WO2017179507A1 - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
WO2017179507A1
WO2017179507A1 PCT/JP2017/014532 JP2017014532W WO2017179507A1 WO 2017179507 A1 WO2017179507 A1 WO 2017179507A1 JP 2017014532 W JP2017014532 W JP 2017014532W WO 2017179507 A1 WO2017179507 A1 WO 2017179507A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
incident
optical sensor
optical
Prior art date
Application number
PCT/JP2017/014532
Other languages
French (fr)
Japanese (ja)
Inventor
石川 弘樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017179507A1 publication Critical patent/WO2017179507A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Definitions

  • the present invention relates to an optical sensor that includes a light emitting element and a light receiving element arranged side by side, and detects a detection target by receiving light reflected from the light emitting element by the light receiving element.
  • those that detect proximity or illuminance are configured by arranging a light emitting diode (LED) 201 and a photodiode (PD) 202 side by side, as shown in the sectional view of FIG. .
  • LED light emitting diode
  • PD photodiode
  • ICs Highly Integrated Circuits
  • the proximity detection when a reflection object exists above the optical sensor, the light emitted from the LED 201 is reflected by the reflection object, and the reflected light is detected by the PD 202. Based on the amount of reflected light, it is determined whether or not the detection target is approaching the optical sensor, whether or not there is a detection target, and the like.
  • the LED 201 is not illuminated, and ambient light is detected by the PD 202, whereby the illuminance is measured.
  • the PD 202 detects the illuminance.
  • near-infrared wavelengths are used for proximity detection, and light having a wavelength in the visible light region is used for illuminance detection.
  • the smart phone 203 is provided with a proximity detection hole 205 above the display unit 204.
  • the above-described optical sensor is built in the device below the proximity detection hole 205.
  • an ear is placed around the proximity detection hole 205, but the light emitted from the LED 201 is reflected by the ear, and the reflected light is detected by the PD 202. It is detected by the optical sensor that the ear has been applied to. Since the display unit 204 is not seen when making a call, the smart phone 203 turns off the backlight of the display unit 204 to save power.
  • This foldable wireless telephone 100 is shown in cross section in FIG. 2, and detects whether or not the cover 104 of the wireless telephone 100 has been opened from the base 102 by an optical sensor.
  • a photoemitter 116 ′ in the base 102 emits light from the opening 604.
  • the cover portion 104 is closed as shown, the light 608 from the photoemitter 116 'is reflected by the reflection surface 606 of the cover portion 104, and the reflected light is detected by the photodetector 118'.
  • the light from the photoemitter 116 ′ is prevented from reaching the photodetector 118 ′ directly by the opaque barrier 602.
  • the cover 104 is opened, only a small amount of light reaches the photo detector 118 '. Therefore, whether or not the cover 104 is opened is detected based on the magnitude of the light detected by the photo detector 118 '.
  • Patent Document 2 there is a high-frequency heating device disclosed in Patent Document 2 as a conventional device that uses an optical sensor for proximity detection.
  • This high frequency heating apparatus sets and displays various cooking menus according to the count value counted by the pulse number counting means.
  • a plurality of optical sensors as described above are arranged regularly and in order on the main body operation panel of the high-frequency heating device.
  • An operator sequentially senses a plurality of optical sensors by finger contact.
  • Each optical sensor sequentially outputs pulse signals by receiving light emitted from the light emitting element and reflected by the finger with the light receiving element.
  • the pulse number counting means counts the pulse signal and outputs a count value used for setting display of various cooking menus.
  • the body of the smart phone 203 is usually provided in red or black. It has been.
  • how to make the proximity detection hole 205 small has become an important issue.
  • the proximity detection hole 205 is made smaller, the distance between the LED 201 and the PD 202 becomes closer, and the problem of crosstalk in which light emitted from the LED 201 is directly received by the PD 202 is greatly highlighted.
  • the present invention has been made to solve such problems,
  • An outgoing light guide that guides the light emitted from the light emitting element and emits it to the external space
  • an incident light guide that guides the light incident from the external space to the light receiving element
  • a light guide surrounding portion that confines the light guided by the outgoing light guide and the incident light guide in the outgoing light guide and the incident light guide.
  • the light emitting element is configured by a surface emitting laser
  • the optical wiring is configured by an optical waveguide formed by an outgoing light guide part, an incident light guide part, and a light guide part surrounding part.
  • the light emitting element is composed of a light emitting diode
  • the optical wiring is composed of an optical waveguide in which the outgoing light guide part and the incident light guide part are made of transparent resin
  • the light guide part surrounding part is made of a light shielding resin.
  • the light incident part of the light guide part covers the light emitting surface of the light emitting diode.
  • the light propagating through the outgoing light guide and the incoming light guide is confined inside the outgoing light guide and the incoming light guide by the light guide enclosure formed around them. Since the outgoing light guide unit, the incident light guide unit, and the light guide unit surrounding part are formed as optical wiring, the miniaturization thereof is easy, and the light emission end of the outgoing light guide unit and the light introduction end of the incident light guide unit The proximity detection hole can be easily reduced by reducing the distance between the two. In addition, even if the distance between the light emitting element and the light receiving element is large, the outgoing light guide and the incoming light guide can be freely bent and easily formed into a desired shape. By forming the light emission end of the outgoing light guide and the light introduction end of the incident light guide close to each other, the proximity detection hole can be easily reduced.
  • the present invention also provides:
  • the light emitting element is composed of a surface emitting laser,
  • the light emitting element and the light receiving element are covered with a transparent protective film
  • the optical wiring is composed of an output side optical fiber having an output light guide part as a core and a light guide part surrounding part as a cladding, and an incident side optical fiber having an incident light guide part as a core and a light guide part surrounding part as a cladding. It is characterized by that.
  • the present invention also provides:
  • the light emitting element is composed of a light emitting diode,
  • the light emitting element and the light receiving element are covered with a transparent protective film,
  • the optical wiring has an outgoing light guide part as a core and a light guide part surrounding part as a cladding, an output side optical fiber whose diameter is larger than the outer shape of the light emitting diode, and an incident light guiding part as a core and a light guide part surrounding part as a cladding. It is characterized by being comprised from the incident side optical fiber.
  • the light emitting element and the light receiving element are covered with a transparent protective film, so that the emission side optical fiber is passed through the protective film to the light emitting element, and the incident side optical fiber is passed through the protective film.
  • the optical sensor that exhibits the above-described effects can be realized by the optical fiber without causing the light-emitting element and the light-receiving element to contact and damage the optical fiber.
  • the present invention also provides:
  • the surface emitting laser has a plurality of light emitting portions, A light emitting end that is formed from a plurality of outgoing light guides, and each one end on the light incident side is provided in each light emitting part, receives light emitted from each light emitting part, and emits the guided light to the external space. Each other end on the light emission side is bundled.
  • the light emitted from the plurality of light emitting units of the surface emitting laser is incident from one end on the light incident side of the emitted light guide unit and bundled at each other end on the light emitting side. And condensed. For this reason, when the amount of light emitted from one light emitting portion of the surface emitting laser is insufficient, by providing a plurality of light emitting portions, a large amount of light emitted can be obtained while keeping the light emission diameter of the light emitting end of the outgoing light guide portion small. Obtainable.
  • the present invention is characterized in that the direction of the optical axis at the light introduction end of the incident light guide is set to be opposite to the light emission end of the outgoing light guide.
  • the present invention is characterized in that the optical waveguide is formed of a transparent resin, and the light refractive index of the outgoing light guide and the incident light guide is larger than the light refractive index of the light guide enclosure.
  • the light propagating through the outgoing light guide and the incoming light guide is caused by the difference in refractive index between the outgoing light guide and the incoming light guide and the light guide enclosure. It is confined inside each light guide.
  • the optical waveguide is formed in a step index type in which the light refractive index of the outgoing light guide or the incoming light guide is constant, and the outgoing light guide or the incoming light guide is on the light emitting element side or the light receiving element. It has a taper structure in which the diameter increases from the side toward the external space side.
  • the outgoing light guide section has the above-described tapered structure, it is possible to increase the emission angle of light emitted from the outgoing light guide section and widen the light emission range.
  • the incident light guide section has the above-described tapered structure, the incident angle of light incident on the incident light guide section can be increased to widen the light receiving range.
  • the present invention is characterized in that the numerical aperture of the incident light guide is set to a value corresponding to the light incident angle.
  • the incident light guide unit by appropriately selecting a numerical aperture value of the incident light guide unit determined by the light refractive index of the incident light guide unit and the light refractive index of the light guide unit surrounding unit, the incident light guide unit enters the incident light guide unit.
  • the light angle can be set to a desired angle.
  • the outgoing light guide part is formed in a graded index type in which the optical refractive index continuously changes in the radial direction from the light guide center, and the light guide center is shifted from the light emission center of the surface emitting laser. It is characterized by being.
  • the light emitted from the surface emitting laser is shifted from the light guide center of the outgoing light guide unit and enters the outgoing light guide unit, and the light refractive index changes in the radial direction of the outgoing light guide unit.
  • the light propagation speed is slow in the light guide center portion having a large light refractive index shifted from the light emission center, and the light propagation speed is fast in the periphery portion of the light guide center having a small light refractive index. Therefore, the light propagating through the outgoing light guide unit propagates in a curved line in the outgoing light guide unit.
  • the numerical aperture determined by the amount of deviation between the light guide center and the light emission center, the light propagation length of the outgoing light guide, the light refractive index of the outgoing light guide and the light refractive index of the light guide enclosure is appropriately determined.
  • the emission angle of the light emitted from the light emission end of the outgoing light guide is emitted toward the side opposite to the arrangement position of the light introduction end of the incident light guide unit.
  • the outgoing light guide part is formed in a graded index type in which the light refractive index continuously changes in the radial direction from the light guide center, and the light emission end for emitting the guided light to the external space is formed.
  • the position is set to an antinode position with an amplitude that maximizes the amplitude of the guided light.
  • the direction of the light emitted from the light emitting end of the outgoing light guide portion is a tangential direction in contact with the antinode of the amplitude of the guided light. Therefore, the light emitted from the light emitting end can be emitted as a spread angle of 0 degree, that is, as parallel light. For this reason, parallel light can be emitted from the optical sensor without providing a separate lens for the optical sensor.
  • the present invention is characterized in that the outgoing light guide part and the incident light guide part are made of a transparent resin, and the light guide part surrounding part is made of a light shielding resin.
  • the light propagating through the outgoing light guide and the incident light guide is shielded by the light guide enclosure surrounding the outgoing light guide and the incoming light guide, and the outgoing light guide and the incoming light guide. Trapped inside each of the. Further, stray light arriving at the outgoing light guide unit and the incident light guide unit from the outside of the optical sensor can be shielded by the light guide unit surrounding unit.
  • the present invention is characterized in that a light scattering material is provided at a light emitting end that causes the outgoing light guide unit to emit guided light to the external space.
  • the laser light emitted from the light emitting end of the outgoing light guide is scattered by the light scattering material provided at the light emitting end, and the outgoing angle is widened. For this reason, even if the power of the light emitted from the light emitting element is large, the optical sensor does not need to increase the laser classification for the laser product safety standard, and the risk can be suppressed.
  • the distance between the light emission end of the outgoing light guide and the light introduction end of the incident light guide can be reduced, and the proximity detection hole provided in the smart phone or the like can be easily reduced.
  • An optical sensor can be provided.
  • FIG. (A) is sectional drawing for demonstrating the concept of the conventional optical sensor
  • (b) is a fragmentary top view of a smart phone. It is sectional drawing of the conventional optical sensor disclosed by patent document 1.
  • FIG. (A) is a top view of the optical sensor by the 1st Embodiment of this invention
  • (b) is sectional drawing.
  • (A) is a top view of the optical sensor by the 2nd Embodiment of this invention
  • (b) is sectional drawing.
  • (A) is a top view of the optical sensor by the 3rd Embodiment of this invention
  • (b) is sectional drawing. It is sectional drawing of the optical sensor by the 4th Embodiment of this invention. It is sectional drawing of the optical sensor by the 5th Embodiment of this invention.
  • FIG. 3A is a plan view of the optical waveguide type optical sensor 1A according to the first embodiment of the present invention
  • FIG. 3B is a cross-sectional view thereof.
  • the optical sensor 1A is configured such that a surface emitting laser 3 as a light emitting element and a PD 4 as a light receiving element are arranged side by side on a printed board 2.
  • the surface emitting laser 3 of this embodiment is composed of a vertical cavity surface emitting laser (VCSEL: VerticalVerCavity Surface Emitting Laser).
  • VCSEL VerticalVerCavity Surface Emitting Laser
  • a semiconductor laser resonates light in a direction parallel to the substrate surface and emits light in a direction parallel to the substrate surface.
  • the surface emitting laser 3 of the present embodiment configured by a VCSEL is The light is resonated in a direction perpendicular to the substrate, and the light is emitted in a direction perpendicular to the substrate surface.
  • the optical sensor 1 ⁇ / b> A receives the light emitted from the surface emitting laser 3 and reflected by the PD 4, and detects the detection target.
  • the optical sensor 1A of this embodiment includes an optical waveguide 51.
  • the optical waveguide 51 is formed of an output core portion 5a that constitutes an outgoing light guide portion, an incident core portion 5b that constitutes an incident light guide portion, and a clad portion 5c that constitutes a light guide portion surrounding portion.
  • the emission core portion 5a guides the light emitted from the surface emitting laser 3 to be emitted to the external space
  • the incident core portion 5b guides the light incident from the external space to the PD 4.
  • the clad part 5c covers the periphery of the output core part 5a and the incident core part 5b, and confines the light guided by the output core part 5a and the incident core part 5b in the output core part 5a and the incident core part 5b.
  • Such an optical waveguide 51 is formed by a manufacturing method such as a direct exposure method in which an optical circuit is formed through a developing process, coating with a dispenser, or the like using a photolithography technique.
  • the optical waveguide 51 is made of a transparent resin, and each light refractive index N1 of the output core portion 5a and the incident core portion 5b is formed larger than the light refractive index N2 of the cladding portion 5c (N1> N2).
  • the light propagating through the emission core portion 5a and the incidence core portion 5b is emitted from the emission core portion 5a and the incidence core by the clad portion 5c formed around them. It is confined inside each part 5b. This confinement of light in the present embodiment is performed by the difference in optical refractive index between the output core portion 5a and the incident core portion 5b and the clad portion 5c. Therefore, the light emitted from the surface emitting laser 3 is emitted from the light emission end 5a1 without leaking from the emission core portion 5a on the way.
  • the light incident on the light introducing end 5b1 of the incident core portion 5b is received by the PD 4 without leaking from the incident core portion 5b.
  • the output core portion 5a, the incident core portion 5b, and the clad portion 5c are formed as the optical waveguide 51. Therefore, miniaturization is easy, and the light emitting end 5a1 and the incident core of the output core portion 5a are easy.
  • the proximity detection hole 205 can be easily reduced.
  • the exit core portion 5a and the entrance core portion 5b can be freely bent and easily formed into desired shapes. This bending can be performed up to the limit that satisfies the condition that the light propagating in the exit core portion 5a and the entrance core portion 5b is totally reflected. Therefore, even if the distance between the surface emitting laser 3 and the PD 4 is increased, the light emitting end 5a1 of the emitting core portion 5a and the light introducing end 5b1 of the incident core portion 5b are close to each other in the proximity detection hole 205. By forming the exit core portion 5a and the entrance core portion 5b to be curved, the proximity detection hole 205 can be easily reduced.
  • FIG. 4 (a) is a plan view of an optical waveguide type optical sensor 1B according to the second embodiment of the present invention
  • FIG. 4 (b) is a cross-sectional view.
  • the optical waveguide type optical sensor 1B according to the second embodiment is such that the output core portion 5d and the incident core portion 5e constituting the optical waveguide 52 are formed in a linear shape, according to the first embodiment. Different from 1A. Further, the output core portion 5d is formed in a graded index (GI) type in which the optical refractive index N1 continuously changes in the radial direction from the light guide center D, similarly to the optical sensor 1A.
  • GI graded index
  • the optical center D is different from the optical waveguide optical sensor 1A according to the first embodiment in that the optical center D is formed to be shifted from the emission center H of the surface emitting laser 3.
  • the optical waveguide 52 can be easily miniaturized, and the distance between the light emitting end 5d1 of the emitting core portion 5d and the light introducing end 5e1 of the incident core portion 5e.
  • the proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
  • the light emitted from the emission center H of the surface emitting laser 3 is shifted from the light guide center D of the emission core portion 5d and is emitted from the emission core portion 5d. Incident inside. Then, according to the change in the optical refractive index N1 in the radial direction of the emission core portion 5d, the light propagation speed is slow in the light guide central portion having a large optical refractive index N1 shifted from the light emission center H, and the optical refractive index N1 is small. The light propagation speed increases in the periphery of the light guide center.
  • the light propagating through the outgoing core portion 5d propagates in a curved shape as shown in the outgoing core portion 5d. For this reason, the amount of deviation between the light guide center D and the light emission center H, the light propagation length L of the output core portion 5d, the light refractive index N1 of the output core portion 5d and the light refractive index N2 of the cladding portion 5c are determined.
  • the number NA it is possible to appropriately select the emission angle of light emitted from the light emission end 5d1 of the emission core portion 5d. There is no need to bend the light beam by forming a lens on the upper part of the optical sensor 1B as in the prior art.
  • the smart phone 203 is provided with a glass plate on the surface in order to protect the display unit 204.
  • the reflector 6 see FIG. 4B
  • the emission angle of the light emitted from the light emission end 5d1 of the emission core portion 5d is set as the incident core.
  • the crosstalk between the surface emitting laser 3 and the PD 4 due to the reflection of the reflector 6 is greatly reduced by setting the emission angle as shown in the figure toward the side opposite to the arrangement position of the light introduction end 5e1 of the portion 5e. I can do it.
  • the output core portion 5d is formed in a graded index (GI) type and the light guide center D is formed so as to be shifted from the light emission center H
  • 5e may be formed in a graded index (GI) type, and the light guide center may be formed so as to be shifted from the light receiving center of the PD 4.
  • the numerical aperture determined by the amount of deviation between the light guide center and the light receiving center, the light propagation length L of the incident core portion 5e, the light refractive index N1 of the incident core portion 5e, and the light refractive index N2 of the cladding portion 5c.
  • NA the light receiving angle of the light received by the incident core portion 5e can be controlled.
  • the case where the output core portion 5d and the incident core portion 5e are formed in a straight line has been described.
  • the case where the output core portion 5d and the incident core portion 5e are formed in a curved shape is the same as in the second embodiment. The effect is effective.
  • FIG. 5A is a plan view of an optical waveguide type optical sensor 1C according to the third embodiment of the present invention
  • FIG. 5B is a cross-sectional view thereof.
  • the optical waveguide optical sensor 1C according to the third embodiment is different from the optical waveguide optical sensor 1A according to the first embodiment in that the surface emitting laser 3 includes a plurality of light emitting portions 3a, 3b, 3c. Further, a plurality of output core portions 5f constituting the optical waveguide 53 are formed from a plurality of light sources 5fa, 5fb, 5fc, and one ends on the light incident side are provided in the light emitting portions 3a, 3b, 3c, and the light emitting portions 3a, 3b, 3c are provided.
  • the point that the other ends on the light emitting side are bundled at the light emitting end 5f1 that receives the light emitted from 3c and emits the guided light to the external space is the same as that of the optical waveguide type optical sensor 1A according to the first embodiment. Is different. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
  • the optical waveguide 53 can be easily miniaturized, and the distance between the light emitting end 5f1 of the emitting core portion 5f and the light introducing end 5b1 of the incident core portion 5b.
  • the proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
  • the light emitted from the plurality of light emitting portions 3a, 3b, 3c of the surface emitting laser 3 is divided into a plurality of light incident portions of the emission core portion 5f.
  • the light is incident from one end on each side, and is bundled and condensed on each other end on the light exit side.
  • the surface emitting laser 3 includes a plurality of light emitting portions 3a, 3b, and 3c, so that the light emitting end of the emission core portion 5f is provided. A large amount of emitted light can be obtained while keeping the emission diameter of 5f1 small.
  • FIG. 6 is a sectional view of an optical waveguide optical sensor 1D according to the fourth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the optical waveguide type optical sensor 1D according to the fourth embodiment is different from the optical waveguide type optical sensor 1A according to the first embodiment in that the output core part 5g and the incident core part 5h are linear.
  • the emission core portion 5g is formed to have a diameter of, for example, 10 to 15 ⁇ m
  • the incident core portion 5h is formed to have a thickness of, for example, about 100 to 200 ⁇ m in order to enlarge the light receiving region.
  • the optical sensor 1D has the first feature that the optical waveguide 54 composed of the output core portion 5g, the incident core portion 5h, and the cladding portion 5c may be formed not only in the GI type but also in the SI type. This is different from the optical waveguide optical sensor 1A according to the embodiment. In the SI type, the light refractive indexes of the outgoing core portion 5g and the incident core portion 5h are made constant. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
  • the optical waveguide 54 is not the GI type but the SI type. I do not care.
  • the optical waveguide 54 can be easily miniaturized, and the distance between the light emitting end 5g1 of the emitting core portion 5g and the light introducing end 5h1 of the incident core portion 5h.
  • the proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
  • FIG. 7 is a sectional view of an optical waveguide type optical sensor 1E according to the fifth embodiment of the present invention.
  • the optical waveguide 55 composed of the emission core portion 5i, the incidence core portion 5j, and the cladding portion 5c is formed in the SI type, and the emission core portion 5i and The incident core portion 5j is different from the optical waveguide optical sensor 1A according to the first embodiment in that the incident core portion 5j has a tapered structure in which the diameter increases from the surface emitting laser 3 side and the PD 4 side toward the external space side.
  • Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
  • the optical waveguide 55 can be easily miniaturized, and the distance between the light emitting end 5i1 of the emitting core portion 5i and the light introducing end 5j1 of the incident core portion 5j.
  • the proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
  • the emission angle of the light emitted from the emission core portion 5i can be increased to widen the light emission range.
  • the incident angle of the light incident on the incident core portion 5j can be increased to widen the light receiving range.
  • FIG. 8 is a cross-sectional view of an optical waveguide type optical sensor 1F according to a sixth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the optical waveguide optical sensor 1F according to the sixth embodiment is similar to the optical waveguide optical sensor 1D according to the fourth embodiment in that the output core portion 5k and the incident core portion 5l are linear, and It differs from the optical waveguide type optical sensor 1A according to the first embodiment in that the numerical aperture NA of the incident core portion 5l is set to a value corresponding to the light incident angle.
  • Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
  • optical waveguide type optical sensor 1F it is easy to miniaturize the optical waveguide 56 composed of the emission core portion 5k, the incidence core portion 5l, and the cladding portion 5c, and light emission of the emission core portion 5k is achieved.
  • the distance between the end 5k1 and the light introducing end 5l1 of the incident core portion 5l can be reduced to easily reduce the proximity detection hole 205, which is the same as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
  • the value of the numerical aperture NA of the incident core part 5l determined by the optical refractive index of the incident core part 5l and the optical refractive index of the cladding part 5c is appropriately selected.
  • the angle of the light incident on the incident core portion 51 can be set to a desired angle.
  • the numerical aperture NA may be set small when it is not desired that the light coming from the side of the optical sensor 1F be incident on the incident core portion 5l.
  • the numerical aperture NA may be set large.
  • FIG. 9 is a sectional view of an optical waveguide optical sensor 1G according to the seventh embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the optical waveguide type optical sensor 1G according to the seventh embodiment is different in that the direction of the optical axis C at the light introduction end of the incident core portion 5m is set in a direction opposite to the light emission end 5a1 of the emission core portion 5a. This is different from the optical waveguide type optical sensor 1A according to the first embodiment.
  • Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
  • optical waveguide type optical sensor 1G it is easy to miniaturize the optical waveguide 57 composed of the emission core portion 5a, the incidence core portion 5m, and the cladding portion 5c, and light emission of the emission core portion 5a is achieved.
  • the distance between the end 5a1 and the light introduction end 5m1 of the incident core portion 5m can be reduced to easily reduce the proximity detection hole 205, which is the same as the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
  • the optical waveguide type optical sensor 1G according to the seventh embodiment, light from the side opposite to the light emitting end 5a1 side of the emitting core portion 5a is easily received at the light introducing end of the incident core portion 5m. . For this reason, stray light of light emitted from the light emitting end 5a1 of the emitting core 5a is difficult to enter the light introducing end 5m1 of the incident core 5m, and crosstalk between the surface emitting laser 3 and the PD 4 is reduced. I can do it. Therefore, in the case where the reflection object 6 such as a glass plate is provided on the optical sensor 1G, the crosstalk between the surface emitting laser 3 and the PD 4 due to the reflection of the reflection object 6 can be reduced.
  • the reflection object 6 such as a glass plate
  • FIG. 10 is a cross-sectional view of an optical waveguide optical sensor 1H according to the eighth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the optical waveguide type optical sensor 1H according to the eighth embodiment is similar to the optical waveguide type optical sensor 1D according to the fourth embodiment in that the output core part 5n and the incident core part 5o are linear, and According to the first embodiment, the formation position of the light emitting end 5n1 for emitting the guided light to the external space in the emission core portion 5n is set to the position of the antinode where the amplitude of the guided light is maximized. It is different from the optical waveguide type optical sensor 1A. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment. The formation position of the light emitting end 5n1 can be set to the position of the antinode of the amplitude of the guided light by selecting the waveguide length L of the emission core portion 5n.
  • optical waveguide type optical sensor 1H it is easy to miniaturize the optical waveguide 58 composed of the emission core portion 5n, the incidence core portion 5o, and the cladding portion 5c, and light emission of the emission core portion 5n is achieved.
  • the distance between the end 5n1 and the light introducing end 5o1 of the incident core portion 5o can be shortened to easily reduce the proximity detection hole 205, which is the same as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
  • the direction of the light emitted from the light emitting end 5n1 of the emission core portion 5n formed in the GI type is in contact with the antinode of the amplitude of the guided light. Tangent direction. Therefore, the light emitted from the light emitting end 5n1 can be emitted with the spread angle being 0 degree, that is, as parallel light. For this reason, parallel light can be emitted from the optical sensor 1H without providing a separate lens for the optical sensor 1H.
  • FIG. 11 is a sectional view of an optical waveguide optical sensor 1I according to the ninth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the optical waveguide type optical sensor 1I according to the ninth embodiment is different from the optical waveguide type optical sensor 1A according to the first embodiment in that the light emitting element is composed of a light emitting diode 7. Further, the optical wiring is composed of an optical waveguide 59 including an output core portion 5p and an incident core portion 5q formed linearly from a transparent resin, and a clad portion 5r formed of a light shielding resin such as a black resin.
  • the optical waveguide type optical sensor 1A according to the first embodiment is different. Furthermore, it differs from the optical waveguide optical sensor 1A according to the first embodiment in that the light incident part of the output core part 5p covers the light emitting surface of the light emitting diode 7. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
  • the light-emitting diode 7 is provided in the recessed portion 2a that is recessed in the printed circuit board 2, and the output core portion 5p has a cylindrical shape with a diameter that covers the recessed portion 2a.
  • the side wall 2b formed obliquely in the recess 2a covers the periphery of the side surface of the light emitting diode 7 and reflects the light emitted from the side surface of the light emitting diode 7 to be emitted.
  • the light is directed toward the light emission end 5p1 side of the core 5p. By this reflection, all of the light emitted from the light emitting diode 7 is efficiently emitted to the upper surface side.
  • the light propagating through the exit core portion 5p and the entrance core portion 5q is shielded by the cladding portion 5r surrounding the exit core portion 5p and the entrance core portion 5q, and each of the exit core portion 5p and the entrance core portion 5q. Confined inside.
  • the optical waveguide 59 can be easily miniaturized, and the distance between the light emitting end 5p1 of the emitting core portion 5p and the light introducing end 5q1 of the incident core portion 5q.
  • the proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
  • stray light that arrives at the emission core portion 5p and the incidence core portion 5q from the outside of the optical sensor 1I can be shielded by the cladding portion 5r.
  • FIG. 12 is a cross-sectional view of an optical sensor 1J according to the tenth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the surface emitting laser 3 and the PD 4 and bonding wires (not shown) for wiring them are covered with a protective film 8 formed of a transparent potting material, respectively.
  • the optical wiring 60 includes an outgoing side optical fiber 9 having the outgoing light guide portion as a core and a light guide portion surrounding portion as a cladding, and an incident side optical fiber having an incident light guide portion as a core and a light guide portion surrounding portion as a cladding. 10 is different from the optical waveguide type optical sensor 1D according to the fourth embodiment.
  • the optical sensor 1J according to the tenth embodiment it is easy to miniaturize the optical wiring 60 composed of the short emission side optical fiber 9 and the incident side optical fiber 10, and the light emission end 9a of the emission side optical fiber 9 is achieved.
  • the proximity detection hole 205 can be easily reduced by reducing the distance between the optical fiber 10 and the light introduction end 10a of the incident side optical fiber 10, and the same effect as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
  • the optical sensor 1J according to the tenth embodiment can simplify the outgoing light guide and the incident light guide as in the optical waveguide optical sensor 1D according to the fourth embodiment in which the waveguide 54 is formed by a dispenser or the like. A straight line shape.
  • the surface-emitting laser 3 and the PD 4 are covered with the transparent protective film 8, so that the emission-side optical fiber 9 passes through the protective film 8.
  • the incident side optical fiber 10 is optically connected to the PD 4 through the protective film 8.
  • the surface emitting laser 3 and the PD 4 and the bonding wires for wiring them are covered with the protective film 8, and then the emission side optical fiber 9 and the incidence side optical fiber processed to be short are processed.
  • the surface emitting laser 3 and the PD 4, and the bonding wires for wiring them are not damaged by coming into contact with the optical fibers 9 and 10. , 10 can be realized.
  • FIG. 13 is a cross-sectional view of an optical sensor 1K according to an eleventh embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the light-emitting diode 7 and the PD 4 and bonding wires (not shown) for wiring them are covered with a protective film 8 formed of a transparent potting material or the like.
  • the optical wiring 61 has the outgoing light guide part as a core and the light guide part surrounding part as a clad, and the outgoing side optical fiber 11 having a diameter larger than the outer shape of the light emitting diode 7 and the incident light guide part as a core.
  • the optical waveguide type optical sensor 1I according to the ninth embodiment is different from the optical waveguide type optical sensor 1I according to the ninth embodiment in that the optical fiber 12 is composed of an incident-side optical fiber 12 having a portion surrounding portion as a cladding.
  • the optical sensor 1K according to the eleventh embodiment it is easy to miniaturize the optical wiring 61 composed of the short emission side optical fiber 11 and the incident side optical fiber 12, and the light emission end 11a of the emission side optical fiber 11 is obtained.
  • the proximity detection hole 205 can be easily reduced by reducing the distance between the optical fiber 12 and the light introduction end 12a of the incident side optical fiber 12, and the same effect as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
  • the optical sensor 1K according to the eleventh embodiment also emits all of the light emitted from the light emitting diode 7 as in the optical waveguide type optical sensor 1I according to the ninth embodiment in which the waveguide 59 is formed by a dispenser or the like. It is possible to radiate efficiently to the upper surface side.
  • the light-emitting diode 7 and the PD 4 are covered with the transparent protective film 8, so that the emission-side optical fiber 11 passes through the protective film 8 to the light-emitting diode 7.
  • the incident side optical fiber 12 is optically connected to the PD 4 through the protective film 8.
  • the light-emitting diode 7 and the PD 4 and the bonding wires for wiring them are covered with the protective film 8, and then the emission-side optical fiber 11 and the incident-side optical fiber 12 processed to be short are processed.
  • the light-emitting diode 7 and the PD 4 and the bonding wires for wiring them are not damaged by coming into contact with the optical fibers 11 and 12, and the optical fiber 1 Can be realized.
  • FIG. 14 is a cross-sectional view of an optical waveguide type optical sensor 1L according to a twelfth embodiment of the present invention.
  • the light scattering material 13 is provided by coating or the like on the light emitting end 5s1 for emitting the guided light to the external space. This is different from the optical waveguide optical sensor 1A according to the embodiment. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
  • optical waveguide type optical sensor 1L it is easy to miniaturize the optical waveguide 62 formed by the emission core portion 5s, the incidence core portion 5b, and the cladding portion 5c, and light emission of the emission core portion 5s is achieved.
  • the distance between the end 5s1 and the light introducing end 5b1 of the incident core portion 5b can be reduced to easily reduce the proximity detection hole 205, which is similar to the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
  • the laser light emitted from the light emitting end 5s1 of the emitting core portion 5s is scattered by the light scattering material 13 provided at the light emitting end 5s1, The emission angle is widened. For this reason, even if the power of the light emitted from the surface emitting laser 3 is large, the optical sensor 1L does not need to increase the laser classification for the laser product safety standard, and the risk can be suppressed. That is, laser light is dangerous when it enters the eye, but is scattered by the light scattering material 13, so that the amount of light reaching the eye is reduced, and the degree of danger can be suppressed.
  • the light emitting ends 5d1, 5f1, 5g1, 5i1, 5k1, 5n1 of the emission core portions 5d, 5f, 5g, 5i, 5k, 5n By providing this light scattering material 13 at the light emitting end 9a of the optical fiber 9, the same operational effects as the optical waveguide type optical sensor 1L according to the twelfth embodiment are exhibited.
  • the optical waveguides 51, 52, 53, 54, 55, 56, 57, 58, 62 are made of transparent resin, and the output core portions 5a, 5d, 5f, 5g, 5i are formed. , 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o are transmitted through the output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core.
  • the output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b due to the difference in optical refractive index between the portions 5b, 5e, 5h, 5j, 5l, 5m, 5o and the cladding portion 5c,
  • the case of being confined in each of 5e, 5h, 5j, 5l, 5m, and 5o has been described.
  • the output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o are formed from transparent resin, and the cladding portion 5c is made of carbon or the like.
  • the clad portion 5c may be formed from a light shielding resin such as a black resin. According to this configuration, the light propagating through the output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o are shielded by the clad portion 5c, and the outgoing core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident cores 5b, 5e, 5h, 5j, 5l, 5m, 5o are confined inside.
  • a light shielding resin such as a black resin.
  • the same effects as those of the above-described embodiments and modifications can be obtained. Further, from the outside of the optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1L, the outgoing core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, Stray light arriving at 5h, 5j, 5l, 5m, and 5o can be shielded by the clad portion 5c.
  • the optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, and 1L are used to reduce the proximity detection hole 205 of the smart phone 203.
  • the application is not limited to this.
  • it can also be used to reduce the proximity detection hole in other electronic devices such as mobile phones.
  • the conventional optical sensor composed of the light emitting element and the light receiving element is used in place of the optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, and 1L according to the present invention.
  • an optical sensor can be configured without providing a light blocking barrier between the light emitting element and the light receiving element and without fear of crosstalk. Further, by not emitting the surface emitting laser 3 or the light emitting diode 7, the optical waveguide type optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, and 1L are used for illuminance detection. It can also be used.
  • Optical sensor 2 Printed circuit board 2a ... Recess 2b ... Side wall of recess 2a 3 ... Surface emitting laser (light emitting element) 3a, 3b, 3c ... light emitting part 4 ... photodiode (light receiving element) 5a, 5d, 5f, 5fa, 5fb, 5fc, 5g, 5i, 5k, 5n, 5p, 5s ... emitting core part (emitted light guiding part) 5a1, 5d1, 5f1, 5g1, 5i1, 5k1, 5n1, 5p1, 5s1, 9a, 11a...

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Provided is an optical sensor in which the distance between a light emitting end of an output light guide portion and a light introducing end of an incident light guide portion is decreased, thereby making it possible to easily make smaller a proximity detection hole provided in a smartphone or the like. The optical sensor 1A includes an optical waveguide 51. The optical waveguide 51 is formed of an output core portion 5a constituting the output light guide portion, an incident core portion 5b constituting the incident light guide portion, and a cladding portion 5c constituting a light guide portion enclosing portion. The output core portion 5a guides and releases light emitted from a surface emitting laser 3 to an external space. The incident core portion 5b guides light entering from the external space to a photodiode (PD) 4. The cladding portion 5c covers the peripheries of the output core portion 5a and the incident core portion 5b, and confines the light guided by the output core portion 5a and the incident core portion 5b in the output core portion 5a and the incident core portion 5b.

Description

光センサOptical sensor
 本発明は、発光素子と受光素子とが並んで配置されて構成され、発光素子から出射されて反射した光を受光素子で受光して検出対象物を検出する光センサに関するものである。 The present invention relates to an optical sensor that includes a light emitting element and a light receiving element arranged side by side, and detects a detection target by receiving light reflected from the light emitting element by the light receiving element.
 光センサの中でも近接検知や照度検知するものは、図1(a)の断面図に示すように、発光ダイオード(LED)201とフォトダイオード(PD)202とが並んで設けられて構成されている。最近ではIC(高集積化回路)の中にPDを内蔵して構成されているものもある。近接検知では、光センサの上部に反射物が存在した場合、LED201から出射された光が反射物で反射し、その反射光がPD202で検知される。その反射光量の大小で、検出対象物が光センサに近づいているか否か、検出対象物が有るか否か等が判断される。照度検知ではLED201が光らせられず、周辺の環境光がPD202で検知されることで、照度が測定される。一般的に近接検知では近赤外の波長、照度検知では可視光領域の波長の光が使用される。 Among the optical sensors, those that detect proximity or illuminance are configured by arranging a light emitting diode (LED) 201 and a photodiode (PD) 202 side by side, as shown in the sectional view of FIG. . Recently, some ICs (Highly Integrated Circuits) are built with PDs. In the proximity detection, when a reflection object exists above the optical sensor, the light emitted from the LED 201 is reflected by the reflection object, and the reflected light is detected by the PD 202. Based on the amount of reflected light, it is determined whether or not the detection target is approaching the optical sensor, whether or not there is a detection target, and the like. In the illuminance detection, the LED 201 is not illuminated, and ambient light is detected by the PD 202, whereby the illuminance is measured. Generally, near-infrared wavelengths are used for proximity detection, and light having a wavelength in the visible light region is used for illuminance detection.
 最近、この近接検知はスマートホンにも使用されている。図1(b)の部分平面図に示すように、スマートホン203には、表示部204の上方に近接検知用穴205が設けられている。近接検知用穴205下方の機器内部には上記の光センサが内蔵されている。電話をする際には近接検知用穴205の周辺に耳が当てられるが、LED201から発光した光が耳で反射し、その反射光がPD202で検知されることで、近接検知用穴205の周辺に耳が当てられたことが光センサによって検出される。電話をしているときには表示部204を見ないので、スマートホン203は表示部204のバックライトをOFFにして省電力化する。 Recently, this proximity detection is also used for smart phones. As shown in the partial plan view of FIG. 1B, the smart phone 203 is provided with a proximity detection hole 205 above the display unit 204. The above-described optical sensor is built in the device below the proximity detection hole 205. When making a call, an ear is placed around the proximity detection hole 205, but the light emitted from the LED 201 is reflected by the ear, and the reflected light is detected by the PD 202. It is detected by the optical sensor that the ear has been applied to. Since the display unit 204 is not seen when making a call, the smart phone 203 turns off the backlight of the display unit 204 to save power.
 また、従来、光センサを近接検知に用いるものとして、例えば、特許文献1に開示された折り畳み式無線電話機もある。 Further, as a conventional example of using an optical sensor for proximity detection, there is a foldable wireless telephone disclosed in Patent Document 1, for example.
 この折り畳み式無線電話機100は図2に断面が示され、無線電話機100のカバー部104が基部102から開かれたか否かを光センサによって検出する。基部102中にあるフォトエミッタ116’は開口604から光を放射する。カバー部104が図示するように閉じている場合には、フォトエミッタ116’からの光608はカバー部104の反射面606で反射し、反射した光はフォトデテクタ118’により検出される。フォトエミッタ116’の光は不透明な障壁602により直接的にフォトデテクタ118’に届かないようになっている。カバー部104が開いた場合には、フォトデテクタ118’へは僅かな量の光しか届かない。したがって、フォトデテクタ118’により検出される光の大小で、カバー部104が開かれたか否かが検出される。 This foldable wireless telephone 100 is shown in cross section in FIG. 2, and detects whether or not the cover 104 of the wireless telephone 100 has been opened from the base 102 by an optical sensor. A photoemitter 116 ′ in the base 102 emits light from the opening 604. When the cover portion 104 is closed as shown, the light 608 from the photoemitter 116 'is reflected by the reflection surface 606 of the cover portion 104, and the reflected light is detected by the photodetector 118'. The light from the photoemitter 116 ′ is prevented from reaching the photodetector 118 ′ directly by the opaque barrier 602. When the cover 104 is opened, only a small amount of light reaches the photo detector 118 '. Therefore, whether or not the cover 104 is opened is detected based on the magnitude of the light detected by the photo detector 118 '.
 また、従来、光センサを近接検知に用いるものとして、特許文献2に開示された高周波加熱装置もある。この高周波加熱装置は、パルス数カウント手段によってカウントされたカウント値に応じて各種の調理メニューを設定表示する。高周波加熱装置の本体操作パネル部には、上記のような複数の光センサが規則的且つ順序よく配列されている。操作者は、複数の光センサを指による接触で順次感応させていく。各光センサは、発光素子から出射して指で反射した光を受光素子で受光することで、パルス信号を順次出力する。パルス数カウント手段はそのパルス信号をカウントして、各種調理メニューの設定表示に用いられるカウント値を出力する。 In addition, there is a high-frequency heating device disclosed in Patent Document 2 as a conventional device that uses an optical sensor for proximity detection. This high frequency heating apparatus sets and displays various cooking menus according to the count value counted by the pulse number counting means. A plurality of optical sensors as described above are arranged regularly and in order on the main body operation panel of the high-frequency heating device. An operator sequentially senses a plurality of optical sensors by finger contact. Each optical sensor sequentially outputs pulse signals by receiving light emitted from the light emitting element and reflected by the finger with the light receiving element. The pulse number counting means counts the pulse signal and outputs a count value used for setting display of various cooking menus.
特開2006-94485号公報JP 2006-94485 A 特開平8-43131号公報JP-A-8-43131
 上記従来のスマートホン203では、近接検知用穴205を介して光センサに光が入出射するが、近接検知用穴205を目立たなくするため、スマートホン203のボディは通常赤色や黒色などに設けられている。ここ最近の傾向として、スマートホン203のデザイン性から、近接検知用穴205をさらに目立たなくするため、近接検知用穴205をいかに小さくするかが重要な課題になってきている。しかしながら、近接検知用穴205を小さくすると、LED201とPD202との間の距離が近づき、LED201から出射した光が直接PD202に受光されるクロストークの問題が大きくクローズアップされる。このクロストークの問題を回避するため、特許文献1や特許文献2に開示された光センサのように、LED201とPD202との間に相互間を遮光する障壁が必要とされるが、各構成部品のサイズを縮小化するのにも限界があり、近接検知用穴205を極端に小さくすることは困難であった。 In the conventional smart phone 203, light enters and exits the optical sensor through the proximity detection hole 205. However, in order to make the proximity detection hole 205 inconspicuous, the body of the smart phone 203 is usually provided in red or black. It has been. As a recent trend, in order to make the proximity detection hole 205 inconspicuous from the design of the smart phone 203, how to make the proximity detection hole 205 small has become an important issue. However, if the proximity detection hole 205 is made smaller, the distance between the LED 201 and the PD 202 becomes closer, and the problem of crosstalk in which light emitted from the LED 201 is directly received by the PD 202 is greatly highlighted. In order to avoid this problem of crosstalk, a barrier that shields light from each other is required between the LED 201 and the PD 202 as in the optical sensors disclosed in Patent Document 1 and Patent Document 2. It is difficult to reduce the size of the proximity detection hole 205 to an extremely small size.
 本発明はこのような課題を解決するためになされたもので、
発光素子と受光素子とが並んで配置されて構成され、発光素子から出射されて反射した光を受光素子で受光して検出対象物を検出する光センサにおいて、
発光素子から出射される光を導いて外部空間へ放出させる出射光導光部と、外部空間から入射する光を受光素子へ導く入射光導光部と、出射光導光部および入射光導光部の各周囲を覆って出射光導光部および入射光導光部によって導かれる光を出射光導光部および入射光導光部に閉じ込める導光部包囲部とから形成される光配線を備える
ことを特徴とする。
The present invention has been made to solve such problems,
In the optical sensor that is configured by arranging the light emitting element and the light receiving element side by side, and receives the light emitted from the light emitting element and reflected by the light receiving element, and detects the detection target,
An outgoing light guide that guides the light emitted from the light emitting element and emits it to the external space, an incident light guide that guides the light incident from the external space to the light receiving element, and the surroundings of the outgoing light guide and the incident light guide And a light guide surrounding portion that confines the light guided by the outgoing light guide and the incident light guide in the outgoing light guide and the incident light guide.
 本構成の光センサは、例えば、発光素子が面発光レーザーから構成され、光配線が、出射光導光部と入射光導光部と導光部包囲部とから形成される光導波路から構成される。 In the optical sensor of this configuration, for example, the light emitting element is configured by a surface emitting laser, and the optical wiring is configured by an optical waveguide formed by an outgoing light guide part, an incident light guide part, and a light guide part surrounding part.
 また、発光素子が発光ダイオードから構成され、光配線が、出射光導光部および入射光導光部が透明樹脂から形成され、導光部包囲部が遮光樹脂から形成される光導波路から構成され、出射光導光部の光入射部が発光ダイオードの発光面を覆う。 Further, the light emitting element is composed of a light emitting diode, the optical wiring is composed of an optical waveguide in which the outgoing light guide part and the incident light guide part are made of transparent resin, and the light guide part surrounding part is made of a light shielding resin. The light incident part of the light guide part covers the light emitting surface of the light emitting diode.
 本構成によれば、出射光導光部および入射光導光部を伝播する光はそれらの周囲に形成される導光部包囲部によって出射光導光部および入射光導光部の各内部に閉じ込められる。出射光導光部および入射光導光部並びに導光部包囲部は光配線として形成されるので、その微細化が容易であり、出射光導光部の光放出端と入射光導光部の光導入端との間の距離を縮めて、近接検知用穴を容易に小さくすることができる。また、発光素子と受光素子との間の距離が離れていても、出射光導光部および入射光導光部は自在に曲げて容易に所望の形状に形成することができるので、近接検知用穴において出射光導光部の光放出端と入射光導光部の光導入端とを近づけて形成することで、近接検知用穴を容易に小さくすることができる。 According to this configuration, the light propagating through the outgoing light guide and the incoming light guide is confined inside the outgoing light guide and the incoming light guide by the light guide enclosure formed around them. Since the outgoing light guide unit, the incident light guide unit, and the light guide unit surrounding part are formed as optical wiring, the miniaturization thereof is easy, and the light emission end of the outgoing light guide unit and the light introduction end of the incident light guide unit The proximity detection hole can be easily reduced by reducing the distance between the two. In addition, even if the distance between the light emitting element and the light receiving element is large, the outgoing light guide and the incoming light guide can be freely bent and easily formed into a desired shape. By forming the light emission end of the outgoing light guide and the light introduction end of the incident light guide close to each other, the proximity detection hole can be easily reduced.
 また、本発明は、
発光素子が面発光レーザーから構成され、
発光素子および受光素子が透明な保護膜で被覆され、
光配線が、出射光導光部をコアとし導光部包囲部をクラッドとする出射側光ファイバと、入射光導光部をコアとし導光部包囲部をクラッドとする入射側光ファイバとから構成される
ことを特徴とする。
The present invention also provides:
The light emitting element is composed of a surface emitting laser,
The light emitting element and the light receiving element are covered with a transparent protective film,
The optical wiring is composed of an output side optical fiber having an output light guide part as a core and a light guide part surrounding part as a cladding, and an incident side optical fiber having an incident light guide part as a core and a light guide part surrounding part as a cladding. It is characterized by that.
 また、本発明は、
発光素子が発光ダイオードから構成され、
発光素子および受光素子が透明な保護膜で被覆され、
光配線が、出射光導光部をコアとし導光部包囲部をクラッドとする、直径が発光ダイオードの外形よりも大きい出射側光ファイバと、入射光導光部をコアとし導光部包囲部をクラッドとする入射側光ファイバとから構成される
ことを特徴とする。
The present invention also provides:
The light emitting element is composed of a light emitting diode,
The light emitting element and the light receiving element are covered with a transparent protective film,
The optical wiring has an outgoing light guide part as a core and a light guide part surrounding part as a cladding, an output side optical fiber whose diameter is larger than the outer shape of the light emitting diode, and an incident light guiding part as a core and a light guide part surrounding part as a cladding. It is characterized by being comprised from the incident side optical fiber.
 これらの構成によれば、発光素子および受光素子が透明な保護膜で被覆されることで、出射側光ファイバは保護膜を介して発光素子に、入射側光ファイバは保護膜を介して受光素子に光接続される。このため、光センサの製造時、発光素子および受光素子が光ファイバと接触して傷つくことなく、上記の作用効果を奏する光センサを光ファイバによって実現することができる。 According to these configurations, the light emitting element and the light receiving element are covered with a transparent protective film, so that the emission side optical fiber is passed through the protective film to the light emitting element, and the incident side optical fiber is passed through the protective film. Optically connected. For this reason, at the time of manufacture of an optical sensor, the optical sensor that exhibits the above-described effects can be realized by the optical fiber without causing the light-emitting element and the light-receiving element to contact and damage the optical fiber.
 また、本発明は、
面発光レーザーが複数の発光部を有し、
出射光導光部が複数本から形成され、光入射側の各一端が各発光部に設けられて各発光部から出射される光を受光し、導いた光を外部空間へ放出させる光放出端で光出射側の各他端が束ねられることを特徴とする。
The present invention also provides:
The surface emitting laser has a plurality of light emitting portions,
A light emitting end that is formed from a plurality of outgoing light guides, and each one end on the light incident side is provided in each light emitting part, receives light emitted from each light emitting part, and emits the guided light to the external space. Each other end on the light emission side is bundled.
 本構成によれば、面発光レーザーの複数の発光部から出射される光は、出射光導光部の複数に分かれた光入射側の各一端から入射し、光出射側の各他端で束ねられて集光される。このため、面発光レーザーの一つの発光部からの発光では発光光量が足りない場合、複数の発光部を備えることで、出射光導光部の光放出端の発光径を小さく保ちながら大きな発光光量を得ることができる。 According to this configuration, the light emitted from the plurality of light emitting units of the surface emitting laser is incident from one end on the light incident side of the emitted light guide unit and bundled at each other end on the light emitting side. And condensed. For this reason, when the amount of light emitted from one light emitting portion of the surface emitting laser is insufficient, by providing a plurality of light emitting portions, a large amount of light emitted can be obtained while keeping the light emission diameter of the light emitting end of the outgoing light guide portion small. Obtainable.
 また、本発明は、入射光導光部の、光導入端における光軸の方向が出射光導光部の光放出端に背く方向に設定されることを特徴とする。 Further, the present invention is characterized in that the direction of the optical axis at the light introduction end of the incident light guide is set to be opposite to the light emission end of the outgoing light guide.
 本構成によれば、入射光導光部の光導入端には、出射光導光部の光放出端側と反対側からの光が受光され易くなる。このため、入射光導光部の光導入端には、出射光導光部の光放出端から放出される光の迷光が入り難くなり、発光素子および受光素子間のクロストークを減少させることが出来る。 According to this configuration, light from the side opposite to the light emission end side of the outgoing light guide is easily received by the light introduction end of the incident light guide. For this reason, stray light of light emitted from the light emitting end of the outgoing light guide is less likely to enter the light introduction end of the incident light guide, and crosstalk between the light emitting element and the light receiving element can be reduced.
 また、本発明は、光導波路が透明樹脂から形成され、出射光導光部および入射光導光部の光屈折率が導光部包囲部の光屈折率よりも大きく形成されることを特徴とする。 In addition, the present invention is characterized in that the optical waveguide is formed of a transparent resin, and the light refractive index of the outgoing light guide and the incident light guide is larger than the light refractive index of the light guide enclosure.
 本構成によれば、出射光導光部および入射光導光部を伝播する光は、出射光導光部および入射光導光部と導光部包囲部との光屈折率差により、出射光導光部および入射光導光部の各内部に閉じ込められる。 According to this configuration, the light propagating through the outgoing light guide and the incoming light guide is caused by the difference in refractive index between the outgoing light guide and the incoming light guide and the light guide enclosure. It is confined inside each light guide.
 また、本発明は、光導波路が、出射光導光部または入射光導光部の光屈折率が一定のステップインデックス型に形成され、出射光導光部または入射光導光部が、発光素子側または受光素子側から外部空間側に向かって径が増えるテーパー構造を呈することを特徴とする。 According to the present invention, the optical waveguide is formed in a step index type in which the light refractive index of the outgoing light guide or the incoming light guide is constant, and the outgoing light guide or the incoming light guide is on the light emitting element side or the light receiving element. It has a taper structure in which the diameter increases from the side toward the external space side.
 本構成によれば、出射光導光部が上記のテーパー構造を呈する場合、出射光導光部から放出される光の出射角を大きくして、光の放出範囲を広げることができる。また、入射光導光部が上記のテーパー構造を呈する場合、入射光導光部に入射する光の入射角を大きくして、受光範囲を広げることができる。 According to this configuration, when the outgoing light guide section has the above-described tapered structure, it is possible to increase the emission angle of light emitted from the outgoing light guide section and widen the light emission range. In addition, when the incident light guide section has the above-described tapered structure, the incident angle of light incident on the incident light guide section can be increased to widen the light receiving range.
 また、本発明は、入射光導光部の開口数が光入射角に応じた値に設定されることを特徴とする。 Further, the present invention is characterized in that the numerical aperture of the incident light guide is set to a value corresponding to the light incident angle.
 本構成によれば、入射光導光部の光屈折率と導光部包囲部の光屈折率とで定まる入射光導光部の開口数の値を適宜選択することで、入射光導光部に入射する光の角度を所望の角度に設定することができる。 According to this configuration, by appropriately selecting a numerical aperture value of the incident light guide unit determined by the light refractive index of the incident light guide unit and the light refractive index of the light guide unit surrounding unit, the incident light guide unit enters the incident light guide unit. The light angle can be set to a desired angle.
 また、本発明は、出射光導光部が、導光中心から径方向に光屈折率が連続的に変化するグレーデッドインデックス型に形成され、導光中心が面発光レーザーの発光中心からずれて形成されることを特徴とする。 Further, according to the present invention, the outgoing light guide part is formed in a graded index type in which the optical refractive index continuously changes in the radial direction from the light guide center, and the light guide center is shifted from the light emission center of the surface emitting laser. It is characterized by being.
 本構成によれば、面発光レーザーから出射される光は、出射光導光部の導光中心からずれて出射光導光部の内部に入射し、出射光導光部の径方向における光屈折率変化に応じて、発光中心からずれた光屈折率が大きな導光中心部では光伝播速度が遅くなり、光屈折率が小さな導光中心周辺部では光伝播速度が速くなる。したがって、出射光導光部を伝播する光は、出射光導光部内で曲線状にうねって伝播する。このため、導光中心と発光中心とのずれ量や、出射光導光部の光伝播長さ、出射光導光部の光屈折率と導光部包囲部の光屈折率とで定まる開口数を適宜選択することで、出射光導光部の光放出端から放出される光の放出角度を適宜選択することが可能となる。よって、光センサ上に反射物が設けられる構成の場合、出射光導光部の光放出端から放出される光の放出角度を、入射光導光部の光導入端の配置位置と反対側に向かう放出角度に設定することで、反射物の反射に起因する発光素子および受光素子間のクロストークを大幅に減少させることが出来る。 According to this configuration, the light emitted from the surface emitting laser is shifted from the light guide center of the outgoing light guide unit and enters the outgoing light guide unit, and the light refractive index changes in the radial direction of the outgoing light guide unit. Correspondingly, the light propagation speed is slow in the light guide center portion having a large light refractive index shifted from the light emission center, and the light propagation speed is fast in the periphery portion of the light guide center having a small light refractive index. Therefore, the light propagating through the outgoing light guide unit propagates in a curved line in the outgoing light guide unit. For this reason, the numerical aperture determined by the amount of deviation between the light guide center and the light emission center, the light propagation length of the outgoing light guide, the light refractive index of the outgoing light guide and the light refractive index of the light guide enclosure is appropriately determined. By selecting, it becomes possible to appropriately select the emission angle of light emitted from the light emission end of the outgoing light guide. Therefore, in the case where the reflector is provided on the optical sensor, the emission angle of the light emitted from the light emission end of the outgoing light guide unit is emitted toward the side opposite to the arrangement position of the light introduction end of the incident light guide unit. By setting the angle, crosstalk between the light emitting element and the light receiving element due to reflection of the reflector can be greatly reduced.
 また、本発明は、出射光導光部が、導光中心から径方向に光屈折率が連続的に変化するグレーデッドインデックス型に形成され、導いた光を外部空間へ放出させる光放出端の形成位置が、導く光の振幅が最大になる振幅の腹の位置に設定されることを特徴とする。 Further, according to the present invention, the outgoing light guide part is formed in a graded index type in which the light refractive index continuously changes in the radial direction from the light guide center, and the light emission end for emitting the guided light to the external space is formed. The position is set to an antinode position with an amplitude that maximizes the amplitude of the guided light.
 本構成によれば、出射光導光部の光放出端から放出される光の向きは、導く光の振幅の腹に接する接線方向となる。したがって、光放出端から放出される光は、その広がり角度を0度、つまり、平行光として、出射させることができる。このため、光センサに別途レンズを設けることなく、光センサから平行光を出射させることが可能になる。 According to this configuration, the direction of the light emitted from the light emitting end of the outgoing light guide portion is a tangential direction in contact with the antinode of the amplitude of the guided light. Therefore, the light emitted from the light emitting end can be emitted as a spread angle of 0 degree, that is, as parallel light. For this reason, parallel light can be emitted from the optical sensor without providing a separate lens for the optical sensor.
 また、本発明は、出射光導光部および入射光導光部が透明樹脂から形成され、導光部包囲部が遮光樹脂から形成されることを特徴とする。 Further, the present invention is characterized in that the outgoing light guide part and the incident light guide part are made of a transparent resin, and the light guide part surrounding part is made of a light shielding resin.
 本構成によれば、出射光導光部および入射光導光部を伝播する光は、出射光導光部および入射光導光部を囲む導光部包囲部によって遮光され、出射光導光部および入射光導光部の各内部に閉じ込められる。また、光センサの外部から出射光導光部および入射光導光部に到来する迷光を導光部包囲部によって遮光することができる。 According to this configuration, the light propagating through the outgoing light guide and the incident light guide is shielded by the light guide enclosure surrounding the outgoing light guide and the incoming light guide, and the outgoing light guide and the incoming light guide. Trapped inside each of the. Further, stray light arriving at the outgoing light guide unit and the incident light guide unit from the outside of the optical sensor can be shielded by the light guide unit surrounding unit.
 また、本発明は、出射光導光部が、導いた光を外部空間へ放出させる光放出端に光散乱材が設けられることを特徴とする。 In addition, the present invention is characterized in that a light scattering material is provided at a light emitting end that causes the outgoing light guide unit to emit guided light to the external space.
 本構成によれば、出射光導光部の光放出端から放出されるレーザ光は、光放出端に設けられる光散乱材によって散乱し、出射角が広がる。このため、発光素子から出射される光のパワーが大きくても、光センサは、レーザ製品安全基準についてのレーザクラス分けを上げる必要が無くなり、危険度を抑えることができる。 According to this configuration, the laser light emitted from the light emitting end of the outgoing light guide is scattered by the light scattering material provided at the light emitting end, and the outgoing angle is widened. For this reason, even if the power of the light emitted from the light emitting element is large, the optical sensor does not need to increase the laser classification for the laser product safety standard, and the risk can be suppressed.
 本発明によれば、出射光導光部の光放出端と入射光導光部の光導入端との間の距離を縮めて、スマートホン等に設けられる近接検知用穴を容易に小さくすることができる光センサを提供することが可能になる。 According to the present invention, the distance between the light emission end of the outgoing light guide and the light introduction end of the incident light guide can be reduced, and the proximity detection hole provided in the smart phone or the like can be easily reduced. An optical sensor can be provided.
(a)は従来の光センサの概念を説明するための断面図、(b)はスマートホンの部分平面図である。(A) is sectional drawing for demonstrating the concept of the conventional optical sensor, (b) is a fragmentary top view of a smart phone. 特許文献1に開示された従来の光センサの断面図である。It is sectional drawing of the conventional optical sensor disclosed by patent document 1. FIG. (a)は、本発明の第1の実施形態による光センサの平面図、(b)は断面図である。(A) is a top view of the optical sensor by the 1st Embodiment of this invention, (b) is sectional drawing. (a)は、本発明の第2の実施形態による光センサの平面図、(b)は断面図である。(A) is a top view of the optical sensor by the 2nd Embodiment of this invention, (b) is sectional drawing. (a)は、本発明の第3の実施形態による光センサの平面図、(b)は断面図である。(A) is a top view of the optical sensor by the 3rd Embodiment of this invention, (b) is sectional drawing. 本発明の第4の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 4th Embodiment of this invention. 本発明の第5の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 5th Embodiment of this invention. 本発明の第6の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 6th Embodiment of this invention. 本発明の第7の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 7th Embodiment of this invention. 本発明の第8の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 8th Embodiment of this invention. 本発明の第9の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 9th Embodiment of this invention. 本発明の第10の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 10th Embodiment of this invention. 本発明の第11の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 11th Embodiment of this invention. 本発明の第12の実施形態による光センサの断面図である。It is sectional drawing of the optical sensor by the 12th Embodiment of this invention.
 次に、本発明の光センサを実施するための形態について、説明する。 Next, a mode for carrying out the optical sensor of the present invention will be described.
 図3(a)は、本発明の第1の実施形態による光導波路型光センサ1Aの平面図、同図(b)は断面図である。 3A is a plan view of the optical waveguide type optical sensor 1A according to the first embodiment of the present invention, and FIG. 3B is a cross-sectional view thereof.
 光センサ1Aは、プリント基板2上に発光素子である面発光レーザー3と受光素子であるPD4とが並んで配置されて構成されている。本実施形態の面発光レーザー3は、垂直共振器型面発光レーザー(VCSEL:Vertical Cavity Surface Emitting Laser) から構成される。一般的に半導体レーザーは基板面と平行な方向に光を共振させ、基板面と平行な方向に光を出射させるが、VCSELによって構成される本実施形態の面発光レーザー3は、基板面に対して垂直な方向に光を共振させ、基板面に垂直な方向に光を出射する。光センサ1Aは、面発光レーザー3から出射されて反射した光をPD4で受光して、検出対象物を検出する。 The optical sensor 1A is configured such that a surface emitting laser 3 as a light emitting element and a PD 4 as a light receiving element are arranged side by side on a printed board 2. The surface emitting laser 3 of this embodiment is composed of a vertical cavity surface emitting laser (VCSEL: VerticalVerCavity Surface Emitting Laser). In general, a semiconductor laser resonates light in a direction parallel to the substrate surface and emits light in a direction parallel to the substrate surface. The surface emitting laser 3 of the present embodiment configured by a VCSEL is The light is resonated in a direction perpendicular to the substrate, and the light is emitted in a direction perpendicular to the substrate surface. The optical sensor 1 </ b> A receives the light emitted from the surface emitting laser 3 and reflected by the PD 4, and detects the detection target.
 本実施形態の光センサ1Aは光導波路51を備える。光導波路51は、出射光導光部を構成する出射コア部5aと、入射光導光部を構成する入射コア部5bと、導光部包囲部を構成するクラッド部5cとから形成される。出射コア部5aは面発光レーザー3から出射される光を導いて外部空間へ放出させ、入射コア部5bは外部空間から入射する光をPD4へ導く。クラッド部5cは、出射コア部5aおよび入射コア部5bの各周囲を覆って、出射コア部5aおよび入射コア部5bによって導かれる光を出射コア部5aおよび入射コア部5bに閉じ込める。 The optical sensor 1A of this embodiment includes an optical waveguide 51. The optical waveguide 51 is formed of an output core portion 5a that constitutes an outgoing light guide portion, an incident core portion 5b that constitutes an incident light guide portion, and a clad portion 5c that constitutes a light guide portion surrounding portion. The emission core portion 5a guides the light emitted from the surface emitting laser 3 to be emitted to the external space, and the incident core portion 5b guides the light incident from the external space to the PD 4. The clad part 5c covers the periphery of the output core part 5a and the incident core part 5b, and confines the light guided by the output core part 5a and the incident core part 5b in the output core part 5a and the incident core part 5b.
 このような光導波路51は、フォトリソグラフィー技術を用い、現像工程を通して光回路を形成する直接露光法やディスペンサによる塗布等などの製法によって形成される。また、光導波路51は透明樹脂から形成され、出射コア部5aおよび入射コア部5bの各光屈折率N1がクラッド部5cの光屈折率N2よりも大きく形成される(N1>N2)。 Such an optical waveguide 51 is formed by a manufacturing method such as a direct exposure method in which an optical circuit is formed through a developing process, coating with a dispenser, or the like using a photolithography technique. The optical waveguide 51 is made of a transparent resin, and each light refractive index N1 of the output core portion 5a and the incident core portion 5b is formed larger than the light refractive index N2 of the cladding portion 5c (N1> N2).
 このような本実施形態の光導波路型光センサ1Aによれば、出射コア部5aおよび入射コア部5bを伝播する光は、それらの周囲に形成されるクラッド部5cによって出射コア部5aおよび入射コア部5bの各内部に閉じ込められる。本実施形態における光のこの閉じ込めは、出射コア部5aおよび入射コア部5bとクラッド部5cとの光屈折率差により、行われる。したがって、面発光レーザー3から出射される光は、途中で出射コア部5aから漏れること無く、光放出端5a1から放出される。また、入射コア部5bの光導入端5b1に入射する光は、途中で入射コア部5bから漏れること無く、PD4に受光される。このような光センサ1Aは、出射コア部5aおよび入射コア部5b並びにクラッド部5cが光導波路51として形成されるので、微細化が容易であり、出射コア部5aの光放出端5a1と入射コア部5bの光導入端5b1との間の距離を縮めて、近接検知用穴205(図1(b)参照)を容易に小さくすることができる。 According to the optical waveguide type optical sensor 1A of the present embodiment as described above, the light propagating through the emission core portion 5a and the incidence core portion 5b is emitted from the emission core portion 5a and the incidence core by the clad portion 5c formed around them. It is confined inside each part 5b. This confinement of light in the present embodiment is performed by the difference in optical refractive index between the output core portion 5a and the incident core portion 5b and the clad portion 5c. Therefore, the light emitted from the surface emitting laser 3 is emitted from the light emission end 5a1 without leaking from the emission core portion 5a on the way. Further, the light incident on the light introducing end 5b1 of the incident core portion 5b is received by the PD 4 without leaking from the incident core portion 5b. In such an optical sensor 1A, the output core portion 5a, the incident core portion 5b, and the clad portion 5c are formed as the optical waveguide 51. Therefore, miniaturization is easy, and the light emitting end 5a1 and the incident core of the output core portion 5a are easy. By reducing the distance between the light introduction end 5b1 of the portion 5b, the proximity detection hole 205 (see FIG. 1B) can be easily reduced.
 また、出射コア部5aおよび入射コア部5bは自在に曲げて容易に所望の形状に形成することができる。この曲げは、出射コア部5aおよび入射コア部5b内で伝播する光が全反射する条件を満たす限界まで、行える。したがって、面発光レーザー3とPD4との間の距離が離れていても、近接検知用穴205において出射コア部5aの光放出端5a1と入射コア部5bの光導入端5b1とが近づくように、出射コア部5aと入射コア部5bとを湾曲させて形成することで、近接検知用穴205を容易に小さくすることができる。 Also, the exit core portion 5a and the entrance core portion 5b can be freely bent and easily formed into desired shapes. This bending can be performed up to the limit that satisfies the condition that the light propagating in the exit core portion 5a and the entrance core portion 5b is totally reflected. Therefore, even if the distance between the surface emitting laser 3 and the PD 4 is increased, the light emitting end 5a1 of the emitting core portion 5a and the light introducing end 5b1 of the incident core portion 5b are close to each other in the proximity detection hole 205. By forming the exit core portion 5a and the entrance core portion 5b to be curved, the proximity detection hole 205 can be easily reduced.
 図4(a)は、本発明の第2の実施形態による光導波路型光センサ1Bの平面図、同図(b)は断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 4 (a) is a plan view of an optical waveguide type optical sensor 1B according to the second embodiment of the present invention, and FIG. 4 (b) is a cross-sectional view. In the figure, the same or corresponding parts as in FIG.
 第2の実施形態による光導波路型光センサ1Bは、光導波路52を構成する出射コア部5dおよび入射コア部5eが直線状に形成される点が、第1の実施形態による光導波路型光センサ1Aと相違する。さらに、出射コア部5dが、光センサ1Aと同様に、導光中心Dから半径方向に光屈折率N1が連続的に変化するグレーデッドインデックス(GI:Graded Index)型に形成されるが、導光中心Dが面発光レーザー3の発光中心Hからずれて形成される点が、第1の実施形態による光導波路型光センサ1Aと相違する。ステップインデックス(SI:Step Index)型の場合、光は出射コア部5dを直線状に伝播していくが、グレーデッドインデックス(GI)型の場合には曲線状に伝播する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 The optical waveguide type optical sensor 1B according to the second embodiment is such that the output core portion 5d and the incident core portion 5e constituting the optical waveguide 52 are formed in a linear shape, according to the first embodiment. Different from 1A. Further, the output core portion 5d is formed in a graded index (GI) type in which the optical refractive index N1 continuously changes in the radial direction from the light guide center D, similarly to the optical sensor 1A. The optical center D is different from the optical waveguide optical sensor 1A according to the first embodiment in that the optical center D is formed to be shifted from the emission center H of the surface emitting laser 3. In the case of a step index (SI) type, light propagates linearly through the output core portion 5d, whereas in the case of a graded index (GI) type, light propagates in a curved line. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 第2の実施形態による光導波路型光センサ1Bによっても、光導波路52の微細化が容易であり、出射コア部5dの光放出端5d1と入射コア部5eの光導入端5e1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Even with the optical waveguide type optical sensor 1B according to the second embodiment, the optical waveguide 52 can be easily miniaturized, and the distance between the light emitting end 5d1 of the emitting core portion 5d and the light introducing end 5e1 of the incident core portion 5e. The proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
 さらに、第2の実施形態による光導波路型光センサ1Bによれば、面発光レーザー3の発光中心Hから出射される光は、出射コア部5dの導光中心Dからずれて出射コア部5dの内部に入射する。そして、出射コア部5dの半径方向における光屈折率N1の変化に応じて、発光中心Hからずれた光屈折率N1が大きな導光中心部では光伝播速度が遅くなり、光屈折率N1が小さな導光中心周辺部では光伝播速度が速くなる。したがって、出射コア部5dを伝播する光は、出射コア部5d内で図示するように曲線状にうねって伝播する。このため、導光中心Dと発光中心Hとのずれ量や、出射コア部5dの光伝播長さL、出射コア部5dの光屈折率N1とクラッド部5cの光屈折率N2とで定まる開口数NAを適宜選択することで、出射コア部5dの光放出端5d1から放出される光の放出角度を適宜選択することが可能となる。従来のように、光センサ1Bの上部にレンズを形成して、光線を曲げる必要は無い。 Furthermore, according to the optical waveguide type optical sensor 1B according to the second embodiment, the light emitted from the emission center H of the surface emitting laser 3 is shifted from the light guide center D of the emission core portion 5d and is emitted from the emission core portion 5d. Incident inside. Then, according to the change in the optical refractive index N1 in the radial direction of the emission core portion 5d, the light propagation speed is slow in the light guide central portion having a large optical refractive index N1 shifted from the light emission center H, and the optical refractive index N1 is small. The light propagation speed increases in the periphery of the light guide center. Therefore, the light propagating through the outgoing core portion 5d propagates in a curved shape as shown in the outgoing core portion 5d. For this reason, the amount of deviation between the light guide center D and the light emission center H, the light propagation length L of the output core portion 5d, the light refractive index N1 of the output core portion 5d and the light refractive index N2 of the cladding portion 5c are determined. By appropriately selecting the number NA, it is possible to appropriately select the emission angle of light emitted from the light emission end 5d1 of the emission core portion 5d. There is no need to bend the light beam by forming a lens on the upper part of the optical sensor 1B as in the prior art.
 スマートホン203は、表示部204を保護するため、表面にガラス板が設けられる。光センサ1B上にこのガラス板のような反射物6(図4(b)参照)が設けられる構成の場合、出射コア部5dの光放出端5d1から放出される光の放出角度を、入射コア部5eの光導入端5e1の配置位置と反対側に向かう図示するような放出角度に設定することで、反射物6の反射に起因する面発光レーザー3およびPD4間のクロストークを大幅に減少させることが出来る。 The smart phone 203 is provided with a glass plate on the surface in order to protect the display unit 204. In the case where the reflector 6 (see FIG. 4B) such as a glass plate is provided on the optical sensor 1B, the emission angle of the light emitted from the light emission end 5d1 of the emission core portion 5d is set as the incident core. The crosstalk between the surface emitting laser 3 and the PD 4 due to the reflection of the reflector 6 is greatly reduced by setting the emission angle as shown in the figure toward the side opposite to the arrangement position of the light introduction end 5e1 of the portion 5e. I can do it.
 なお、上記の第2の実施形態においては、出射コア部5dをグレーデッドインデックス(GI)型に形成し、導光中心Dを発光中心Hからずれて形成する場合について説明したが、入射コア部5eもグレーデッドインデックス(GI)型に形成し、導光中心をPD4の受光中心からずれて形成するように構成してもよい。この構成では、導光中心と受光中心とのずれ量や、入射コア部5eの光伝播長さL、入射コア部5eの光屈折率N1とクラッド部5cの光屈折率N2とで定まる開口数NAを適宜選択することで、入射コア部5eに受光される光の受光角を制御することができる。 In the second embodiment, the case where the output core portion 5d is formed in a graded index (GI) type and the light guide center D is formed so as to be shifted from the light emission center H has been described. 5e may be formed in a graded index (GI) type, and the light guide center may be formed so as to be shifted from the light receiving center of the PD 4. In this configuration, the numerical aperture determined by the amount of deviation between the light guide center and the light receiving center, the light propagation length L of the incident core portion 5e, the light refractive index N1 of the incident core portion 5e, and the light refractive index N2 of the cladding portion 5c. By appropriately selecting NA, the light receiving angle of the light received by the incident core portion 5e can be controlled.
 また、上記の第2の実施形態においては、出射コア部5dおよび入射コア部5eを直線状に形成した場合について説明したが、曲線状に形成した場合にも上記の第2の実施形態と同様な作用効果が奏される。 In the second embodiment, the case where the output core portion 5d and the incident core portion 5e are formed in a straight line has been described. However, the case where the output core portion 5d and the incident core portion 5e are formed in a curved shape is the same as in the second embodiment. The effect is effective.
 図5(a)は、本発明の第3の実施形態による光導波路型光センサ1Cの平面図、同図(b)は断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 5A is a plan view of an optical waveguide type optical sensor 1C according to the third embodiment of the present invention, and FIG. 5B is a cross-sectional view thereof. In the figure, the same or corresponding parts as in FIG.
 第3の実施形態による光導波路型光センサ1Cは、面発光レーザー3が複数の発光部3a,3b,3cを有する点で、第1の実施形態による光導波路型光センサ1Aと相違する。さらに、光導波路53を構成する出射コア部5fが複数本5fa,5fb,5fcから形成され、光入射側の各一端が各発光部3a,3b,3cに設けられて各発光部3a,3b,3cから出射される光を受光し、導いた光を外部空間へ放出させる光放出端5f1で光出射側の各他端が束ねられる点が、第1の実施形態による光導波路型光センサ1Aと相違する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 The optical waveguide optical sensor 1C according to the third embodiment is different from the optical waveguide optical sensor 1A according to the first embodiment in that the surface emitting laser 3 includes a plurality of light emitting portions 3a, 3b, 3c. Further, a plurality of output core portions 5f constituting the optical waveguide 53 are formed from a plurality of light sources 5fa, 5fb, 5fc, and one ends on the light incident side are provided in the light emitting portions 3a, 3b, 3c, and the light emitting portions 3a, 3b, 3c are provided. The point that the other ends on the light emitting side are bundled at the light emitting end 5f1 that receives the light emitted from 3c and emits the guided light to the external space is the same as that of the optical waveguide type optical sensor 1A according to the first embodiment. Is different. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 第3の実施形態による光導波路型光センサ1Cによっても、光導波路53の微細化が容易であり、出射コア部5fの光放出端5f1と入射コア部5bの光導入端5b1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Also with the optical waveguide type optical sensor 1C according to the third embodiment, the optical waveguide 53 can be easily miniaturized, and the distance between the light emitting end 5f1 of the emitting core portion 5f and the light introducing end 5b1 of the incident core portion 5b. The proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
 さらに、第3の実施形態による光導波路型光センサ1Cによれば、面発光レーザー3の複数の発光部3a,3b,3cから出射される光は、出射コア部5fの複数に分かれた光入射側の各一端から入射し、光出射側の各他端で束ねられて集光される。このため、面発光レーザー3の一つの発光部からの発光では発光光量が足りない場合、複数の発光部3a,3b,3cを面発光レーザー3に備えることで、出射コア部5fの光放出端5f1の発光径を小さく保ちながら、大きな発光光量を得ることができる。 Furthermore, according to the optical waveguide type optical sensor 1C according to the third embodiment, the light emitted from the plurality of light emitting portions 3a, 3b, 3c of the surface emitting laser 3 is divided into a plurality of light incident portions of the emission core portion 5f. The light is incident from one end on each side, and is bundled and condensed on each other end on the light exit side. For this reason, when the amount of light emitted from one light emitting portion of the surface emitting laser 3 is insufficient, the surface emitting laser 3 includes a plurality of light emitting portions 3a, 3b, and 3c, so that the light emitting end of the emission core portion 5f is provided. A large amount of emitted light can be obtained while keeping the emission diameter of 5f1 small.
 図6は、本発明の第4の実施形態による光導波路型光センサ1Dの断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 6 is a sectional view of an optical waveguide optical sensor 1D according to the fourth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第4の実施形態による光導波路型光センサ1Dは、出射コア部5gおよび入射コア部5hが直線状をしている点で、第1の実施形態による光導波路型光センサ1Aと相違する。ここで、出射コア部5gは例えば直径が10~15μm、入射コア部5hは受光領域を大きくするため例えば100~200μm程度に形成される。また、光センサ1Dは、出射コア部5gおよび入射コア部5h並びにクラッド部5cから構成される光導波路54が、GI型に限らず、SI型に形成されても構わない点で、第1の実施形態による光導波路型光センサ1Aと相違する。このSI型では、出射コア部5gおよび入射コア部5hの光屈折率が一定にされる。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 The optical waveguide type optical sensor 1D according to the fourth embodiment is different from the optical waveguide type optical sensor 1A according to the first embodiment in that the output core part 5g and the incident core part 5h are linear. Here, the emission core portion 5g is formed to have a diameter of, for example, 10 to 15 μm, and the incident core portion 5h is formed to have a thickness of, for example, about 100 to 200 μm in order to enlarge the light receiving region. Further, the optical sensor 1D has the first feature that the optical waveguide 54 composed of the output core portion 5g, the incident core portion 5h, and the cladding portion 5c may be formed not only in the GI type but also in the SI type. This is different from the optical waveguide optical sensor 1A according to the embodiment. In the SI type, the light refractive indexes of the outgoing core portion 5g and the incident core portion 5h are made constant. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 面発光レーザ3から出射される光線を曲げたりせず、単純に光センサ1Dの上面から放出させるだけの図6に示す構造の場合、光導波路54はGI型にせずに、SI型にしても構わない。 In the case of the structure shown in FIG. 6 in which the light emitted from the surface emitting laser 3 is simply emitted from the upper surface of the optical sensor 1D without being bent, the optical waveguide 54 is not the GI type but the SI type. I do not care.
 第4の実施形態による光導波路型光センサ1Dによっても、光導波路54の微細化が容易であり、出射コア部5gの光放出端5g1と入射コア部5hの光導入端5h1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Also with the optical waveguide type optical sensor 1D according to the fourth embodiment, the optical waveguide 54 can be easily miniaturized, and the distance between the light emitting end 5g1 of the emitting core portion 5g and the light introducing end 5h1 of the incident core portion 5h. The proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
 図7は、本発明の第5の実施形態による光導波路型光センサ1Eの断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 7 is a sectional view of an optical waveguide type optical sensor 1E according to the fifth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第5の実施形態による光導波路型光センサ1Eは、出射コア部5iおよび入射コア部5j並びにクラッド部5cから構成される光導波路55がSI型に形成される点、および、出射コア部5iおよび入射コア部5jが、面発光レーザ3側およびPD4側から外部空間側に向かって径が増えるテーパー構造を呈する点で、第1の実施形態による光導波路型光センサ1Aと相違する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 In the optical waveguide type optical sensor 1E according to the fifth embodiment, the optical waveguide 55 composed of the emission core portion 5i, the incidence core portion 5j, and the cladding portion 5c is formed in the SI type, and the emission core portion 5i and The incident core portion 5j is different from the optical waveguide optical sensor 1A according to the first embodiment in that the incident core portion 5j has a tapered structure in which the diameter increases from the surface emitting laser 3 side and the PD 4 side toward the external space side. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 第5の実施形態による光導波路型光センサ1Eによっても、光導波路55の微細化が容易であり、出射コア部5iの光放出端5i1と入射コア部5jの光導入端5j1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Also with the optical waveguide type optical sensor 1E according to the fifth embodiment, the optical waveguide 55 can be easily miniaturized, and the distance between the light emitting end 5i1 of the emitting core portion 5i and the light introducing end 5j1 of the incident core portion 5j. The proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained.
 さらに、第5の実施形態による光導波路型光センサ1Eによれば、出射コア部5iから放出される光の出射角を大きくして、光の放出範囲を広げることができる。また、入射コア部5jに入射する光の入射角を大きくして、受光範囲を広げることができる。 Furthermore, according to the optical waveguide type optical sensor 1E according to the fifth embodiment, the emission angle of the light emitted from the emission core portion 5i can be increased to widen the light emission range. Moreover, the incident angle of the light incident on the incident core portion 5j can be increased to widen the light receiving range.
 図8は、本発明の第6の実施形態による光導波路型光センサ1Fの断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 8 is a cross-sectional view of an optical waveguide type optical sensor 1F according to a sixth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第6の実施形態による光導波路型光センサ1Fは、第4の実施形態による光導波路型光センサ1Dと同様に、出射コア部5kおよび入射コア部5lが直線状をしている点、および、入射コア部5lの開口数NAが光入射角に応じた値に設定される点で、第1の実施形態による光導波路型光センサ1Aと相違する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 The optical waveguide optical sensor 1F according to the sixth embodiment is similar to the optical waveguide optical sensor 1D according to the fourth embodiment in that the output core portion 5k and the incident core portion 5l are linear, and It differs from the optical waveguide type optical sensor 1A according to the first embodiment in that the numerical aperture NA of the incident core portion 5l is set to a value corresponding to the light incident angle. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 第6の実施形態による光導波路型光センサ1Fによっても、出射コア部5kおよび入射コア部5l並びにクラッド部5cから構成される光導波路56の微細化が容易であり、出射コア部5kの光放出端5k1と入射コア部5lの光導入端5l1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Also by the optical waveguide type optical sensor 1F according to the sixth embodiment, it is easy to miniaturize the optical waveguide 56 composed of the emission core portion 5k, the incidence core portion 5l, and the cladding portion 5c, and light emission of the emission core portion 5k is achieved. The distance between the end 5k1 and the light introducing end 5l1 of the incident core portion 5l can be reduced to easily reduce the proximity detection hole 205, which is the same as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
 さらに、第6の実施形態による光導波路型光センサ1Fによれば、入射コア部5lの光屈折率とクラッド部5cの光屈折率とで定まる入射コア部5lの開口数NAの値を適宜選択することで、入射コア部5lに入射する光の角度を所望の角度に設定することができる。例えば、光センサ1Fの横から来るような光を入射コア部5lに入射させたくない場合には、開口数NAを小さく設定すればよい。また、その逆に入射コア部5lにあらゆる方向から多くの光を入射させたい場合には、開口数NAを大きく設定すればよい。 Furthermore, according to the optical waveguide type optical sensor 1F according to the sixth embodiment, the value of the numerical aperture NA of the incident core part 5l determined by the optical refractive index of the incident core part 5l and the optical refractive index of the cladding part 5c is appropriately selected. By doing so, the angle of the light incident on the incident core portion 51 can be set to a desired angle. For example, the numerical aperture NA may be set small when it is not desired that the light coming from the side of the optical sensor 1F be incident on the incident core portion 5l. On the other hand, when a large amount of light is desired to enter the incident core portion 51 from any direction, the numerical aperture NA may be set large.
 図9は、本発明の第7の実施形態による光導波路型光センサ1Gの断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 9 is a sectional view of an optical waveguide optical sensor 1G according to the seventh embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第7の実施形態による光導波路型光センサ1Gは、入射コア部5mの、光導入端における光軸Cの方向が出射コア部5aの光放出端5a1に背く方向に設定される点で、第1の実施形態による光導波路型光センサ1Aと相違する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 The optical waveguide type optical sensor 1G according to the seventh embodiment is different in that the direction of the optical axis C at the light introduction end of the incident core portion 5m is set in a direction opposite to the light emission end 5a1 of the emission core portion 5a. This is different from the optical waveguide type optical sensor 1A according to the first embodiment. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 第7の実施形態による光導波路型光センサ1Gによっても、出射コア部5aおよび入射コア部5m並びにクラッド部5cから構成される光導波路57の微細化が容易であり、出射コア部5aの光放出端5a1と入射コア部5mの光導入端5m1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Also with the optical waveguide type optical sensor 1G according to the seventh embodiment, it is easy to miniaturize the optical waveguide 57 composed of the emission core portion 5a, the incidence core portion 5m, and the cladding portion 5c, and light emission of the emission core portion 5a is achieved. The distance between the end 5a1 and the light introduction end 5m1 of the incident core portion 5m can be reduced to easily reduce the proximity detection hole 205, which is the same as the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
 さらに、第7の実施形態による光導波路型光センサ1Gによれば、入射コア部5mの光導入端には、出射コア部5aの光放出端5a1側と反対側からの光が受光され易くなる。このため、入射コア部5mの光導入端5m1には、出射コア部5aの光放出端5a1から放出される光の迷光が入り難くなり、面発光レーザ3およびPD4間のクロストークを減少させることが出来る。したがって、光センサ1G上にガラス板のような反射物6が設けられる構成の場合、反射物6の反射に起因する面発光レーザー3およびPD4間のクロストークを減少させることが出来る。 Furthermore, according to the optical waveguide type optical sensor 1G according to the seventh embodiment, light from the side opposite to the light emitting end 5a1 side of the emitting core portion 5a is easily received at the light introducing end of the incident core portion 5m. . For this reason, stray light of light emitted from the light emitting end 5a1 of the emitting core 5a is difficult to enter the light introducing end 5m1 of the incident core 5m, and crosstalk between the surface emitting laser 3 and the PD 4 is reduced. I can do it. Therefore, in the case where the reflection object 6 such as a glass plate is provided on the optical sensor 1G, the crosstalk between the surface emitting laser 3 and the PD 4 due to the reflection of the reflection object 6 can be reduced.
 図10は、本発明の第8の実施形態による光導波路型光センサ1Hの断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 10 is a cross-sectional view of an optical waveguide optical sensor 1H according to the eighth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第8の実施形態による光導波路型光センサ1Hは、第4の実施形態による光導波路型光センサ1Dと同様に、出射コア部5nおよび入射コア部5oが直線状をしている点、および、出射コア部5nにおける、導いた光を外部空間へ放出させる光放出端5n1の形成位置が、導く光の振幅が最大になる振幅の腹の位置に設定される点で、第1の実施形態による光導波路型光センサ1Aと相違する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。光放出端5n1の形成位置を、導く光の振幅の腹の位置に設定するには、出射コア部5nの導波路長Lを選択することで行える。 The optical waveguide type optical sensor 1H according to the eighth embodiment is similar to the optical waveguide type optical sensor 1D according to the fourth embodiment in that the output core part 5n and the incident core part 5o are linear, and According to the first embodiment, the formation position of the light emitting end 5n1 for emitting the guided light to the external space in the emission core portion 5n is set to the position of the antinode where the amplitude of the guided light is maximized. It is different from the optical waveguide type optical sensor 1A. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment. The formation position of the light emitting end 5n1 can be set to the position of the antinode of the amplitude of the guided light by selecting the waveguide length L of the emission core portion 5n.
 第8の実施形態による光導波路型光センサ1Hによっても、出射コア部5nおよび入射コア部5o並びにクラッド部5cから構成される光導波路58の微細化が容易であり、出射コア部5nの光放出端5n1と入射コア部5oの光導入端5o1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Also by the optical waveguide type optical sensor 1H according to the eighth embodiment, it is easy to miniaturize the optical waveguide 58 composed of the emission core portion 5n, the incidence core portion 5o, and the cladding portion 5c, and light emission of the emission core portion 5n is achieved. The distance between the end 5n1 and the light introducing end 5o1 of the incident core portion 5o can be shortened to easily reduce the proximity detection hole 205, which is the same as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
 さらに、第8の実施形態による光導波路型光センサ1Hによれば、GI型に形成される出射コア部5nの光放出端5n1から放出される光の向きは、導く光の振幅の腹に接する接線方向となる。したがって、光放出端5n1から放出される光は、その広がり角度を0度、つまり、平行光として、出射させることができる。このため、光センサ1Hに別途レンズを設けることなく、光センサ1Hから平行光を出射させることが可能になる。 Furthermore, according to the optical waveguide type optical sensor 1H according to the eighth embodiment, the direction of the light emitted from the light emitting end 5n1 of the emission core portion 5n formed in the GI type is in contact with the antinode of the amplitude of the guided light. Tangent direction. Therefore, the light emitted from the light emitting end 5n1 can be emitted with the spread angle being 0 degree, that is, as parallel light. For this reason, parallel light can be emitted from the optical sensor 1H without providing a separate lens for the optical sensor 1H.
 図11は、本発明の第9の実施形態による光導波路型光センサ1Iの断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 11 is a sectional view of an optical waveguide optical sensor 1I according to the ninth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第9の実施形態による光導波路型光センサ1Iは、発光素子が発光ダイオード7から構成される点で、第1の実施形態による光導波路型光センサ1Aと相違する。また、光配線が、透明樹脂から直線状に形成される出射コア部5pおよび入射コア部5qと、黒色樹脂等の遮光樹脂から形成されるクラッド部5rとからなる光導波路59から構成される点で、第1の実施形態による光導波路型光センサ1Aと相違する。さらに、出射コア部5pの光入射部が発光ダイオード7の発光面を覆う点で、第1の実施形態による光導波路型光センサ1Aと相違する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 The optical waveguide type optical sensor 1I according to the ninth embodiment is different from the optical waveguide type optical sensor 1A according to the first embodiment in that the light emitting element is composed of a light emitting diode 7. Further, the optical wiring is composed of an optical waveguide 59 including an output core portion 5p and an incident core portion 5q formed linearly from a transparent resin, and a clad portion 5r formed of a light shielding resin such as a black resin. Thus, the optical waveguide type optical sensor 1A according to the first embodiment is different. Furthermore, it differs from the optical waveguide optical sensor 1A according to the first embodiment in that the light incident part of the output core part 5p covers the light emitting surface of the light emitting diode 7. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 発光ダイオード7はプリント基板2の窪んだ凹部2aに設けられ、出射コア部5pはこの凹部2aを覆う直径の筒状をしている。一般的に発光ダイオード7は全方向に発光するので、凹部2aに斜めに形成される側壁2bは発光ダイオード7の側面周囲を覆い、発光ダイオード7の側面から出射される光を反射して、出射コア部5pの光放出端5p1側へ向かわせる。この反射により、発光ダイオード7から出射される光の全てが効率的に上面側へ放射される。 The light-emitting diode 7 is provided in the recessed portion 2a that is recessed in the printed circuit board 2, and the output core portion 5p has a cylindrical shape with a diameter that covers the recessed portion 2a. In general, since the light emitting diode 7 emits light in all directions, the side wall 2b formed obliquely in the recess 2a covers the periphery of the side surface of the light emitting diode 7 and reflects the light emitted from the side surface of the light emitting diode 7 to be emitted. The light is directed toward the light emission end 5p1 side of the core 5p. By this reflection, all of the light emitted from the light emitting diode 7 is efficiently emitted to the upper surface side.
 本構成によれば、出射コア部5pおよび入射コア部5qを伝播する光は、出射コア部5pおよび入射コア部5qを囲むクラッド部5rによって遮光され、出射コア部5pおよび入射コア部5qの各内部に閉じ込められる。 According to this configuration, the light propagating through the exit core portion 5p and the entrance core portion 5q is shielded by the cladding portion 5r surrounding the exit core portion 5p and the entrance core portion 5q, and each of the exit core portion 5p and the entrance core portion 5q. Confined inside.
 第9の実施形態による光導波路型光センサ1Iによっても、光導波路59の微細化が容易であり、出射コア部5pの光放出端5p1と入射コア部5qの光導入端5q1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。また、光センサ1Iの外部から出射コア部5pおよび入射コア部5qに到来する迷光をクラッド部5rによって遮光することができる。 Also with the optical waveguide type optical sensor 1I according to the ninth embodiment, the optical waveguide 59 can be easily miniaturized, and the distance between the light emitting end 5p1 of the emitting core portion 5p and the light introducing end 5q1 of the incident core portion 5q. The proximity detecting hole 205 can be easily reduced, and the same effect as the optical waveguide optical sensor 1A according to the first embodiment can be obtained. Further, stray light that arrives at the emission core portion 5p and the incidence core portion 5q from the outside of the optical sensor 1I can be shielded by the cladding portion 5r.
 図12は、本発明の第10の実施形態による光センサ1Jの断面図である。なお、同図において図6と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 12 is a cross-sectional view of an optical sensor 1J according to the tenth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第10の実施形態による光センサ1Jは、面発光レーザ3およびPD4、並びにこれらを配線するための図示しないボンディングワイヤがそれぞれ透明なポッティング材などから形成される保護膜8で被覆される点で、第4の実施形態による光導波路型光センサ1Dと相違する。また、光配線60が、出射光導光部をコアとし導光部包囲部をクラッドとする出射側光ファイバ9と、入射光導光部をコアとし導光部包囲部をクラッドとする入射側光ファイバ10とから構成される点で、第4の実施形態による光導波路型光センサ1Dと相違する。 In the optical sensor 1J according to the tenth embodiment, the surface emitting laser 3 and the PD 4 and bonding wires (not shown) for wiring them are covered with a protective film 8 formed of a transparent potting material, respectively. This is different from the optical waveguide type optical sensor 1D according to the fourth embodiment. In addition, the optical wiring 60 includes an outgoing side optical fiber 9 having the outgoing light guide portion as a core and a light guide portion surrounding portion as a cladding, and an incident side optical fiber having an incident light guide portion as a core and a light guide portion surrounding portion as a cladding. 10 is different from the optical waveguide type optical sensor 1D according to the fourth embodiment.
 第10の実施形態による光センサ1Jによっても、短尺な出射側光ファイバ9および入射側光ファイバ10から構成される光配線60の微細化が容易であり、出射側光ファイバ9の光放出端9aと入射側光ファイバ10の光導入端10aとの間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。また、第10の実施形態による光センサ1Jによっても、ディスペンサ等で導波路54を形成する第4の実施形態による光導波路型光センサ1Dと同様に、出射光導光部および入射光導光部を単純な直線形状にすることができる。 Also with the optical sensor 1J according to the tenth embodiment, it is easy to miniaturize the optical wiring 60 composed of the short emission side optical fiber 9 and the incident side optical fiber 10, and the light emission end 9a of the emission side optical fiber 9 is achieved. The proximity detection hole 205 can be easily reduced by reducing the distance between the optical fiber 10 and the light introduction end 10a of the incident side optical fiber 10, and the same effect as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced. In addition, the optical sensor 1J according to the tenth embodiment can simplify the outgoing light guide and the incident light guide as in the optical waveguide optical sensor 1D according to the fourth embodiment in which the waveguide 54 is formed by a dispenser or the like. A straight line shape.
 さらに、第10の実施形態による光センサ1Jによれば、面発光レーザ3およびPD4が透明な保護膜8で被覆されることで、出射側光ファイバ9は保護膜8を介して面発光レーザ3に、入射側光ファイバ10は保護膜8を介してPD4に光接続される。このため、光センサ1Jの製造時、面発光レーザ3およびPD4、並びにこれらを配線するためのボンディングワイヤを保護膜8で被覆した後に、短尺に加工された出射側光ファイバ9および入射側光ファイバ10を実装することで、面発光レーザ3およびPD4、並びにこれらを配線するためのボンディングワイヤが光ファイバ9,10と接触して傷つくことなく、上記の作用効果を奏する光センサ1Jを光ファイバ9,10によって実現することができる。 Furthermore, according to the optical sensor 1J according to the tenth embodiment, the surface-emitting laser 3 and the PD 4 are covered with the transparent protective film 8, so that the emission-side optical fiber 9 passes through the protective film 8. In addition, the incident side optical fiber 10 is optically connected to the PD 4 through the protective film 8. For this reason, at the time of manufacturing the optical sensor 1J, the surface emitting laser 3 and the PD 4 and the bonding wires for wiring them are covered with the protective film 8, and then the emission side optical fiber 9 and the incidence side optical fiber processed to be short are processed. By mounting 10, the surface emitting laser 3 and the PD 4, and the bonding wires for wiring them are not damaged by coming into contact with the optical fibers 9 and 10. , 10 can be realized.
 図13は、本発明の第11の実施形態による光センサ1Kの断面図である。なお、同図において図11と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 13 is a cross-sectional view of an optical sensor 1K according to an eleventh embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第11の実施形態による光センサ1Kは、発光ダイオード7およびPD4、並びにこれらを配線するための図示しないボンディングワイヤがそれぞれ透明なポッティング材などから形成される保護膜8で被覆される点で、第9の実施形態による光導波路型光センサ1Iと相違する。また、光配線61が、出射光導光部をコアとし導光部包囲部をクラッドとする、直径が発光ダイオード7の外形よりも大きい出射側光ファイバ11と、入射光導光部をコアとし導光部包囲部をクラッドとする入射側光ファイバ12とから構成される点で、第9の実施形態による光導波路型光センサ1Iと相違する。 In the optical sensor 1K according to the eleventh embodiment, the light-emitting diode 7 and the PD 4 and bonding wires (not shown) for wiring them are covered with a protective film 8 formed of a transparent potting material or the like. This is different from the optical waveguide type optical sensor 1I according to the ninth embodiment. In addition, the optical wiring 61 has the outgoing light guide part as a core and the light guide part surrounding part as a clad, and the outgoing side optical fiber 11 having a diameter larger than the outer shape of the light emitting diode 7 and the incident light guide part as a core. The optical waveguide type optical sensor 1I according to the ninth embodiment is different from the optical waveguide type optical sensor 1I according to the ninth embodiment in that the optical fiber 12 is composed of an incident-side optical fiber 12 having a portion surrounding portion as a cladding.
 第11の実施形態による光センサ1Kによっても、短尺な出射側光ファイバ11および入射側光ファイバ12から構成される光配線61の微細化が容易であり、出射側光ファイバ11の光放出端11aと入射側光ファイバ12の光導入端12aとの間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。また、第11の実施形態による光センサ1Kによっても、ディスペンサ等で導波路59を形成する第9の実施形態による光導波路型光センサ1Iと同様に、発光ダイオード7から出射される光の全てを効率的に上面側へ放射させることができる。 Also with the optical sensor 1K according to the eleventh embodiment, it is easy to miniaturize the optical wiring 61 composed of the short emission side optical fiber 11 and the incident side optical fiber 12, and the light emission end 11a of the emission side optical fiber 11 is obtained. The proximity detection hole 205 can be easily reduced by reducing the distance between the optical fiber 12 and the light introduction end 12a of the incident side optical fiber 12, and the same effect as that of the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced. In addition, the optical sensor 1K according to the eleventh embodiment also emits all of the light emitted from the light emitting diode 7 as in the optical waveguide type optical sensor 1I according to the ninth embodiment in which the waveguide 59 is formed by a dispenser or the like. It is possible to radiate efficiently to the upper surface side.
 さらに、第11の実施形態による光センサ1Kによれば、発光ダイオード7およびPD4が透明な保護膜8で被覆されることで、出射側光ファイバ11は保護膜8を介して発光ダイオード7に、入射側光ファイバ12は保護膜8を介してPD4に光接続される。このため、光センサ1Kの製造時、発光ダイオード7およびPD4、並びにこれらを配線するためのボンディングワイヤを保護膜8で被覆した後に、短尺に加工された出射側光ファイバ11および入射側光ファイバ12を実装することで、発光ダイオード7およびPD4、並びにこれらを配線するためのボンディングワイヤが光ファイバ11,12と接触して傷つくことなく、上記の作用効果を奏する光センサ1Kを光ファイバ11,12によって実現することができる。 Furthermore, according to the optical sensor 1K according to the eleventh embodiment, the light-emitting diode 7 and the PD 4 are covered with the transparent protective film 8, so that the emission-side optical fiber 11 passes through the protective film 8 to the light-emitting diode 7. The incident side optical fiber 12 is optically connected to the PD 4 through the protective film 8. For this reason, at the time of manufacturing the optical sensor 1K, the light-emitting diode 7 and the PD 4 and the bonding wires for wiring them are covered with the protective film 8, and then the emission-side optical fiber 11 and the incident-side optical fiber 12 processed to be short are processed. By mounting the optical sensor 1K, the light-emitting diode 7 and the PD 4 and the bonding wires for wiring them are not damaged by coming into contact with the optical fibers 11 and 12, and the optical fiber 1 Can be realized.
 図14は、本発明の第12の実施形態による光導波路型光センサ1Lの断面図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 14 is a cross-sectional view of an optical waveguide type optical sensor 1L according to a twelfth embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第12の実施形態による光導波路型光センサ1Lは、出射コア部5sが、導いた光を外部空間へ放出させる光放出端5s1に光散乱材13が塗布等によって設けられる点で、第1の実施形態による光導波路型光センサ1Aと相違する。その他の構成は、第1の実施形態による光導波路型光センサ1Aと同じである。 In the optical waveguide type optical sensor 1L according to the twelfth embodiment, the light scattering material 13 is provided by coating or the like on the light emitting end 5s1 for emitting the guided light to the external space. This is different from the optical waveguide optical sensor 1A according to the embodiment. Other configurations are the same as those of the optical waveguide optical sensor 1A according to the first embodiment.
 第12の実施形態による光導波路型光センサ1Lによっても、出射コア部5sおよび入射コア部5b並びにクラッド部5cにより形成される光導波路62の微細化が容易であり、出射コア部5sの光放出端5s1と入射コア部5bの光導入端5b1との間の距離を縮めて、近接検知用穴205を容易に小さくすることができ、第1の実施形態による光導波路型光センサ1Aと同様な作用効果が奏される。 Also with the optical waveguide type optical sensor 1L according to the twelfth embodiment, it is easy to miniaturize the optical waveguide 62 formed by the emission core portion 5s, the incidence core portion 5b, and the cladding portion 5c, and light emission of the emission core portion 5s is achieved. The distance between the end 5s1 and the light introducing end 5b1 of the incident core portion 5b can be reduced to easily reduce the proximity detection hole 205, which is similar to the optical waveguide type optical sensor 1A according to the first embodiment. An effect is produced.
 さらに、第12の実施形態による光導波路型光センサ1Lによれば、出射コア部5sの光放出端5s1から放出されるレーザ光は、光放出端5s1に設けられる光散乱材13によって散乱し、出射角が広がる。このため、面発光レーザ3から出射される光のパワーが大きくても、光センサ1Lは、レーザ製品安全基準についてのレーザクラス分けを上げる必要が無くなり、危険度を抑えることができる。すなわち、レーザ光は目に入ると危険であるが、光散乱材13によって散乱されるので、目に届く光量は小さくなり、危険度を抑えることができる。 Furthermore, according to the optical waveguide optical sensor 1L according to the twelfth embodiment, the laser light emitted from the light emitting end 5s1 of the emitting core portion 5s is scattered by the light scattering material 13 provided at the light emitting end 5s1, The emission angle is widened. For this reason, even if the power of the light emitted from the surface emitting laser 3 is large, the optical sensor 1L does not need to increase the laser classification for the laser product safety standard, and the risk can be suppressed. That is, laser light is dangerous when it enters the eye, but is scattered by the light scattering material 13, so that the amount of light reaching the eye is reduced, and the degree of danger can be suppressed.
 面発光レーザ3を用いた上記の各光センサ1B~1H,1Jにおいても、出射コア部5d,5f,5g,5i,5k,5nの光放出端5d1,5f1,5g1,5i1,5k1,5n1、および光ファイバ9の光放出端9aにこの光散乱材13を設けることで、第12の実施形態による光導波路型光センサ1Lと同様な作用効果が奏される。 Also in each of the above-described optical sensors 1B to 1H, 1J using the surface emitting laser 3, the light emitting ends 5d1, 5f1, 5g1, 5i1, 5k1, 5n1 of the emission core portions 5d, 5f, 5g, 5i, 5k, 5n, By providing this light scattering material 13 at the light emitting end 9a of the optical fiber 9, the same operational effects as the optical waveguide type optical sensor 1L according to the twelfth embodiment are exhibited.
 なお、上記の各実施形態および変形例では、光導波路51,52,53,54,55,56,57,58,62が透明樹脂から形成され、出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oを伝播する光は、出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oとクラッド部5cとの光屈折率差により、出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oの各内部に閉じ込められる場合について、説明した。しかし、出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oを透明樹脂から形成し、クラッド部5cに炭素等を混入してクラッド部5cを黒色樹脂等の遮光樹脂から形成するように構成してもよい。本構成によれば、出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oを伝播する光は、出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oを囲むクラッド部5cによって遮光され、出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oの各内部に閉じ込められる。このような構成によっても、上記の各実施形態および変形例と同様な作用効果が奏される。また、光センサ1A,1B,1C,1D,1E,1F,1G,1H,1Lの外部から出射コア部5a,5d,5f,5g,5i,5k,5n,5sおよび入射コア部5b,5e,5h,5j,5l,5m,5oに到来する迷光をクラッド部5cによって遮光することができる。 In each of the above embodiments and modifications, the optical waveguides 51, 52, 53, 54, 55, 56, 57, 58, 62 are made of transparent resin, and the output core portions 5a, 5d, 5f, 5g, 5i are formed. , 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o are transmitted through the output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core. The output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, due to the difference in optical refractive index between the portions 5b, 5e, 5h, 5j, 5l, 5m, 5o and the cladding portion 5c, The case of being confined in each of 5e, 5h, 5j, 5l, 5m, and 5o has been described. However, the output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o are formed from transparent resin, and the cladding portion 5c is made of carbon or the like. The clad portion 5c may be formed from a light shielding resin such as a black resin. According to this configuration, the light propagating through the output core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, 5h, 5j, 5l, 5m, 5o are shielded by the clad portion 5c, and the outgoing core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident cores 5b, 5e, 5h, 5j, 5l, 5m, 5o are confined inside. Even with such a configuration, the same effects as those of the above-described embodiments and modifications can be obtained. Further, from the outside of the optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1L, the outgoing core portions 5a, 5d, 5f, 5g, 5i, 5k, 5n, 5s and the incident core portions 5b, 5e, Stray light arriving at 5h, 5j, 5l, 5m, and 5o can be shielded by the clad portion 5c.
 上記の各実施形態および変形例では、光センサ1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1Lをスマートホン203の近接検知用穴205を小さくするために用いたが、その用途はこれに限定されるものではない。例えば、携帯電話機等のその他の電子機器における近接検知用穴を小さくするために、用いることもできる。また、発光素子および受光素子から構成される従来の光センサを本発明による光センサ1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1Lに置き換えて使用することで、発光素子および受光素子間に遮光用の障壁を設けること無く、かつ、クロストークの懸念も無く、光センサを構成できる。さらに、面発光レーザー3や発光ダイオード7を光らせないことで、光導波路型光センサ1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1Lを照度検知の用途に用いることもできる。 In the above embodiments and modifications, the optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, and 1L are used to reduce the proximity detection hole 205 of the smart phone 203. Although used, the application is not limited to this. For example, it can also be used to reduce the proximity detection hole in other electronic devices such as mobile phones. In addition, the conventional optical sensor composed of the light emitting element and the light receiving element is used in place of the optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, and 1L according to the present invention. Thus, an optical sensor can be configured without providing a light blocking barrier between the light emitting element and the light receiving element and without fear of crosstalk. Further, by not emitting the surface emitting laser 3 or the light emitting diode 7, the optical waveguide type optical sensors 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, and 1L are used for illuminance detection. It can also be used.
 1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1L…光センサ
 2…プリント基板
 2a…凹部
 2b…凹部2aの側壁
 3…面発光レーザー(発光素子)
 3a,3b,3c…発光部
 4…フォトダイオード(受光素子)
 5a,5d,5f,5fa,5fb,5fc,5g,5i,5k,5n,5p,5s…出射コア部(出射光導光部)
 5a1,5d1,5f1,5g1,5i1,5k1,5n1,5p1,5s1,9a,11a…光放出端
 5b,5e,5h,5j,5l,5m,5o,5q…入射コア部(入射光導光部)
 5b1,5e1,5h1,5j1,5i1,5m1,5o1,5q1,10a,12a…光導入端
 5c…クラッド部(導光部包囲部)
 6…反射物
 7…発光ダイオード(発光素子)
 8…保護膜
 9,11…出射側光ファイバ
 10,12…入射側光ファイバ
 51,52,53,54,55,56,57,58,59,62…光導波路(光配線)
 60,61…光配線
 203…スマートホン
 205…近接検知用穴
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L ... Optical sensor 2 ... Printed circuit board 2a ... Recess 2b ... Side wall of recess 2a 3 ... Surface emitting laser (light emitting element)
3a, 3b, 3c ... light emitting part 4 ... photodiode (light receiving element)
5a, 5d, 5f, 5fa, 5fb, 5fc, 5g, 5i, 5k, 5n, 5p, 5s ... emitting core part (emitted light guiding part)
5a1, 5d1, 5f1, 5g1, 5i1, 5k1, 5n1, 5p1, 5s1, 9a, 11a... Light emitting ends 5b, 5e, 5h, 5j, 5l, 5m, 5o, 5q.
5 b 1, 5 e 1, 5 h 1, 5 j 1, 5 i 1, 5 m 1, 5 o 1, 5 q 1, 10 a, 12 a ... light introduction end 5 c ... clad part (light guide part surrounding part)
6 ... Reflector 7 ... Light emitting diode (light emitting element)
DESCRIPTION OF SYMBOLS 8 ... Protective film 9, 11 ... Output side optical fiber 10, 12 ... Incident side optical fiber 51, 52, 53, 54, 55, 56, 57, 58, 59, 62 ... Optical waveguide (optical wiring)
60, 61 ... Optical wiring 203 ... Smartphone 205 ... Proximity detection hole

Claims (14)

  1.  発光素子と受光素子とが並んで配置されて構成され、前記発光素子から出射されて反射した光を前記受光素子で受光して検出対象物を検出する光センサにおいて、
     前記発光素子から出射される光を導いて外部空間へ放出させる出射光導光部と、外部空間から入射する光を前記受光素子へ導く入射光導光部と、前記出射光導光部および前記入射光導光部の各周囲を覆って前記出射光導光部および前記入射光導光部によって導かれる光を前記出射光導光部および前記入射光導光部に閉じ込める導光部包囲部とから形成される光配線を備える
     ことを特徴とする光センサ。
    In the optical sensor that is configured by arranging the light emitting element and the light receiving element side by side, and receives the light emitted from the light emitting element and reflected by the light receiving element to detect the detection target,
    An outgoing light guide that guides light emitted from the light emitting element and emits it to the external space, an incident light guide that guides light incident from the external space to the light receiving element, the outgoing light guide, and the incident light guide An optical wiring formed from a light guide portion surrounding portion for confining light guided by the outgoing light guide portion and the incident light guide portion in the outgoing light guide portion and the incident light guide portion. An optical sensor characterized by the above.
  2.  前記発光素子は面発光レーザーから構成され、
     前記光配線は、前記出射光導光部と前記入射光導光部と前記導光部包囲部とから形成される光導波路から構成される
     ことを特徴とする請求項1に記載の光センサ。
    The light emitting element is composed of a surface emitting laser,
    The optical sensor according to claim 1, wherein the optical wiring includes an optical waveguide formed by the outgoing light guide part, the incident light guide part, and the light guide part surrounding part.
  3.  前記発光素子は発光ダイオードから構成され、
     前記光配線は、前記出射光導光部および前記入射光導光部が透明樹脂から形成され、前記導光部包囲部が遮光樹脂から形成される光導波路から構成され、前記出射光導光部の光入射部が前記発光ダイオードの発光面を覆う
     ことを特徴とする請求項1に記載の光センサ。
    The light emitting element is composed of a light emitting diode,
    The optical wiring is composed of an optical waveguide in which the outgoing light guide portion and the incident light guide portion are formed from a transparent resin, and the light guide portion surrounding portion is formed from a light shielding resin. The optical sensor according to claim 1, wherein the portion covers a light emitting surface of the light emitting diode.
  4.  前記発光素子は面発光レーザーから構成され、
     前記発光素子および前記受光素子は透明な保護膜で被覆され、
     前記光配線は、前記出射光導光部をコアとし前記導光部包囲部をクラッドとする出射側光ファイバと、前記入射光導光部をコアとし前記導光部包囲部をクラッドとする入射側光ファイバとから構成される
     ことを特徴とする請求項1に記載の光センサ。
    The light emitting element is composed of a surface emitting laser,
    The light emitting element and the light receiving element are covered with a transparent protective film,
    The optical wiring includes: an output side optical fiber having the output light guide portion as a core and the light guide portion surrounding portion as a cladding; and an incident side light having the incident light guide portion as a core and the light guide portion surrounding portion as a cladding. The optical sensor according to claim 1, comprising: a fiber.
  5.  前記発光素子は発光ダイオードから構成され、
     前記発光素子および前記受光素子は透明な保護膜で被覆され、
     前記光配線は、前記出射光導光部をコアとし前記導光部包囲部をクラッドとする、直径が前記発光ダイオードの外形よりも大きい出射側光ファイバと、前記入射光導光部をコアとし前記導光部包囲部をクラッドとする入射側光ファイバとから構成される
     ことを特徴とする請求項1に記載の光センサ。
    The light emitting element is composed of a light emitting diode,
    The light emitting element and the light receiving element are covered with a transparent protective film,
    The optical wiring has the outgoing light guide part as a core and the light guide part surrounding part as a clad, the outgoing side optical fiber having a diameter larger than the outer shape of the light emitting diode, and the incident light guide part as a core. The optical sensor according to claim 1, wherein the optical sensor includes an incident-side optical fiber having the optical portion surrounding portion as a cladding.
  6.  前記面発光レーザーは複数の発光部を有し、
     前記出射光導光部は複数本から形成され、光入射側の各一端が各前記発光部に設けられて各前記発光部から出射される光を受光し、導いた光を外部空間へ放出させる光放出端で光出射側の各他端が束ねられることを特徴とする請求項2に記載の光センサ。
    The surface emitting laser has a plurality of light emitting portions,
    The outgoing light guide unit is formed of a plurality of light sources, and each end on the light incident side is provided in each light emitting unit, receives light emitted from each light emitting unit, and emits the guided light to the external space. 3. The optical sensor according to claim 2, wherein the other ends on the light emitting side are bundled at the emission end.
  7.  前記入射光導光部は、光導入端における光軸の方向が前記出射光導光部の光放出端に背く方向に設定されることを特徴とする請求項2に記載の光センサ。 3. The optical sensor according to claim 2, wherein the incident light guide unit is set such that the direction of the optical axis at the light introduction end is opposite to the light emission end of the outgoing light guide unit.
  8.  前記光導波路は透明樹脂から形成され、前記出射光導光部および前記入射光導光部の光屈折率は前記導光部包囲部の光屈折率よりも大きく形成されることを特徴とする請求項2に記載の光センサ。 The optical waveguide is formed of a transparent resin, and the light refractive index of the outgoing light guide and the incident light guide is larger than the light refractive index of the light guide enclosure. The optical sensor described in 1.
  9.  前記光導波路は前記出射光導光部または前記入射光導光部の光屈折率が一定のステップインデックス型に形成され、前記出射光導光部または前記入射光導光部は、発光素子側または受光素子側から外部空間側に向かって径が増えるテーパー構造を呈することを特徴とする請求項8に記載の光センサ。 The optical waveguide is formed in a step index type in which the light refractive index of the outgoing light guide or the incident light guide is constant, and the outgoing light guide or the incoming light guide from the light emitting element side or the light receiving element side. The optical sensor according to claim 8, wherein the optical sensor has a tapered structure whose diameter increases toward the external space side.
  10.  前記入射光導光部は開口数が光入射角に応じた値に設定されることを特徴とする請求項8に記載の光センサ。 The optical sensor according to claim 8, wherein the incident light guide unit has a numerical aperture set to a value corresponding to a light incident angle.
  11.  前記出射光導光部は、導光中心から径方向に光屈折率が連続的に変化するグレーデッドインデックス型に形成され、導光中心が前記面発光レーザーの発光中心からずれて形成されることを特徴とする請求項8に記載の光センサ。 The outgoing light guide part is formed in a graded index type in which the optical refractive index continuously changes in the radial direction from the light guide center, and the light guide center is formed to be shifted from the light emission center of the surface emitting laser. The optical sensor according to claim 8.
  12.  前記出射光導光部は、導光中心から径方向に光屈折率が連続的に変化するグレーデッドインデックス型に形成され、導いた光を外部空間へ放出させる光放出端の形成位置が、導く光の振幅が最大になる振幅の腹の位置に設定されることを特徴とする請求項8に記載の光センサ。 The outgoing light guide part is formed in a graded index type in which the optical refractive index continuously changes in the radial direction from the light guide center, and the light emission end forming position for emitting the guided light to the external space is guided light. The optical sensor according to claim 8, wherein the amplitude is set at a position of an antinode with the maximum amplitude.
  13.  前記出射光導光部および前記入射光導光部は透明樹脂から形成され、前記導光部包囲部は遮光樹脂から形成されることを特徴とする請求項2または請求項6または請求項7に記載の光センサ。 The said output light light guide part and the said incident light light guide part are formed from transparent resin, and the said light guide part surrounding part is formed from light shielding resin, The Claim 2 or Claim 6 or Claim 7 characterized by the above-mentioned. Optical sensor.
  14.  前記出射光導光部は、導いた光を外部空間へ放出させる光放出端に光散乱材が設けられることを特徴とする請求項2または請求項4または請求項6から請求項13のいずれか1項に記載の光センサ。 14. The light emission member according to claim 2, wherein a light scattering material is provided at a light emission end that emits the guided light to an external space. The optical sensor according to item.
PCT/JP2017/014532 2016-04-14 2017-04-07 Optical sensor WO2017179507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081467 2016-04-14
JP2016081467 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017179507A1 true WO2017179507A1 (en) 2017-10-19

Family

ID=60042541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014532 WO2017179507A1 (en) 2016-04-14 2017-04-07 Optical sensor

Country Status (1)

Country Link
WO (1) WO2017179507A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221305A1 (en) * 2019-04-30 2020-11-05 深圳市万普拉斯科技有限公司 Photometric module and electronic device
EP4006598A1 (en) * 2020-11-30 2022-06-01 Apple Inc. Optical components for electronic devices
US20220342163A1 (en) * 2021-04-26 2022-10-27 Apple Inc. Optical components for electronic devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200105A (en) * 1989-12-28 1991-09-02 Hitachi Cable Ltd Optical waveguide type object detecting sensor
JPH04252082A (en) * 1991-01-10 1992-09-08 Sharp Corp Optically coupled device
JPH09304665A (en) * 1996-05-14 1997-11-28 Nec Corp Optical coupling structure of light emitting element and optical waveguide
JPH11197126A (en) * 1998-01-19 1999-07-27 Nippon Soken Inc Pulse waveform detector
JP2001024213A (en) * 1999-07-06 2001-01-26 Citizen Electronics Co Ltd Reflection type optical sensor and its manufacture
JP2004265490A (en) * 2003-02-28 2004-09-24 Sharp Corp Optical pickup device
JP2014519697A (en) * 2011-04-15 2014-08-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device
WO2015052995A1 (en) * 2013-10-07 2015-04-16 シャープ株式会社 Semiconductor laser device and production method therefor
WO2015174117A1 (en) * 2014-05-12 2015-11-19 シャープ株式会社 Light-detecting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200105A (en) * 1989-12-28 1991-09-02 Hitachi Cable Ltd Optical waveguide type object detecting sensor
JPH04252082A (en) * 1991-01-10 1992-09-08 Sharp Corp Optically coupled device
JPH09304665A (en) * 1996-05-14 1997-11-28 Nec Corp Optical coupling structure of light emitting element and optical waveguide
JPH11197126A (en) * 1998-01-19 1999-07-27 Nippon Soken Inc Pulse waveform detector
JP2001024213A (en) * 1999-07-06 2001-01-26 Citizen Electronics Co Ltd Reflection type optical sensor and its manufacture
JP2004265490A (en) * 2003-02-28 2004-09-24 Sharp Corp Optical pickup device
JP2014519697A (en) * 2011-04-15 2014-08-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device
WO2015052995A1 (en) * 2013-10-07 2015-04-16 シャープ株式会社 Semiconductor laser device and production method therefor
WO2015174117A1 (en) * 2014-05-12 2015-11-19 シャープ株式会社 Light-detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221305A1 (en) * 2019-04-30 2020-11-05 深圳市万普拉斯科技有限公司 Photometric module and electronic device
EP4006598A1 (en) * 2020-11-30 2022-06-01 Apple Inc. Optical components for electronic devices
CN114578680A (en) * 2020-11-30 2022-06-03 苹果公司 Optical component for electronic device
US20220342163A1 (en) * 2021-04-26 2022-10-27 Apple Inc. Optical components for electronic devices

Similar Documents

Publication Publication Date Title
KR101078237B1 (en) Pointing device and electronic apparatus
JP4902714B2 (en) Optical pointing device, electronic apparatus including the same, light guide, and light guide method.
WO2017179507A1 (en) Optical sensor
WO2008055318A1 (en) Planar waveguide lens design
JP2017011120A (en) Proximity sensor and electronic apparatus using the same
TW200406067A (en) Optical link device
JP2009009102A5 (en)
US20190094069A1 (en) Electronic Devices Having Infrared Blocking Light Guides
US11474039B2 (en) Chemical sensing device using fluorescent sensing material
US11255727B2 (en) Nanostructure based article, optical sensor and analytical instrument and method of forming same
CN108227067B (en) Optical structure and electronic equipment with same
JP4699551B2 (en) Optical pointing device and electronic device including the same
TW201323952A (en) Optical coupling module and method of making the same
KR101238568B1 (en) Optical waveguide and optical touch panel
JP2004525397A (en) Apparatus for transmitting optical signals through a planar light guide
JP2000258247A (en) Ultraviolet ray detector
JP5107218B2 (en) Optical waveguide and optical touch panel
JP2019153683A (en) Optical waveguide type photosensor
JP6380973B2 (en) Optical sensor
US7260295B2 (en) Optical waveguide and optical transmitting/receiving module
JP2010123734A (en) Reflective optical coupling device and electronic equipment mounting the reflective optical coupling device
JP7192269B2 (en) Optical waveguides, optical modules and electronics
KR102038518B1 (en) Apparatus of extending light path
US20230184939A1 (en) Proximity sensor utilizing optical fibers
KR100964169B1 (en) Optical joy stick and portable electronic device having the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782322

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP