JP4246855B2 - Reflective optical sensor and manufacturing method thereof - Google Patents

Reflective optical sensor and manufacturing method thereof Download PDF

Info

Publication number
JP4246855B2
JP4246855B2 JP19241099A JP19241099A JP4246855B2 JP 4246855 B2 JP4246855 B2 JP 4246855B2 JP 19241099 A JP19241099 A JP 19241099A JP 19241099 A JP19241099 A JP 19241099A JP 4246855 B2 JP4246855 B2 JP 4246855B2
Authority
JP
Japan
Prior art keywords
light
collective
sensor
optical
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19241099A
Other languages
Japanese (ja)
Other versions
JP2001024213A (en
Inventor
克彦 野口
恵 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP19241099A priority Critical patent/JP4246855B2/en
Publication of JP2001024213A publication Critical patent/JP2001024213A/en
Application granted granted Critical
Publication of JP4246855B2 publication Critical patent/JP4246855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被検出物の表面からの反射光を検出する反射型光センサとその製造方法に関する。
【0002】
【従来の技術】
反射型光センサは非接触で物体の有無を検出するセンサであり、モータ等の回転体の制御や、紙、フィルム等の位置、端部の検出などに使用される。図9は反射型光センサの原理的な構成を示し、パッケージ1に、発光素子2(例えば赤外LED)と受光素子3(例えばフォト・トランジスタ)を収容してあり、発光素子2から光が矢印のように出て検出対象の物体4で反射するのを、受光素子3で検知する。これによって、反射型光センサの近傍における物体4の有無や位置に応じて受光素子3からの出力が変化し、これを検出信号として用いるのである。
【0003】
図10は以前に発明者らが提案した反射型光センサの例で、図10(A)が外観、(A)のB−B断面が同図(B)である。ガラス繊維入りエポキシ樹脂等で作った基板9に、遮光性樹脂で成形した遮光枠10を接合してあり、遮光枠10には貫通穴の窓8が二つある。同図(B)のごとく、それぞれの窓8の内側で発光素子2と受光素子3を基板9上の導電パターンにダイボンドし、金属線13でワイヤボンドして、窓8に透光性の封止樹脂11を充填して両素子を封入してある。基板9の側面の導電部12はスルーホール技術により円弧状の窪みに導電層を形成したもので、これにより基板9上面の導電パターンを基板下面の端子電極に接続している。発光素子2から出た光は発光素子側の窓8から出て被検出物体を照射し、物体表面からの反射光が受光素子側の窓8から戻って受光素子3に達し、検出が行われる。
【0004】
図11の反射型光センサも発明者らが提案したもので、図11(A)が斜視図、(A)のB−B断面図が同図(B)である。先の図10のものと同様に、基板9に発光素子2と受光素子3を実装して金属線13でワイヤボンドし、これを封止樹脂11中に封入してあるが、図10と違って遮光枠10を用いることをせず、台形の封止樹脂11の側面を金属のメッキ層などの遮光膜14で被覆してある。封止樹脂11の上面は遮光膜がなく、全面が透光面で光が出入りする窓であり、この窓の面積を小さくすることにより検出精度を上げることができる。
【0005】
図12は特開平8−297011号に開示された反射型光センサである。センサヘッド21は基部22の貫通穴23、24に一対の光ファイバー25、26をそれぞれ通して、圧力ばめあるいは接着等で保持する構造である。光ファイバー25は出力端部27を有し、他端が光源29に接続される。一方、光ファイバー26は入力端部28を有し、他端が光強度検出手段30に接続される。光ファイバーの出力端部27と入力端部28の端面は光ファイバーの軸線に対し斜めに削ってあり、互いに接触するか、あるいはそれに近い程度に接近して配置されている。このセンサヘッド21を物体31に近づけると、光源29から出た光が光ファイバー25を経て出力端27から出射されて物体31に当たり、物体31の表面からの反射光が入力端部28から光ファイバー26に入り、光強度検出手段30に伝えられて検出されるのである。
【0006】
【発明が解決しようとする課題】
上述のような従来の反射型光センサのうち、図10および図11のものは構造簡単で、大きな集合基板を用いて製作することが可能である。すなわち集合基板上に個々の基板9となる多数の領域を縦横に行列状に配置して、多数個分の発光素子2と受光素子3を実装した後、集合基板に集合遮光枠を接着して集合遮光枠の窓に封止樹脂11を充填したり、あるいは集合遮光枠を用いず、基板全面に封止樹脂11を充填して封止樹脂層だけを斜面を形成しながらハーフダイシングし、封止樹脂11の側面に遮光膜14をメッキしたりしてから、全体をカッターで縦横にダイシングすれば、切り落とされた各部分が個別の反射型光センサになる。従って非常に生産性がよいが、光が封止樹脂中で散乱したり吸収されたりするので、検出感度や検出精度等の性能や、光の利用効率はあまり高くすることができない。
【0007】
また、図12のものは光ファイバー25、26を用いていて光をこれに閉じ込めるので、検出性能や光の利用効率を高めることはできるが、センサヘッド21の構成として、基部22の貫通穴23、24に光ファイバー25、26を挿入したりせねばならず、また光ファイバー25、26の他端を光源29や光強度検出手段30に連結する構造も必要であって、1個ずつ個別に作らねばならず、先の図10や図11のもののように集合的に能率よく製作することができなくてコスト高になる。
本発明はこれらの問題を解決して、簡単な構造で光ファイバーを用いて高性能化した反射型光センサと、これを集合基板を用いた多数個取により廉価に製作する方法を実現するものである。
【0008】
【課題を解決するための手段】
本発明のフォトリフレクタは、基板上に発光素子と受光素子を実装して透光性の封止樹脂中に封入してあり、この点は図10や図11のものと共通するが、その上に発光側と受光側の2本の光ファイバーを樹脂中にインサートしたセンサヘッドを積層して構成する点が異なる。なお、両光素子が直接作用し合うことを防ぐために、基板上、両素子の間に遮光板を置いて上記の封止樹脂を分離してある。樹脂に封入した2本の光ファイバーは樹脂の上下面を貫通していて、光ファイバーの上下端面がセンサヘッド上下面の一部になっている。
【0009】
前記2本の光ファイバーの端面は、センサヘッドの表面では接近していてほぼ隣接しており、反対側である前記封止樹脂との接合面では互いに離れていて、それぞれ前記発光素子および受光素子に面している。従って、両光ファイバーの軸線をそれぞれ含む互いに平行な2平面の方向への両軸線の投影がある角度で交わっている。そして、これら平行な2平面間の距離は少なくとも両光ファイバーの半径の和以上である。すなわち、かりに両光ファイバーをそれらの端面以上に延長した場合、両光ファイバーは互いに突き当たらずにすれ違う。
【0010】
このような反射型光センサの製造は、大型の集合基板であって縦横に分割すると多数の反射型光センサの基板になるもの、例えば100〜200mm角の集合基板を用いて行う。集合基板の導電パターン面に多数の発光素子と受光素子を実装し、発光素子と受光素子の間の基板上に遮光板を土手状に接着する。そして集合基板の全面に、透光性の封止樹脂を遮光板とほぼ同じ高さに充填して、これらの素子群を封入する。この上に発光素子、受光素子と位置を合わせて、光ファイバーを封入した樹脂のセンサヘッドを接着するが、このセンサヘッドも光センサ1個分のものを多数配置するのでなく、何個分も1列につながった集合センサヘッドを必要な数だけ並べて用いる。こうしてできた集合体を縦横に切断して発光素子と受光素子、および発光側光ファイバーと受光側光ファイバーが対になった領域別に分割すれば、各小片がそれぞれ反射型光センサの完成品になる。
【0011】
上記のように、集合基板による反射型光センサの製造においては、センサヘッドが何個分も1列につながった集合センサヘッドを用いるが、本発明ではこのような集合センサヘッドを次の方法で能率よく製作する。すなわち樹脂の成形用の型あるいは容器に、1個のセンサヘッドの封入長さの何倍もの長さの光ファイバーを複数本ずつ2列に取り付ける。取り付け方は各列内では光ファイバーが互いに平行で所定の一定間隔をとり、列間では光ファイバーが前記一定の角度で交差しながら互いにほぼ接するようにしたもので、これに樹脂を注入して固化する。従って、多くの光ファイバーが筋交い状に封入された樹脂板が得られる。この樹脂板を光ファイバー同士の交点を結んで通る平行線群、およびこれらの平行線群の中間を通る平行線群に沿ってカッターで短冊状に切断、分割すれば、短冊状の各片が集合基板への取り付け用の集合センサヘッドになる。
これらの方法により、反射型光センサを多数個取りで能率よく製造できる。
【0012】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。なお、前記の説明を含め、同種の部品や部分については同じ符号を用いることにする。
図1は本発明の反射型光センサの第1の実施形態で、同図(A)は透視的な斜視図である。基板9上に発光素子2と受光素子3をそれぞれ実装し、両素子の間に遮光板41を設けて両素子が直接影響し合うことを防ぎ、これらを透光性の封止樹脂11中に封入してある。その上にセンサヘッド42を接合して積層してあり、センサヘッド42は樹脂43中に発光側の光ファイバー44と受光側の光ファイバー45をインサートしたもので、光ファイバー44、45は樹脂43を貫通して両端面が樹脂43の上下面の一部として露出している。
【0013】
図1(B)は同図(A)の左手前から見た正面図、(C)は(A)の上面図で、いずれも透視的に描いてある。これらの図に見るように、基板9の導電パターン15に発光素子2と受光素子3をダイボンドし、金属線13でワイヤボンドしてある。16は基板上面の端子電極であるが、基板側面の導電部12により、図では見えないが基板9の下面に設けた端子電極に接続されている。基板下面の端子電極は、反射型光センサを他の機器の回路基板に実装するためのもので、このように本発明の反射型光センサは回路基板への表面実装に適する形式である。導電部12は基板9の縁部に設けた円弧状の窪みの表面が導電膜を持つものであるが、製造工程ではこの部分は全円のスルーホールだったのである。
【0014】
図に見るように、光ファイバー44と45は一定の角度で交差しており、センサヘッド42と封止樹脂11の接合面では光ファイバーの端面が発光素子2と受光素子3にそれぞれ面していて、センサヘッド42の上面では光ファイバーの端面が互いに接近してほぼ隣接している。これにより、センサヘッド42の上面を被検出物体に近づけると、発光素子2から出た光が光ファイバー44を通って物体の表面を照射し、反射光が隣接する光ファイバー45の端面から入ってセンサ内に戻り、受光素子3によって検出されるのである。
【0015】
本発明の特徴として、2本の光ファイバー44、45を次のように配置する。すなわち図1(C)に見るように、光ファイバー44と45の軸線をそれぞれ通って互いに平行な二つの平面を想定した時、この2平面間の距離aが2本の光ファイバーのそれぞれの半径の和と同等以上であり、従って両光ファイバーの直径が同じならaが直径と同寸法以上であることで、簡単に言えば、両光ファイバーを延長したとき、互いに突き当たらずにすれ違うことである。2本の光ファイバーの交差角は、焦点距離や光変換効率等を考慮して任意に決定する。この構成を取ることにより、後述するように極めて便利な製造方法が可能になる。
【0016】
図1の反射型光センサの実施形態では、発光素子2と受光素子3を封入している透光性の封止樹脂11層が反射型光センサの側面に露出しているので、発光素子2から出た光や受光素子3に戻ってきた光の一部が封止樹脂11で散乱して側面から漏れることがある。このような漏れをなくして光の利用効率や検出感度を上げ、他の部品との干渉を防ぐようにしたのが、図2に示す第2の実施形態である。ここでは基板9上に遮光性樹脂の遮光枠46を設けて、封止樹脂11が光センサ側面に露出しないようにしている。遮光枠46には二つの大きな貫通穴があって、それぞれの穴に発光素子2と受光素子3を収容し、これらの穴に封止樹脂11を充填して各素子を封入する。これにより光センサ側面からの光の漏れがなくなる。遮光枠46の二つの貫通穴の間の壁の部分は、図1における遮光板41と同じく、発光素子2と受光素子3が直接作用し合うのを防ぐ。
【0017】
図3は本発明の第3の実施形態で、同じく光センサ側面からの光漏れを防ぐ構造である。図1の第1の実施形態の構成をそのまま含むものであるが、光センサ側面に現れた封止樹脂の表面に遮光材料の薄層からなる遮光膜47を被覆してある。遮光膜47は例えば無電解メッキによるニッケルメッキ膜であり、これによって光漏れが防がれる。
【0018】
次に、図4以下を参照しながら本発明の反射型光センサの製造方法を説明する。
図4にて、まず大型の集合基板51を用意する。これは完成時に個々の反射型光センサとなる多数の領域を縦横に行列状に配列して、導電パターン15やスルーホール52を設けたもので、縦横の分割線53、54によって区分される1区画が1個の反射型光センサに相当する。そして発光素子2群と受光素子3群を導電パターン15にダイボンドし、金属線13でワイヤボンドする。集合基板の材質は黒色素を混合したガラス繊維入りエポキシ樹脂などであって、例えば寸法が100〜200mm角の集合基板であれば、1,000個前後の反射型光センサに分割することができる。
【0019】
次に、集合遮光板55を集合基板51に接着する。集合遮光板51は遮光性樹脂の成形品で何本もの横棒55aがある枠状であり、横棒55aの部分が後に図1の遮光板41になる。集合基板51上に2点鎖線56で示したのは、集合遮光板55の合わせ位置である。集合基板51上の1区画には発光素子2と受光素子3が1個ずつ含まれて、集合遮光板55の横棒55aで隔てられた配置となる。
【0020】
次に、集合基板51上に接着した集合遮光板55の横棒55aの間にエポキシ樹脂等の透光性樹脂を注入し、集合遮光板55の上面とほぼ同じ高さに充填する。集合遮光板55は、ワイヤボンドした発光素子2や受光素子3の金属線13を含めた高さよりも高いものを用いるので、このように樹脂を充填することにより各素子は金属線も含めて完全に樹脂中に封入される。こうして充填した樹脂が図1の封止樹脂11となる。封止樹脂注入の際、集合基板51のスルーホール52から樹脂が流れ出たりしないよう、必要に応じてスルーホールをテープ材で塞ぐなどの処理をしておく。
【0021】
次に、このように集合遮光板55の横棒55a間に封止樹脂を充填した上に集合センサヘッド57を接着する。集合センサヘッド57は、図1に見られるセンサヘッド42を何個分も横に1列につないだ形の直方体である。従って集合センサヘッド57は1対の発光側光ファイバー44と受光側光ファイバー45を何対も含んでいる。集合基板55に封止樹脂を充填した上に接着剤を塗布し、光ファイバー44、45の下端面を発光素子2と受光素子3に合わせながら、集合センサヘッド57を何個も並べて接着する。光ファイバー44、45の下端面には接着剤がつかないように、封止樹脂上面への接着剤の塗布は発光素子2や受光素子3から離れた位置に行う。接着剤の塗布は任意の方法で行えばよいが、不要箇所に接着剤がつかないように封止樹脂面上にマスク材をあてがって塗布するのが便利である。スクリーン印刷によるのもよい。図4にて、分割線53a、54aで区分される集合センサヘッド57の1区画が、図1における1個のセンサヘッド42になる。
【0022】
集合基板51と集合遮光板55と集合センサヘッド57を、中間に封止樹脂の充填工程を伴って積層した集合体を、分割線53、54(すなわち53a、54a)に沿って切断するダイシングを行えば、得られる各小片がそれぞれ反射型光センサの完成品になる。図4の集合基板51に設けてあったスルーホール52は、図1の完成品では窪みに導電材が被覆された導電部12となる。このようにして、本発明の反射型光センサは多数個取りにより極めて能率よく製作することができる。
【0023】
上記の説明は図1に示した第1の実施形態のものの製造方法であるが、図2の遮光枠46を備えた第2の実施形態のものも、集合部品を用いて同様の工程により製作される。ただし、その場合、図4の集合遮光板55でなく、図5に示す集合遮光枠58を用いる。これは形が格子状でいくつも窓があり、分割線53b、54bによる1区画が完成品1個分である。遮光枠58を図4の集合基板51に接着し、窓枠内に封止樹脂を充填して、発光素子2と受光素子3を封入する。そして前述のように集合センサヘッド57を接合した集合体を作ってダイシングすれば、集合遮光枠58は図5の分割線53b、54bで切り離されて、図2のごとく封止樹脂11の周辺が遮光枠46で囲われて光の漏れない反射型光センサが得られる。
【0024】
図3に示すような、封止樹脂11の側面に遮光膜47を被覆した反射型光センサの製作は、図1の実施形態のものを前述の方法で製作した単品について、側面に現れた封止樹脂11表面に遮光膜を被覆して行ってもよいが、やはり集合基板工程に含めるのがはるかに能率的である。図1の実施形態のものと同じく、各集合部品を積層するまでを図4に示す工程によって行う。そして集合部品を積層した集合体ができたら、まず、上方から分割線53a、54aに沿って、集合センサヘッド57とその下部の封止樹脂層を基板に達するまでハーフ・ダイシングする。これで、集合基板51はまだ一体のままであるが、封止樹脂とセンサヘッドには側面を生じるから、無電解ニッケルメッキにより集合体をメッキ液に浸漬してニッケル被膜を作るなどして、図3のごとく封止樹脂11の側面に遮光膜47を形成する。
【0025】
この時、遮光膜不要部分はマスクしておくのであり、例えば集合基板裏面の端子電極やスルーホール内面の導電部に遮光膜材料が被覆されないよう、集合基板21の裏面にはマスク用のシート材などを貼付しておく。センサヘッド上面はもとより遮光膜を設けないが、この面についてはマスクしてメッキを防ぐ方法のほか、側面とともにメッキした後にエッチング等によってメッキ層を除去する方法を取ってもよい。反射型光センサの側面で遮光膜47が必要なのは図3に示すように封止樹脂11の層であるが、センサヘッド42の側面をマスクしてメッキを防ぐのは不便であり、またメッキを防ぐ必要もないから、光センサ側面はセンサヘッド42も含めて遮光膜を形成して差し支えない。この後、集合基板51を分割線53、54に従ってフル・ダイシングすれば、図3の反射型光センサが完成する。
【0026】
図1ないし図3に見るように、本発明の反射型光センサのセンサヘッド42はサイコロ状の樹脂43に光ファイバー44、45がインサートされたものであるが、図4に示す集合基板51を用いた製造工程で使用するのは、センサヘッドが何個もつながった集合センサヘッド57であり、以下、集合センサヘッド57を製作する方法を説明する。まず、図6に示すように、樹脂43中に反射型光センサの完成品に含まれる光ファイバーの何倍もの長さの光ファイバー44群と45群をインサート成形した集合センサヘッド板59を製作する。同図(A)は上面図、同図(B)は正面図である。
【0027】
光ファイバー44同士と光ファイバー45同士はそれぞれ平行で間隔一定であり、そして光ファイバー44群と光ファイバー45群は一定の角度で交差している。交差の角度は図1(B)における光ファイバー44と光ファイバー45の交差角と同じである。図6(B)に分割線60を描いてあるが、これは正面から見て光ファイバー群の交点を通る平行線群とその中間の平行線群で、分割線60の間隔は一様である。分割線60に沿った平行な光ファイバー群のピッチは、図4の集合基板51の分割線54の間隔に等しくする。。
【0028】
図6(A)に現れている集合センサヘッド板59の厚さは、図1(C)における反射型光センサの上下幅に等しい。図6(A)の距離aは光ファイバー44群の軸線を含む平面と光ファイバー45群の軸線を含む平面間の距離であるが、これは図1(C)のaと同じであって両光ファイバーの半径の和にほぼ等しく、光ファイバー44群と光ファイバー45群は互いにほぼ接して交差している。このような集合センサヘッド板59は、光ファイバー44群と光ファイバー45群を交差させて取り付けた成形用の型または容器に樹脂を注入、固化して製作する。
【0029】
次いで集合センサヘッド板59を分割線60に沿ってカッターで切断する。この切断は切断面に現れる光ファイバー端面の仕上げ加工を兼ねるので精密に行う。集合センサヘッド板59を何枚も重ねて固定したものを切断すれば、能率よく切断することができる。
【0030】
集合センサヘッド板59を分割線60に沿って切断して得られる直方体片に、図6にて上から順に1、2、3...と番号をつけ、奇数番目のものを上下裏返し、図7に示すように各直方体を左右にずらして揃えると、各直方体を縦の分割線61で区分した各部分は同じものであり、それぞれ1個のセンサヘッドに相当する。従って図7の各直方体が図4の集合基板工程で用いる集合センサヘッド57となる。こうして図6のような集合センサヘッド板59を作って分割することにより、集合センサヘッド57を能率よく製作できる。なお、図6(B)の分割線60について、前記のように正面から見て光ファイバー群の交点を通る平行線群とその中間の平行線群と定義すると、それに該当する平行線は分割線60に直交する縦方向にも引けるわけであるが、どちらを取るべきかは自明である。
【0031】
図6の集合センサヘッド板59の考えをさらに進めたのが、図8の集合センサヘッド・ブロック62である。これは集合センサヘッド板59を何枚も重ねて一体化したような形で光ファイバー44、45をインサートした樹脂ブロックである。図8(A)は上面図、(B)は正面図で、(A)に見るように光ファイバー44群と45群が交差して対をなすものが何列も含まれている。この集合センサヘッド・ブロック62を分割線60で切断しさらに分割線63で切断すれば、図4の工程に用いる多数の集合センサヘッド57が得られる。
【0032】
図8の集合センサヘッド・ブロック62を用いる場合、図4の集合基板工程に用いるセンサヘッドの集合部品としては、図8(A)の分割線63では分割せず、同図(B)の分割線60で分割しただけの板状のものを、前述の図6の集合センサヘッド板59の場合のように1枚置きに上下裏返しにして用いればよい。これもまた板状であるが、図6の集合センサヘッド板59とは違ってこれと直交する方向に広がるものである。図4に描いた集合センサヘッド57群はそれぞれ別個のもので、分割線53aに沿って溝で隔たっているが、上記のような板状のものを用いると、つながっていて溝のない集合センサヘッド板を集合遮光板55上に接着するのであり、集合体をダイシングする際、分割線53aに沿う方向もセンサヘッド層を切断することになる。
【0033】
図8の集合センサヘッド・ブロック62によれば1回の成形で非常に多くのセンサヘッドを含む集合部品が得られるが、それとともに成形用の型あるいは容器が複雑化し、これに光ファイバーを取り付ける手間も増えるから、一概にこの方法が有利とは限らない。図6の集合センサヘッド板59を用いるか図8の集合センサヘッド・ブロック62を用いるかは、実状に応じて決めるのがよい。
【0034】
以上、反射型光センサとして完結している回路部品について説明したが、反射型光センサを構成の一部とする回路部品もまた存在する。例えば、光マイクロホンという回路部品があり、これは反射型光センサとそのセンサヘッド近傍に配置した被検出物である振動膜を含めて構成したもので、音響等による振動膜の振動を光信号に変換して処理するものである。本発明の反射型光センサとその製造方法は、光マイクロホンのように構成の一部に反射型光センサを含む部品にも及ぶものである。
【0035】
【発明の効果】
以上述べたように、本発明によって得られる反射型光センサは光ファイバーで光路を形成するので、光の利用効率が向上して高性能の光センサが得られる。しかも構造簡単であって小型、薄型化に適し、また、製造に関しては集合基板を始めとする集合部品を用いて製造を進め、最後に切断して分割し、一度に多数の製品を得るので極めて生産性が高く、製造コストを低減できる。
このように本発明によれば、超小型、高性能で信頼性が高く、表面実装に適する反射型光センサを廉価に提供できるのである。
【図面の簡単な説明】
【図1】本発明の反射型光センサを透視的に示し、(A)は斜視図、(B)は正面図、(C)は上面図である。
【図2】本発明の別の反射型光センサを透視的に示す斜視図である。
【図3】本発明のさらに別の反射型光センサを透視的に示す斜視図である。
【図4】本発明の反射型光センサの製造方法を示す斜視図である。
【図5】本発明の反射型光センサの製造に用いる集合遮光枠の斜視図である。
【図6】本発明の反射型光センサの製造に用いる集合センサヘッド板を示し、(A)は上面図、(B)は正面図である。
【図7】図6の集合センサヘッド板を分割して得た集合センサヘッドである。
【図8】本発明の反射型光センサの製造に用いる集合センサヘッド・ブロックを示し、(A)は上面図、(B)は正面図である。
【図9】反射型光センサの原理的構成図である。
【図10】従来の反射型光センサを示し、(A)は斜視図、(B)は(A)のB−B断面図である。
【図11】従来の別の反射型光センサを示し、(A)は斜視図、(B)は(A)のB−B断面図である。
【図12】従来のさらに別の反射型光センサの図面である。
【符号の説明】
2 発光素子
3 受光素子
8 窓
9 基板
10、46 遮光枠
11 封止樹脂
12 導電部
14、47 遮光膜
15 導電パターン
16 端子電極
21、42 センサヘッド
25、26、44、45 光ファイバー
41 遮光板
43 樹脂
51 集合基板
52 スルーホール
55 集合遮光板
57 集合センサヘッド
58 集合遮光枠
59 集合センサヘッド板
62 集合センサヘッド・ブロック
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reflective optical sensor for detecting reflected light from the surface of an object to be detected and a method for manufacturing the same.
[0002]
[Prior art]
A reflection type optical sensor is a sensor that detects the presence or absence of an object in a non-contact manner, and is used for control of a rotating body such as a motor, and detection of positions and edges of paper and film. FIG. 9 shows a principle configuration of a reflection type photosensor. A light emitting element 2 (for example, an infrared LED) and a light receiving element 3 (for example, a phototransistor) are accommodated in a package 1, and light is emitted from the light emitting element 2. The light receiving element 3 detects that the light is emitted as indicated by the arrow and reflected by the object 4 to be detected. As a result, the output from the light receiving element 3 changes according to the presence or absence and position of the object 4 in the vicinity of the reflective optical sensor, and this is used as a detection signal.
[0003]
FIG. 10 shows an example of a reflection type optical sensor previously proposed by the inventors. FIG. 10A is an external view, and FIG. A light shielding frame 10 formed of a light shielding resin is bonded to a substrate 9 made of glass fiber epoxy resin or the like, and the light shielding frame 10 has two windows 8 with through holes. As shown in FIG. 2B, the light emitting element 2 and the light receiving element 3 are die-bonded to the conductive pattern on the substrate 9 inside each window 8, and wire-bonded with a metal wire 13, so that the window 8 has a light-transmitting seal. Both elements are filled with a stop resin 11. The conductive portion 12 on the side surface of the substrate 9 is formed by forming a conductive layer in an arc-shaped depression by a through-hole technique, thereby connecting the conductive pattern on the upper surface of the substrate 9 to the terminal electrode on the lower surface of the substrate 9. Light emitted from the light emitting element 2 exits the window 8 on the light emitting element side and irradiates the object to be detected, and reflected light from the object surface returns from the window 8 on the light receiving element side and reaches the light receiving element 3 for detection. .
[0004]
The reflection type optical sensor of FIG. 11 is also proposed by the inventors. FIG. 11A is a perspective view, and FIG. 11A is a cross-sectional view taken along line BB of FIG. As in the previous FIG. 10, the light emitting element 2 and the light receiving element 3 are mounted on the substrate 9 and wire-bonded with the metal wire 13 and sealed in the sealing resin 11. The side surface of the trapezoidal sealing resin 11 is covered with a light shielding film 14 such as a metal plating layer without using the light shielding frame 10. The upper surface of the sealing resin 11 has no light-shielding film, and the entire surface is a light-transmitting surface and is a window through which light enters and exits. Detection accuracy can be increased by reducing the area of this window.
[0005]
FIG. 12 shows a reflection type optical sensor disclosed in Japanese Patent Laid-Open No. 8-297711. The sensor head 21 has a structure in which a pair of optical fibers 25 and 26 are passed through the through holes 23 and 24 of the base 22 and are held by pressure fitting or adhesion. The optical fiber 25 has an output end 27, and the other end is connected to the light source 29. On the other hand, the optical fiber 26 has an input end portion 28, and the other end is connected to the light intensity detection means 30. The end faces of the output end 27 and the input end 28 of the optical fiber are cut obliquely with respect to the axis of the optical fiber, and are arranged close to each other or close to each other. When the sensor head 21 is brought close to the object 31, the light emitted from the light source 29 is emitted from the output end 27 through the optical fiber 25 and hits the object 31, and the reflected light from the surface of the object 31 passes from the input end 28 to the optical fiber 26. It is transmitted to the light intensity detecting means 30 and detected.
[0006]
[Problems to be solved by the invention]
Among the conventional reflective optical sensors as described above, those shown in FIGS. 10 and 11 have a simple structure and can be manufactured using a large collective substrate. That is, a large number of regions to be the individual substrates 9 are arranged in rows and columns on the collective substrate, and a large number of light emitting elements 2 and light receiving elements 3 are mounted, and then a collective light shielding frame is bonded to the collective substrate. Filling the window of the collective light shielding frame with the sealing resin 11 or filling the entire surface of the substrate with the sealing resin 11 without using the collective light shielding frame and half-dicing only the sealing resin layer while forming the inclined surface. If the light shielding film 14 is plated on the side surface of the stop resin 11 and then the whole is vertically and horizontally diced with a cutter, each cut-off portion becomes an individual reflective optical sensor. Therefore, although productivity is very good, since light is scattered and absorbed in the sealing resin, the performance such as detection sensitivity and detection accuracy, and the utilization efficiency of light cannot be made very high.
[0007]
12 uses optical fibers 25 and 26 to confine light therein, so that the detection performance and the light utilization efficiency can be improved. However, as a configuration of the sensor head 21, the through hole 23 of the base portion 22, In addition, optical fibers 25 and 26 must be inserted into 24, and a structure in which the other ends of the optical fibers 25 and 26 are connected to the light source 29 and the light intensity detecting means 30 is also necessary. However, unlike the ones shown in FIGS. 10 and 11, it cannot be manufactured collectively and efficiently, resulting in an increase in cost.
The present invention solves these problems, and realizes a reflective optical sensor with a simple structure and high performance using an optical fiber, and a method for inexpensively manufacturing the same by using a collective substrate. is there.
[0008]
[Means for Solving the Problems]
The photo reflector of the present invention has a light emitting element and a light receiving element mounted on a substrate and encapsulated in a translucent sealing resin. This point is the same as that shown in FIGS. The difference is that a sensor head in which two optical fibers on the light emitting side and the light receiving side are inserted in a resin is laminated. In order to prevent the two optical elements from directly acting on each other, the sealing resin is separated by placing a light shielding plate on the substrate between the two elements. The two optical fibers sealed in the resin penetrate the upper and lower surfaces of the resin, and the upper and lower end surfaces of the optical fiber are part of the upper and lower surfaces of the sensor head.
[0009]
The end surfaces of the two optical fibers are close to each other on the surface of the sensor head and are substantially adjacent to each other, and are separated from each other at the joint surface with the sealing resin on the opposite side, and are respectively connected to the light emitting element and the light receiving element. Facing. Therefore, the projections of the two axes intersect at a certain angle in the directions of two parallel planes including the axes of the two optical fibers. The distance between these two parallel planes is at least the sum of the radii of both optical fibers. That is, when both optical fibers are extended beyond their end faces, the two optical fibers pass each other without hitting each other.
[0010]
Such a reflective photosensor is manufactured using a large collective substrate that becomes a substrate of a large number of reflective photosensors when divided vertically and horizontally, for example, a 100 to 200 mm square collective substrate. A large number of light emitting elements and light receiving elements are mounted on the conductive pattern surface of the collective substrate, and a light shielding plate is bonded in a bank shape on the substrate between the light emitting elements and the light receiving elements. The entire surface of the collective substrate is filled with translucent sealing resin at substantially the same height as the light shielding plate, and these element groups are sealed. A resin sensor head in which an optical fiber is enclosed is bonded to the light emitting element and the light receiving element on the top, and this sensor head is not arranged with a large number of one optical sensor, but one for several. Use as many collective sensor heads connected to a line as necessary. If the assembly thus formed is cut vertically and horizontally and divided into regions where the light emitting element and the light receiving element, and the light emitting side optical fiber and the light receiving side optical fiber are paired, each piece becomes a finished product of the reflection type photosensor.
[0011]
As described above, in the production of a reflective optical sensor using an aggregate substrate, an aggregate sensor head in which a number of sensor heads are connected in a row is used. In the present invention, such an aggregate sensor head is formed by the following method. Produces efficiently. That is, a plurality of optical fibers having a length several times the enclosed length of one sensor head are attached in two rows to a resin molding die or container. In each row, the optical fibers are parallel to each other and have a predetermined fixed interval, and between the rows, the optical fibers cross each other at the predetermined angle so as to be almost in contact with each other. . Therefore, a resin plate in which many optical fibers are enclosed in a bracing shape is obtained. If this resin plate is cut and divided into strips with a cutter along a group of parallel lines passing through the intersection of optical fibers and a group of parallel lines passing through the middle of these groups of parallel lines, each strip-shaped piece is assembled. It becomes a collective sensor head for mounting on a substrate.
By these methods, it is possible to efficiently manufacture a large number of reflective optical sensors.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is used about the same kind components and parts including the said description.
FIG. 1 is a perspective view of a first embodiment of a reflective photosensor according to the present invention. FIG. 1 (A) is a perspective view. The light-emitting element 2 and the light-receiving element 3 are mounted on the substrate 9 and a light-shielding plate 41 is provided between the two elements to prevent the two elements from directly affecting each other. Enclosed. A sensor head 42 is bonded and laminated thereon, and the sensor head 42 is obtained by inserting a light-emitting side optical fiber 44 and a light-receiving side optical fiber 45 into a resin 43, and the optical fibers 44 and 45 penetrate the resin 43. Both end surfaces are exposed as part of the upper and lower surfaces of the resin 43.
[0013]
FIG. 1B is a front view as seen from the left front side of FIG. 1A, and FIG. 1C is a top view of FIG. As shown in these drawings, the light-emitting element 2 and the light-receiving element 3 are die-bonded to the conductive pattern 15 of the substrate 9 and wire-bonded with a metal wire 13. Reference numeral 16 denotes a terminal electrode on the upper surface of the substrate, which is connected to a terminal electrode provided on the lower surface of the substrate 9 by a conductive portion 12 on the side surface of the substrate, which is not visible in the drawing. The terminal electrode on the lower surface of the substrate is for mounting the reflective photosensor on a circuit board of another device, and thus the reflective photosensor of the present invention is in a form suitable for surface mounting on a circuit board. The conductive part 12 has a conductive film on the surface of the arc-shaped depression provided at the edge of the substrate 9, but in the manufacturing process, this part was a full-circular through hole.
[0014]
As shown in the figure, the optical fibers 44 and 45 intersect at a certain angle, and the end face of the optical fiber faces the light emitting element 2 and the light receiving element 3 at the joint surface of the sensor head 42 and the sealing resin 11, respectively. On the upper surface of the sensor head 42, the end faces of the optical fibers are close to each other and are almost adjacent to each other. As a result, when the upper surface of the sensor head 42 is brought close to the object to be detected, the light emitted from the light emitting element 2 irradiates the surface of the object through the optical fiber 44 and the reflected light enters from the end face of the adjacent optical fiber 45 and enters the sensor. Then, the light receiving element 3 detects the light.
[0015]
As a feature of the present invention, the two optical fibers 44 and 45 are arranged as follows. That is, as shown in FIG. 1C, when assuming two planes parallel to each other through the axes of the optical fibers 44 and 45, the distance a between the two planes is the sum of the radii of the two optical fibers. Therefore, if the diameters of both optical fibers are the same, a is equal to or larger than the diameter. In short, when both optical fibers are extended, they pass each other without colliding with each other. The crossing angle of the two optical fibers is arbitrarily determined in consideration of the focal length, light conversion efficiency, and the like. By adopting this configuration, a very convenient manufacturing method becomes possible as will be described later.
[0016]
In the embodiment of the reflective photosensor of FIG. 1, the light-transmitting sealing resin 11 layer enclosing the light emitting element 2 and the light receiving element 3 is exposed on the side surface of the reflective photosensor. A part of the light emitted from the light or returned to the light receiving element 3 may be scattered by the sealing resin 11 and leak from the side surface. The second embodiment shown in FIG. 2 eliminates such leakage to increase the light utilization efficiency and detection sensitivity and prevent interference with other components. Here, a light shielding frame 46 made of a light shielding resin is provided on the substrate 9 so that the sealing resin 11 is not exposed to the side surface of the optical sensor. The light shielding frame 46 has two large through holes. The light emitting element 2 and the light receiving element 3 are accommodated in the respective holes, and the sealing resin 11 is filled in these holes to enclose each element. This eliminates light leakage from the side surface of the optical sensor. The portion of the wall between the two through holes of the light shielding frame 46 prevents the light emitting element 2 and the light receiving element 3 from directly acting like the light shielding plate 41 in FIG.
[0017]
FIG. 3 shows a third embodiment of the present invention, which similarly has a structure for preventing light leakage from the side surface of the optical sensor. Although including the configuration of the first embodiment of FIG. 1 as it is, the light shielding film 47 made of a thin layer of a light shielding material is coated on the surface of the sealing resin appearing on the side surface of the optical sensor. The light shielding film 47 is, for example, a nickel plating film by electroless plating, thereby preventing light leakage.
[0018]
Next, the manufacturing method of the reflective optical sensor of the present invention will be described with reference to FIG.
In FIG. 4, first, a large aggregate substrate 51 is prepared. This is a structure in which a large number of regions that become individual reflection type photosensors are arranged in a matrix in the vertical and horizontal directions when completed, and are provided with conductive patterns 15 and through holes 52, which are divided by vertical and horizontal dividing lines 53 and 54. The section corresponds to one reflection type photosensor. Then, the light emitting element 2 group and the light receiving element 3 group are die-bonded to the conductive pattern 15 and wire-bonded with the metal wire 13. The material of the collective substrate is an epoxy resin with glass fiber mixed with black pigment, and for example, if the collective substrate has a dimension of 100 to 200 mm square, it can be divided into about 1,000 reflective optical sensors. .
[0019]
Next, the collective light shielding plate 55 is bonded to the collective substrate 51. The collective light shielding plate 51 is a molded product of light shielding resin and has a frame shape with a number of horizontal bars 55a, and the portion of the horizontal bars 55a later becomes the light shielding plate 41 of FIG. What is indicated by a two-dot chain line 56 on the collective substrate 51 is an alignment position of the collective light shielding plate 55. One section on the collective substrate 51 includes one light-emitting element 2 and one light-receiving element 3, and is arranged separated by a horizontal bar 55 a of the collective light shielding plate 55.
[0020]
Next, a light-transmitting resin such as an epoxy resin is injected between the horizontal bars 55 a of the collective light shielding plate 55 bonded onto the collective substrate 51 and filled to the same height as the upper surface of the collective light shield plate 55. Since the aggregate light shielding plate 55 is higher than the height including the metal wire 13 of the light-emitting element 2 and the light-receiving element 3 that are wire-bonded, each element including the metal line is completely filled by filling the resin in this way. Encapsulated in resin. The resin thus filled becomes the sealing resin 11 in FIG. When the sealing resin is injected, a process such as closing the through hole with a tape material is performed as necessary so that the resin does not flow out of the through hole 52 of the collective substrate 51.
[0021]
Next, after the sealing resin is filled between the horizontal bars 55a of the collective light shielding plate 55, the collective sensor head 57 is bonded. The collective sensor head 57 is a rectangular parallelepiped having a number of sensor heads 42 shown in FIG. Accordingly, the collective sensor head 57 includes a plurality of pairs of light-emitting side optical fibers 44 and light-receiving side optical fibers 45. The assembly substrate 55 is filled with a sealing resin, and an adhesive is applied. The assembly sensor heads 57 are arranged and bonded together while aligning the lower end surfaces of the optical fibers 44 and 45 with the light emitting element 2 and the light receiving element 3. The adhesive is applied to the upper surface of the sealing resin at a position away from the light-emitting element 2 and the light-receiving element 3 so that the adhesive does not adhere to the lower end surfaces of the optical fibers 44 and 45. The adhesive may be applied by an arbitrary method, but it is convenient to apply the adhesive by applying a mask material on the sealing resin surface so that the adhesive does not adhere to unnecessary portions. It may be by screen printing. In FIG. 4, one section of the collective sensor head 57 divided by the dividing lines 53a and 54a becomes one sensor head 42 in FIG.
[0022]
Dicing is performed by cutting an assembly in which the assembly substrate 51, the assembly light shielding plate 55, and the assembly sensor head 57 are laminated together with a sealing resin filling process along the dividing lines 53 and 54 (that is, 53a and 54a). If it does, each small piece obtained will be a finished product of a reflection type photosensor. The through hole 52 provided in the collective substrate 51 of FIG. 4 becomes the conductive part 12 in which the conductive material is covered in the depression in the finished product of FIG. Thus, the reflection type photosensor of the present invention can be manufactured very efficiently by taking a large number of pieces.
[0023]
The above description is the manufacturing method of the first embodiment shown in FIG. 1, but the second embodiment including the light shielding frame 46 of FIG. 2 is also manufactured by the same process using the assembly parts. Is done. In this case, however, the collective light shielding frame 58 shown in FIG. 5 is used instead of the collective light shielding plate 55 shown in FIG. This has a lattice shape and a number of windows, and one section by dividing lines 53b and 54b is one finished product. The light shielding frame 58 is bonded to the collective substrate 51 of FIG. 4, the sealing resin is filled in the window frame, and the light emitting element 2 and the light receiving element 3 are sealed. Then, if an assembly in which the assembly sensor head 57 is joined as described above is made and diced, the assembly light shielding frame 58 is separated by the dividing lines 53b and 54b in FIG. 5, and the periphery of the sealing resin 11 as shown in FIG. A reflective optical sensor surrounded by the light shielding frame 46 and free of light leakage is obtained.
[0024]
As shown in FIG. 3, the reflection type photosensor in which the side surface of the sealing resin 11 is covered with the light shielding film 47 is manufactured by using the sealing method appearing on the side surface of the single product manufactured by the above-described method. Although the surface of the stop resin 11 may be coated with a light shielding film, it is much more efficient to include it in the collective substrate process. Similar to the embodiment of FIG. 1, the process up to stacking the assembly parts is performed by the process shown in FIG. 4. When the assembly in which the assembly parts are laminated is completed, first, the assembly sensor head 57 and the sealing resin layer below the assembly sensor head 57 are half-diced along the dividing lines 53a and 54a from the top until reaching the substrate. As a result, the collective substrate 51 is still integrated, but the sealing resin and the sensor head have side surfaces, so that the aggregate is immersed in a plating solution by electroless nickel plating to form a nickel coating, etc. A light shielding film 47 is formed on the side surface of the sealing resin 11 as shown in FIG.
[0025]
At this time, unnecessary portions of the light shielding film are masked. For example, a mask sheet material is provided on the back surface of the collective substrate 21 so that the terminal electrode on the back surface of the collective substrate and the conductive portion on the inner surface of the through hole are not covered with the light shield film material. Affix such as. Although the upper surface of the sensor head is not provided with a light-shielding film, this surface may be masked to prevent plating, or a method of removing the plating layer by etching or the like after plating together with the side surface. The light shielding film 47 is required on the side surface of the reflection type photosensor as shown in FIG. 3, but it is inconvenient to mask the side surface of the sensor head 42 to prevent plating. Since there is no need to prevent it, a light shielding film may be formed on the side surface of the optical sensor including the sensor head 42. Thereafter, if the collective substrate 51 is fully diced according to the dividing lines 53 and 54, the reflection type photosensor of FIG. 3 is completed.
[0026]
As shown in FIG. 1 to FIG. 3, the sensor head 42 of the reflection type photosensor of the present invention is formed by inserting optical fibers 44 and 45 into a dice-shaped resin 43, but the collective substrate 51 shown in FIG. 4 is used. The collective sensor head 57 in which a number of sensor heads are connected is used in the manufacturing process, and a method for manufacturing the collective sensor head 57 will be described below. First, as shown in FIG. 6, a collective sensor head plate 59 in which an optical fiber 44 group and a 45 group having a length several times the optical fiber included in the finished product of the reflection type optical sensor is insert-molded in the resin 43 is manufactured. FIG. 4A is a top view and FIG. 4B is a front view.
[0027]
The optical fibers 44 and the optical fibers 45 are parallel to each other with a constant spacing, and the optical fiber 44 group and the optical fiber 45 group intersect at a constant angle. The angle of intersection is the same as the angle of intersection of the optical fiber 44 and the optical fiber 45 in FIG. The dividing line 60 is drawn in FIG. 6B. This is a group of parallel lines passing through the intersection of the optical fiber groups as viewed from the front and a group of parallel lines in the middle, and the interval between the dividing lines 60 is uniform. The pitch of the parallel optical fiber groups along the dividing line 60 is set equal to the interval between the dividing lines 54 of the collective substrate 51 in FIG. .
[0028]
The thickness of the collective sensor head plate 59 appearing in FIG. 6A is equal to the vertical width of the reflective photosensor in FIG. The distance a in FIG. 6A is the distance between the plane including the axis of the optical fiber 44 group and the plane including the axis of the optical fiber 45 group, which is the same as a in FIG. The optical fibers 44 and 45 are substantially in contact with each other and intersect each other. Such a collective sensor head plate 59 is manufactured by injecting and solidifying a resin into a molding die or container in which the optical fiber 44 group and the optical fiber 45 group are mounted so as to intersect each other.
[0029]
Next, the collective sensor head plate 59 is cut along the dividing line 60 with a cutter. This cutting is performed precisely because it also serves to finish the end face of the optical fiber that appears on the cut surface. If a plurality of collective sensor head plates 59 that are stacked and fixed are cut, they can be cut efficiently.
[0030]
In the rectangular parallelepiped pieces obtained by cutting the collective sensor head plate 59 along the dividing line 60, 1, 2, 3,. . . When the odd-numbered ones are turned upside down, and the rectangular parallelepipeds are shifted to the left and right as shown in FIG. 7, the parts divided by the vertical dividing lines 61 are the same, 1 This corresponds to one sensor head. Therefore, each rectangular parallelepiped of FIG. 7 becomes the collective sensor head 57 used in the collective substrate process of FIG. Thus, the collective sensor head plate 59 as shown in FIG. 6 is made and divided, whereby the collective sensor head 57 can be efficiently manufactured. 6B is defined as a parallel line group passing through the intersection of the optical fiber groups as viewed from the front as described above and a parallel line group in the middle thereof, the corresponding parallel lines are defined as the division line 60. Although it can be drawn in the vertical direction perpendicular to, it is obvious which one should be taken.
[0031]
The collective sensor head block 62 of FIG. 8 further advances the idea of the collective sensor head plate 59 of FIG. This is a resin block in which optical fibers 44 and 45 are inserted in such a manner that multiple sensor head plates 59 are stacked and integrated. 8A is a top view and FIG. 8B is a front view. As shown in FIG. 8A, the optical fiber 44 group and the 45 group intersect to form a pair. If this collective sensor head block 62 is cut along the dividing line 60 and further cut along the dividing line 63, a large number of collective sensor heads 57 used in the process of FIG. 4 are obtained.
[0032]
When the collective sensor head block 62 of FIG. 8 is used, the sensor head collective parts used in the collective substrate process of FIG. 4 are not divided by the dividing line 63 of FIG. What is necessary is just to use the plate-shaped thing only divided | segmented by the line 60 upside down like the case of the collective sensor head board 59 of the above-mentioned FIG. Although this is also plate-shaped, it is different from the collective sensor head plate 59 of FIG. 6 and spreads in a direction orthogonal thereto. The collective sensor heads 57 group depicted in FIG. 4 are separate and separated by a groove along the dividing line 53a. However, when a plate-like member as described above is used, the collective sensor head is connected and has no groove. The head plate is bonded onto the collective light shielding plate 55, and when the assembly is diced, the sensor head layer is also cut in the direction along the dividing line 53a.
[0033]
According to the collective sensor head block 62 of FIG. 8, a collective part including a large number of sensor heads can be obtained by one molding, but at the same time, a molding die or a container becomes complicated, and it is troublesome to attach an optical fiber thereto. In general, this method is not always advantageous. Whether to use the collective sensor head plate 59 of FIG. 6 or the collective sensor head block 62 of FIG. 8 should be determined according to the actual situation.
[0034]
As mentioned above, although the circuit component completed as a reflection type optical sensor was demonstrated, the circuit component which makes a reflection type optical sensor a part of structure also exists. For example, there is a circuit component called an optical microphone, which is configured to include a reflective optical sensor and a vibrating membrane that is an object to be detected arranged near the sensor head. It is converted and processed. The reflection type optical sensor and the manufacturing method thereof according to the present invention extends to a part including a reflection type optical sensor as a part of the configuration, such as an optical microphone.
[0035]
【The invention's effect】
As described above, since the reflection type optical sensor obtained by the present invention forms an optical path with an optical fiber, the light utilization efficiency is improved and a high-performance optical sensor is obtained. Moreover, it is simple in structure and suitable for miniaturization and thinning. Also, for manufacturing, it proceeds with manufacturing using collective parts such as collective boards, and finally cuts and divides to obtain a large number of products at once. Productivity is high and manufacturing costs can be reduced.
As described above, according to the present invention, it is possible to inexpensively provide a reflective optical sensor that is ultra-compact, high-performance, highly reliable, and suitable for surface mounting.
[Brief description of the drawings]
FIG. 1 is a perspective view of a reflective optical sensor of the present invention, in which (A) is a perspective view, (B) is a front view, and (C) is a top view.
FIG. 2 is a perspective view perspectively showing another reflective optical sensor of the present invention.
FIG. 3 is a perspective view showing still another reflective optical sensor of the present invention in a perspective manner.
FIG. 4 is a perspective view showing a manufacturing method of the reflective photosensor of the present invention.
FIG. 5 is a perspective view of a collective light shielding frame used for manufacturing the reflection type photosensor of the present invention.
6A and 6B show a collective sensor head plate used for manufacturing the reflective optical sensor of the present invention, in which FIG. 6A is a top view and FIG. 6B is a front view.
7 is a collective sensor head obtained by dividing the collective sensor head plate of FIG.
FIGS. 8A and 8B show a collective sensor head block used for manufacturing the reflective optical sensor of the present invention, in which FIG. 8A is a top view and FIG. 8B is a front view.
FIG. 9 is a principle configuration diagram of a reflective photosensor.
10A and 10B show a conventional reflective optical sensor, in which FIG. 10A is a perspective view and FIG. 10B is a cross-sectional view taken along line BB in FIG.
11A and 11B show another conventional reflective optical sensor, in which FIG. 11A is a perspective view and FIG. 11B is a cross-sectional view taken along the line BB of FIG.
FIG. 12 is a drawing of still another conventional reflective optical sensor.
[Explanation of symbols]
2 Light emitting element
3 Light receiving element
8 windows
9 Board
10, 46 Shading frame
11 Sealing resin
12 Conductive part
14, 47 Light-shielding film
15 Conductive pattern
16 terminal electrode
21, 42 Sensor head
25, 26, 44, 45 Optical fiber
41 Shading plate
43 resin
51 Assembly board
52 Through hole
55 Collective shading plate
57 Collective sensor head
58 collective shading frame
59 Collective sensor head plate
62 Collective sensor head block

Claims (2)

回路基板に発光素子、受光素子および両光素子を隔てる遮光板を搭載して両光素子を封止樹脂中に封入し、その上に、樹脂中に発光側光ファイバーと受光側光ファイバーを該樹脂の上下面を貫通して埋設したセンサヘッドを積層した構造であって、
前記2本の光ファイバーの端面がセンサヘッドの表面では接近し、反対側の前記封止樹脂との接合面では互いに離れていてそれぞれ前記発光素子および受光素子に面しており、両光ファイバーの軸線をそれぞれ含む平行な2平面方向への両軸線の投影が一定の角度をなしていて、かつ、これら2平面間の距離が両光ファイバーの半径の和以上である反射型光センサの製造方法であって、
多数の製品領域を行列状に含む集合基板に発光素子群と受光素子群を実装し、同一製品領域にある発光素子と受光素子を隔てる遮光板の部分を集合的に有する集合遮光板を集合基板上に接着し、集合基板上に上記集合遮光板とほぼ同高さに透光性の封止樹脂を充填して前記発光素子群および受光素子群を封入し、上記集合遮光板と封止樹脂上に、反射型光センサ1個当たり2本の光ファイバーを樹脂に封入したセンサヘッドの複数個分を含む集合センサヘッドを所要の数だけ接着し、こうして得た集合体を縦横に切断して製品を多数個取りする反射型光センサの製造方法において、
前記集合センサヘッドは複数個のセンサヘッドが1列につながったものであって、長さが完成寸法の何倍もある2組の光ファイバー群を、各光ファイバー群の軸線がそれぞれ同一平面に含まれて互いに平行で一定間隔であり、両光ファイバー群の軸線を含む2平面が互いに平行で、かつ両平面間の距離が二つの光ファイバー群のそれぞれに属する光ファイバーの半径の和以上であり、上記2平面方向への両光ファイバー群の投影が一定角度で交差するように型または容器内に支持し、これに樹脂を充填、固化して板状にし、上記投影における光ファイバーの交点を通る平行線群および該平行線群の中間を通る平行線群に沿って切断して得ることを特徴とする反射型光センサの製造方法。
A light-emitting element, a light-receiving element, and a light-shielding plate that separates both optical elements are mounted on a circuit board, and both the optical elements are sealed in a sealing resin. It is a structure in which sensor heads embedded through the upper and lower surfaces are laminated,
The end surfaces of the two optical fibers are close to each other on the surface of the sensor head, and are separated from each other at the joint surface with the sealing resin on the opposite side to face the light emitting element and the light receiving element, respectively. projection of both axes of the two parallel plane directions including each have without a certain angle, and the distances between the two planes in the manufacturing method of the reflection-type optical sensor Ru der than the sum of the radii of the two optical fibers There,
A light-emitting element group and a light-receiving element group are mounted on a collective substrate that includes a large number of product areas in a matrix, and a light-shielding plate portion that collectively separates the light-emitting elements and the light-receiving elements in the same product area. Adhering onto the assembly substrate, filling the light-transmitting element group and the light-receiving element group by filling a light-transmitting sealing resin on the collective substrate at substantially the same height as the collective light-shielding plate, and sealing the collective light-shielding plate and the sealing resin On top, the required number of sensor heads including a plurality of sensor heads in which two optical fibers are encapsulated in resin per reflective optical sensor are adhered, and the resulting assembly is cut vertically and horizontally. In the manufacturing method of the reflective optical sensor that takes a large number of
The collective sensor head includes a plurality of sensor heads connected in a line, and includes two optical fiber groups each having a length that is many times the completed dimension, and the axis of each optical fiber group is included in the same plane. The two planes including the axes of the two optical fiber groups are parallel to each other, and the distance between the two planes is equal to or greater than the sum of the radii of the optical fibers belonging to the two optical fiber groups. The projections of the two optical fiber groups in the direction are supported in a mold or a container so that they intersect at a constant angle, filled with resin, solidified into a plate, and parallel lines passing through the intersection of the optical fibers in the projection, A method of manufacturing a reflective optical sensor, comprising: cutting along a parallel line group passing through the middle of the parallel line group.
請求項1に記載の反射型光センサの製造方法において、
前記集合センサヘッドは複数個のセンサヘッドが、前記のように1列ではなく、縦横に行列状につながったものであって、長さが完成寸法の何倍もある2組の光ファイバー群を、各光ファイバー群の軸線がそれぞれ同一平面に含まれて互いに平行で一定間隔であり、両光ファイバー群の軸線を含む2平面が互いに平行で、かつ両平面間の距離が二つの光ファイバー群のそれぞれに属する光ファイバーの半径の和以上であり、上記2平面方向への両光ファイバー群の投影が一定角度で交差するように支持することを、前記2組の光ファイバー群のさらに複数組について、所定の間隔で平行に並べて行って型または容器内に支持し、これに樹脂を充填、固化してブロック状にし、上記投影における光ファイバーの交点を通る平行平面群および該平行平面群の中間を通る平行平面群に沿って切断して得ることを特徴とする反射型光センサの製造方法。
In the manufacturing method of the reflection type photosensor according to claim 1,
In the collective sensor head, a plurality of sensor heads are connected in a matrix form vertically and horizontally instead of in a single row as described above. The axes of each optical fiber group are included in the same plane and are parallel to each other at a constant interval, the two planes including the axes of both optical fiber groups are parallel to each other, and the distance between both planes belongs to each of the two optical fiber groups It is equal to or greater than the sum of the radii of the optical fibers, and supports that the projections of both optical fiber groups in the two plane directions intersect at a constant angle in parallel with a plurality of the two optical fiber groups at a predetermined interval. Are arranged side by side and supported in a mold or container, filled with resin, solidified into a block, and parallel plane groups passing through the intersections of the optical fibers in the projection and the plane. Method for producing a reflective optical sensor, characterized in that obtained by cutting along a plane parallel group through the group of planes intermediate.
JP19241099A 1999-07-06 1999-07-06 Reflective optical sensor and manufacturing method thereof Expired - Lifetime JP4246855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19241099A JP4246855B2 (en) 1999-07-06 1999-07-06 Reflective optical sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19241099A JP4246855B2 (en) 1999-07-06 1999-07-06 Reflective optical sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001024213A JP2001024213A (en) 2001-01-26
JP4246855B2 true JP4246855B2 (en) 2009-04-02

Family

ID=16290863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19241099A Expired - Lifetime JP4246855B2 (en) 1999-07-06 1999-07-06 Reflective optical sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4246855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463569A (en) * 2014-06-16 2017-02-22 日东电工株式会社 Optical sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006753A (en) * 2002-04-05 2004-01-08 Canon Inc Package for optical semiconductor
CN100392460C (en) 2003-03-13 2008-06-04 富士通株式会社 Optical transceiver module and method of manufacturing the module
WO2004104666A1 (en) 2003-05-23 2004-12-02 Fujitsu Limited Optical element, optical transmission unit and optical transmission system
JP4997632B2 (en) * 2007-03-26 2012-08-08 学校法人慶應義塾 Liquid surface viscoelasticity measuring head and liquid surface viscoelasticity measuring apparatus using the same
DE102008029467A1 (en) * 2008-06-20 2009-12-24 Osram Opto Semiconductors Gmbh Semiconductor device, use of a semiconductor device as a proximity sensor and method for detecting objects
JP5547531B2 (en) * 2010-03-29 2014-07-16 旭光電機株式会社 Object detection device
WO2017179507A1 (en) * 2016-04-14 2017-10-19 株式会社村田製作所 Optical sensor
JP2018182253A (en) * 2017-04-21 2018-11-15 株式会社村田製作所 Light sensor
JP2019046981A (en) * 2017-09-01 2019-03-22 株式会社村田製作所 Optical sensor device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463569A (en) * 2014-06-16 2017-02-22 日东电工株式会社 Optical sensor

Also Published As

Publication number Publication date
JP2001024213A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JPH11289105A (en) Photoreflector and manufacture thereof
JP4246855B2 (en) Reflective optical sensor and manufacturing method thereof
TW508843B (en) Chip type light emitting diode and method of manufacture thereof
JPH09129780A (en) Ic package, the optical sensor ic package, and assembling method for packages
CN101821915A (en) Photoelectric conversion module, method for assembling same, and photoelectric information processing device using same
CN105206627A (en) Optical sensor and manufacturing method thereof
JP2006005141A (en) Optical semiconductor package and method of manufacturing the same
CN109065560A (en) The packaging method and encapsulating structure of image sensing chip
JP4255173B2 (en) Optical microphone and manufacturing method thereof
JPH1187740A (en) Formation method for surface mounted component
JP2000098192A (en) Optical reception module
JPH11274550A (en) Surface mount type photo interrupter and manufacture thereof
JP3193780B2 (en) Manufacturing method of reflection type optical coupling device
JP2009042469A (en) Optical module, method of manufacturing optical module, optoelectronic composite circuit composed by using optical module and method of manufacturing the same
JP3590729B2 (en) Optical coupling device
CN111128897B (en) Photoelectric detector
JP5255950B2 (en) Manufacturing method of optical semiconductor device
CN102208401A (en) LED (Light-emitting diode) light strip
KR102459822B1 (en) semiconductor device
JPH11145508A (en) Photo-interrupter and manufacture thereof
JP2000269544A (en) Light emitting/receiving element and manufacture of the same
JP2001326382A (en) Reflective photosensor and manufacturing method thereof
JP4246803B2 (en) Method of forming spacer for semiconductor device, method of forming device including semiconductor device, and method of forming surface mount photocoupler
JPH0620159B2 (en) Method for manufacturing optical semiconductor device
JPH11145506A (en) Photo-interrupter and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

R150 Certificate of patent or registration of utility model

Ref document number: 4246855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term