JP4247032B2 - Coated carbide end mill - Google Patents

Coated carbide end mill Download PDF

Info

Publication number
JP4247032B2
JP4247032B2 JP2003104854A JP2003104854A JP4247032B2 JP 4247032 B2 JP4247032 B2 JP 4247032B2 JP 2003104854 A JP2003104854 A JP 2003104854A JP 2003104854 A JP2003104854 A JP 2003104854A JP 4247032 B2 JP4247032 B2 JP 4247032B2
Authority
JP
Japan
Prior art keywords
end mill
carbide end
coating
hard coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104854A
Other languages
Japanese (ja)
Other versions
JP2004306216A (en
Inventor
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2003104854A priority Critical patent/JP4247032B2/en
Publication of JP2004306216A publication Critical patent/JP2004306216A/en
Application granted granted Critical
Publication of JP4247032B2 publication Critical patent/JP4247032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、金型、機械部品等の切削加工に使用される超硬エンドミルの表面被覆材として有用な硬質皮膜を被覆することにより、優れた耐摩耗性を発揮する被覆超硬エンドミルに関する。
【0002】
【従来の技術】
AlCr系皮膜は、耐高温酸化特性に優れた硬質皮膜材として、下記に示す特許文献1から3が開示されている。
【特許文献1】
特許第3027502号公報(第6頁、図1)
【特許文献2】
特許第3039381号公報(第4頁、図1)
【特許文献3】
特開平2002−160129号公報(第3頁、図1)
【0003】
切削加工の低コスト化に伴い、高能率切削加工すなわち高速切削加工、高送り切削加工が行なわれ、超硬エンドミル切刃近傍の切削温度は、著しく向上した。このことにより超硬エンドミル表面に被覆される硬質皮膜においても、さらに高温及びもしくは高圧摩耗環境下で優れた耐摩耗性を有することが望まれており、更に皮膜硬度が高く、耐高温酸化特性に優れた硬質皮膜を被覆した被覆超硬エンドミルの開発が望まれていた。特許文献1は金属成分としてAlCrとC、N、Oの1種より選択されるAlCr系硬質膜において、高硬度を有する非晶質膜に関する事例が開示されている。しかしこの非晶質膜の硬度は最大でもヌープ硬さ21GPa程度であり、超硬エンドミルとして、耐摩耗効果は改善されず、密着性に関しても十分ではない。特許文献2及び特許文献3に開示されている硬質皮膜はAlCrの窒化物であり、約1000℃の耐高温酸化特性を有しているが、1000℃以上の耐酸化特性の検討は行われていない。また硬度はビッカ−ス硬さ21GPa程度で硬度の改善が不十分であり耐摩耗性に乏しい。
【0004】
【発明が解決しようとする課題】
本願発明は、上記の問題点を改善し、(AlCr)N系皮膜の欠点である硬度を高めることにより耐摩耗性を著しく改善し、その結果優れた工具寿命を発揮する被覆超硬エンドミルを提供することを目的とする。
【0005】
【課題を解決するために手段】
本発明は、被覆超硬エンドミルにおいて、該被覆はアーク放電式イオンプレーティング法により被覆された硬質皮膜であり、該硬質皮膜は、(AlCr1−x−ySi)(N1−α−β−γαβγ)、但し、x、y、α、β、γは夫々原子比率を示し、0.45<x<0.85、0≦y<0.35、0.50≦x+y<1.0、0≦α<0.15、0≦β<0.65、0.08≦γ<0.65、0<α+β+γ≦1.0で示される少なくとも1層以上からなり、θ−2θ法によるX線回折において測定される岩塩構造型の(200)面に回折強度を有し、その回折ピークの半価幅が、0.5度以上、2.0度以下であり、該岩塩構造型の(111)面の回折強度をI(111)、(200)面の回折強度をI(200)とした時、0.3<I(200)/I(111)<12であり、X線光電子分光分析における525eVから535eVの範囲に、Al、Cr及び/又はSiと酸素との結合エネルギーを有し、該被覆超硬エンドミルの基体はCo含有量が重量%で2.0<Co<14.0であり、更にCr、Ta、Ti、Zrから選択される1種以上の金属、炭化物、窒化物、酸化物もしくはその組み合わせから選択される金属及び/又は化合物を1種以上含有し、該被覆超硬エンドミルの基体内のタングステンカーバイドの平均粒径が0.2μm以上、0.7μm未満であり、ロックウェル硬度がHRAで93.0以上、94.5未満であることを特徴とする被覆超硬エンドミルである。上記構成を採用することにより、基体と硬質皮膜との密着性に優れ、高硬度化することが可能となり、その結果、優れた耐摩耗性を発揮する本発明の被覆超硬エンドミルを完成させた。
【0006】
本発明硬質皮膜は、該硬質皮膜の最表面から深さ方向に500nm以内の深さ領域で酸素濃度が最大となる場合、耐高温酸化特性並びに耐摩耗特性改善に極めて有効である。また、本願発明の硬質皮膜は、硬質皮膜表面の凸部を機械的処理により平滑にすると、表面の摩擦係数が低減しこれによって切屑排出性が改善される。
【0007】
【発明の実施の形態】
本発明の硬質皮膜を構成する金属元素の組成は、(AlCr1−x−ySi)において、xが0.45<x<0.85、yが0≦y<0.35、0.50≦x+y<1.0を満足する必要がある。xの値が0.45以下、またx+yの値が0.5よりも少なくなる場合では皮膜硬度並びに耐高温酸化特性の改善効果が十分ではなく、xの値が0.85以上またはx+yの値が1の場合、皮膜硬度の著しい低下を招き耐摩耗性に劣る。またyの値が0.35以上では、硬質皮膜内に残留する圧縮応力が過大になり、被覆直後に自己破壊を誘発するなどの基体密着強度を著しく低下させる場合がある。
非金属元素の組成は、(N1−α−β−γαβγ)において、αは0.15以上では皮膜が脆化し、好ましいαの上限値は0.07である。硼素の添加は被加工物との耐溶着性と高温環境下での摩擦係数を低減し、潤滑性を向上させる効果がある。βは0.65以上で皮膜が著しく脆化する。炭素の含有量の上限値は、炭素を含有する層厚に依存する。炭素を含有する層厚が0.5μm未満であれば、βの上限値は0.5である。炭素の添加は硬質皮膜の硬度を高めると同時に、摩擦係数を低減し、潤滑性を向上させる効果がある。γは0.08以上、0.65未満にすることが必要である。γが0の場合、耐高温酸化特性並びに皮膜硬度が充分ではなく耐摩耗性に乏しい。0.65以上でも皮膜硬度が低下する。好ましいγの値は、酸素を含有する層厚に依存するが、0.5μm未満であれば、γの上限値は0.3である。酸素の添加は、硬質皮膜内に残留する圧縮応力を低減し、基体と皮膜との密着性を向上させる作用に加え、皮膜が緻密化することによる高硬度化と酸素の拡散経路である基体と垂直方向の結晶粒界を減少させることより、耐高温酸化性の改善に効果的である。
更に、金属元素のAl、Cr、Siに対する非金属元素のN、B、C、Oの比は、化学量論的に(N、B、C、O)/(Al、Cr、Si)>1.0がより好ましい。
【0008】
本発明の硬質皮膜はθ−2θ法によるX線回折において測定される岩塩構造型の(200)面に回折強度を有し、その回折ピークの2の半価幅が、0.5度以上、2.0度以下とした。その理由は、0.5未満の場合は結晶粒が粗大化し、皮膜硬度並びに高温酸化特性が充分ではなく、耐摩耗性に乏しく、2.0を超えると皮膜が脆化し、基体密着強度を著しく劣化させるためである。
【0009】
硬質皮膜はX線光電子分光分析にて、525eVから535eVの範囲に少なくともAl、Cr及び/又はSiと酸素との結合エネルギーを有することが必要である。これは、これら金属元素が酸素との結合を有することにより、皮膜が緻密化し高硬度化され、さらに酸化雰囲気において酸素の拡散経路となる基体に対して垂直方向の結晶粒界が減少し、酸素の内向拡散を抑制する機能を有することによるものである。本発明皮膜の特徴である、Cr、Al及び/又はSiと酸素との結合状態を形成するには、最適な被覆条件と一定以上の酸素を硬質皮膜内に含有させることが必要である。
超硬合金基体は、Co含有量が重量%で2.0<Co<14.0の範囲であり、Cr、Ta、Ti、Zrから選択される1種以上の金属、炭化物、窒化物、酸化物もしくはその組み合わせから選択される金属及び/又は化合物を少なくとも1種以上含有することとする。Co含有量が2.0重量%以下となる場合は、切刃のチッピングが発生し易くなり、超硬エンドミルとしての特性を充分に発揮できない場合がある。14.0重量%以上の場合、切刃の塑性変形が大きくなる傾向にあり、異常摩耗が発生し易くなる。好ましくは、3.0以上8.2未満である。これらの構成により、エンドミルによる切削加工の高速化並びに長寿命化を達成することが可能となる。
被覆超硬エンドミルの超硬合金内におけるタングステンカーバイドの平均粒径が0.2μm以上0.7μm未満、ロックウェル硬度がHRAで93.0以上94.5未満である場合、本発明の硬質皮膜との密着強度に特に優れるとともに、高速切削加工で安定した切削寿命を示し、より好ましい被覆超硬エンドミルが得られる。
【0010】
被覆超硬エンドミルにおいて、該硬質皮膜のθ−2θ法によるX線回折で測定される岩塩構造型の(111)面の回折強度をI(111)、(200)面の回折強度をI(200)とした時、0.3<I(200)/I(111)<12とすることが好ましい。皮膜の密着性は残留圧縮応力に強く依存し、この残留圧縮応力は被覆条件であるイオンエネルギーに強く依存している。即ち、イオンエネルギーが低い条件下では皮膜の残留圧縮応力は低い結果となる。逆に、イオンエネルギーが高い条件下では皮膜の残留圧縮応力は高い結果となる。ここで、イオンエネルギーを決定する要素は、具体的には成膜条件であるバイアス電圧、反応ガス圧力であり、これによって制御することができる。本発明は、残留圧縮応力が高い場合、X線回折において皮膜は(111)面に強く配向し、皮膜の硬度も、この高い残留圧縮応力の影響を受けて高硬度とする事が可能となる。一方、皮膜の密着性に着目すると、硬質皮膜内の残留圧縮応力を高くすると、皮膜の高硬度化を達成できるが、基体と皮膜界面近傍においてせん断応力が増大する方向に作用するため、密着性を損なうこととなり、好ましくない。従って、基体と皮膜との密着性及び皮膜硬度とのバランスを最適に制御することが重要となる。本発明では、0.3<I(200)/I(111)<12とすることにより、両者のバランスを最適に制御することを可能にした。
【0011】
更に、該硬質皮膜の最表面から深さ方向に500nm以内の深さ領域で酸素濃度が最大となる場合、特に切削寿命に優れ好ましい。切削過程における硬質皮膜の酸化は硬質皮膜最表面からの酸素の拡散が支配的である。従って、硬質皮膜表面を酸素リッチにすることにより、結晶が緻密化し酸素の拡散経路となる基体と垂直方向成分の結晶粒界を減少させることができ、より耐高温酸化特性に優れ切削寿命が向上する。また、硬質皮膜最表面を酸素リッチにすることにより、切り屑流れを助長する効果も確認され、潤滑特性を改善することが可能となり好ましい。
【0012】
本発明の皮膜を被覆し、被覆基体表面の研磨面や研削面に沿った硬質皮膜表面の凸部や、被覆中に発生したマクロ粒子等の付着により凸部が形成される場合があるため、その凸部を機械的処理により平滑にすることにより、切屑除去効果に更に優れ望ましい。更に、被覆後に切刃エッジに機械的処理を施すことにより、なじみ効果も確認され、耐欠損、耐チッピング特性を改善することができ、より好ましい皮膜超硬エンドミルを得ることができる。
【0013】
本発明である該硬質皮膜は、アークイオンプレーティング法による被覆により、基体との密着性に特に優れ、緻密で耐高温酸化特性、高硬度を有する極めて長寿命を有する被覆超硬エンドミルが得られる。
【0014】
該硬質皮膜の結晶粒のアスペクト比について、本発明の皮膜破断面の膜厚Tについて、膜厚Tの25%から50%の厚みであるT1に相当する上下膜厚方向の上端位置と下端位置とを求める。この時、上端位置と下端位置は、T/2に相当する基準位置より上下膜厚方向に略均等となる様に割り振る。各上下端位置における水平方向の上端側粒径Kと下端側粒径Lを求める。そこで、アスペクト比をT1/((K+L)/2)とすると、柱状結晶構造からなる該硬質皮膜の結晶粒のアスペクト比が、0.2から12である。アスペクト比が12を超えて大きくなると、結晶粒が膜厚方向に細長くなり、皮膜の靭性が低下し好ましくない。0.2未満では粒状結晶が増加する傾向となり、皮膜硬度が低下し好ましくない。更に、該硬質皮膜の残留圧縮応力が、0.5GPa以上、4.0GPa以下であることが、硬質皮膜に靭性を持たせ、皮膜硬度と基体密着性とのバランスに適した範囲となり、性能の改善に効果的である。
【0015】
更に、本発明の硬質皮膜において金属成分の10原子%未満を周期律表の4a、5a、6a族の金属成分の少なくとも1種以上で置き換えた場合、また本発明に関わる硬質皮膜を1層以上含有する複層構造においても、同様な効果が確認され好ましく、本発明の技術的範囲に含まれるものである。以下、実施例に基づき、本発明を具体的に説明する。
【0016】
【実施例】
(実施例1)
成膜には酸素を3200ppm含有した粉末法により作成した合金ターゲットを用い、基本となる被覆条件は、反応ガスを真空装置内に導入後、全圧を10Pa、バイアス電圧を−120V、被覆温度を450℃、膜厚を約3.5mとし、(Al0.65Cr0.35)(N0.800.080.100.02)からなる硬質皮膜を被覆し、本発明例1とした。皮膜組成は、電子プローブX線マイクロアナリシス及びオージェ電子分光法により決定した。硬質皮膜の酸素との結合状態を解析するためのX線光電子分光分析は、PHI社製1600S型X線光電子分光分析装置を用い、X線源はMgKαを用い400Wとし、分析領域を直径0.4mmの円内部を分析した。十分に脱脂洗浄した後、真空装置内で硬質皮膜表面に付着した汚染物質等を除去するために5分間Arイオンガンを用いて表面をエッチングした後、ワイドスペクトルを測定し、更に30秒間エッチングした後、ナロースペクトルを測定した。ArイオンガンによるエッチングレートはSiO換算で1.9nm/分であった。本発明例1のX線光電子分光分析結果を図1に示す。図1は結合エネルギーが530eV近傍のナロースペクトル示し、Cr−O及びAl−Oの結合の存在を示す。図2はCr−N及びCr−Oの結合の存在を示す。図3はAl−N及びAl−Oの結合の存在を示す。図4は、本発明例1のθ−2θ法によるX線回折結果を示す。
【0017】
(実施例2)
超硬合金を基体に用い、表1に示す皮膜組成の、本発明例2〜5、比較例6〜13及び従来例14を製作した。被覆条件は実施例1に準ずる。表1に皮膜の組成等を示す。
【0018】
【表1】

Figure 0004247032
【0019】
表1の試料を用いて、大気中1100℃の酸化条件で処理した皮膜の酸化層の厚さ、実施例2同様に微小押込み硬さ、薄板の変形量より算出した残留圧縮応力、弾性回復率を測定した。表1より、酸化層厚さは、本発明例2〜5、は、殆ど酸化進行が無く、耐高温酸化特性に優れていることが確認された。従来例14は酸化進行が著しく、硬質皮膜は殆ど酸化物となり、酸素の内向拡散が激しく、酸化層は基体まで到達していた。押込み硬さも炭素、硼素を含有させることにより、更に高硬度となる。残留圧縮応力は、本発明例2〜5は低い。
【0020】
次に、表1の本発明例2〜5、比較例6〜13及び従来例14を用いて圧痕試験による皮膜剥離状況を併記する。測定はロックウェル硬度計により1470Nの荷重で圧痕を形成し、光学顕微鏡により圧痕周辺部の剥離状況を観察した。本発明例2〜5は剥離が無く、優れた密着性を示した。これは本発明例が適正なE値の範囲内にあるためである。比較例6〜13、従来例14は被覆基体の塑性変形に追従することができず、圧痕周辺部に膜剥離が発生した。
【0021】
(実施例3)
表1に示す本発明例2〜5、比較例6〜13及び従来例14の硬質皮膜を外径8mm、6枚刃、超硬エンドミルに被覆した。被覆条件は実施例1に準ずる。表1に示す本発明例2〜5、比較例6〜13及び従来例14の被覆超硬エンドミルを用いて、下記条件の切削試験を行いエンドミルが切削不能に至るまでの時間を表1に併記する。
(切削諸元)
切削方法:側面加工
被削材:SKD11(硬さHRC63)
切り込み:Ad8mm、Rd0.2mm
切削速度:200m/min
送り:0.06mm/刃
切削油:無し(乾式エアーブロー)
【0022】
表1より、本発明例2〜5の超硬合金を基体とした被覆超硬エンドミルは、従来例14と比較して切削不能に至るまでの切削時間が長く、耐摩耗性に優れている。本発明例5は硬質皮膜最表面の酸素濃度が高く、硬質皮膜内部が硬質皮膜最表面に比べ、低い場合の発明例を示すが、極めて寿命が長い。比較例6は被覆条件をバイアス電圧−500Vで被覆した硬質皮膜のX線回折による最強強度面指数が(220)面を示し、I(200)/I(111)の値が0.2となり、本発明例に比べて切削寿命が短い。比較例7はターゲットに含有する酸素濃度が1200ppmからなるターゲットを使用した場合を示すが、X線光電子分光分析により酸化物としての結合状態が確認されず、本発明例に比べて切削寿命が短い。比較例8は超硬合金基体中のCo含有量が15.0重量%の場合の比較例であるが本発明例に比較して、寿命が短い。比較例9は、超硬合金基体中にWC−Co以外に添加元素がない場合の比較例であるが寿命が短い。比較例10はAl含有量が20原子%の場合であり、弾性回復率が28よりも低く、切削寿命が短く、耐摩耗性が十分ではないことを示す。比較例11はAl含有量が90原子%の場合であり、切削寿命が短く耐摩耗性に劣る。比較例12は酸素含有量が68原子%の場合であるが、耐摩耗性が十分ではない。比較例13はAl含有量が43原子%の場合であるが耐摩耗性が十分ではない。
【0023】
【発明の効果】
本願発明の被覆超硬エンドミルを適用することにより、過酷な切削加工に用いても十分な耐摩耗性を有し、基体表面とその直上の硬質皮膜との密着性改善を図り、更に高硬度で耐高温酸化特性に優れた被覆超硬エンドミルを得ることが出来た。
【図面の簡単な説明】
【図1】図1は、本発明例のCr−O及びAl−Oの結合エネルギーを示す。
【図2】図2は、本発明例のCr−N及びCr−Oの結合エネルギーを示す。
【図3】図3は、本発明例のAl−N及びAl−Oの結合エネルギーを示す。
【図4】図4は、本発明例のX線回折結果を示す。
【図5】図5は、本発明例と従来例のAl添加量と皮膜硬度の関係を示す。[0001]
[Technical field to which the invention belongs]
The present invention relates to a coated carbide end mill that exhibits excellent wear resistance by coating a hard coating useful as a surface coating material for a carbide end mill used for cutting of molds, machine parts, and the like.
[0002]
[Prior art]
Patent Documents 1 to 3 shown below are disclosed as hard coating materials having excellent high-temperature oxidation resistance for AlCr-based coatings.
[Patent Document 1]
Japanese Patent No. 3027502 (page 6, FIG. 1)
[Patent Document 2]
Japanese Patent No. 3039381 (page 4, FIG. 1)
[Patent Document 3]
Japanese Patent Laid-Open No. 2002-160129 (page 3, FIG. 1)
[0003]
Along with cost reduction of cutting, high-efficiency cutting, that is, high-speed cutting and high-feed cutting, was performed, and the cutting temperature near the carbide end mill cutting edge was remarkably improved. As a result, even hard coatings coated on the surface of carbide end mills are expected to have excellent wear resistance under higher temperature and / or high pressure wear environments, and have higher coating hardness and high temperature oxidation resistance. Development of a coated carbide end mill coated with an excellent hard coating has been desired. Patent Document 1 discloses an example of an amorphous film having high hardness in an AlCr hard film selected from AlCr and one of C, N, and O as a metal component. However, the hardness of this amorphous film is at most about 21 GPa of Knoop hardness, and as a carbide end mill, the wear resistance effect is not improved and the adhesion is not sufficient. The hard coatings disclosed in Patent Document 2 and Patent Document 3 are AlCr nitrides and have high-temperature oxidation resistance of about 1000 ° C., but oxidation resistance characteristics of 1000 ° C. or higher have been studied. Absent. Further, the hardness is about 21 GPa in Vickers hardness, and the improvement of the hardness is insufficient and the wear resistance is poor.
[0004]
[Problems to be solved by the invention]
The present invention provides a coated carbide end mill that improves the above-mentioned problems and significantly improves the wear resistance by increasing the hardness, which is a drawback of (AlCr) N-based coatings, resulting in excellent tool life. The purpose is to do.
[0005]
[Means for solving the problems]
In the coated carbide end mill according to the present invention, the coating is a hard coating coated by an arc discharge ion plating method, and the hard coating is (Al x Cr 1-xy Si y ) (N 1- [alpha]-[beta]-[gamma] B [ alpha] C [ beta] O [ gamma] ), where x, y, [alpha], [beta], and [gamma] each represent an atomic ratio, 0.45 <x <0.85, 0≤y <0.35, 0. .50 ≦ x + y <1.0, 0 ≦ α <0.15, 0 ≦ β <0.65, 0.08 ≦ γ <0.65, 0 <α + β + γ ≦ 1.0 And having a diffraction intensity on the (200) plane of the rock salt structure type measured in the X-ray diffraction by the θ-2θ method, and the half width of the diffraction peak is not less than 0.5 degrees and not more than 2.0 degrees Yes, I (111) diffraction intensity of the該岩salt structure type (111) plane, when the (200) diffraction intensity of the plane I (200), 0 3 <I (200) / I (111) < is 12, the range of 535eV from 525eV in the X-ray photoelectron spectroscopy, Al, has a binding energy between Cr and / or Si and oxygen, the coating superhard The substrate of the end mill has a Co content of 2.0 <Co <14.0 by weight%, and one or more metals selected from Cr, Ta, Ti, Zr, carbide, nitride, oxide or Containing one or more metals and / or compounds selected from the combination, the average particle size of tungsten carbide in the substrate of the coated carbide end mill is 0.2 μm or more and less than 0.7 μm, and the Rockwell hardness is It is a coated carbide end mill characterized by having an HRA of 93.0 or more and less than 94.5. By adopting the above configuration, it is possible to achieve high hardness with excellent adhesion between the substrate and the hard film, and as a result, the coated carbide end mill of the present invention that exhibits excellent wear resistance has been completed. .
[0006]
The hard coating of the present invention is extremely effective for improving the high temperature oxidation resistance and the wear resistance when the oxygen concentration becomes maximum in a depth region within 500 nm in the depth direction from the outermost surface of the hard coating. Moreover, when the hard film of this invention makes the convex part of the hard film surface smooth by mechanical processing, the friction coefficient of a surface will reduce and this will improve chip discharge | emission property.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the composition of the metal element constituting the hard coating of the present invention, in (Al x Cr 1-xy Si y ), x is 0.45 <x <0.85, y is 0 ≦ y <0.35, It is necessary to satisfy 0.50 ≦ x + y <1.0. When the value of x is 0.45 or less and the value of x + y is less than 0.5, the effect of improving the film hardness and the high temperature oxidation resistance is not sufficient, and the value of x is 0.85 or more or x + y Is 1, the film hardness is remarkably lowered and the wear resistance is poor. On the other hand, if the value of y is 0.35 or more, the compressive stress remaining in the hard film becomes excessive, and the substrate adhesion strength such as inducing self-destruction immediately after coating may be significantly reduced.
The composition of the nonmetallic element is (N 1-α-β-γ B α C β O γ ). When α is 0.15 or more, the film becomes brittle, and the preferable upper limit value of α is 0.07. Addition of boron has the effect of improving the lubricity by reducing the welding resistance to the workpiece and the coefficient of friction in a high temperature environment. When β is 0.65 or more, the coating becomes extremely brittle. The upper limit value of the carbon content depends on the layer thickness containing carbon. If the layer thickness containing carbon is less than 0.5 μm, the upper limit of β is 0.5. The addition of carbon has the effect of increasing the hardness of the hard coating and at the same time reducing the coefficient of friction and improving the lubricity. γ needs to be 0.08 or more and less than 0.65. When γ is 0, the high temperature oxidation resistance and the film hardness are not sufficient, and the wear resistance is poor. Even at 0.65 or more, the film hardness decreases. The preferable value of γ depends on the layer thickness containing oxygen, but if it is less than 0.5 μm, the upper limit of γ is 0.3. The addition of oxygen reduces the compressive stress remaining in the hard coating, improves the adhesion between the substrate and the coating, increases the hardness due to the densification of the coating, and the substrate that is the oxygen diffusion path. By reducing the grain boundaries in the vertical direction, it is effective in improving high-temperature oxidation resistance.
Furthermore, the ratio of the non-metallic elements N, B, C, O to the metallic elements Al, Cr, Si is stoichiometrically (N, B, C, O) / (Al, Cr, Si)> 1. 0.0 is more preferable.
[0008]
The hard film of the present invention has a diffraction intensity on the (200) plane of the rock salt structure type measured in the X-ray diffraction by the θ-2θ method, and the half width of 2 of the diffraction peak is 0.5 degrees or more, It was set to 2.0 degrees or less. The reason is that if it is less than 0.5, the crystal grains become coarse, the film hardness and high-temperature oxidation characteristics are not sufficient, and the wear resistance is poor, and if it exceeds 2.0, the film becomes brittle and the adhesion strength of the substrate is remarkably increased. It is for deteriorating.
[0009]
The hard coating is required to have a binding energy of at least Al, Cr and / or Si and oxygen in the range of 525 eV to 535 eV by X-ray photoelectron spectroscopy. This is because these metal elements have a bond with oxygen, the film is densified and hardened, and the grain boundaries in the direction perpendicular to the substrate, which becomes the oxygen diffusion path in an oxidizing atmosphere, are reduced. This is because it has a function of suppressing inward diffusion of the. In order to form a bonded state of Cr, Al and / or Si and oxygen, which is a feature of the coating of the present invention, it is necessary to contain optimum coating conditions and a certain amount of oxygen in the hard coating.
Cemented carbide substrate is in the range of 2.0 <Co <14.0 Co content in weight%, Cr, Ta, Ti, 1 or more metals selected from Zr, carbides, nitrides, oxides And at least one metal and / or compound selected from the above or a combination thereof. When the Co content is 2.0% by weight or less, chipping of the cutting edge is likely to occur, and the characteristics as a carbide end mill may not be sufficiently exhibited. When it is 14.0% by weight or more, the plastic deformation of the cutting edge tends to increase, and abnormal wear tends to occur. Preferably, it is 3.0 or more and less than 8.2. With these configurations, it is possible to achieve high speed cutting and long life of the end mill.
When the average particle size of tungsten carbide in the cemented carbide of the coated carbide end mill is 0.2 μm or more and less than 0.7 μm and the Rockwell hardness is 93.0 or more and less than 94.5 in HRA, In particular, the coated cemented carbide end mill can be obtained with excellent adhesion strength and a stable cutting life by high-speed cutting.
[0010]
In a coated carbide end mill, the diffraction intensity of the (111) plane of the rock salt structure type measured by X-ray diffraction of the hard coating by the θ-2θ method is I (111), and the diffraction intensity of the (200) plane is I (200 ), It is preferable that 0.3 <I (200) / I (111) <12. The adhesion of the film strongly depends on the residual compressive stress, and this residual compressive stress strongly depends on the ion energy which is the coating condition. That is, the residual compressive stress of the film is low under the condition where the ion energy is low. Conversely, the residual compressive stress of the film is high under conditions where ion energy is high. Here, the factors that determine the ion energy are specifically the bias voltage and the reaction gas pressure, which are film formation conditions, and can be controlled by this. In the present invention, when the residual compressive stress is high, the film is strongly oriented in the (111) plane in X-ray diffraction, and the hardness of the film can also be increased by the influence of the high residual compressive stress. . On the other hand, paying attention to the adhesion of the film, if the residual compressive stress in the hard film is increased, the hardness of the film can be increased, but it acts in the direction of increasing the shear stress in the vicinity of the interface between the substrate and the film. This is not preferable. Therefore, it is important to optimally control the balance between the adhesion between the substrate and the film and the film hardness. In the present invention, by setting 0.3 <I (200) / I (111) <12, the balance between the two can be optimally controlled.
[0011]
Furthermore, when the oxygen concentration becomes maximum in a depth region within 500 nm in the depth direction from the outermost surface of the hard coating, it is particularly preferable because of excellent cutting life. The oxidation of the hard coating during the cutting process is dominated by the diffusion of oxygen from the outermost surface of the hard coating. Therefore, by making the hard coating surface oxygen-rich, the crystal becomes denser and the grain boundary of the component perpendicular to the substrate that becomes the oxygen diffusion path can be reduced, and it has better high-temperature oxidation resistance and improved cutting life. To do. Further, by making the outermost surface of the hard coating rich in oxygen, the effect of promoting the chip flow is also confirmed, and it is possible to improve the lubricating characteristics, which is preferable.
[0012]
Since the coating of the present invention is coated, the convex portion of the hard coating surface along the polished surface or ground surface of the coated substrate surface, or the convex portion may be formed by adhesion of macro particles generated during coating, By smoothing the convex portion by mechanical treatment, it is further excellent in chip removal effect and desirable. Furthermore, by applying a mechanical treatment to the cutting edge after coating, a conforming effect can be confirmed, the chipping resistance and chipping resistance can be improved, and a more preferable coated carbide end mill can be obtained.
[0013]
The hard coating according to the present invention is coated with an arc ion plating method, and is particularly excellent in adhesion to a substrate, and can provide a coated carbide end mill having a dense, high temperature oxidation resistance, high hardness and extremely long life. .
[0014]
Regarding the aspect ratio of the crystal grains of the hard film, the upper end position and the lower end position in the vertical film thickness direction corresponding to T1 which is 25% to 50% of the film thickness T with respect to the film thickness T of the film fracture surface of the present invention. And ask. At this time, the upper end position and the lower end position are allocated so as to be substantially equal in the vertical film thickness direction from the reference position corresponding to T / 2. The upper end side particle size K and the lower end side particle size L in the horizontal direction at each upper and lower end position are obtained. Therefore, when the aspect ratio is T1 / ((K + L) / 2), the aspect ratio of the crystal grains of the hard coating having a columnar crystal structure is 0.2 to 12. When the aspect ratio is larger than 12, the crystal grains are elongated in the film thickness direction, and the toughness of the film is lowered, which is not preferable. If it is less than 0.2, the granular crystals tend to increase, and the film hardness decreases, which is not preferable. Furthermore, if the residual compressive stress of the hard coating is 0.5 GPa or more and 4.0 GPa or less, the hard coating has toughness, which is in a range suitable for the balance between the coating hardness and the substrate adhesion. It is effective for improvement.
[0015]
Further, in the hard coating of the present invention, when less than 10 atomic% of the metal component is replaced with at least one metal component of groups 4a, 5a, and 6a of the periodic table, one or more hard coatings related to the present invention are also included. The same effect is also confirmed in the multilayer structure to be contained, and it is included in the technical scope of the present invention. Hereinafter, based on an Example, this invention is demonstrated concretely.
[0016]
【Example】
Example 1
An alloy target prepared by a powder method containing 3200 ppm of oxygen was used for film formation. The basic coating conditions were as follows: after introducing the reaction gas into the vacuum apparatus, the total pressure was 10 Pa, the bias voltage was -120 V, and the coating temperature was A hard film made of (Al 0.65 Cr 0.35 ) (N 0.80 C 0.08 O 0.10 B 0.02 ) was coated at 450 ° C. and a film thickness of about 3.5 m, and the present invention Example 1 was adopted. The film composition was determined by electron probe X-ray microanalysis and Auger electron spectroscopy. The X-ray photoelectron spectroscopic analysis for analyzing the bonding state of the hard film with oxygen uses a PHI 1600S type X-ray photoelectron spectroscopic analyzer, the X-ray source is 400 W using MgKα, and the analysis region has a diameter of 0. The inside of a 4 mm circle was analyzed. After thoroughly degreasing and cleaning, the surface is etched using an Ar ion gun for 5 minutes to remove contaminants attached to the surface of the hard film in a vacuum apparatus, then a wide spectrum is measured, and etching is further performed for 30 seconds. The narrow spectrum was measured. The etching rate by Ar ion gun was 1.9 nm / min in terms of SiO 2 . The X-ray photoelectron spectroscopic analysis result of Example 1 of the present invention is shown in FIG. FIG. 1 shows a narrow spectrum with a binding energy of around 530 eV, indicating the presence of Cr—O and Al—O bonds. FIG. 2 shows the presence of Cr—N and Cr—O bonds. FIG. 3 shows the presence of Al—N and Al—O bonds. FIG. 4 shows an X-ray diffraction result according to the θ-2θ method of Example 1 of the present invention.
[0017]
(Example 2)
Using cemented carbide for the substrate, Invention Examples 2 to 5, Comparative Examples 6 to 13 and Conventional Example 14 having the film compositions shown in Table 1 were produced. The coating conditions are the same as in Example 1. Table 1 shows the composition of the film.
[0018]
[Table 1]
Figure 0004247032
[0019]
Using the sample of Table 1, the thickness of the oxide layer of the film treated under the oxidizing condition of 1100 ° C. in the atmosphere, the micro-indentation hardness, the residual compressive stress calculated from the amount of deformation of the thin plate, and the elastic recovery rate as in Example 2. Was measured. From Table 1, it was confirmed that the oxide layer thicknesses of Invention Examples 2 to 5 had little oxidation progress and were excellent in high-temperature oxidation resistance. In Conventional Example 14, the oxidation progressed remarkably, the hard coating almost became an oxide, the inward diffusion of oxygen was intense, and the oxide layer reached the substrate. The indentation hardness is further increased by containing carbon and boron. Residual compressive stress is low in inventive examples 2-5.
[0020]
Next, the present examples 2-5, comparative examples 6-13, and conventional example 14 in Table 1 are used to describe the state of film peeling by an indentation test. In the measurement, an indentation was formed with a load of 1470 N using a Rockwell hardness meter, and the peeling state around the indentation was observed using an optical microscope. Invention Examples 2 to 5 showed no adhesion and excellent adhesion. This is because the example of the present invention is within an appropriate E value range. Comparative Examples 6 to 13 and Conventional Example 14 could not follow the plastic deformation of the coated substrate, and film peeling occurred in the periphery of the indentation.
[0021]
(Example 3)
The hard films of Invention Examples 2 to 5, Comparative Examples 6 to 13 and Conventional Example 14 shown in Table 1 were coated on an outer diameter of 8 mm, 6 blades, and a carbide end mill. The coating conditions are the same as in Example 1. Using the coated carbide end mills of Invention Examples 2 to 5, Comparative Examples 6 to 13 and Conventional Example 14 shown in Table 1, the cutting test under the following conditions is performed and the time until the end mill becomes uncuttable is also shown in Table 1. To do.
(Cutting specifications)
Cutting method: Side machining Work material: SKD11 (hardness HRC63)
Cutting depth: Ad8mm, Rd0.2mm
Cutting speed: 200 m / min
Feed: 0.06mm / blade Cutting oil: None (dry air blow)
[0022]
From Table 1, the coated cemented carbide end mill based on the cemented carbides of Examples 2 to 5 of the present invention has a longer cutting time until it becomes incapable of cutting than the conventional example 14, and is excellent in wear resistance. Invention Example 5 shows an invention example where the oxygen concentration on the outermost surface of the hard coating is high and the inside of the hard coating is lower than the outermost surface of the hard coating, but the life is extremely long. Comparative Example 6 shows that the hardest surface index by X-ray diffraction of a hard coating coated with a coating condition at a bias voltage of −500 V is a (220) plane, and the value of I (200) / I (111) is 0.2, The cutting life is shorter than that of the example of the present invention. Comparative Example 7 shows a case where a target having an oxygen concentration of 1200 ppm contained in the target is used, but the bonding state as an oxide is not confirmed by X-ray photoelectron spectroscopy, and the cutting life is shorter than that of the present invention. . Although Comparative Example 8 is a comparative example where Co content in the cemented carbide substrate is a 15.0 wt% compared to the present invention embodiment, a short life. Although the comparative example 9 is a comparative example when there is no additive element other than WC-Co in the cemented carbide substrate , the lifetime is short. Comparative Example 10 is a case where the Al content is 20 atomic%, and shows that the elastic recovery rate is lower than 28, the cutting life is short, and the wear resistance is not sufficient. Comparative Example 11 is a case where the Al content is 90 atomic%, and the cutting life is short and the wear resistance is poor. In Comparative Example 12, the oxygen content is 68 atomic%, but the wear resistance is not sufficient. In Comparative Example 13, the Al content is 43 atomic%, but the wear resistance is not sufficient.
[0023]
【The invention's effect】
By applying the coated carbide end mill of the present invention, it has sufficient wear resistance even when used in severe cutting work, and improves the adhesion between the substrate surface and the hard film directly above it, with higher hardness. A coated carbide end mill with excellent high-temperature oxidation resistance could be obtained.
[Brief description of the drawings]
FIG. 1 shows the binding energy of Cr—O and Al—O of the present invention example.
FIG. 2 shows the binding energy of Cr—N and Cr—O of the present invention example.
FIG. 3 shows the binding energies of Al—N and Al—O of the examples of the present invention.
FIG. 4 shows the X-ray diffraction results of an example of the present invention.
FIG. 5 shows the relationship between the amount of Al added and film hardness in the present invention example and the conventional example.

Claims (3)

被覆超硬エンドミルにおいて、該被覆はアーク放電式イオンプレーティング法により被覆された硬質皮膜であり、該硬質皮膜は、(AlCr1−x−ySi)(N1−α−β−γαβγ)、但し、x、y、α、β、γは夫々原子比率を示し、0.45<x<0.85、0≦y<0.35、0.50≦x+y<1.0、0≦α<0.15、0≦β<0.65、0.08≦γ<0.65、0<α+β+γ≦1.0で示される少なくとも1層以上からなり、θ−2θ法によるX線回折において測定される岩塩構造型の(200)面に回折強度を有し、その回折ピークの半価幅が、0.5度以上、2.0度以下であり、該岩塩構造型の(111)面の回折強度をI(111)、(200)面の回折強度をI(200)とした時、0.3<I(200)/I(111)<12であり、X線光電子分光分析における525eVから535eVの範囲に、Al、Cr及び/又はSiと酸素との結合エネルギーを有し、該被覆超硬エンドミルの基体はCo含有量が重量%で2.0<Co<14.0であり、更にCr、Ta、Ti、Zrから選択される1種以上の金属、炭化物、窒化物、酸化物もしくはその組み合わせから選択される金属及び/又は化合物を1種以上含有し、該被覆超硬エンドミルの基体内のタングステンカーバイドの平均粒径が0.2μm以上、0.7μm未満であり、ロックウェル硬度がHRAで93.0以上、94.5未満であることを特徴とする被覆超硬エンドミル。In the coated carbide end mill, the coating is a hard coating coated by an arc discharge ion plating method, and the hard coating is (Al x Cr 1-xy Si y ) (N 1-α-β- [gamma] B [ alpha] C [ beta] O [ gamma] ), where x, y, [alpha], [beta] and [gamma] each represent an atomic ratio, 0.45 <x <0.85, 0≤y <0.35, 0.50≤x + y. <1.0, 0 ≦ α <0.15, 0 ≦ β <0.65, 0.08 ≦ γ <0.65, 0 <α + β + γ ≦ 1.0. 2θ method has a diffraction intensity in a (200) plane of the rock salt structure as measured in the X-ray diffraction by, half width of the diffraction peak, 0.5 degrees or more, or less 2.0 degrees, 該岩salt When the diffraction intensity of the (111) plane of the structure type is I (111) and the diffraction intensity of the (200) plane is I (200), 0.3 <I ( 00) / I (111) <is 12, the range of 535eV from 525eV in the X-ray photoelectron spectroscopy, Al, has a binding energy between Cr and / or Si and oxygen, the substrate of the coating cemented carbide end mills a 2.0 <Co <14.0 Co content in weight percent, selected further Cr, Ta, Ti, 1 or more metals selected from Zr, carbides, nitrides, oxide or combinations thereof The tungsten carbide in the substrate of the coated carbide end mill has an average particle size of 0.2 μm or more and less than 0.7 μm, and a Rockwell hardness of 93. A coated carbide end mill characterized by being 0 or more and less than 94.5. 請求項記載の被覆超硬エンドミルにおいて、該硬質皮膜の最表面から深さ方向に500nm以内の深さ領域で酸素濃度が最大となることを特徴とする被覆超硬エンドミル。2. The coated carbide end mill according to claim 1 , wherein the oxygen concentration becomes maximum in a depth region within 500 nm in the depth direction from the outermost surface of the hard coating. 請求項1又は2記載の被覆超硬エンドミルにおいて、該硬質皮膜表面の凸部を機械的処理により平滑にしたことを特徴とする被覆超硬エンドミル。The coated carbide end mill according to claim 1 or 2, wherein a convex portion of the surface of the hard coating is smoothed by mechanical treatment.
JP2003104854A 2003-04-09 2003-04-09 Coated carbide end mill Expired - Fee Related JP4247032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104854A JP4247032B2 (en) 2003-04-09 2003-04-09 Coated carbide end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104854A JP4247032B2 (en) 2003-04-09 2003-04-09 Coated carbide end mill

Publications (2)

Publication Number Publication Date
JP2004306216A JP2004306216A (en) 2004-11-04
JP4247032B2 true JP4247032B2 (en) 2009-04-02

Family

ID=33467526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104854A Expired - Fee Related JP4247032B2 (en) 2003-04-09 2003-04-09 Coated carbide end mill

Country Status (1)

Country Link
JP (1) JP4247032B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306237A (en) * 2003-04-10 2004-11-04 Hitachi Tool Engineering Ltd Coated end mill and roughing
JP2004337989A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated high-speed steel tool
JP4459936B2 (en) * 2006-08-31 2010-04-28 ユニオンツール株式会社 Hard coating for cutting tools
JP2008240079A (en) * 2007-03-28 2008-10-09 Tungaloy Corp Coated member
JP2012505308A (en) * 2008-10-10 2012-03-01 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Non-gamma phase cubic AlCrO

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116342A (en) * 1978-03-03 1979-09-10 Mitsubishi Metal Corp Coated sintered hard alloy member
JP2918133B2 (en) * 1992-05-25 1999-07-12 三菱マテリアル株式会社 Surface coated cutting tool
JPH0681072A (en) * 1992-09-01 1994-03-22 Mitsubishi Materials Corp Tungsten carbide base sintered hard alloy
JPH10227360A (en) * 1992-09-16 1998-08-25 Riken Corp Sliding material, piston ring, and manufacture of sliding material
JP3179645B2 (en) * 1993-11-19 2001-06-25 東芝タンガロイ株式会社 Wear resistant coating
JP2901043B2 (en) * 1993-12-03 1999-06-02 神鋼コベルコツール株式会社 Abrasion and welding resistant hard film coated tool and its manufacturing method
JPH0827562A (en) * 1994-07-15 1996-01-30 Toshiba Tungaloy Co Ltd Oxidation resistant coated member
JPH08281502A (en) * 1995-04-14 1996-10-29 Toshiba Tungaloy Co Ltd Crystal orientating coated tool
JPH09184042A (en) * 1995-12-28 1997-07-15 Hitachi Tool Eng Ltd Superfine-grained cemented carbide
JPH1158105A (en) * 1997-08-12 1999-03-02 Hitachi Tool Eng Co Ltd Covered cemented carbide tool for high speed-high feed
JP3001849B2 (en) * 1998-03-16 2000-01-24 日立ツール株式会社 Coated hard tool
JP2000087217A (en) * 1998-09-08 2000-03-28 Kobe Steel Ltd Titanium nitride coated sliding member excellent in wear resistance
JP4393650B2 (en) * 2000-01-14 2010-01-06 日立ツール株式会社 Wear-resistant coated tool
JP3877124B2 (en) * 2000-03-09 2007-02-07 日立ツール株式会社 Hard coating coated member
JP2001277251A (en) * 2000-03-29 2001-10-09 Bridgestone Corp Thin film for molding mold, and mold
JP4112836B2 (en) * 2001-06-19 2008-07-02 株式会社神戸製鋼所 Target for forming hard coatings for cutting tools
JP3598074B2 (en) * 2001-05-11 2004-12-08 日立ツール株式会社 Hard coating tool
JP2002346811A (en) * 2001-05-23 2002-12-04 Toshiba Tungaloy Co Ltd Coated sintered tool
JP2004249394A (en) * 2003-02-20 2004-09-09 Hitachi Tool Engineering Ltd Coated drill
JP2004249433A (en) * 2003-02-21 2004-09-09 Hitachi Tool Engineering Ltd Coated broach
JP2004314182A (en) * 2003-02-25 2004-11-11 Hitachi Tool Engineering Ltd Coated drill
JP2004255482A (en) * 2003-02-25 2004-09-16 Hitachi Tool Engineering Ltd Coated end mill
JP2004255553A (en) * 2003-02-28 2004-09-16 Hitachi Tool Engineering Ltd Coated broach
JP2004298972A (en) * 2003-03-28 2004-10-28 Hitachi Tool Engineering Ltd Coated insert

Also Published As

Publication number Publication date
JP2004306216A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP5866650B2 (en) Surface coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
JP2007001007A (en) Composite coating film for finishing hardened steel
JP3392115B2 (en) Hard coating tool
KR20090064328A (en) Coated cutting insert
EP2031090B1 (en) Hard covering film for cutting tool
JP4247032B2 (en) Coated carbide end mill
JP7415223B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting.
JP4393650B2 (en) Wear-resistant coated tool
JP2005297141A (en) Surface-coated throwaway tip
JP2005126736A (en) Hard film
JP2004337988A (en) Coated rough-machining end mill
JP2004314182A (en) Coated drill
JP3838569B2 (en) Coated reamer, tap, general milling cutter, side cutter, gear cutting tool
JP2004249394A (en) Coated drill
JP2004249433A (en) Coated broach
JP2004255482A (en) Coated end mill
JP2008137129A (en) Surface coated cutting tool
JP2004255553A (en) Coated broach
JP2004306237A (en) Coated end mill and roughing
JP2004298972A (en) Coated insert
JP2004337989A (en) Coated high-speed steel tool
JP2004306228A (en) Hard coating
JP2004314186A (en) Coated cemented carbide broach
JP3859658B2 (en) Surface-coated throw-away tip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070831

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

R150 Certificate of patent or registration of utility model

Ref document number: 4247032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees