JP5255950B2 - Manufacturing method of optical semiconductor device - Google Patents

Manufacturing method of optical semiconductor device Download PDF

Info

Publication number
JP5255950B2
JP5255950B2 JP2008207162A JP2008207162A JP5255950B2 JP 5255950 B2 JP5255950 B2 JP 5255950B2 JP 2008207162 A JP2008207162 A JP 2008207162A JP 2008207162 A JP2008207162 A JP 2008207162A JP 5255950 B2 JP5255950 B2 JP 5255950B2
Authority
JP
Japan
Prior art keywords
light
resin layer
light emitting
light receiving
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008207162A
Other languages
Japanese (ja)
Other versions
JP2010045107A (en
Inventor
直司 出村
文雄 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2008207162A priority Critical patent/JP5255950B2/en
Publication of JP2010045107A publication Critical patent/JP2010045107A/en
Application granted granted Critical
Publication of JP5255950B2 publication Critical patent/JP5255950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Description

本発明は、発光素子と受光素子とが、その発光面および受光面を同じ方向に向けて並べて配置され、発光素子から放射された光が対象物で反射して受光素子により検出することにより、対象物を検出する光半導体装置の製造方法に関する。さらに詳しくは、たとえばバーコードなどの微細なパターンを正確に読み取ることができる高分解能の光半導体装置を、金型を用いることなく、簡単に製造することができる光半導体装置の製造方法に関する。   In the present invention, the light emitting element and the light receiving element are arranged with the light emitting surface and the light receiving surface aligned in the same direction, and the light emitted from the light emitting element is reflected by the object and detected by the light receiving element, The present invention relates to a method of manufacturing an optical semiconductor device that detects an object. More specifically, the present invention relates to a method of manufacturing an optical semiconductor device that can easily manufacture a high-resolution optical semiconductor device that can accurately read a fine pattern such as a barcode without using a mold.

従来の発光素子と受光素子とを同じ方向に向けて配置し、発光素子から放射された光が対象物で反射して受光素子で検出する、いわゆるフォトリフレクタと呼ばれる光半導体装置は、ある程度の量産をする場合、2重モールド方式で製造されている。すなわち、基板上に発光素子と受光素子とをダイボンディングし、ワイヤボンディングなどにより、発光素子および受光素子の各電極を基板上の電極端子(配線)と接続して透光性樹脂により封止するため、1次モールドを行う。そして、発光素子および受光素子の発光面および受光面とする部分を除いて、発光素子および受光素子を被覆する透光性樹脂層の周囲を、再度遮光性樹脂によりモールド成形して(2次モールド)、外部からの光や、対象物で反射する以外の発光素子からの光が直接受光素子に入射しないように形成される。この際、高分解能を必要とされるフォトリフレクタは、発光素子の光が直接受光素子に到達しないように、その間に遮光壁を形成する構造が採用されている(たとえば特許文献1参照)。
特開2006−38572号公報
An optical semiconductor device called a so-called photoreflector, in which a conventional light-emitting element and light-receiving element are arranged in the same direction and the light emitted from the light-emitting element is reflected by an object and detected by the light-receiving element, is produced to a certain extent in mass production. In the case of performing, the double mold method is used. That is, a light emitting element and a light receiving element are die-bonded on a substrate, and each electrode of the light emitting element and the light receiving element is connected to an electrode terminal (wiring) on the substrate by wire bonding or the like and sealed with a translucent resin. Therefore, a primary mold is performed. Then, except for the light emitting surface and the light receiving surface of the light emitting element and the light receiving element, the periphery of the translucent resin layer covering the light emitting element and the light receiving element is again molded with a light shielding resin (secondary mold). ), Light from the outside or light from a light emitting element other than that reflected by an object is not directly incident on the light receiving element. At this time, a photo reflector that requires high resolution employs a structure in which a light-shielding wall is formed therebetween so that light from the light-emitting element does not directly reach the light-receiving element (see, for example, Patent Document 1).
JP 2006-38572 A

前述のように、2重モールド方式で成形すると、1種類の製品に対して2種類の金型が必要となり、少品種で大量生産をする場合には、金型作製費を回収することができるが、多品種少量生産の場合には、金型費が嵩み、光半導体装置(フォトリフレクタ)のコストアップになるという問題がある。   As described above, when the double mold method is used, two types of molds are required for one type of product, and in the case of mass production with a small number of products, it is possible to recover the mold production costs. However, in the case of high-mix low-volume production, there is a problem that the mold cost increases and the cost of the optical semiconductor device (photo reflector) increases.

たとえば、ただ単に対象物の有無を検出するフォトリフレクタのような光半導体装置なら、光半導体装置を製造する場合に、発光素子と受光素子との位置関係などに関して、それほど精密さを必要としないが、精細なバーコードの検出など高分解能を必要とする光半導体装置では、ノイズの影響などを極力排除し、かつ、発光素子からの光で対象物により反射した光を確実に受光素子で受光することが非常に重要となり、ノイズなどが入らないように、相当精密に製造する必要がある。このような精密さを必要とする高分解能の光半導体装置は、金型成形による2重モールド方式で製造することが望ましいが、使用用途により外形の大きさが若干異なったり、発光面および受光面のレンズ形成の有無により異なったりするような場合、一々金型を変更しなければならず、前述のように2重モールド方式では1つの製品に対して2つの金型を必要とするため、しかも金型費用は非常に高価であるため、多品種少量生産の場合には、非常にコストアップになるという問題がある。   For example, an optical semiconductor device such as a photoreflector that simply detects the presence or absence of an object does not require so much precision regarding the positional relationship between the light emitting element and the light receiving element when manufacturing the optical semiconductor device. In optical semiconductor devices that require high resolution, such as fine bar code detection, the influence of noise is eliminated as much as possible, and the light reflected by the object is reliably received by the light receiving element. This is very important, and it is necessary to manufacture the product with considerable precision so that noise and the like do not enter. A high-resolution optical semiconductor device that requires such precision is preferably manufactured by a double molding method by mold molding, but the size of the outer shape differs slightly depending on the intended use, and the light emitting surface and light receiving surface If there is a difference in the presence or absence of lens formation, the mold must be changed one by one. As described above, the double mold method requires two molds for one product. Since the mold cost is very expensive, there is a problem that the cost is very high in the case of multi-product small-volume production.

本発明は、このような問題を解決するためになされたもので、高分解能で高性能な光半導体装置を、金型を用いることなく、簡単に製造することができる光半導体装置の製造方法を提供することを目的とする。   The present invention has been made to solve such a problem, and provides an optical semiconductor device manufacturing method capable of easily manufacturing a high-resolution and high-performance optical semiconductor device without using a mold. The purpose is to provide.

本発明による光半導体装置の製造方法は、集合基板上に発光素子および受光素子の組を複数組搭載すると共に、該発光素子および受光素子の電極を前記集合基板上の電極端子と接続し、前記複数組の発光素子および受光素子を一体に被覆するように、前記集合基板の周囲に第1のダムを形成して透光性樹脂を流し込むことにより透光性樹脂層を形成し、前記発光素子および受光素子の組の発光面および受光面が突出形状となるように前記透光性樹脂層の一部を切削することにより凸型部を形成すると共に、前記発光素子および受光素子の組のそれぞれの前記発光素子と前記受光素子との間、および前記発光素子および受光素子の各組の境界部における前記透光性樹脂層に前記基板に達する溝を形成した後、前記集合基板の周囲に第2のダムを形成して該溝内を含め前記透光性樹脂の周囲を被覆するように遮光性樹脂層を流し込み、前記透光性樹脂層の前記凸型の表面が露出するように前記遮光樹脂層の上面を研削することにより、前記凸型部の上面を露出させながら該凸型部の側面を前記遮光性樹脂層で被覆し、その後前記発光素子および受光素子の各組の境界部の前記遮光性樹脂層を、前記発光素子および受光素子の各組の側壁に前記遮光性樹脂層が残存するように切断することにより個片化することを特徴としている。 A method of manufacturing an optical semiconductor device according to the present invention includes mounting a plurality of sets of light emitting elements and light receiving elements on a collective substrate, connecting electrodes of the light emitting elements and light receiving elements to electrode terminals on the collective substrate, A light-transmitting resin layer is formed by forming a first dam around the collective substrate and pouring a light-transmitting resin so as to integrally cover a plurality of sets of light-emitting elements and light-receiving elements, and the light-emitting elements and with the set of light-emitting surface and the light receiving surface of the light receiving element to form a convex portion by cutting a portion of the transparent resin layer so that the collision out shape, the set of light-emitting and light-receiving elements between each of said light emitting element and the light receiving element, and after forming a trench reaching the substrate in the transparent resin layer in each set of the boundary portion of the light emitting element and a light receiving element, around the collective substrate The second dam Form pouring light-shielding resin layer so as to cover the periphery of the translucent resin including the groove and the light-shielding resin layer so that the convex portion surface of the transparent resin layer is exposed By grinding the upper surface, the side surface of the convex part is covered with the light-shielding resin layer while exposing the upper surface of the convex part , and then the light-shielding property of the boundary part of each set of the light emitting element and the light receiving element The resin layer is cut into pieces by cutting so that the light-shielding resin layer remains on the side walls of each set of the light-emitting element and the light-receiving element.

ここに集合基板とは、複数組の発光素子および受光素子の組を同時に形成し得る大きな基板を意味する。また、発光素子および受光素子とは、半導体ウェハからチップ化したベアチップのものが一般的に用いられるが、チップ型素子などの素子の形にパッケージしたものでもよい。要は、光を発光し、または受光する状態に形成されたものであればよく、その外観の形状には制約されない。また、受光素子とは、フォトダイオード、フォトトランジスタなどの他、光を検出し得る素子であれば何でもよい意味である。さらに、電極端子とは、発光素子および受光素子の電極(素子にされている場合にはリードを含む)を中継する部分を意味し、配線などを含む意味である。   Here, the collective substrate means a large substrate on which a plurality of sets of light emitting elements and light receiving elements can be formed simultaneously. As the light emitting element and the light receiving element, a bare chip formed from a semiconductor wafer is generally used, but it may be packaged in the form of an element such as a chip type element. In short, it is sufficient if it is formed so as to emit or receive light, and the shape of its appearance is not limited. The light receiving element means any element other than a photodiode and a phototransistor as long as it can detect light. Further, the electrode terminal means a portion that relays the electrodes of the light emitting element and the light receiving element (including a lead in the case of the element), and includes a wiring and the like.

本発明によれば、発光素子および受光素子を集合基板上に搭載(ダイボンディング)して、その電極を集合基板に形成された電極端子(配線)などと接続した後に、透光性樹脂で全体を被覆してから、発光素子からの光の放射面および受光素子による光の受光面を幅の狭い凸型部の上面にして、その凸型部の側壁を遮光性樹脂により被覆しているため、発光素子から放射された光は凸型部を通ってその上面からのみ放射され、対象物からの反射光のみが受光素子により受光され、発光素子の光が受光素子に直接入り込んだり、外乱光が直接受光素子に入り込んだりすることが抑制され、ノイズが入り込むことなく対象物のパターンを正確に認識することができる。しかも、集合基板上で発光素子および受光素子の組を連続的に並べて、一般的には、ダイボンディングおよびワイヤボンディングをした後に、集合基板上の全面に透光性樹脂を流し込んで封止し、その後研削により透光性樹脂の一部を削って凸型部を形成し、再度全体に遮光性樹脂を流し込んで凸型部の上面が露出するように遮光性樹脂の上面を研削するだけで製造することができるため、2回の樹脂の流し込みと研削のみで非常に精密な光半導体装置(フォトリフレクタ)を製造することができる。   According to the present invention, a light emitting element and a light receiving element are mounted on a collective substrate (die bonding), and the electrode is connected to an electrode terminal (wiring) formed on the collective substrate, and then the whole is made of a translucent resin. Since the light emitting surface of the light emitting element and the light receiving surface of the light receiving element are the upper surfaces of the narrow convex portions, and the side walls of the convex portions are covered with a light shielding resin. The light emitted from the light emitting element is emitted only from the upper surface through the convex part, and only the reflected light from the object is received by the light receiving element, and the light from the light emitting element directly enters the light receiving element, or the disturbance light Can be prevented from entering the light receiving element directly, and the pattern of the object can be accurately recognized without noise. Moreover, a set of light emitting elements and light receiving elements is continuously arranged on the collective substrate, and generally, after die bonding and wire bonding, a translucent resin is poured over the entire surface of the collective substrate and sealed, After that, a part of the translucent resin is ground by grinding to form a convex part, and the light-shielding resin is poured again over the entire surface, so that only the upper surface of the light-shielding resin is ground so that the upper surface of the convex part is exposed. Therefore, a very precise optical semiconductor device (photo reflector) can be manufactured only by pouring and grinding the resin twice.

その結果、たとえばバーコードなどの微細なパターンを正確に読み取ることができる高分解能の光半導体装置を、金型を用いた2重モールドで製造することなく、非常に安価に製造することができる。そのため、ユーザによる仕様変更にも直ちに対応することができると共に、多品種少量の生産でも、非常に安価に、かつ、短期間で製造することができるという効果がある。   As a result, for example, a high-resolution optical semiconductor device that can accurately read a fine pattern such as a barcode can be manufactured at a very low cost without being manufactured by a double mold using a mold. Therefore, it is possible to immediately cope with a specification change by the user, and it is possible to produce a variety of products in a small amount and in a short period of time even in the production of small quantities.

つぎに、図面を参照しながら本発明の光半導体装置(フォトリフレクタ)の製造方法について説明する。図1は、本発明の一実施形態である、1個分のフォトリフレクタの製造工程を示す斜視説明図で、図2に実際に製造する集合基板上に複数個のフォトリフレクタを製造する場合の説明図が示されている。   Next, a method for manufacturing an optical semiconductor device (photo reflector) of the present invention will be described with reference to the drawings. FIG. 1 is a perspective explanatory view showing a manufacturing process of one photo reflector according to an embodiment of the present invention. FIG. 2 shows a case where a plurality of photo reflectors are manufactured on a collective substrate to be actually manufactured. An illustration is shown.

まず、図1(a)に示すように、集合基板1上に、発光素子2および受光素子3の組を複数組搭載すると共に、その発光素子2および受光素子3の電極(図示せず)を集合基板1上の図示しない電極端子(配線)と接続する。集合基板1は、たとえば有機基板からなり、発光素子2や受光素子3の電極(素子にされている場合には、素子の電極端子やリード)と接続する電極端子または配線や、外部回路と接続する電極端子や配線が形成されており、複数個のフォトリフレクタを纏めて製造するための大きな基板である。実際には、図2に概略図が示されるように、集合基板1上に、マトリクス状に発光素子2および受光素子3のベアチップの組をダイボンディングして、それぞれの一方の電極を集合基板1の配線などと接続すると共に、それぞれの他方の電極を図示しない電極端子(配線)とワイヤ4をボンディングして接続する。   First, as shown in FIG. 1A, a plurality of sets of light emitting elements 2 and light receiving elements 3 are mounted on the collective substrate 1, and electrodes (not shown) of the light emitting elements 2 and the light receiving elements 3 are mounted. It connects with an electrode terminal (wiring) (not shown) on the collective substrate 1. The collective substrate 1 is made of, for example, an organic substrate, and is connected to an electrode terminal or wiring to be connected to an electrode of the light emitting element 2 or the light receiving element 3 (or an electrode terminal or lead of the element in the case of an element) or an external circuit. Electrode terminals and wiring to be formed are formed, which is a large substrate for manufacturing a plurality of photo reflectors together. Actually, as schematically shown in FIG. 2, a set of bare chips of the light emitting element 2 and the light receiving element 3 is die-bonded on the collective substrate 1 in a matrix, and one electrode of each is attached to the collective substrate 1. The other electrode is connected to an electrode terminal (wiring) (not shown) by bonding the wire 4.

つぎに、図1(b)に示すように、発光素子2、受光素子3およびワイヤ4の部分を透光性樹脂層5により被覆する。透光性樹脂としては、たとえばエポキシ樹脂などを用いることができる。この透光性樹脂層5は図2に示すように、集合基板1の周囲に、たとえば0.5mm程度の高さのダム7を形成し、透光性樹脂を流し込むことにより、ほぼダム7の高さで平らになり、透光性樹脂層5が形成される。   Next, as shown in FIG. 1B, the light emitting element 2, the light receiving element 3, and the wire 4 are covered with a translucent resin layer 5. As the translucent resin, for example, an epoxy resin can be used. As shown in FIG. 2, the translucent resin layer 5 is formed with a dam 7 having a height of, for example, about 0.5 mm around the collective substrate 1. It becomes flat in height and the translucent resin layer 5 is formed.

つぎに、図1(c)に示すように、発光素子2および受光素子3の発光面および受光面が凸型部5aの上面となるように、透光性樹脂層5の発光素子2および受光素子3の上部に、発光素子2と受光素子3とを結ぶ方向に沿って、たとえば0.2〜0.3mm程度の高さで残るように、その両側をたとえばフラットエンドミル8により研削して、凸型部5aを形成する。   Next, as shown in FIG. 1C, the light-emitting element 2 and the light-receiving element of the translucent resin layer 5 so that the light-emitting surface and the light-receiving surface of the light-emitting element 2 and the light-receiving element 3 are the upper surface of the convex portion 5a. Grind both sides with, for example, a flat end mill 8 so as to remain at a height of, for example, about 0.2 to 0.3 mm along the direction connecting the light emitting element 2 and the light receiving element 3 to the upper part of the element 3. The convex part 5a is formed.

その後、図1(d)に示すように、発光素子2および受光素子3の間、および図1(d)には図示されていないが、発光素子2および受光素子3の組の周囲(図2に示す発光素子2および受光素子3の各組の境界部、すなわち個片化のため切断するラインSの部分)の透光性樹脂層5に基板1に達する溝を形成する。発光素子2と受光素子3との間の溝、すなわち遮光溝5bは、発光素子2と受光素子3との間に遮光壁を形成するための溝で、0.2〜0.3mm程度の幅に形成し、素子周囲の溝、すなわち分離溝5cは、個片化のための切断により削り取られる厚さと、切断後に各フォトリフレクタの周囲に、溝内に埋め込んだ遮光性樹脂層6が残存するような幅、すなわち0.3〜0.6mm程度の幅に形成する。この遮光溝5bおよび分離溝5cの深さは、集合基板1の厚さの半分ぐらいまで達するように深く形成する。   Thereafter, as shown in FIG. 1D, between the light emitting element 2 and the light receiving element 3 and around the set of the light emitting element 2 and the light receiving element 3 (not shown in FIG. 1D) (FIG. 2). A groove reaching the substrate 1 is formed in the translucent resin layer 5 in the boundary portion of each set of the light emitting element 2 and the light receiving element 3 shown in FIG. A groove between the light emitting element 2 and the light receiving element 3, that is, the light shielding groove 5b, is a groove for forming a light shielding wall between the light emitting element 2 and the light receiving element 3, and has a width of about 0.2 to 0.3 mm. In the groove around the element, that is, the separation groove 5c, the thickness removed by cutting for separation into individual pieces, and the light-shielding resin layer 6 embedded in the groove remains around each photo reflector after cutting. Such a width, that is, a width of about 0.3 to 0.6 mm is formed. The light shielding grooves 5b and the separation grooves 5c are formed deep so as to reach about half the thickness of the collective substrate 1.

つぎに、図1(e)に示すように、遮光溝5bおよび分離溝5cの溝内を含め透光性樹脂5の周囲を被覆するように遮光性樹脂層6で被覆する。この遮光性樹脂層6の形成も、図2に示す大きな集合基板1の状態で、ダム7の外周にさらに別の図示しないダムを形成し、前述の透光性樹脂層5と同様に、液状の遮光性樹脂を塗り込むことにより、遮光溝5b、分離溝5c内には流れ込み、凹んだ部分にも充填されると共に、表面は平坦になる。この遮光性樹脂として、たとえばエポキシ樹脂に、カーボンブラックのような光を遮断する粉末などを混入したものを用いることができる。また、図示しないダムは、透光性樹脂を塗り込む際に用いたダム7が、遮光溝5bや分離溝5cを形成する際に、切断されていること、透光性樹脂層5よりも若干高く遮光性樹脂層6を形成した方が、表面を平らにしやすいことのため、ダム7の外周に、そのダム7よりも若干(0.1〜0.2mm程度)高くなるように形成するのが好ましい。   Next, as shown in FIG. 1E, the light-shielding resin layer 6 covers the periphery of the translucent resin 5 including the inside of the light-shielding grooves 5b and the separation grooves 5c. The light-shielding resin layer 6 is also formed in the state of the large collective substrate 1 shown in FIG. 2 by forming another dam (not shown) on the outer periphery of the dam 7, and in the same manner as the light-transmitting resin layer 5 described above. By coating the light-shielding resin, it flows into the light-shielding grooves 5b and the separation grooves 5c, fills the recessed portions, and flattens the surface. As this light-shielding resin, for example, epoxy resin mixed with light blocking powder such as carbon black can be used. The dam (not shown) is slightly cut from the transmissive resin layer 5 because the dam 7 used when applying the translucent resin is cut when the light shielding groove 5b and the separation groove 5c are formed. When the high light-shielding resin layer 6 is formed, it is easier to flatten the surface. Therefore, the outer periphery of the dam 7 is formed to be slightly higher (about 0.1 to 0.2 mm) than the dam 7. Is preferred.

その後、図1(f)に示すように、たとえばフラットエンドミルなどにより、遮光性樹脂層6の上面を研削して平坦化させると共に、透光性樹脂層5の前述の凸型部5aの上面を露出させる。その後発光素子2および受光素子3の各組の境界部(図2に示すラインS)で、発光素子2および受光素子3の各組(フォトリフレクタ)の側壁に遮光性樹脂層6が残存するように切断することにより個片化する。その結果、発光素子2および受光素子3の発光面および受光面が、その発光素子2および受光素子3の上部に透光性樹脂層5で形成された凸型部5aの上面とされ、それ以外の外周および発光素子2と受光素子3との間は、遮光性樹脂層6で被覆されたフォトリフレクタが得られる。   Thereafter, as shown in FIG. 1 (f), the upper surface of the light-shielding resin layer 6 is ground and flattened by, for example, a flat end mill, and the upper surface of the convex portion 5 a of the translucent resin layer 5 is flattened. Expose. Thereafter, the light-shielding resin layer 6 remains on the side wall of each pair (photoreflector) of the light emitting element 2 and the light receiving element 3 at the boundary portion (line S shown in FIG. 2) of each pair of the light emitting element 2 and the light receiving element 3. Cut into pieces and cut into pieces. As a result, the light-emitting surface and the light-receiving surface of the light-emitting element 2 and the light-receiving element 3 are the upper surfaces of the convex portions 5a formed by the translucent resin layer 5 on the light-emitting element 2 and the light-receiving element 3, and the others A photo reflector covered with a light-shielding resin layer 6 is obtained between the outer periphery of the light-emitting element and between the light-emitting element 2 and the light-receiving element 3.

以上のように、本発明によれば、透光性樹脂層5と遮光性樹脂層6の2回の樹脂の塗布と、透光性樹脂層5の凸型部5aの形成のための研削、および遮光性樹脂層6の上面の平坦化および凸型部5aの上面の露出のための研削の2回の研削を行うだけで、2重モールドのための金型を全く必要とすることなく、精密な寸法構成のフォトリフレクタを得ることができる。一方、このフォトリフレクタによれば、発光素子2から放射する光は、凸型部5aを通って、その上面から放射し、対象物で反射して戻ってくる光を受光する場合には、受光素子3上の凸型部5aの上面から入射した光のみを受光できるように形成されているため、発光素子2からの光が直接受光素子3に到達してノイズになったり、外光が直接受光素子3に入ってノイズになったりすることが抑制され、非常に高分解能の光半導体装置(フォトリフレクタ)となる。   As described above, according to the present invention, the resin is applied twice for the translucent resin layer 5 and the light-shielding resin layer 6, and the grinding for forming the convex portion 5a of the translucent resin layer 5 is performed. And only by performing two times of grinding for flattening the upper surface of the light-shielding resin layer 6 and exposing the upper surface of the convex mold part 5a, without using a mold for double molding, A photo reflector having a precise dimensional configuration can be obtained. On the other hand, according to this photoreflector, the light emitted from the light emitting element 2 passes through the convex portion 5a, is emitted from the upper surface thereof, and is received when receiving the light reflected by the object and returning. Since it is formed so that only the light incident from the upper surface of the convex portion 5a on the element 3 can be received, the light from the light emitting element 2 reaches the light receiving element 3 directly and becomes noise, or external light directly It is suppressed that the light receiving element 3 enters and becomes noise, and an optical semiconductor device (photo reflector) with very high resolution is obtained.

このような光半導体装置を用いてバーコードを読み込む場合には、凸型部5aの延出方向と直交する方向にバーコードが横切るようにスキャンさせることで、凸型部5aの幅が狭いほど微細なバーコードを読み込むことが可能となる。   When reading a bar code using such an optical semiconductor device, scanning the bar code in a direction perpendicular to the extending direction of the convex part 5a makes the convex part 5a narrower. A fine barcode can be read.

本発明の光半導体装置の製造方法の一実施形態を示す製造工程図である。It is a manufacturing-process figure which shows one Embodiment of the manufacturing method of the optical semiconductor device of this invention. 図1の光半導体装置を製造する際の、大きな集合基板を用いて複数個同時に製造する例の説明図であるFIG. 2 is an explanatory diagram of an example of manufacturing a plurality of optical semiconductor devices of FIG. 1 simultaneously using a large collective substrate.

符号の説明Explanation of symbols

1 集合基板
2 発光素子
3 受光素子
4 ワイヤ
5 透光性樹脂層
5a 凸型部
5b 遮光溝
5c 分離溝
6 遮光性樹脂層
7 ダム
8 エンドミル
S 切断ライン
DESCRIPTION OF SYMBOLS 1 Collective substrate 2 Light emitting element 3 Light receiving element 4 Wire 5 Translucent resin layer 5a Convex part 5b Light shielding groove 5c Separation groove 6 Light shielding resin layer 7 Dam 8 End mill S Cutting line

Claims (1)

集合基板上に発光素子および受光素子の組を複数組搭載すると共に、該発光素子および受光素子の電極を前記集合基板上の電極端子と接続し、前記複数組の発光素子および受光素子を一体に被覆するように、前記集合基板の周囲に第1のダムを形成して透光性樹脂を流し込むことにより透光性樹脂層を形成し、前記発光素子および受光素子の組の発光面および受光面が突出形状となるように前記透光性樹脂層の一部を切削することにより凸型部を形成すると共に、前記発光素子および受光素子の組のそれぞれの前記発光素子と前記受光素子との間、および前記発光素子および受光素子の各組の境界部における前記透光性樹脂層に前記基板に達する溝を形成した後、前記集合基板の周囲に第2のダムを形成して該溝内を含め前記透光性樹脂の周囲を被覆するように遮光性樹脂層を流し込み、前記透光性樹脂層の前記凸型の表面が露出するように前記遮光樹脂層の上面を研削することにより、前記凸型部の上面を露出させながら該凸型部の側面を前記遮光性樹脂層で被覆し、その後前記発光素子および受光素子の各組の境界部の前記遮光性樹脂層を、前記発光素子および受光素子の各組の側壁に前記遮光性樹脂層が残存するように切断することにより個片化することを特徴とする光半導体装置の製造方法。 A plurality of sets of light emitting elements and light receiving elements are mounted on the collective substrate, electrodes of the light emitting elements and light receiving elements are connected to electrode terminals on the collective substrate, and the plural sets of light emitting elements and light receiving elements are integrated. A light-transmitting resin layer is formed by forming a first dam around the collective substrate and pouring a light-transmitting resin so as to cover the light emitting surface and the light receiving surface of the set of the light emitting element and the light receiving element. There together to form the convex portion by cutting a portion of the transparent resin layer so that the collision out shape, and the light emitting element and with each of the light emitting element of the set of the light receiving element and the light receiving element And a groove reaching the substrate is formed in the translucent resin layer at the boundary between the light emitting element and the light receiving element, and then a second dam is formed around the collective substrate . Including the periphery of the translucent resin By pouring the light-shielding resin layer so as to cover the surface of the convex portion of the transparent resin layer is grinding the upper surface of the light-shielding resin layer so as to expose the exposed upper surface of the convex portion Then, the side surface of the convex portion is covered with the light-shielding resin layer, and then the light-shielding resin layer at the boundary of each set of the light emitting element and the light receiving element is covered with the side wall of each set of the light emitting element and the light receiving element. A method of manufacturing an optical semiconductor device, wherein the light-shielding resin layer is cut into pieces so as to remain.
JP2008207162A 2008-08-11 2008-08-11 Manufacturing method of optical semiconductor device Expired - Fee Related JP5255950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207162A JP5255950B2 (en) 2008-08-11 2008-08-11 Manufacturing method of optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207162A JP5255950B2 (en) 2008-08-11 2008-08-11 Manufacturing method of optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2010045107A JP2010045107A (en) 2010-02-25
JP5255950B2 true JP5255950B2 (en) 2013-08-07

Family

ID=42016284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207162A Expired - Fee Related JP5255950B2 (en) 2008-08-11 2008-08-11 Manufacturing method of optical semiconductor device

Country Status (1)

Country Link
JP (1) JP5255950B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099468A (en) * 2012-11-13 2014-05-29 Pioneer Electronic Corp Semiconductor device manufacturing method and semiconductor device
JP6159560B2 (en) * 2013-04-16 2017-07-05 新日本無線株式会社 Manufacturing method of optical semiconductor device
KR102538472B1 (en) * 2018-05-18 2023-06-01 엘지이노텍 주식회사 Lighting module and lighting apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289105A (en) * 1998-04-03 1999-10-19 Citizen Electronics Co Ltd Photoreflector and manufacture thereof
JP2005116670A (en) * 2003-09-18 2005-04-28 New Japan Radio Co Ltd Manufacturing method for light receiving/emitting device
JP4349978B2 (en) * 2004-06-17 2009-10-21 シチズン電子株式会社 Optical semiconductor package and manufacturing method thereof
JP2007201360A (en) * 2006-01-30 2007-08-09 Citizen Electronics Co Ltd Photo-reflector device

Also Published As

Publication number Publication date
JP2010045107A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
CN106469660B (en) Molded range and proximity sensor with optical resin lens
US7457490B2 (en) Micro-optics on optoelectronics
KR100883410B1 (en) Sensor module for mouse and the same method for manufacturing
CN101159279A (en) Semiconductor image sensor die and production method thereof, semiconductor image sensor module, image sensor device, optical device element, and optical device module
KR101069289B1 (en) Image sensor module and mehtod of manufacturing the same
JP2007142042A (en) Semiconductor package, manufacturing method thereof, semiconductor module, and electronic equipment
JP2013036999A (en) Enhanced optical reflective encoder
JP5255950B2 (en) Manufacturing method of optical semiconductor device
JP5164733B2 (en) Optical semiconductor device and manufacturing method thereof
JP2010114114A (en) Reflection-type photointerrupter
KR101457500B1 (en) Proximity ambient light sensor and its manufacturing method
JP2005317878A (en) Photo-reflector device and its manufacturing method
JP2007109851A (en) Photo interrupter
JP4811913B2 (en) Manufacturing method of optical communication module
JP2011165774A (en) Production method of solid-state image pickup device
JP2011176105A (en) Optical device and method of manufacturing the same
TW201414992A (en) Compact spectrometer module and method for manufacturing the same
JP6450569B2 (en) Photo reflector and manufacturing method thereof
CN111180346B (en) Method for manufacturing photoelectric mechanism with retaining wall
KR101605645B1 (en) Photoreception device, and method for producing photoreception device
JP4147171B2 (en) Solid-state imaging device and manufacturing method thereof
CN111656540A (en) Semiconductor device with a plurality of semiconductor chips
JP3140970U (en) Packaging of light sensing module
US20050023489A1 (en) Chip type photo coupler
JP2008226969A (en) Optical communication module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5255950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees