JP2009032597A - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP2009032597A
JP2009032597A JP2007196771A JP2007196771A JP2009032597A JP 2009032597 A JP2009032597 A JP 2009032597A JP 2007196771 A JP2007196771 A JP 2007196771A JP 2007196771 A JP2007196771 A JP 2007196771A JP 2009032597 A JP2009032597 A JP 2009032597A
Authority
JP
Japan
Prior art keywords
positive electrode
layer
electrode layer
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007196771A
Other languages
Japanese (ja)
Inventor
Taku Kamimura
卓 上村
To Tei
涛 鄭
Yukihiro Ota
進啓 太田
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007196771A priority Critical patent/JP2009032597A/en
Publication of JP2009032597A publication Critical patent/JP2009032597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium battery where a positive electrode layer is less likely to be removed from a positive current collector according to charge discharge of the battery. <P>SOLUTION: The lithium battery 1 is formed by laminating an interposed layer 12, a positive electrode layer 13, an SE layer 14, and a negative electrode layer 15 in order on a positive current collector 11. The interposed layer 12 is arranged between the positive current collector 11 and the positive electrode layer 13 to enhance adhesion therebetween. The interposed layer 12 is composed of an oxide of a metal element contained in the positive current collector 11 when an active material of the positive electrode layer 13 is composed of an oxide, and composed of a sulfide of the metal element when the active material of the positive electrode layer is composed of a sulfide. By selecting the composition of the interposed layer 12 like this, the interposed layer 12 having high adhesion to the positive current collector 11 and also to the positive electrode layer 13 can be obtained. As a result, the lithium battery is less likely to be removed from the positive electrode layer according to the charge and discharge of the battery can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体電解質層を有する全固体型リチウム電池において、正極集電体と正極層との密着性の向上を図ったリチウム電池に関する。   The present invention relates to an all-solid-state lithium battery having a solid electrolyte layer, which relates to a lithium battery in which adhesion between a positive electrode current collector and a positive electrode layer is improved.

リチウム電池は、負極集電体上に形成される負極層(負極層が負極集電体を兼ねる場合もある)と、正極集電体上に形成される正極層と、両電極層の間に介在される電解質層とを有する。このようなリチウム電池のうち、携帯通信端末や携帯電子機器の主電源として、繰り返し充放電を行なうことができるリチウム二次電池(以下、単にリチウム電池という)が注目されている。   A lithium battery includes a negative electrode layer formed on a negative electrode current collector (the negative electrode layer may also serve as the negative electrode current collector), a positive electrode layer formed on the positive electrode current collector, and a gap between both electrode layers. An intervening electrolyte layer. Among such lithium batteries, a lithium secondary battery that can be repeatedly charged and discharged (hereinafter simply referred to as a lithium battery) has attracted attention as a main power source for portable communication terminals and portable electronic devices.

近年、このリチウム電池として、正・負極間のリチウムの伝導に有機電解液を用いない全固体型電池が提案されている(例えば、特許文献1参照)。全固体型電池は、電解質として固体電解質(SE)を使用しており、有機電解液を用いることに伴う不都合、例えば、電解液の漏れによる安全性の問題、高温時に有機電解液がその沸点を超えて揮発することによる耐熱性の問題、低温時に有機電解液のイオン伝導度が大きく低下して電池反応が低下したり、電解液が凍結する問題、などを解消することができる。   In recent years, as this lithium battery, an all-solid-state battery that does not use an organic electrolyte for lithium conduction between the positive and negative electrodes has been proposed (see, for example, Patent Document 1). All solid-state batteries use a solid electrolyte (SE) as an electrolyte, and there are inconveniences associated with using an organic electrolyte, such as safety problems due to leakage of the electrolyte, and the boiling point of the organic electrolyte at high temperatures. The problem of heat resistance due to volatilization exceeding, the problem that the ionic conductivity of the organic electrolytic solution is greatly reduced at a low temperature and the battery reaction is lowered, or the electrolytic solution is frozen can be solved.

ここで、特許文献1では、電池の充放電に伴い、SE層と、このSE層に隣接する電極層(正極層と負極層)とが剥離し易いことを課題として挙げており、この課題を解決する構成として、SE層と電極層との間に、電極構成材料の一元素とSE層構成材料の一元素との化合物である領域層を形成することが開示されている。   Here, in Patent Document 1, as the battery is charged and discharged, the SE layer and the electrode layers (positive electrode layer and negative electrode layer) adjacent to the SE layer are easily peeled off. As a configuration to be solved, it is disclosed that a region layer that is a compound of one element of an electrode constituent material and one element of an SE layer constituent material is formed between the SE layer and the electrode layer.

特開2004−281316号公報JP 2004-281316 A

しかし、本発明者らが種々検討した結果、充放電を繰り返したリチウム電池において、SE層から電極が剥離することだけでなく、正極集電体から正極層が剥離することも電池の容量の低下や正・負極間の短絡などの原因であることが明らかになった。   However, as a result of various studies by the present inventors, in a lithium battery repeatedly charged and discharged, not only the electrode peels from the SE layer but also the positive electrode layer peels off from the positive electrode current collector. It became clear that it was the cause of short circuit between the positive and negative electrodes.

本発明者らが、正極集電体からの正極層の剥離の原因についてさらに検討したところ、電池の充放電に伴う電池の温度変化や、正極層へのリチウムの吸蔵・放出などにより正極層が膨張収縮するためであるとの知見を得た。特に、電池の構成要素が全て固体であり、これら構成要素が接合されて形成される全固体型リチウム電池では、正極層の膨張収縮の応力に加えて、負極層やSE層の膨張収縮により発生する応力が正極層に作用して、集電体からの正極層の剥離を促すことがある。そのため、正極層と正極集電体との密着性についても検討する必要があると考えられるが、上記特許文献1を含む全固体型リチウム電池において、正極集電体と正極層の密着性については全く検討されていないのが現状である。   The present inventors further examined the cause of the separation of the positive electrode layer from the positive electrode current collector. As a result, the positive electrode layer was removed due to changes in the temperature of the battery accompanying charging / discharging of the battery, insertion / extraction of lithium into the positive electrode layer, etc. The knowledge that it is for expansion and contraction was obtained. In particular, all battery components are solid, and in all solid-state lithium batteries formed by joining these components, in addition to the stress of expansion and contraction of the positive electrode layer, this occurs due to the expansion and contraction of the negative electrode layer and SE layer. The stress that acts on the positive electrode layer may promote peeling of the positive electrode layer from the current collector. Therefore, although it is considered necessary to examine the adhesion between the positive electrode layer and the positive electrode current collector, in the all-solid-state lithium battery including Patent Document 1, the adhesion between the positive electrode current collector and the positive electrode layer is considered. The current situation has not been studied at all.

そこで、本発明の目的の一つは、電池の充放電に伴って正極層が正極集電体から剥離し難いリチウム電池を提供することにある。   Accordingly, one of the objects of the present invention is to provide a lithium battery in which the positive electrode layer is hardly peeled off from the positive electrode current collector as the battery is charged and discharged.

本発明は、正極集電体と正極層との間に、両者を密着させる介在層を形成することで上記の目的を達成する。   The present invention achieves the above-mentioned object by forming an intervening layer that adheres both between the positive electrode current collector and the positive electrode layer.

本発明のリチウム電池には、大別して2つの構成がある。いずれの構成も、正極集電体と正極層との間に介在層が設けられている。ただし、正極層の正極活物質が、酸化物で構成されているか、それとも硫化物で構成されているかによって介在層の組成が異なる。   The lithium battery of the present invention is roughly divided into two configurations. In any configuration, an intervening layer is provided between the positive electrode current collector and the positive electrode layer. However, the composition of the intervening layer differs depending on whether the positive electrode active material of the positive electrode layer is composed of an oxide or a sulfide.

本発明の第一の構成に係るリチウム電池は、正極集電体上に形成される正極層と、この正極層と対をなす負極層と、これら両層の間でリチウムイオンの伝導を媒介する固体電解質層とを有するリチウム電池である。そして、この電池は、正極層に含まれる正極活物質が、酸化物であり、正極層と正極集電体との間に、正極集電体に含有される金属元素の酸化物からなる介在層を有することを特徴とする。   The lithium battery according to the first configuration of the present invention mediates lithium ion conduction between the positive electrode layer formed on the positive electrode current collector, the negative electrode layer paired with the positive electrode layer, and both layers. A lithium battery having a solid electrolyte layer. In this battery, the positive electrode active material contained in the positive electrode layer is an oxide, and the intervening layer comprising an oxide of a metal element contained in the positive electrode current collector is disposed between the positive electrode layer and the positive electrode current collector. It is characterized by having.

本発明の第二の構成に係るリチウム電池は、正極集電体上に形成される正極層と、この正極層と対をなす負極層と、これら両層の間でリチウムイオンの伝導を媒介する固体電解質層とを有するリチウム電池である。そして、この電池は、正極層に含まれる正極活物質が、硫化物であり、正極層と正極集電体との間に、正極集電体に含有される金属元素の硫化物からなる介在層を有することを特徴とする。   The lithium battery according to the second configuration of the present invention mediates lithium ion conduction between the positive electrode layer formed on the positive electrode current collector, the negative electrode layer paired with the positive electrode layer, and both layers. A lithium battery having a solid electrolyte layer. In this battery, the positive electrode active material contained in the positive electrode layer is a sulfide, and an intervening layer made of a sulfide of a metal element contained in the positive electrode current collector is disposed between the positive electrode layer and the positive electrode current collector. It is characterized by having.

上記本発明の構成によれば、介在層が正極集電体に対しても正極層に対しても高い密着性を発揮する。その結果、正極層が正極集電体から剥離し難くいリチウム電池とすることができる。   According to the configuration of the present invention, the intervening layer exhibits high adhesion to both the positive electrode current collector and the positive electrode layer. As a result, a lithium battery in which the positive electrode layer is difficult to peel from the positive electrode current collector can be obtained.

本発明リチウム電池の一形態として、前記介在層は、電子伝導性が10-2S/cm以上であることが好ましい。 As an embodiment of the lithium battery of the present invention, the interposition layer preferably has an electronic conductivity of 10 −2 S / cm or more.

正極集電体と正極層との間には、導通が確保されている必要があるため、介在層は、電子伝導性を有する必要がある。上記構成の電子伝導性を有する介在層であれば、リチウム電池の性能を損なうことなく、正極層の剥離を抑制することができる。   Since it is necessary to ensure electrical continuity between the positive electrode current collector and the positive electrode layer, the intervening layer needs to have electronic conductivity. If it is the interposition layer which has the electronic conductivity of the said structure, peeling of a positive electrode layer can be suppressed, without impairing the performance of a lithium battery.

本発明リチウム電池の一形態として、正極集電体に含有される金属元素は、銅(Cu)、錫(Sn)、クロム(Cr)、ニッケル(Ni)、鉄(Fe)、マンガン(Mn)およびバナジウム(V)の少なくとも一種以上であることが好ましい。   As one form of the lithium battery of the present invention, the metal element contained in the positive electrode current collector is copper (Cu), tin (Sn), chromium (Cr), nickel (Ni), iron (Fe), manganese (Mn) And at least one of vanadium (V).

これらの金属元素は、集電体の構成元素として好適であり、しかも酸化物、硫化物を形成することが容易である。従って、この構成によれば、正極集電体と正極層の両方に密着する介在層を容易に形成できる。   These metal elements are suitable as constituent elements of the current collector, and it is easy to form oxides and sulfides. Therefore, according to this configuration, it is possible to easily form an intervening layer that is in close contact with both the positive electrode current collector and the positive electrode layer.

本発明リチウム電池の一形態として、介在層は、この介在層上に設けられる正極層の側面にも密着していることが好ましい。   As one form of the lithium battery of the present invention, the intervening layer is preferably in close contact with the side surface of the positive electrode layer provided on the intervening layer.

この構成によれば、介在層が、正極層の底面と側面とに密着しているので、電池の充放電に伴って正極層が剥離することをより効果的に抑制することができる。   According to this configuration, since the intervening layer is in close contact with the bottom surface and the side surface of the positive electrode layer, it is possible to more effectively suppress the positive electrode layer from peeling off as the battery is charged / discharged.

本発明リチウム電池によれば、介在層が正極集電体に対しても正極層に対しても高い密着性を発揮するので、正極層が正極集電体から剥離し難くいリチウム電池とすることができる。その結果、電池の充放電に伴い電池性能が劣化しにくいリチウム電池とすることができる。   According to the lithium battery of the present invention, since the intervening layer exhibits high adhesion to the positive electrode current collector and the positive electrode layer, the positive electrode layer is difficult to peel from the positive electrode current collector. Can do. As a result, it can be set as the lithium battery which battery performance does not deteriorate easily with charging / discharging of a battery.

本発明リチウム電池は、一般的なリチウム電池に備わる正極集電体、正極層、固体電解質層(SE層)、負極層、負極集電体に加えて、さらに、正極集電体と正極層との間に介在層を備える。これら各層の配置状態には大別して2つの構成が考えられる。まず一つ目の構成は、正極層と負極層とが、電池を平面視した場合に、互いに重複する箇所がある積層構造である。この電池の代表例は、ほぼ同じ大きさの正極層と負極層を重ね合わせたボタン型電池であり、平面視したときの電池の面積を小さくできる。また、2つ目の構成は、電池を平面視したときに、正極層と負極層とが重複する箇所がない非積層構造である。この電池の場合、SE層の厚さ方向にピンホールが生じていても、両電極層間の短絡を抑制しやすい。このような電極の構成としては、正極層と負極層とを各々櫛歯状に形成して、互いに嵌め合わされるように並列することが挙げられる。   The lithium battery of the present invention includes a positive electrode current collector, a positive electrode layer, a solid electrolyte layer (SE layer), a negative electrode layer, a negative electrode current collector, and a positive electrode current collector and a positive electrode layer. An intervening layer is provided between the two. The arrangement of each layer can be roughly divided into two configurations. The first configuration is a laminated structure in which the positive electrode layer and the negative electrode layer overlap each other when the battery is viewed in plan. A typical example of this battery is a button type battery in which a positive electrode layer and a negative electrode layer having approximately the same size are overlapped, and the area of the battery when viewed in plan can be reduced. The second configuration is a non-stacked structure in which the positive electrode layer and the negative electrode layer do not overlap when the battery is viewed in plan. In the case of this battery, even if a pinhole occurs in the thickness direction of the SE layer, it is easy to suppress a short circuit between both electrode layers. As a configuration of such an electrode, it is possible to form the positive electrode layer and the negative electrode layer in a comb-teeth shape and arrange them in parallel so as to be fitted to each other.

以下、本発明の実施形態を、積層構造のリチウム電池を例にして説明する。   Hereinafter, embodiments of the present invention will be described using a lithium battery having a laminated structure as an example.

<第一実施形態>
≪リチウム二次電池の全体構成≫
本実施の形態におけるリチウム電池は、電池を平面視したときに、正極層13と負極層15とが同じ面積であり、両層がぴったり重なる構造、いわゆる完全積層構造のリチウム電池1である(図1参照)。本実施形態のリチウム電池1の構造を具体的に説明すると、集電機能を有する正極集電体11上に、介在層12、正極層13、SE層14、負極層15の順に積層された構造を有している。以下、各構成部材を詳細に説明する。なお、本実施形態のリチウム電池1では、負極層15が負極集電体を兼ねた構成であるが、別途、負極上に負極集電体を設けても良い。
<First embodiment>
≪Overall configuration of lithium secondary battery≫
The lithium battery in the present embodiment is a lithium battery 1 having a structure in which the positive electrode layer 13 and the negative electrode layer 15 have the same area when the battery is viewed in plan, and the two layers are exactly overlapped, that is, a so-called completely laminated structure (see FIG. 1). Specifically explaining the structure of the lithium battery 1 of the present embodiment, a structure in which an intervening layer 12, a positive electrode layer 13, an SE layer 14, and a negative electrode layer 15 are stacked in this order on a positive electrode current collector 11 having a current collecting function. have. Hereinafter, each component will be described in detail. In the lithium battery 1 of the present embodiment, the negative electrode layer 15 also serves as the negative electrode current collector. However, a negative electrode current collector may be separately provided on the negative electrode.

≪各構成部材≫
[正極集電体]
正極集電体としては、Cu、Sn、Cr、Ni、Fe、MnおよびVのいずれかの金属、あるいは、これらの合金が好適である。正極集電体は、例えば、絶縁体上に金属膜として形成すれば良い。正極集電体の厚みは、3μm〜100μmが好ましく、特に、5μm〜25μmが好ましい。この金属膜からなる集電体は、PVD法(物理的気相蒸着法)やCVD法(化学的気相蒸着法)により形成することができる。特に、所定のパターンに金属膜(集電体)を形成する場合、適宜なマスクを用いることで、絶縁体上に、容易に所定のパターンの集電体を形成することができる。
≪Each component≫
[Positive electrode current collector]
As the positive electrode current collector, a metal selected from Cu, Sn, Cr, Ni, Fe, Mn and V, or an alloy thereof is suitable. The positive electrode current collector may be formed as a metal film on an insulator, for example. The thickness of the positive electrode current collector is preferably 3 μm to 100 μm, and particularly preferably 5 μm to 25 μm. The current collector made of the metal film can be formed by a PVD method (physical vapor deposition method) or a CVD method (chemical vapor deposition method). In particular, when a metal film (current collector) is formed in a predetermined pattern, a current collector having a predetermined pattern can be easily formed on the insulator by using an appropriate mask.

[正極層]
正極層は、リチウムイオンの吸蔵及び放出を行う正極活物質を含む。正極活物質としては、酸化物、例えばコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)及びオリビン型鉄リン酸リチウム(LiFePO4)よりなる群より選ばれる1つ、若しくはこれらの混合物を好適に使用することができる。その他、正極活物質は、硫化物、例えばイオウ(S)、硫化リチウム(Li2S)、硫化鉄(FeS,FeS2)及び硫化チタニウム(TiS2)よりなる群より選ばれる1つ、若しくはこれらの混合物であっても良い。この正極層の厚みは、5μm〜150μmが好ましく、特に、10μm〜100μmがより好ましい。また、正極層は、さらに導電助剤を含んでいることが好ましい。導電助剤としては、カーボンブラックやグラファイトなどを使用することができる。
[Positive electrode layer]
The positive electrode layer includes a positive electrode active material that occludes and releases lithium ions. As the positive electrode active material, from the group consisting of oxides, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and olivine type lithium iron phosphate (LiFePO 4 ) One selected or a mixture thereof can be preferably used. In addition, the positive electrode active material is one selected from the group consisting of sulfides such as sulfur (S), lithium sulfide (Li 2 S), iron sulfide (FeS, FeS 2 ) and titanium sulfide (TiS 2 ), or these It may be a mixture of The thickness of the positive electrode layer is preferably 5 μm to 150 μm, and more preferably 10 μm to 100 μm. Moreover, it is preferable that the positive electrode layer further contains a conductive additive. Carbon black or graphite can be used as the conductive assistant.

上述した正極層の形成方法としては、乾式法(代表的には、スパッタ法や電子ビーム蒸着法などの気相堆積法)や湿式法(代表的にはスクリーン印刷法や塗布法)などを利用することができる。ここで、正極層は、リチウム電池の高容量化を実現するために、後述する負極層に比べて厚く形成されることがある。そのため、正極層を形成する方法として、湿式法、例えば塗布法を使用することが好ましい。塗布法は、比較的厚膜の正極層を短時間で形成できるので、正極層の生産性を向上できる。   As a method for forming the positive electrode layer described above, a dry method (typically, a vapor deposition method such as a sputtering method or an electron beam evaporation method) or a wet method (typically a screen printing method or a coating method) is used. can do. Here, the positive electrode layer may be formed thicker than a negative electrode layer to be described later in order to realize a higher capacity of the lithium battery. Therefore, it is preferable to use a wet method such as a coating method as a method of forming the positive electrode layer. Since the coating method can form a relatively thick positive electrode layer in a short time, the productivity of the positive electrode layer can be improved.

また、湿式法を使用する場合、活物質を含有するスラリーに結着剤を含有させて、このスラリーを正極集電体上に塗布したときに、スラリーが液だれしないようにすることが好ましい。結着剤は、塗布したスラリーが固まって正極層が形成された後も、正極層中に残るので、結着剤として、電子伝導性の良いものを使用することが好ましい。このようにすることにより、正極層の電気抵抗、すなわち、リチウム電池の内部抵抗が低下して、電池としたときの電池特性が向上する。このような結着剤としては、ポリテトラフルオロエチレン(PTFE)や、ポリフッ化ビニリデン(PVdF)などを使用することができる。   Moreover, when using a wet method, it is preferable to contain a binder in the slurry containing the active material and prevent the slurry from dripping when the slurry is applied onto the positive electrode current collector. The binder remains in the positive electrode layer even after the applied slurry is hardened and the positive electrode layer is formed. Therefore, it is preferable to use a binder having good electron conductivity as the binder. By doing in this way, the electrical resistance of a positive electrode layer, ie, the internal resistance of a lithium battery, falls, and the battery characteristic when it is set as a battery improves. As such a binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or the like can be used.

[介在層]
本発明リチウム電池は、上述した正極集電体と正極層との間に両者の密着性を向上させる介在層を具える。介在層の組成は、正極層と正極集電体の組成に応じて異なるものを使用する。具体的には、正極層の活物質が酸化物からなる場合は、正極集電体に含有される金属元素の酸化物から介在層を構成する。また、正極層の活物質が硫化物からなる場合は、正極集電体に含有される金属元素の硫化物から介在層を構成する。例えば、正極集電体がCuからなり、正極活物質が酸化物である場合は、Cu2Oなどで介在層を構成する。また、正極集電体がCuからなり、正極活物質が硫化物である場合は、Cu2Sなどで介在層を構成する。
[Intervening layer]
The lithium battery of the present invention includes an intervening layer that improves the adhesion between the positive electrode current collector and the positive electrode layer described above. The composition of the intervening layer is different depending on the composition of the positive electrode layer and the positive electrode current collector. Specifically, when the active material of the positive electrode layer is made of an oxide, the intervening layer is composed of an oxide of a metal element contained in the positive electrode current collector. Moreover, when the active material of a positive electrode layer consists of sulfides, an intervening layer is comprised from the sulfide of the metal element contained in a positive electrode electrical power collector. For example, when the positive electrode current collector is made of Cu and the positive electrode active material is an oxide, the intervening layer is made of Cu 2 O or the like. When the positive electrode current collector is made of Cu and the positive electrode active material is a sulfide, the intervening layer is made of Cu 2 S or the like.

上述のように介在層の組成を限定することにより、正極集電体に対しても正極層に対しても密着性の高い介在層とすることができる。即ち、正極層が正極集電体から剥離しにくくすることができるので、仮に、電池の充放電に伴って正極層が膨張収縮したとしても正極層が剥離する虞がほとんどなくなる。   By limiting the composition of the intervening layer as described above, an intervening layer having high adhesion to both the positive electrode current collector and the positive electrode layer can be obtained. That is, since the positive electrode layer can be made difficult to peel from the positive electrode current collector, even if the positive electrode layer expands and contracts due to charging / discharging of the battery, there is almost no possibility that the positive electrode layer peels off.

また、介在層は、正極集電体と正極層との導通を確保するために電子伝導性を有する必要があり、10-2S/cm以上の電子伝導性を確保することが好ましい。さらに、介在層の厚みは、5nm〜100nmが好ましく、特に、5nm〜25nmがより好ましい。介在層厚さが5nm未満の場合、正極層の剥離を抑制する効果が小さくなる。一方、介在層厚さが100nm超だと、介在層は集電体を構成する金属よりも電子伝導度が小さいので、介在層が高抵抗層となり、好ましくない。介在層は、気相法などにより形成することができる。 Further, the intervening layer needs to have electronic conductivity in order to ensure conduction between the positive electrode current collector and the positive electrode layer, and it is preferable to ensure an electron conductivity of 10 −2 S / cm or more. Furthermore, the thickness of the intervening layer is preferably 5 nm to 100 nm, and more preferably 5 nm to 25 nm. When the intervening layer thickness is less than 5 nm, the effect of suppressing peeling of the positive electrode layer is reduced. On the other hand, if the thickness of the intervening layer exceeds 100 nm, the intervening layer has an electron conductivity smaller than that of the metal constituting the current collector, so that the intervening layer becomes a high resistance layer, which is not preferable. The intervening layer can be formed by a vapor phase method or the like.

[負極集電体]
負極集電体としては、Cu、Ni、Fe、Cr、及びこれらの合金から選択される1種が好適に利用できる。これらの金属は、リチウム(Li)と金属間化合物を形成しないため、リチウムとの金属間化合物による不具合、具体的には、充放電による膨張・収縮によって、後述する負極層との接合性が低下して負極層が負極集電体から脱落し易くなるといった不具合を防止できる。負極集電体の厚みは、3μm〜100μmが好ましく、特に、5μm〜25μmがより好ましい。なお、負極集電体(金属膜)も、正極の場合と同様に、PVD法やCVD法で形成することができる。
[Negative electrode current collector]
As the negative electrode current collector, one selected from Cu, Ni, Fe, Cr, and alloys thereof can be suitably used. Since these metals do not form an intermetallic compound with lithium (Li), the bondability with the negative electrode layer, which will be described later, decreases due to problems caused by the intermetallic compound with lithium, specifically, expansion / contraction due to charge / discharge. Thus, it is possible to prevent a problem that the negative electrode layer easily falls off the negative electrode current collector. The thickness of the negative electrode current collector is preferably 3 μm to 100 μm, and more preferably 5 μm to 25 μm. Note that the negative electrode current collector (metal film) can also be formed by a PVD method or a CVD method, as in the case of the positive electrode.

[負極層]
負極層は、リチウムイオンの吸蔵及び放出を行う負極活物質を含む層で構成する。例えば、負極層として、Li金属及びLi金属と合金を形成することのできる金属よりなる群より選ばれる1つ、若しくはこれらの混合物又は合金が好適に使用できる。Liと合金を形成することのできる金属としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、及びインジウム(In)よりなる群より選ばれる少なくとも一つ(以下、合金化材料という)が良い。具体的な負極層の例として、例えば、Li-Al、Li-Mn-Al、Si、Si-N、Si-Co、Si-Feなどが挙げられる。負極層の厚みは、1μm〜100μmが好ましく、特に、1μm〜20μmがより好ましい。なお、負極層は、正極層と同様に導電助剤を含んでいても良いし、負極層を塗布法で作製するのであれば結着剤を含んでいても良い。
[Negative electrode layer]
The negative electrode layer is composed of a layer containing a negative electrode active material that occludes and releases lithium ions. For example, as the negative electrode layer, one selected from the group consisting of Li metal and a metal capable of forming an alloy with Li metal, or a mixture or alloy thereof can be preferably used. The metal capable of forming an alloy with Li is at least one selected from the group consisting of aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), and indium (In) (hereinafter, referred to as “metal”). Alloyed material). Specific examples of the negative electrode layer include Li—Al, Li—Mn—Al, Si, Si—N, Si—Co, Si—Fe, and the like. The thickness of the negative electrode layer is preferably 1 μm to 100 μm, and more preferably 1 μm to 20 μm. In addition, the negative electrode layer may contain the conductive support agent similarly to the positive electrode layer, and may contain the binder if the negative electrode layer is produced by a coating method.

このような元素を含有した負極層は、負極層自体に集電体としての機能を持たせることができ、かつリチウムイオンの吸蔵・放出能力が高く好ましい。特に、シリコン(Si)はリチウムを吸蔵・放出する能力がグラファイト(黒鉛)よりも大きく、電池のエネルギー密度を高くすることができる。   A negative electrode layer containing such an element is preferable because the negative electrode layer itself can have a function as a current collector and has a high ability to occlude and release lithium ions. In particular, silicon (Si) has a higher ability to occlude and release lithium than graphite, and can increase the energy density of the battery.

また、負極層としてLi金属との合金相を用いることで、Li金属と合金化した合金化材料とLiイオン伝導性の固体電解質層との界面でのLiイオンの移動抵抗が低減される効果があり、第1サイクル目の充電初期における合金化材料の高抵抗化が緩和される。   In addition, the use of an alloy phase with Li metal as the negative electrode layer has the effect of reducing the migration resistance of Li ions at the interface between the alloying material alloyed with Li metal and the Li ion conductive solid electrolyte layer. In addition, the increase in resistance of the alloying material in the initial charge of the first cycle is alleviated.

さらに、合金化材料の金属単体を負極層とした場合には、第1サイクル目の充放電サイクルにおいて、充電容量に対して放電容量が大幅に小さくなる問題があるが、予めLi金属と合金化材料とを合金化した負極層材料を用いることにより、この不可逆容量は殆どなくなる。このことにより、正極活物質量を不可逆容量分だけ余分に充填する必要がなくなり、リチウム電池の容量密度を向上させることができる。   Furthermore, when the single metal of the alloying material is used as the negative electrode layer, there is a problem that the discharge capacity becomes significantly smaller than the charge capacity in the first charge / discharge cycle. By using the negative electrode layer material obtained by alloying the material, this irreversible capacity is almost eliminated. This eliminates the need to fill the positive electrode active material amount by an irreversible capacity, thereby improving the capacity density of the lithium battery.

上述した負極層の形成方法は、気相堆積法が好ましい。その他、負極層は、プレスあるいは電気化学的手法により形成しても良いし、塗布法を使用して形成しても良い。   The above-described method for forming the negative electrode layer is preferably a vapor deposition method. In addition, the negative electrode layer may be formed by pressing or an electrochemical method, or may be formed using a coating method.

[固体電解質層]
固体電解質層(SE層)は、正・負極間でリチウムイオンの伝導を媒介する層である。SE層に要求される特性は、リチウムイオン伝導性が高く、導電性が低いことである。具体的な数値としては、リチウムイオン伝導性が、10-4S/cm以上、導電性が10-8S/cm以下であることが好ましい。
[Solid electrolyte layer]
The solid electrolyte layer (SE layer) is a layer that mediates lithium ion conduction between the positive electrode and the negative electrode. The properties required for the SE layer are high lithium ion conductivity and low conductivity. Specifically, it is preferable that the lithium ion conductivity is 10 −4 S / cm or more and the conductivity is 10 −8 S / cm or less.

SE層としては、リチウム(Li)、リン(P)、イオウ(S)を含有するものや、さらに酸素(O)を含有するものを使用できる。その他、SE層として、La-Li-Tiの複合酸化物を使用しても良い。また、SE層は、正極層側と負極層側とでそれぞれ組成の異なる2層以上の構造とし、各極と固体電解質層との間の界面抵抗を低くすることもできる。例えば、正極層上に、Li-P-S-NやLi-P-O-Nなどからなるアモルファス膜、あるいは多結晶膜を形成し、負極層上に、Li-P-S-Oなどからなるアモルファス膜、あるいは多結晶膜を形成する。SE層の厚みは、単層も複数層の場合も合計で3μm〜100μmとすることが好ましく、特に、5μm〜25μmとすることがより好ましい。   As the SE layer, those containing lithium (Li), phosphorus (P), sulfur (S), and further containing oxygen (O) can be used. In addition, a La—Li—Ti composite oxide may be used as the SE layer. Further, the SE layer may have a structure of two or more layers having different compositions on the positive electrode layer side and the negative electrode layer side, and the interface resistance between each electrode and the solid electrolyte layer can be lowered. For example, an amorphous film or a polycrystalline film made of Li—P—S—N or Li—P—O—N is formed on the positive electrode layer, and an amorphous film or a polycrystalline film made of Li—P—S—O or the like is formed on the negative electrode layer. The thickness of the SE layer is preferably 3 μm to 100 μm in total for both single and multiple layers, and more preferably 5 μm to 25 μm.

なお、SE層には、イオン液体を含浸させても良い。リチウムイオン伝導性のイオン液体は、有機カチオンとアニオンとの組み合わせからなるイオンのみの液体である。ここで、固体電解質層に含浸させるイオン液体は、リチウム含有塩を含んでいても良いし、含んでいなくても良い。固体電解質にイオン液体を含浸させることで、固体電解質層のリチウムイオン伝導度を高めることができる。   Note that the SE layer may be impregnated with an ionic liquid. A lithium ion conductive ionic liquid is an ionic liquid composed of a combination of an organic cation and an anion. Here, the ionic liquid impregnated in the solid electrolyte layer may or may not contain a lithium-containing salt. By impregnating the solid electrolyte with the ionic liquid, the lithium ion conductivity of the solid electrolyte layer can be increased.

以上の構成を備えるリチウム電池によれば、介在層が正極集電体からの正極層の剥離を抑制することができる。   According to the lithium battery having the above configuration, the intervening layer can suppress separation of the positive electrode layer from the positive electrode current collector.

以下、実施形態において説明した構成のリチウム電池(実施例1〜3)を作製すると共に、実施例の比較として介在層を有さないリチウム電池(比較例1〜3)を作製し、これらの電池のサイクル特性を調べた。   Hereinafter, lithium batteries (Examples 1 to 3) having the configurations described in the embodiments are manufactured, and lithium batteries (Comparative Examples 1 to 3) having no intervening layer are manufactured as a comparison of Examples. The cycle characteristics of were investigated.

<実施例1>
まず、正極集電体として、厚さ15μmのCu箔を用意して、このCu箔上に、電子ビーム蒸着法によりCu2Oからなる介在層を成膜した。介在層厚さは、50nmであった。
<Example 1>
First, a 15 μm thick Cu foil was prepared as a positive electrode current collector, and an intervening layer made of Cu 2 O was formed on the Cu foil by an electron beam evaporation method. The intervening layer thickness was 50 nm.

次に、介在層の上に、LiMn2O4を原料として用いた電子ビーム蒸着法により、LiMn2O4を正極活物質とする正極層を成膜した。正極層厚さは、3μmであった。 Next, a positive electrode layer using LiMn 2 O 4 as a positive electrode active material was formed on the intervening layer by an electron beam evaporation method using LiMn 2 O 4 as a raw material. The positive electrode layer thickness was 3 μm.

さらに、正極層上に、P2S5粉末とLi2S粉末を原料として用いた2元系の抵抗加熱蒸着法により、SE層を成膜した。SE層におけるP2S5とLi2Sとのモル比は、P2S5/Li2S=7/3であり、SE層厚さは、3μmであった。 Further, an SE layer was formed on the positive electrode layer by a binary resistance heating vapor deposition method using P 2 S 5 powder and Li 2 S powder as raw materials. The molar ratio of P 2 S 5 to Li 2 S in the SE layer was P 2 S 5 / Li 2 S = 7/3, and the SE layer thickness was 3 μm.

最後に、SE層上に、抵抗加熱蒸着法により、Li金属膜からなる負極層を成膜した。負極層厚さは、5μmであった。   Finally, a negative electrode layer made of a Li metal film was formed on the SE layer by resistance heating vapor deposition. The negative electrode layer thickness was 5 μm.

<実施例2>
実施例2では、正極活物質としてFeS2を用いたリチウム電池を作製した。また、この硫化物の正極活物質に対応した化合物で介在層を構成した。具体的には、正極集電体がCuであり、正極活物質が硫化物であるので、介在層はCu2Sとした。これら正極層と介在層以外の層は、実施例1と同一である。また、正極集電体と正極層を含む各層の厚さは、実施例1と同一である。
<Example 2>
In Example 2, a lithium battery using FeS 2 as a positive electrode active material was produced. The intervening layer was composed of a compound corresponding to the sulfide positive electrode active material. Specifically, since the positive electrode current collector was Cu and the positive electrode active material was sulfide, the intervening layer was Cu 2 S. The layers other than the positive electrode layer and the intervening layer are the same as those in Example 1. In addition, the thickness of each layer including the positive electrode current collector and the positive electrode layer is the same as that of Example 1.

<実施例3>
実施例3では、正極活物質としてLiMn2O4を用い、正極集電体としてステンレス箔(SUS304)を用いてリチウム電池を作製した。また、この酸化物の正極活物質と、SUS304の集電体に対応した化合物で介在層を構成した。具体的には、正極集電体がNiを含有するSUS304であり、正極活物質が酸化物であるので、介在層をNiOとした。これら正極集電体、正極層および介在層以外の層は、実施例1と同一である。また、正極集電体、正極層および介在層を含む各層の厚さは、実施例1と同一である。
<Example 3>
In Example 3, a lithium battery was fabricated using LiMn 2 O 4 as the positive electrode active material and stainless steel foil (SUS304) as the positive electrode current collector. Further, an intervening layer was composed of this oxide positive electrode active material and a compound corresponding to the current collector of SUS304. Specifically, since the positive electrode current collector is SUS304 containing Ni and the positive electrode active material is an oxide, the intervening layer is NiO. The layers other than the positive electrode current collector, the positive electrode layer, and the intervening layer are the same as those in Example 1. In addition, the thickness of each layer including the positive electrode current collector, the positive electrode layer, and the intervening layer is the same as in Example 1.

<比較例1〜3>
比較例1〜3では、介在層を有さない従来のリチウム電池を作製した。比較例1は、介在層を設けていないこと以外は、実施例1の電池と同様である。また、比較例2および3はそれぞれ、介在層を設けていないこと以外は、実施例2および3の電池と同様である。
<Comparative Examples 1-3>
In Comparative Examples 1 to 3, conventional lithium batteries having no intervening layer were produced. Comparative Example 1 is the same as the battery of Example 1 except that no intervening layer is provided. Comparative Examples 2 and 3 are the same as the batteries of Examples 2 and 3 except that no intervening layer is provided.

<試験例>
上述した実施例1〜3と比較例1〜3のリチウム電池において、繰り返しの充放電に耐え得る電池であるかを調べる試験を実施した。なお、試験は、以下に示す電流密度と容量密度で電池の充放電を行うことで実施した。
実施例1、比較例1の電池 … 電流密度0.1mA/cm2、容量密度0.2mAh/cm2
実施例2、比較例2の電池 … 電流密度0.1mA/cm2、容量密度0.5mAh/cm2
実施例3、比較例3の電池 … 電流密度0.1mA/cm2、容量密度0.2mAh/cm2
このサイクル特性の試験結果を、次段の表1に示す。
<Test example>
In the lithium batteries of Examples 1 to 3 and Comparative Examples 1 to 3 described above, a test was conducted to determine whether the batteries can withstand repeated charge and discharge. In addition, the test was implemented by charging / discharging a battery with the following current density and capacity density.
Battery of Example 1 and Comparative Example 1 Current density 0.1 mA / cm 2 , Capacity density 0.2 mAh / cm 2
Battery of Example 2 and Comparative Example 2 Current density 0.1 mA / cm 2 , Capacity density 0.5 mAh / cm 2
Battery of Example 3 and Comparative Example 3 Current density 0.1 mA / cm 2 , capacity density 0.2 mAh / cm 2
The test results of this cycle characteristic are shown in Table 1 in the next stage.

Figure 2009032597
Figure 2009032597

表1の結果から明らかなように、実施例1〜3のリチウム電池は、200サイクルの充放電を行うことができ、その後も充放電が可能な状態であった。一方、比較例1の電池は、わずか5サイクル後に短絡を起こし、比較例3の電池は、8サイクル後に短絡を起こした。また、比較例2の電池は、12サイクル後に電池の内部抵抗が高くなり過ぎて充放電不能の状態になった。これら比較例の電池を分解して調べたところ、比較例1、3の電池では、正極層ごとSE層が剥落している箇所があり、正極層に対向する負極層の面がSE層に覆われていない箇所が存在していた。そのため、むき出しとなった負極層と正極層とが短絡したと推測される。一方、比較例2の電池では、正極層が正極集電体から剥離して浮いた状態となっている箇所があり、このために内部抵抗が上昇したと推測される。   As is clear from the results in Table 1, the lithium batteries of Examples 1 to 3 were able to be charged / discharged for 200 cycles, and could be charged / discharged thereafter. On the other hand, the battery of Comparative Example 1 caused a short circuit after only 5 cycles, and the battery of Comparative Example 3 caused a short circuit after 8 cycles. Further, the battery of Comparative Example 2 became incapable of charge / discharge because the internal resistance of the battery became too high after 12 cycles. When the batteries of Comparative Examples were disassembled and examined, in the batteries of Comparative Examples 1 and 3, the SE layer was peeled off together with the positive electrode layer, and the surface of the negative electrode layer facing the positive electrode layer was covered with the SE layer. There was a part that was not known. Therefore, it is estimated that the exposed negative electrode layer and the positive electrode layer are short-circuited. On the other hand, in the battery of Comparative Example 2, there is a portion where the positive electrode layer is separated from the positive electrode current collector and floated, and it is presumed that the internal resistance has increased due to this.

<第二実施形態>
第二実施形態では、第一実施形態とは、介在層の構造が異なるリチウム電池を説明する。図2は、第二実施形態のリチウム電池2を示す断面図である。なお、本実施形態の各層の組成や形成方法は、第一実施形態と同一であるので、構造の相違点についてのみ説明する。
<Second embodiment>
In the second embodiment, a lithium battery having a different intervening layer structure from the first embodiment will be described. FIG. 2 is a cross-sectional view showing the lithium battery 2 of the second embodiment. In addition, since the composition and formation method of each layer of this embodiment are the same as 1st embodiment, only the difference of a structure is demonstrated.

本実施形態のリチウム電池2は、正極集電体21上に、介在層22、正極層23、SE層24、負極層25の順に形成した点は第一実施形態と同一である。ここで、介在層22は、正極集電体21の上面全てを覆うように形成されると共に、正極層23の側面も覆うように形成されている。   The lithium battery 2 of the present embodiment is the same as the first embodiment in that the intervening layer 22, the positive electrode layer 23, the SE layer 24, and the negative electrode layer 25 are formed on the positive electrode current collector 21 in this order. Here, the intervening layer 22 is formed so as to cover the entire top surface of the positive electrode current collector 21 and also covers the side surface of the positive electrode layer 23.

このような介在層22を形成するには、まず初めに、正極集電体21上にマスクをして、後工程において形成する正極層23と同一の面積の介在層22を形成する。次に、形成した介在層22の上に、正極層23を形成する。そして、正極層23の上面をマスクして、気相堆積法により正極層23の側面を覆うように介在層22を形成する。   In order to form such an intervening layer 22, first, a mask is formed on the positive electrode current collector 21, and the intervening layer 22 having the same area as the positive electrode layer 23 to be formed in a later step is formed. Next, the positive electrode layer 23 is formed on the formed intervening layer 22. Then, the upper surface of the positive electrode layer 23 is masked, and the intervening layer 22 is formed so as to cover the side surface of the positive electrode layer 23 by a vapor deposition method.

本実施形態の構成によれば、正極層23が、その側面においても介在層22により支持されているので、第一実施形態の電池よりもさらに正極層23が剥離し難い電池とできる。   According to the configuration of the present embodiment, since the positive electrode layer 23 is supported by the intervening layer 22 also on its side surface, it is possible to obtain a battery in which the positive electrode layer 23 is more difficult to peel off than the battery of the first embodiment.

なお、本発明のリチウム電池は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱することなく適宜変更することができる。具体的には、リチウム電池を構成する各層の配置には、上述した実施形態以外のもの、例えば、非積層構造とすることなどが考えられるが、どのような構造を選択するにしても、正極集電体と正極層とが直接接触しないように、両者の間に介在層を形成すれば良い。   In addition, the lithium battery of this invention is not limited to embodiment mentioned above, It can change suitably, without deviating from the summary of this invention. Specifically, the arrangement of each layer constituting the lithium battery may be other than the above-described embodiment, for example, a non-laminated structure, but any positive electrode can be selected. An intervening layer may be formed between the current collector and the positive electrode layer so that they are not in direct contact with each other.

本発明リチウム電池は、携帯機器などの電源として好適に利用可能である。   The lithium battery of the present invention can be suitably used as a power source for portable devices and the like.

第一実施形態に記載のリチウム電池の縦断面図である。It is a longitudinal cross-sectional view of the lithium battery as described in 1st embodiment. 第二実施形態に記載のリチウム電池の縦断面図である。It is a longitudinal cross-sectional view of the lithium battery as described in 2nd embodiment.

符号の説明Explanation of symbols

1,2 リチウム電池
11,21 正極集電体 12,22 介在層 13,23 正極層
14,24 固体電解質層(SE層) 15,25 負極層
1,2 Lithium battery
11,21 Cathode current collector 12,22 Intervening layer 13,23 Cathode layer
14,24 Solid electrolyte layer (SE layer) 15,25 Negative electrode layer

Claims (5)

正極集電体上に形成される正極層と、この正極層と対をなす負極層と、これら両層の間でリチウムイオンの伝導を媒介する固体電解質層とを有するリチウム電池であって、
正極層に含まれる正極活物質が、酸化物であり、
正極層と正極集電体との間に、正極集電体に含有される金属元素の酸化物からなる介在層を有することを特徴とするリチウム電池。
A lithium battery having a positive electrode layer formed on a positive electrode current collector, a negative electrode layer paired with the positive electrode layer, and a solid electrolyte layer that mediates lithium ion conduction between the two layers,
The positive electrode active material contained in the positive electrode layer is an oxide,
A lithium battery comprising an intervening layer made of an oxide of a metal element contained in a positive electrode current collector between the positive electrode layer and the positive electrode current collector.
正極集電体上に形成される正極層と、この正極層と対をなす負極層と、これら両層の間でリチウムイオンの伝導を媒介する固体電解質層とを有するリチウム電池であって、
正極層に含まれる正極活物質が、硫化物であり、
正極層と正極集電体との間に、正極集電体に含有される金属元素の硫化物からなる介在層を有することを特徴とするリチウム電池。
A lithium battery having a positive electrode layer formed on a positive electrode current collector, a negative electrode layer paired with the positive electrode layer, and a solid electrolyte layer that mediates lithium ion conduction between the two layers,
The positive electrode active material contained in the positive electrode layer is a sulfide,
A lithium battery comprising an intervening layer made of a sulfide of a metal element contained in a positive electrode current collector between the positive electrode layer and the positive electrode current collector.
前記介在層は、電子伝導性が10-2S/cm以上であることを特徴とする請求項1または2に記載のリチウム電池。 The lithium battery according to claim 1, wherein the intervening layer has an electronic conductivity of 10 −2 S / cm or more. 正極集電体に含有される金属元素は、Cu、Sn、Cr、Ni、Fe、MnおよびVの少なくとも一種以上であることを特徴とする請求項1〜3のいずれか一項に記載のリチウム電池。   4. The lithium according to claim 1, wherein the metal element contained in the positive electrode current collector is at least one of Cu, Sn, Cr, Ni, Fe, Mn, and V. 5. battery. 前記介在層は、この介在層上に設けられる正極層の側面にも密着していることを特徴とする請求項1〜4のいずれか一項に記載のリチウム電池。   The lithium battery according to claim 1, wherein the intervening layer is also in close contact with a side surface of a positive electrode layer provided on the intervening layer.
JP2007196771A 2007-07-27 2007-07-27 Lithium battery Pending JP2009032597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007196771A JP2009032597A (en) 2007-07-27 2007-07-27 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196771A JP2009032597A (en) 2007-07-27 2007-07-27 Lithium battery

Publications (1)

Publication Number Publication Date
JP2009032597A true JP2009032597A (en) 2009-02-12

Family

ID=40402896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196771A Pending JP2009032597A (en) 2007-07-27 2007-07-27 Lithium battery

Country Status (1)

Country Link
JP (1) JP2009032597A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170183A (en) * 2008-01-11 2009-07-30 Sumitomo Electric Ind Ltd Lithium battery
WO2018210791A1 (en) * 2017-05-16 2018-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a substrate, which is coated with an alkali metal, by means of a promoter layer, and a coated substrate
CN111193062A (en) * 2020-02-20 2020-05-22 青岛科技大学 Solid-state lithium ion battery and preparation method thereof
JPWO2019189311A1 (en) * 2018-03-28 2021-03-18 Tdk株式会社 All solid state battery
US11005104B2 (en) 2018-05-28 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119064A (en) * 1984-06-29 1986-01-27 ユニオン、カーバイド、コーポレーシヨン Metal positive pole collector with protective surface layer of metal oxide
JPH0193053A (en) * 1987-10-02 1989-04-12 Ricoh Co Ltd Electrode for battery
JPH1131505A (en) * 1997-05-15 1999-02-02 Matsushita Electric Ind Co Ltd Alkaline storage battery electrode and its manufacture, and alkaline storage battery
JP2000048822A (en) * 1998-05-28 2000-02-18 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of positive electrode plate thereof
JP2005056827A (en) * 2003-07-23 2005-03-03 Matsushita Electric Ind Co Ltd Coin-shaped all solid battery
JP2005259682A (en) * 2004-02-10 2005-09-22 Matsushita Electric Ind Co Ltd Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
WO2005089383A2 (en) * 2004-03-16 2005-09-29 Toyota Technical Center Usa, Inc. Corrosion protection using protected electron collector
JP2006032062A (en) * 2004-07-14 2006-02-02 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery using the same
JP2006179241A (en) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd Solid battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119064A (en) * 1984-06-29 1986-01-27 ユニオン、カーバイド、コーポレーシヨン Metal positive pole collector with protective surface layer of metal oxide
JPH0193053A (en) * 1987-10-02 1989-04-12 Ricoh Co Ltd Electrode for battery
JPH1131505A (en) * 1997-05-15 1999-02-02 Matsushita Electric Ind Co Ltd Alkaline storage battery electrode and its manufacture, and alkaline storage battery
JP2000048822A (en) * 1998-05-28 2000-02-18 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of positive electrode plate thereof
JP2005056827A (en) * 2003-07-23 2005-03-03 Matsushita Electric Ind Co Ltd Coin-shaped all solid battery
JP2005259682A (en) * 2004-02-10 2005-09-22 Matsushita Electric Ind Co Ltd Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
WO2005089383A2 (en) * 2004-03-16 2005-09-29 Toyota Technical Center Usa, Inc. Corrosion protection using protected electron collector
JP2006032062A (en) * 2004-07-14 2006-02-02 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery using the same
JP2006179241A (en) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd Solid battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170183A (en) * 2008-01-11 2009-07-30 Sumitomo Electric Ind Ltd Lithium battery
WO2018210791A1 (en) * 2017-05-16 2018-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a substrate, which is coated with an alkali metal, by means of a promoter layer, and a coated substrate
KR20200008144A (en) * 2017-05-16 2020-01-23 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Process for producing substrate coated with alkali metal by accelerator layer and coated substrate
US11545654B2 (en) 2017-05-16 2023-01-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V Method for producing a substrate, which is coated with an alkali metal, by means of a promoter layer, and a coated substrate
KR102503427B1 (en) 2017-05-16 2023-02-27 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Method for producing a substrate coated with an alkali metal by an accelerator layer and the coated substrate
JPWO2019189311A1 (en) * 2018-03-28 2021-03-18 Tdk株式会社 All solid state battery
US11005104B2 (en) 2018-05-28 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Battery
CN111193062A (en) * 2020-02-20 2020-05-22 青岛科技大学 Solid-state lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5316809B2 (en) Lithium battery and manufacturing method thereof
JP5093449B2 (en) Lithium battery
JP6069821B2 (en) Lithium ion secondary battery
JP5310996B2 (en) Lithium battery
CN102668190B (en) Solid electrolyte cell and positive active material
US7794883B2 (en) Nonaqueous electrolyte secondary battery
JP4984553B2 (en) Secondary battery negative electrode and secondary battery using the same
US20160233510A1 (en) All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
US20130059209A1 (en) Positive-electrode body for nonaqueous-electrolyte battery, method for producing the positive-electrode body, and nonaqueous-electrolyte battery
JP5190762B2 (en) Lithium battery
JP5640587B2 (en) Solid electrolyte battery
US20130065134A1 (en) Nonaqueous-electrolyte battery and method for producing the same
JP2008053135A (en) Thin film battery
JPH11283664A (en) Solid-electrolyte battery
US11489238B2 (en) Stacked battery
JP2009152077A (en) Lithium battery
KR20200134688A (en) High energy density all-solid state battery and process for preparing thereof
JP2009199920A (en) Lithium battery
JP6179404B2 (en) Manufacturing method of secondary battery
JP2009032597A (en) Lithium battery
JP2012054151A (en) Solid electrolyte battery
JP2015018670A (en) Bipolar battery
JP2006134758A (en) Secondary battery
JP2008153015A (en) Anode and battery
CN111883846A (en) All-solid-state battery with high energy density and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130109