First, after being immersed in a 12 cc / l solution of triethanolamine on a 30 μm aluminum foil as a positive electrode current collector as a boehmite treatment, it was dried at 100 ° C. for 4 hours and surface-modified to form an oxide film. At this time, the thickness of the coating is preferably 0.5 to 5.0 μm. This is because when the thickness of the coating is thinner than 0.5 μm, the effect of modifying the surface is not sufficiently obtained, and the adhesion with the active material is not so good. This is because the effect of a decrease in battery capacity due to a decrease in the amount of active material that can be inserted into a battery case having a large size is increased.
[0012]
Next, a method for manufacturing the positive electrode plate 1 will be described. 50 parts by weight of LiCoO 2 powder as a positive electrode active material, 1.5 parts by weight of acetylene black as a conductive agent, 7 parts by weight of an aqueous solution of 50 parts by weight of PTFE as a binder, and an aqueous solution of 1 part by weight of carboxymethyl cellulose as a thickener 41.5 parts by weight was blended, mixed and dispersed to obtain a paste composed of a mixture mainly composed of a positive electrode active material. This positive electrode paste was applied to both sides of the boehmite-treated aluminum foil of the present invention using a die coater, dried, and further heated at a positive electrode plate at 200 to 300 ° C., which is the melting temperature of PTFE. Improves the adhesion between the current collector and the positive electrode mixture layer. Thereafter, the sheet was rolled to a thickness of 0.18 mm and cut to prepare the sheet-like positive electrode plate 1 of the present invention.
[0013]
A method for manufacturing the negative electrode plate 2 will be described. Mix and mix 50 parts by weight of scaly graphite powder as a negative electrode active material, 45 parts by weight of an aqueous solution in which 1 part by weight of carboxymethylcellulose is dissolved in 99 parts by weight of water, and 5 parts by weight of styrene butadiene rubber as a binder. A negative electrode paste was prepared by dispersing. A negative electrode plate 2 made of a copper foil having a thickness of 40 μm was prepared from the obtained negative electrode paste using a die coater.
[0014]
The electrolytic solution is composed of LiPF 6 dissolved at a concentration of 1 mol / l in a mixed solution of ethylene carbonate 30 vol%, diethyl carbonate 50 vol%, and methyl propionate 20 vol%. This electrolytic solution is accommodated in the battery case, impregnated in the positive electrode active material layer and the negative electrode active material layer, and in the battery reaction, the positive electrode plate 1 and the negative electrode plate 2 through the micropores of the porous separator 3. It is responsible for the movement of lithium ions between the two.
[0015]
A battery was prepared using the positive electrode plate 1 and its cycle characteristics were confirmed. A battery having a diameter of 17 mm and a height of 50 mm was prepared.
[0016]
As a comparative example, a battery was prepared in the same manner except that the boehmite treatment was not performed on the surface of the positive electrode current collector.
[0017]
For the battery of the present invention and the battery of the comparative example, charging is performed at a constant current of 500 mA up to 4.1 V, and when it reaches 4.1 V, switching to a constant voltage charging of 4.1 V is performed, and the total charging time is 2 hours. The discharge was performed at 20 ° C. at 720 mA, and when the discharge potential reached 3.0 V, the discharge was terminated to one cycle, and the next charge was started. Thus, the cycle life characteristics of the battery of the present invention and the battery of the comparative example when charging and discharging are repeated are shown in FIG. 2 with the capacity retention rate on the vertical axis and the number of cycles on the horizontal axis. From FIG. 2, it was found that the battery of the present invention was superior in cycle characteristics with less capacity deterioration even when charging and discharging were repeated as compared with the battery of the comparative example.
[0018]
In the battery of the present invention, the surface of the current collector has a needle-like structure by performing boehmite treatment on the surface of the positive electrode current collector, and PTFE which is a polymer is entangled three-dimensionally at this site, It is considered that the adhesiveness between the current collector and the mixture layer containing the active material as a main component is improved due to the effect. Thereby, even if charging / discharging is repeated and the mixture layer containing an active material expands and contracts, the mixture layer is difficult to peel off from the current collector.
[0019]
In addition, after storing the battery of the present invention and the battery of the comparative example in a charged state at 60 ° C. for 20 days, the battery is repeatedly charged and discharged several times at room temperature, discharged at 720 mA, and the capacity until the voltage reaches 3.0V. (Table 1) shows the ratio to the capacity before storage.
[0020]
[Table 1]
Figure 0004250809
[0021]
As shown in (Table 1), it was found that the battery of the present invention had little capacity deterioration even at high temperature storage.
[0022]
In this example, the case where the boehmite treatment was applied to the positive electrode current collector for the lithium secondary battery was shown, but the boehmite treatment may be applied to the negative electrode current collector, or to the electrode plate of another battery system. Even if applied, the same effect can be obtained.
[0023]
(Example 2)
The positive electrode plate 1 was manufactured in the same manner as in Example 1 except that instead of the boehmite-treated aluminum foil of Example 1, a chromate-treated aluminum foil having a chromium oxide layer formed on the surface in advance was used. .
[0024]
The negative electrode paste used for the negative electrode plate 2 was produced in the same manner as in Example 1. The obtained negative electrode paste was applied and dried on both sides of a negative electrode current collector made of a copper foil having a thickness of 50 μm using a die coater, rolled to a thickness of 0.2 mm, cut and cut into a sheet-like negative electrode plate 2 for negative electrode. Was made.
[0025]
Moreover, the electrolyte solution used was the same as in Example 1.
[0026]
A battery was produced using the positive electrode plate 1 in the same manner as in Example 1, and its cycle characteristics were confirmed. A battery having a diameter of 17 mm and a height of 50 mm was produced.
[0027]
Moreover, as a comparative example, a lithium secondary battery using a positive electrode plate manufactured by the same manufacturing method except that the surface of the positive electrode current collector is not subjected to chromate treatment and is not processed, and a positive electrode manufactured by the manufacturing method of the present invention FIG. 3 shows the cycle life characteristics of the lithium secondary battery provided with the plate.
[0028]
As in Example 1, charging was performed at a constant current of 500 mA, and when the voltage reached 4.1 V, the charging was switched to constant voltage charging of 4.1 V, and charging was performed for a total of 2 hours. Discharge was performed at 20 ° C. and 720 mA, and when the discharge potential reached 3.0 V, the discharge was terminated and the next charge was started. From this figure, the battery provided with the positive electrode plate of the lithium secondary battery according to the manufacturing method of the present invention is charged and discharged in comparison with the battery having the positive electrode plate of the lithium secondary battery manufactured by the conventional method. It can be seen that even if it is repeated, the capacity is hardly deteriorated and the cycle characteristics are excellent.
[0029]
This is because the battery provided with the positive electrode plate of the lithium secondary battery obtained by the production method of the present invention is subjected to chromate treatment on the surface of the positive electrode current collector, and the coating on the chromate-treated current collector surface is corroded. However, since the mixture layer containing the active material as the main component does not directly contact the current collector, the corrosion of the current collector by the mixture layer is reduced and the generation of hydrogen gas generated near the interface during the corrosion reaction is suppressed. Because the adhesion between the positive electrode mixture layer and the current collector is improved, the positive electrode mixture layer is peeled off from the current collector due to expansion and contraction of the positive electrode mixture layer during charge and discharge. This is because it became difficult.
[0030]
Further, when an aluminum foil is used for the positive electrode current collector, the surface is appropriately corroded by the chromate treatment. As a result, an anchor effect is generated on the surface, and the adhesion with the positive electrode mixture layer is remarkably improved. On the other hand, when an iron foil is used for the current collector, the anchor effect by chromate treatment is small.
[0031]
Lithium secondary batteries equipped with these positive electrode plates are stored in a charged state at 60 ° C. for 20 days, then charged and discharged several times at room temperature, then discharged at 720 mA until the voltage reaches 3.0V. (Table 2) shows the ratio to the capacity before storage.
[0032]
[Table 2]
Figure 0004250809
[0033]
As shown in (Table 2), it was revealed that the lithium secondary battery including the positive electrode plate manufactured by the manufacturing method of the present invention is less deteriorated in capacity even during high-temperature storage.
[0034]
【The invention's effect】
As described above, according to the present invention, when charging / discharging is used repeatedly, deterioration of charge / discharge capacity and deterioration of storage characteristics can be suppressed to an extremely low level. In addition, the deterioration of the charge / discharge capacity can be suppressed even under severe conditions such as leaving for a long time at a high temperature. Moreover, peeling of the mixture layer containing the active material as a main component from the current collector of the electrode plate during the battery assembly process can be suppressed, and workability can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a battery according to an embodiment of the present invention. FIG. 2 is a diagram comparing cycle life characteristics. FIG. 3 is a diagram comparing cycle life characteristics.
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Battery case 5 Sealing plate 6 Gasket 7 Positive electrode lead 8 Negative electrode lead 9 Upper insulating plate 10 Lower insulating plate

Claims (2)

正、負極用極板の少なくとも一方に、表面にベーマイト処理を施した集電体を用いたリチウム二次電池。  A lithium secondary battery using a current collector having a boehmite treatment on at least one of positive and negative electrode plates. ベーマイト処理により集電体表面に形成した被膜の厚みが0.5〜5μmである請求項1記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the thickness of the coating formed on the surface of the current collector by boehmite treatment is 0.5 to 5 µm.
JP14991699A 1998-05-28 1999-05-28 Lithium secondary battery and method of manufacturing positive electrode plate thereof Expired - Fee Related JP4250809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14991699A JP4250809B2 (en) 1998-05-28 1999-05-28 Lithium secondary battery and method of manufacturing positive electrode plate thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-147117 1998-05-28
JP14711798 1998-05-28
JP14991699A JP4250809B2 (en) 1998-05-28 1999-05-28 Lithium secondary battery and method of manufacturing positive electrode plate thereof

Publications (2)

Publication Number Publication Date
JP2000048822A JP2000048822A (en) 2000-02-18
JP4250809B2 true JP4250809B2 (en) 2009-04-08

Family

ID=26477765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14991699A Expired - Fee Related JP4250809B2 (en) 1998-05-28 1999-05-28 Lithium secondary battery and method of manufacturing positive electrode plate thereof

Country Status (1)

Country Link
JP (1) JP4250809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218005B2 (en) 2016-09-16 2019-02-26 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012496A (en) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP4466673B2 (en) * 2007-03-29 2010-05-26 Tdk株式会社 Method for producing positive electrode for lithium ion secondary battery
JP4786581B2 (en) * 2007-03-29 2011-10-05 Tdk株式会社 Electrode for lithium ion secondary battery or electrochemical capacitor, and lithium ion secondary battery or electrochemical capacitor provided with the electrode
JP2009032597A (en) * 2007-07-27 2009-02-12 Sumitomo Electric Ind Ltd Lithium battery
JP2011134623A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN102822920B (en) * 2010-03-30 2016-01-20 松下知识产权经营株式会社 Capacitor electrode body and its manufacture method and the capacitor employing this electrode body
CN103620839B (en) * 2011-06-21 2017-08-18 海德鲁铝业钢材有限公司 Collector foil that is chemically treated, being made up of aluminum or aluminum alloy
JP6189730B2 (en) * 2013-11-29 2017-08-30 三井化学株式会社 Positive electrode for secondary battery and non-aqueous secondary battery including the same
JP6631051B2 (en) * 2015-06-30 2020-01-15 住友電気工業株式会社 Lead conductor and power storage device
JP6486867B2 (en) 2016-06-02 2019-03-20 太陽誘電株式会社 Electrode for electrochemical device and method for producing electrode for electrochemical device
JP6724861B2 (en) 2017-05-26 2020-07-15 トヨタ自動車株式会社 Electrode current collector and all-solid-state battery
JP6870627B2 (en) 2018-02-05 2021-05-12 トヨタ自動車株式会社 Manufacturing method of electrode current collector, all-solid-state battery and electrode current collector
JP6988584B2 (en) 2018-03-06 2022-01-05 トヨタ自動車株式会社 Manufacturing method of positive electrode, non-aqueous electrolyte secondary battery, and positive electrode
JP6981348B2 (en) * 2018-04-13 2021-12-15 トヨタ自動車株式会社 Manufacturing method of positive electrode, non-aqueous electrolyte secondary battery, and positive electrode
JP6766854B2 (en) * 2018-10-10 2020-10-14 トヨタ自動車株式会社 Manufacturing method of positive electrode, non-aqueous electrolyte secondary battery, and positive electrode
CN114497558B (en) * 2021-12-27 2024-02-06 东莞新能源科技有限公司 Electrochemical device and electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197896A (en) * 1984-03-19 1985-10-07 Sanyo Electric Co Ltd Formation of alumite film
JPH01120759A (en) * 1987-10-30 1989-05-12 Sharp Corp Nonaqueous battery and manufacture thereof
JPH0364495A (en) * 1989-07-31 1991-03-19 Fujikura Ltd Anodized aluminum combined coating film and its formation
JPH08306592A (en) * 1995-04-27 1996-11-22 Kobe Steel Ltd Manufacturing for aluminum foil in electrolytic capacitor
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof
JP3703944B2 (en) * 1997-06-25 2005-10-05 三菱アルミニウム株式会社 Surface-treated aluminum material for 2-piece can and method for producing surface-treated aluminum material for 2-piece can
JPH11102711A (en) * 1997-09-25 1999-04-13 Denso Corp Lithium ion secondary battery
JPH11213969A (en) * 1998-01-29 1999-08-06 Yuasa Corp Flexible thin battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218005B2 (en) 2016-09-16 2019-02-26 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Also Published As

Publication number Publication date
JP2000048822A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
JP4250809B2 (en) Lithium secondary battery and method of manufacturing positive electrode plate thereof
EP2605325B1 (en) Cathode current collector coated with a primer and magnesium secondary battery including same
JP5313761B2 (en) Lithium ion battery
WO2006106771A1 (en) Cylindrical lithium secondary battery
JP5437536B2 (en) Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
KR20170085425A (en) Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
EP4287295A1 (en) Secondary battery charging method and charging system
JP5131723B2 (en) Method for producing positive electrode for lithium secondary battery, positive electrode and lithium secondary battery
KR20190011671A (en) Copper foil for secondary battery, method thereof and Secondary battery comprising the same
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
WO1999062133A1 (en) Battery plate and battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JPH0676860A (en) Secondary battery and manufacture thereof
JP6002141B2 (en) Molten salt battery and operation method thereof
JP2001023613A (en) Lithium secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JPH10302841A (en) Secondary lithium battery
KR102306877B1 (en) A high capacity secondary battery
US20230178716A1 (en) Anode current collector including double coating layer and all-solid-state battery including same
US20220393180A1 (en) Anode-free all-solid-state battery including solid electrolyte having high ion conductivity and surface-roughened anode current collector
JPH09161775A (en) Nonaqueous electrolyte secondary battery
JPH11162451A (en) Lithium secondary battery, manufacture of paste for negative electrode of lithium secondary battery, and lithium secondary battery having paste for negative electrode prepared by its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees