JP2019153683A - Optical waveguide type photosensor - Google Patents

Optical waveguide type photosensor Download PDF

Info

Publication number
JP2019153683A
JP2019153683A JP2018037530A JP2018037530A JP2019153683A JP 2019153683 A JP2019153683 A JP 2019153683A JP 2018037530 A JP2018037530 A JP 2018037530A JP 2018037530 A JP2018037530 A JP 2018037530A JP 2019153683 A JP2019153683 A JP 2019153683A
Authority
JP
Japan
Prior art keywords
light
light guide
incident
face
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018037530A
Other languages
Japanese (ja)
Inventor
石川 弘樹
Hiroki Ishikawa
弘樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2018037530A priority Critical patent/JP2019153683A/en
Publication of JP2019153683A publication Critical patent/JP2019153683A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a photosensor capable of easily making a translucent part for proximity detection extremely small, without causing a problem of crosstalk where the light emitted from a light-emitting device is received directly by a photodetector.SOLUTION: An optical guide 5 of a photosensor 1 is formed of an emission core part 5a constituting an emission light guide part, an incident core part 5b constituting an incident light guide part, and a clad part 5c constituting a light guide part enclosure part. The emission core part 5a guides the light emitted from a surface emitting laser 3 to be emitted from a light emission end face 5a1 to the outer space, and the incident core part 5b receives the light incident from the outer space by a light introduction end face 5b1 before being introduced to a PD4. The clad part 5c covers around the emission core part 5a and the incident core part 5b and confines the light therein. The emission core part 5a is bent so that the light emission end side overlaps the light introduction end side, and the light emission end face 5a1 is formed in the light introduction end face 5b1.SELECTED DRAWING: Figure 3

Description

本発明は、発光素子と受光素子とが並んで配置されて構成され、発光素子から出射されて反射した光を受光素子で受光して検出対象物を検出する光センサに関するものである。   The present invention relates to an optical sensor that includes a light emitting element and a light receiving element arranged side by side, and detects a detection target by receiving light reflected from the light emitting element by the light receiving element.

光センサの中でも近接検知や照度検知するものは、図1(a)の断面図に示すように、発光ダイオード(LED)201とフォトダイオード(PD)202とが並んで設けられて構成されている。最近ではIC(高集積化回路)の中にPDを内蔵して構成されているものもある。近接検知では、光センサの上部に反射物が存在した場合、LED201から出射された光が反射物で反射し、その反射光がPD202で検知される。その反射光量の大小で、検出対象物が光センサに近づいているか否か、検出対象物が有るか否か等が判断される。照度検知ではLED201が光らせられず、周辺の環境光がPD202で検知されることで、照度が測定される。一般的に近接検知では近赤外の波長、照度検知では可視光領域の波長の光が使用される。   Among the optical sensors, those that detect proximity or illuminance are configured by arranging a light emitting diode (LED) 201 and a photodiode (PD) 202 side by side, as shown in the sectional view of FIG. . Recently, some ICs (Highly Integrated Circuits) are built with PDs. In the proximity detection, when a reflection object exists above the optical sensor, the light emitted from the LED 201 is reflected by the reflection object, and the reflected light is detected by the PD 202. Based on the amount of reflected light, it is determined whether or not the detection target is approaching the optical sensor, whether or not there is a detection target, and the like. In the illuminance detection, the LED 201 is not illuminated, and ambient light is detected by the PD 202, whereby the illuminance is measured. Generally, near-infrared wavelengths are used for proximity detection, and light having a wavelength in the visible light region is used for illuminance detection.

最近、この近接検知はスマートホンにも使用されている。図1(b)の部分平面図に示すように、スマートホン203には、表示部204の上方に近接検知用透光部205が設けられている。近接検知用透光部205下方の機器内部には上記の光センサが内蔵されている。電話をする際には近接検知用透光部205の周辺に耳が当てられるが、LED201から発光した光が耳で反射し、その反射光がPD202で検知されることで、近接検知用透光部205の周辺に耳が当てられたことが光センサによって検出される。電話をしているときには表示部204を見ないので、スマートホン203は表示部204のバックライトをOFFにして省電力化する。   Recently, this proximity detection is also used for smart phones. As shown in the partial plan view of FIG. 1B, the smart phone 203 is provided with a proximity detection light transmitting portion 205 above the display portion 204. The above-described optical sensor is built in the device below the proximity detecting translucent portion 205. When making a call, an ear is applied to the vicinity of the proximity detection translucent part 205, but the light emitted from the LED 201 is reflected by the ear, and the reflected light is detected by the PD 202. It is detected by an optical sensor that an ear has been applied to the periphery of the unit 205. Since the display unit 204 is not seen when making a call, the smart phone 203 turns off the backlight of the display unit 204 to save power.

また、従来、光センサを近接検知に用いるものとして、例えば、特許文献1に開示された折り畳み式無線電話機もある。   Conventionally, as a device that uses an optical sensor for proximity detection, for example, there is a foldable wireless telephone disclosed in Patent Document 1.

この折り畳み式無線電話機100は図2に断面が示され、無線電話機100のカバー部104が基部102から開かれたか否かを光センサによって検出する。基部102中にあるフォトエミッタ116’は開口604から光を放射する。カバー部104が図示するように閉じている場合には、フォトエミッタ116’からの光608はカバー部104の反射面606で反射し、反射した光はフォトデテクタ118’により検出される。フォトエミッタ116’の光は不透明な障壁602により直接的にフォトデテクタ118’に届かないようになっている。カバー部104が開いた場合には、フォトデテクタ118’へは僅かな量の光しか届かない。したがって、フォトデテクタ118’により検出される光の大小で、カバー部104が開かれたか否かが検出される。   The foldable wireless telephone 100 is shown in cross section in FIG. 2, and detects whether or not the cover 104 of the wireless telephone 100 is opened from the base 102 by an optical sensor. A photoemitter 116 ′ in the base 102 emits light from the opening 604. When the cover portion 104 is closed as shown, the light 608 from the photoemitter 116 'is reflected by the reflection surface 606 of the cover portion 104, and the reflected light is detected by the photodetector 118'. The light from the photoemitter 116 ′ is prevented from reaching the photodetector 118 ′ directly by the opaque barrier 602. When the cover 104 is opened, only a small amount of light reaches the photo detector 118 '. Therefore, whether or not the cover 104 is opened is detected based on the magnitude of the light detected by the photo detector 118 '.

特開2006−94485号公報JP 2006-94485 A

上記従来のスマートホン203では、近接検知用透光部205を介して光センサに光が入出射するが、近接検知用透光部205を目立たなくするため、スマートホン203のボディは通常赤色や黒色などに設けられている。ここ最近の傾向として、スマートホン203のデザイン性から、近接検知用透光部205をさらに目立たなくするため、近接検知用透光部205をいかに小さくするかが重要な課題になってきている。しかしながら、近接検知用透光部205を小さくすると、LED201とPD202との間の距離が近づき、LED201から出射した光が直接PD202に受光されるクロストークの問題が大きくクローズアップされる。このクロストークの問題を回避するため、特許文献1に開示された光センサのように、LED201とPD202との間に相互間を遮光する障壁が必要とされるが、各構成部品のサイズを縮小化するのにも限界があり、近接検知用透光部205を極端に小さくすることは困難であった。   In the conventional smart phone 203, light enters and exits the optical sensor via the proximity detection translucent part 205. However, in order to make the proximity detection translucent part 205 inconspicuous, the body of the smart phone 203 is usually red or It is provided in black. As a recent trend, the design of the smart phone 203 has made it an important issue how to make the proximity detection light transmitting portion 205 smaller in order to make the proximity detection light transmission portion 205 more inconspicuous. However, if the proximity detecting translucent part 205 is made smaller, the distance between the LED 201 and the PD 202 becomes closer, and the problem of crosstalk in which the light emitted from the LED 201 is directly received by the PD 202 is greatly highlighted. In order to avoid this problem of crosstalk, a barrier that shields light from each other is required between the LED 201 and the PD 202 as in the optical sensor disclosed in Patent Document 1, but the size of each component is reduced. However, it is difficult to make the proximity detection translucent part 205 extremely small.

本発明はこのような課題を解決するためになされたもので、
発光素子と受光素子とが並んで配置されて構成され、発光素子から出射されて反射した光を受光素子で受光して検出対象物を検出する光センサにおいて、
発光素子が面発光レーザーから構成され、
面発光レーザーから出射される光を導いて外部空間へ放出させる出射光導光部と、外部空間から入射する光を受光素子へ導く入射光導光部と、出射光導光部および入射光導光部の各周囲を覆って出射光導光部および入射光導光部によって導かれる光を出射光導光部および入射光導光部に閉じ込める導光部包囲部とから形成され、出射光導光部によって導く光を外部空間へ放出させる光放出端面が、外部空間から入射する光を受光する入射光導光部の光導入端面の面内に形成される光導波路を備える
ことを特徴とする。
The present invention has been made to solve such problems,
In the optical sensor that is configured by arranging the light emitting element and the light receiving element side by side, and receives the light emitted from the light emitting element and reflected by the light receiving element, and detects the detection target,
The light emitting element is composed of a surface emitting laser,
Each of the outgoing light guide unit that guides the light emitted from the surface emitting laser and emits it to the external space, the incident light guide unit that guides the light incident from the external space to the light receiving element, and each of the outgoing light guide unit and the incident light guide unit A light guide portion surrounding portion that surrounds the light guided by the outgoing light guide portion and the incident light guide portion to confine the light guided by the outgoing light guide portion and the incident light guide portion, and the light guided by the outgoing light guide portion to the external space The light emitting end face to be emitted includes an optical waveguide formed in the plane of the light introducing end face of the incident light guiding portion that receives light incident from the external space.

本構成によれば、出射光導光部および入射光導光部を伝播する光はそれらの周囲に形成される導光部包囲部によって出射光導光部および入射光導光部の各内部に閉じ込められる。出射光導光部および入射光導光部並びに導光部包囲部は光導波路として形成されるので、微細化が容易であり、また、出射光導光部および入射光導光部は自在に曲げて容易に所望の形状に形成することができる。したがって、出射光導光部の光放出端側が入射光導光部の光導入端側に重なるように出射光導光部を曲げ、出射光導光部によって導く光を外部空間へ放出させる光放出端面を、外部空間から入射する光を受光する入射光導光部の光導入端面の面内に形成することで、近接検知用透光部は、入射光導光部の光導入端面だけを臨ませる大きさに小さくすることができる。このため、発光素子から出射した光が直接受光素子に受光されるクロストークの問題を起こすことなく、近接検知用透光部を容易に極めて小さくすることができる光センサを提供することができる。   According to this configuration, the light propagating through the outgoing light guide and the incoming light guide is confined inside each of the outgoing light guide and the incoming light guide by the light guide enclosure formed around them. Since the outgoing light guide unit, the incoming light guide unit, and the light guide surrounding portion are formed as optical waveguides, miniaturization is easy, and the outgoing light guide unit and the incoming light guide unit can be freely bent and easily desired. It can be formed in the shape of Accordingly, the light emission end face that bends the outgoing light guide part so that the light emission end side of the outgoing light guide part overlaps the light introduction end side of the incident light guide part, and emits the light guided by the outgoing light guide part to the external space, By forming in the plane of the light introduction end face of the incident light guide section that receives light incident from the space, the proximity detecting translucent section is reduced to a size that allows only the light introduction end face of the incident light guide section to face. be able to. Therefore, it is possible to provide an optical sensor that can easily make the proximity detecting light transmitting portion extremely small without causing a problem of crosstalk in which light emitted from the light emitting element is directly received by the light receiving element.

また、本発明は、光導波路が透明樹脂から形成され、出射光導光部および入射光導光部の光屈折率が導光部包囲部の光屈折率よりも大きく、出射光導光部の光屈折率が入射光導光部の光屈折率よりも大きく形成されることを特徴とする。   Further, according to the present invention, the optical waveguide is formed of a transparent resin, the light refractive index of the outgoing light guide unit and the incident light guide unit is larger than the light refractive index of the light guide unit surrounding part, and the light refractive index of the outgoing light guide unit is Is formed larger than the light refractive index of the incident light guide.

本構成によれば、導光部包囲部に囲まれて出射光導光部および入射光導光部を伝播する光は、出射光導光部および入射光導光部と導光部包囲部との光屈折率差により、出射光導光部および入射光導光部の各内部に閉じ込められる。また、入射光導光部に囲まれて出射光導光部を伝播する光は、出射光導光部と入射光導光部との光屈折率差により、出射光導光部の内部に閉じ込められる。   According to this configuration, the light that is surrounded by the light guide enclosure and propagates through the output light guide and the incident light guide is the light refractive index of the output light guide, the incident light guide, and the light guide enclosure. Due to the difference, the light is confined in each of the outgoing light guide and the incident light guide. Further, light propagating through the outgoing light guide unit surrounded by the incoming light guide unit is confined inside the outgoing light guide unit due to a difference in refractive index between the outgoing light guide unit and the incident light guide unit.

また、本発明は、出射光導光部および入射光導光部が透明樹脂から形成され、出射光導光部の光屈折率が入射光導光部の光屈折率よりも大きく、導光部包囲部が遮光樹脂から形成されることを特徴とする。   Further, according to the present invention, the outgoing light guide unit and the incident light guide unit are formed of a transparent resin, the light refractive index of the outgoing light guide unit is larger than the light refractive index of the incident light guide unit, and the light guide unit surrounding unit shields light. It is formed from resin.

本構成によれば、導光部包囲部に囲まれて出射光導光部および入射光導光部を伝播する光は、導光部包囲部によって遮光され、出射光導光部および入射光導光部の各内部に閉じ込められる。また、入射光導光部に囲まれて出射光導光部を伝播する光は、出射光導光部と入射光導光部との光屈折率差により、出射光導光部の内部に閉じ込められる。   According to this configuration, light propagating through the outgoing light guide unit and the incident light guide unit surrounded by the light guide unit enclosure unit is shielded by the light guide unit enclosure unit, and each of the outgoing light guide unit and the incident light guide unit is provided. Confined inside. Further, light propagating through the outgoing light guide unit surrounded by the incoming light guide unit is confined inside the outgoing light guide unit due to a difference in refractive index between the outgoing light guide unit and the incident light guide unit.

また、本発明は、出射光導光部の光放出端面から出射される出射光が、入射光導光部の光導入端面に対して所定の角度を持つ方向に設定されることを特徴とする。   Further, the present invention is characterized in that the outgoing light emitted from the light emission end face of the outgoing light guide section is set in a direction having a predetermined angle with respect to the light introduction end face of the incident light guide section.

本構成によれば、入射光導光部の光導入端面に対して所定の角度を持って、出射光導光部の光放出端面から出射光が出射される。このため、出射光の光導入端面に対する出射方向を所定の角度に設定することで、光導入端面の面内にある光放出端面から出射され、光センサの前方に設けられる近接検知用透光部に当たって光センサ側に反射する光が、光導入端面に迷光として入射するのを抑えることができる。   According to this configuration, the outgoing light is emitted from the light emission end face of the outgoing light guide section with a predetermined angle with respect to the light introduction end face of the incident light guide section. For this reason, by setting the emission direction of the emitted light with respect to the light introduction end face to a predetermined angle, the proximity detection translucent part is emitted from the light emission end face within the light introduction end face and provided in front of the optical sensor. In this case, it is possible to suppress the light reflected on the optical sensor side from entering the light introduction end face as stray light.

本発明によれば、発光素子から出射した光が直接受光素子に受光されるクロストークの問題を起こすことなく、スマートホン等に設けられる近接検知用透光部を容易に極めて小さくすることができる光センサを提供できる。   According to the present invention, the proximity detecting translucent portion provided in the smart phone or the like can be easily made extremely small without causing the problem of crosstalk in which light emitted from the light emitting element is directly received by the light receiving element. An optical sensor can be provided.

(a)は従来の光センサの概念を説明するための断面図、(b)はスマートホンの部分平面図である。(A) is sectional drawing for demonstrating the concept of the conventional optical sensor, (b) is a fragmentary top view of a smart phone. 特許文献1に開示された従来の光センサの断面図である。It is sectional drawing of the conventional optical sensor disclosed by patent document 1. FIG. (a)は、本発明の一実施形態による光導波路型光センサの断面図、(b)は平面図である。(A) is sectional drawing of the optical waveguide type optical sensor by one Embodiment of this invention, (b) is a top view. 一実施形態による光導波路型光センサとスマートホンのガラス板との相対関係を示す断面図である。It is sectional drawing which shows the relative relationship of the optical waveguide type optical sensor by one Embodiment, and the glass plate of a smart phone. (a)は、一実施形態による光導波路型光センサの前方にスマートホンのガラス板が配置された際の平面図、(b)は、出射コア部が曲げられずに直線状に形成され、面発光レーザーの前方に光放出端面が形成された光導波路型光センサの前方にスマートホンのガラス板が配置された際の平面図である。(A) is a plan view when a glass plate of a smart phone is disposed in front of an optical waveguide optical sensor according to one embodiment, (b) is formed in a straight line without bending the emission core portion, It is a top view when the glass plate of a smart phone is arrange | positioned ahead of the optical waveguide type optical sensor in which the light emission end surface was formed in front of the surface emitting laser.

次に、本発明の光導波路型光センサを実施するための形態について、説明する。   Next, the form for implementing the optical waveguide type optical sensor of this invention is demonstrated.

図3(a)は、本発明の一実施形態による光導波路型光センサ1の断面図、同図(b)は平面図である。   FIG. 3A is a cross-sectional view of the optical waveguide type optical sensor 1 according to one embodiment of the present invention, and FIG. 3B is a plan view thereof.

光センサ1は、プリント基板2上に発光素子である面発光レーザー3と受光素子であるPD4とが並んで配置されて構成されている。本実施形態の面発光レーザー3は、垂直共振器型面発光レーザー(VCSEL:Vertical Cavity Surface Emitting Laser)から構成される。一般的に半導体レーザーは基板面と平行な方向に光を共振させ、基板面と平行な方向に光を出射させるが、VCSELによって構成される本実施形態の面発光レーザー3は、基板面に対して垂直な方向に光を共振させ、基板面に垂直な方向に光を出射する。光センサ1は、面発光レーザー3から出射されて反射した光をPD4で受光して、検出対象物を検出する。本実施形態では、検出対象物がPD4の前方に存在することを前提としている。   The optical sensor 1 is configured by arranging a surface emitting laser 3 as a light emitting element and a PD 4 as a light receiving element side by side on a printed board 2. The surface emitting laser 3 of this embodiment is composed of a vertical cavity surface emitting laser (VCSEL). In general, a semiconductor laser resonates light in a direction parallel to the substrate surface and emits light in a direction parallel to the substrate surface. The surface emitting laser 3 of the present embodiment configured by a VCSEL is The light is resonated in a direction perpendicular to the substrate, and the light is emitted in a direction perpendicular to the substrate surface. The optical sensor 1 receives the light emitted from the surface emitting laser 3 and reflected by the PD 4, and detects the detection target. In the present embodiment, it is assumed that the detection target exists in front of the PD 4.

光センサ1は光導波路5を備える。光導波路5は、出射光導光部を構成する出射コア部5aと、入射光導光部を構成する入射コア部5bと、導光部包囲部を構成するクラッド部5cとから形成される。出射コア部5aは面発光レーザー3から出射される光を導いて外部空間へ放出させ、入射コア部5bは外部空間から入射する光をPD4へ導く。クラッド部5cは、出射コア部5aおよび入射コア部5bの各周囲を覆って、出射コア部5aおよび入射コア部5bによって導かれる光を出射コア部5aおよび入射コア部5bに閉じ込める。   The optical sensor 1 includes an optical waveguide 5. The optical waveguide 5 is formed of an output core portion 5a constituting an outgoing light guide portion, an incident core portion 5b constituting an incident light guide portion, and a clad portion 5c constituting a light guide surrounding portion. The emission core portion 5a guides the light emitted from the surface emitting laser 3 to be emitted to the external space, and the incident core portion 5b guides the light incident from the external space to the PD 4. The clad part 5c covers the periphery of the output core part 5a and the incident core part 5b, and confines the light guided by the output core part 5a and the incident core part 5b in the output core part 5a and the incident core part 5b.

面発光レーザー3の発光径は一般的に直径φが5〜20μm程度の大きさであり、かなり細い。面発光レーザー3の発光点には、その発光径に合わせた直径の細い出射コア部5aが接続されている。また、PD4の受光エリアにはその大きさに合わせた太い入射コア部5bが接続されている。入射コア部5bは、外部空間から入射する光を受光する光導入端面5b1に近付くのに連れて直径が大きく形成され、光導入端面5b1の直径が数百μm程度の直径にされて、受光面積が広く確保されている。出射コア部5aは上記のようにかなり細いので、その形状の曲げの自由度も大きく、光放出端側が入射コア部5bの光導入端側に重なるように曲げられている。出射コア部5aによって導く光を外部空間へ放出させる光放出端面5a1は、入射コア部5bの光導入端面5b1の面内に形成されている。   The emission diameter of the surface emitting laser 3 is generally about 5 to 20 μm in diameter φ and is quite thin. A light emitting point of the surface emitting laser 3 is connected to an emission core portion 5a having a thin diameter corresponding to the light emission diameter. In addition, a thick incident core portion 5b corresponding to the size is connected to the light receiving area of the PD4. The incident core portion 5b is formed to have a larger diameter as it approaches the light introduction end face 5b1 that receives light incident from the external space, and the diameter of the light introduction end face 5b1 is set to a diameter of about several hundred μm. Is widely secured. Since the exit core portion 5a is quite thin as described above, the shape has a large degree of freedom in bending, and is bent so that the light emission end side overlaps the light introduction end side of the entrance core portion 5b. A light emission end face 5a1 for emitting light guided by the emission core part 5a to the external space is formed in the plane of the light introduction end face 5b1 of the incident core part 5b.

光導波路5は透明樹脂から形成され、出射コア部5aの光屈折率N1および入射コア部5bの光屈折率N2はクラッド部5cの光屈折率N3よりも大きく形成され、出射光導光部の光屈折率N1は入射光導光部の光屈折率N2よりも大きく形成される(N1>N2>N3)。このような光導波路5は、型を用い、クラッド層にコア層の形状を型で転写し、転写した溝にコア材を注入して光回路を形成する複製法や、ディスペンサによる塗布法等などの製法によって形成される。   The optical waveguide 5 is formed of a transparent resin, and the light refractive index N1 of the output core portion 5a and the light refractive index N2 of the incident core portion 5b are formed larger than the light refractive index N3 of the clad portion 5c. The refractive index N1 is formed larger than the light refractive index N2 of the incident light guide (N1> N2> N3). Such an optical waveguide 5 uses a mold, transfers the shape of the core layer to the cladding layer with the mold, and injects the core material into the transferred groove to form an optical circuit, a coating method using a dispenser, etc. It is formed by the manufacturing method.

光センサ1の製造方法としては、プリント基板2上に面発光レーザー3およびPD4が形成される工程とは別に、金型等を使用して光導波路5が複製法等によって別個に形成され、形成された光導波路5がプリント基板2に形成された面発光レーザー3およびPD4上に載せられて、光センサ1が製造される方法がある。また、プリント基板2に形成された面発光レーザー3およびPD4上に、塗布法によってクラッド部5cを構成するクラッド樹脂がディスペンサによって塗布され、さらに、出射コア部5aおよび入射コア部5bを構成するそれぞれのコア樹脂がディスペンサのニードルからそれぞれの形状を描きながらクラッド樹脂中に放出されることで、クラッド部5c中に出射コア部5aおよび入射コア部5bが形成されて、光センサ1が製造される方法もある。   As a manufacturing method of the optical sensor 1, apart from the step of forming the surface emitting laser 3 and the PD 4 on the printed circuit board 2, the optical waveguide 5 is separately formed by a replication method or the like using a mold or the like. There is a method in which the optical sensor 5 is manufactured by placing the optical waveguide 5 on the surface emitting laser 3 and the PD 4 formed on the printed circuit board 2. Further, a clad resin constituting the clad portion 5c is applied by a dispenser on the surface emitting laser 3 and the PD 4 formed on the printed circuit board 2 by a coating method, and each of the outgoing core portion 5a and the incident core portion 5b is constituted The core resin is discharged from the needle of the dispenser into the clad resin while drawing the respective shapes, whereby the output core portion 5a and the incident core portion 5b are formed in the clad portion 5c, and the optical sensor 1 is manufactured. There is also a method.

図4は、光センサ1と、その前方に配置されたスマートホン203(図1(b)参照)のボディを構成するガラス板206との相対関係を示す断面図である。なお、図4において図3と同一または相当する部分には同一符号を付してその説明は省略する。ガラス板206におけるPD4の前方領域には光を通す近接検知用透光部207が形成され、それ以外のガラス領域は光を通さないように着色されている。   FIG. 4 is a cross-sectional view showing a relative relationship between the optical sensor 1 and the glass plate 206 constituting the body of the smart phone 203 (see FIG. 1B) disposed in front of the optical sensor 1. 4 that are the same as or correspond to those in FIG. 3 are assigned the same reference numerals, and descriptions thereof are omitted. A proximity detection translucent portion 207 that transmits light is formed in the front area of the PD 4 on the glass plate 206, and the other glass areas are colored so as not to transmit light.

本実施形態の光センサ1は、出射コア部5aの光放出端面5a1から出射される出射光Aが、入射コア部5bの光導入端面5b1に対して所定の角度を持つ方向に設定されている。この出射光Aの方向の設定は、入射コア部5bの光屈折率N1と出射コア部5aの光屈折率N2との比屈折率差(=(N1−N2)/N1)、つまり、開口数(NA)を調節することで、行える。出射光Aは検出対象物に当たり、反射光Bになって近接検知用透光部207を透過し、光導入端面5b1に受光される。   In the optical sensor 1 of the present embodiment, the outgoing light A emitted from the light emitting end face 5a1 of the outgoing core portion 5a is set in a direction having a predetermined angle with respect to the light introducing end face 5b1 of the incoming core portion 5b. . The direction of the outgoing light A is set by the relative refractive index difference (= (N1−N2) / N1) between the optical refractive index N1 of the incident core portion 5b and the optical refractive index N2 of the outgoing core portion 5a, that is, the numerical aperture. This can be done by adjusting (NA). The emitted light A hits the detection target, becomes reflected light B, passes through the proximity detecting light transmitting portion 207, and is received by the light introduction end face 5b1.

なお、出射コア部5aおよび入射コア部5bは、光屈折率N1およびN2がコア中で均一のステップインデックス(SI)型でも、コア中心から周辺に向けて勾配を持ったグレーデッドインデックス(GI)型でも、どちらでもよい。コア部5a,5bとクラッド部5cとの界面における光損失を懸念する場合には、グレーデッドインデックス(GI)型に形成するのが好ましい。   The exit core portion 5a and the incident core portion 5b are graded indexes (GI) having a gradient from the center of the core toward the periphery, even if the optical refractive indexes N1 and N2 are step index (SI) types in the core. Either type or both. When there is a concern about optical loss at the interface between the core portions 5a, 5b and the cladding portion 5c, it is preferable to form a graded index (GI) type.

このような本実施形態の光導波路型光センサ1によれば、クラッド部5cに囲まれて出射コア部5aおよび入射コア部5bを伝播する光は、それらの周囲に形成されるクラッド部5cによって出射コア部5aおよび入射コア部5bの各内部に閉じ込められる。本実施形態における光のこの閉じ込めは、出射コア部5aおよび入射コア部5bとクラッド部5cとの光屈折率差により、行われる。また、入射コア部5bに囲まれて出射コア部5aを伝播する光は、出射コア部5aと入射コア部5bとの光屈折率差により、出射コア部5aの内部に閉じ込められる。したがって、面発光レーザー3から出射される光は、途中で出射コア部5aから漏れること無く、光放出端面5a1から放出される。また、入射コア部5bの光導入端面5b1に入射する光は、途中で入射コア部5bから漏れること無く、PD4に受光される。   According to such an optical waveguide type optical sensor 1 of the present embodiment, the light that is surrounded by the clad portion 5c and propagates through the output core portion 5a and the incident core portion 5b is transmitted by the clad portion 5c formed around them. It is confined in each of the output core part 5a and the incident core part 5b. This confinement of light in the present embodiment is performed by the difference in optical refractive index between the output core portion 5a and the incident core portion 5b and the clad portion 5c. In addition, the light that is surrounded by the incident core portion 5b and propagates through the output core portion 5a is confined inside the output core portion 5a due to the difference in the refractive index between the output core portion 5a and the incident core portion 5b. Therefore, the light emitted from the surface emitting laser 3 is emitted from the light emission end face 5a1 without leaking from the emission core part 5a on the way. Further, the light incident on the light introduction end face 5b1 of the incident core portion 5b is received by the PD 4 without leaking from the incident core portion 5b on the way.

このような光センサ1は、出射コア部5aおよび入射コア部5b並びにクラッド部5cが光導波路5として形成されるので、微細化が容易であり、また、出射コア部5aおよび入射コア部5bは自在に曲げて容易に所望の形状に形成することができる。したがって、図示するように、出射コア部5aの光放出端側が入射コア部5bの光導入端側に重なるように出射コア部5aを曲げ、出射コア部5aによって導く光を外部空間へ放出させる光放出端面5a1を、外部空間から入射する光を受光する入射コア部5bの光導入端面5b1の面内に形成することができる。したがって、スマートホン203の近接検知用透光部207は、図5(a)に示すように、入射コア部5bの光導入端面5b1だけを臨ませる大きさに小さくすることができる。このため、面発光レーザー3から出射した光が直接PD4に受光されるクロストークの問題を起こすことなく、近接検知用透光部207を容易に極めて小さくすることができる光センサ1を提供することができる。   Such an optical sensor 1 is easy to miniaturize because the output core portion 5a, the incident core portion 5b, and the clad portion 5c are formed as the optical waveguide 5, and the output core portion 5a and the incident core portion 5b are It can be freely bent and easily formed into a desired shape. Therefore, as shown in the drawing, the light that causes the light emission end side of the emission core portion 5a to overlap the light introduction end side of the incidence core portion 5b is bent so that the light guided by the emission core portion 5a is emitted to the external space. The emission end face 5a1 can be formed in the plane of the light introduction end face 5b1 of the incident core portion 5b that receives light incident from the external space. Therefore, as shown in FIG. 5A, the proximity detecting light transmitting portion 207 of the smart phone 203 can be reduced to a size that allows only the light introduction end face 5b1 of the incident core portion 5b to face. Therefore, it is possible to provide an optical sensor 1 that can easily make the proximity detecting light transmitting portion 207 extremely small without causing a problem of crosstalk in which light emitted from the surface emitting laser 3 is directly received by the PD 4. Can do.

図5(a)は、光センサ1の前方にスマートホン203のボディを構成するガラス板206が配置された際の平面図である。なお、図5において図3および図4と同一または相当する部分には同一符号を付してその説明は省略する。本実施形態によれば、PD4の側だけを考慮し、上記のように、入射コア部5bの光導入端面5b1だけを臨ませる小さな近接検知用透光部207をガラス板206に形成することで、光センサ1を機能させることができる。同図(b)は、出射コア部5aが本実施形態のように曲げられずに直線状に形成され、面発光レーザー3の前方に光放出端面5a2が形成された光センサ1aの前方に、スマートホン203のボディを構成するガラス板206が配置された際の平面図である。この場合、ガラス板206に形成する近接検知用透光部208は、PD4の側に加えて面発光レーザー3の側も考慮しなければならず、光導入端面5b1および光放出端面5a2を囲む大きな面積になってしまう。すなわち、本実施形態の光導波路型光センサ1によれば、面発光レーザー3から出射した光が直接PD4に受光されるクロストークの問題を起こすことなく、スマートホン203等に設けられる近接検知用透光部207を容易に極めて小さくすることができる光センサ1を提供できる。   FIG. 5A is a plan view when the glass plate 206 constituting the body of the smart phone 203 is disposed in front of the optical sensor 1. 5 that are the same as or correspond to those in FIG. 3 and FIG. According to the present embodiment, considering only the PD 4 side, as described above, the small proximity detecting translucent portion 207 that faces only the light introduction end face 5b1 of the incident core portion 5b is formed on the glass plate 206. The optical sensor 1 can be functioned. In FIG. 6B, the emission core portion 5a is formed in a straight line without being bent as in the present embodiment, and in front of the optical sensor 1a in which the light emitting end surface 5a2 is formed in front of the surface emitting laser 3. It is a top view at the time of the glass plate 206 which comprises the body of the smart phone 203 being arrange | positioned. In this case, the proximity detecting light transmitting portion 208 formed on the glass plate 206 must consider the surface emitting laser 3 side in addition to the PD 4 side, and has a large size surrounding the light introducing end surface 5b1 and the light emitting end surface 5a2. It becomes an area. That is, according to the optical waveguide type optical sensor 1 of the present embodiment, the proximity detection provided in the smart phone 203 or the like without causing the problem of crosstalk in which the light emitted from the surface emitting laser 3 is directly received by the PD 4. It is possible to provide the optical sensor 1 in which the light transmitting portion 207 can be easily made extremely small.

また、本実施形態の光導波路型光センサ1によれば、図4に示すように、入射コア部5bの光導入端面5b1に対して所定の角度を持って、出射コア部5aの光放出端面5a1から出射光Aが出射される。このため、出射光Aの光導入端面5b1に対する出射方向を所定の角度に設定することで、光導入端面5b1の面内にある光放出端面5a1から出射され、光センサ1の前方に設けられる近接検知用透光部207に当たって光センサ側に反射する光aが、光導入端面5b1に迷光として入射するのを抑えることができる。   In addition, according to the optical waveguide type optical sensor 1 of the present embodiment, as shown in FIG. 4, the light emitting end face of the output core part 5a has a predetermined angle with respect to the light introduction end face 5b1 of the incident core part 5b. Outgoing light A is emitted from 5a1. Therefore, by setting the emission direction of the emitted light A with respect to the light introduction end face 5b1 to a predetermined angle, the light is emitted from the light emission end face 5a1 in the plane of the light introduction end face 5b1 and is provided in front of the optical sensor 1. It is possible to prevent the light a that hits the detection light transmitting portion 207 and reflects to the optical sensor side from entering the light introduction end face 5b1 as stray light.

なお、上記の実施形態においては、光導波路5が透明樹脂から形成され、出射コア部5aおよび入射コア部5bを伝播する光は、出射コア部5aおよび入射コア部5bとクラッド部5cとの光屈折率差により、出射コア部5aおよび入射コア部5bの各内部に閉じ込められる場合について、説明した。しかし、出射コア部5aおよび入射コア部5bを透明樹脂から形成し、出射光導光部の光屈折率N1を入射光導光部の光屈折率N2よりも大きくし、クラッド部5cを遮光樹脂から形成するように構成してもよい。本構成によれば、出射コア部5aおよび入射コア部5bを伝播する光は、出射コア部5aおよび入射コア部5bを囲むクラッド部5cによって遮光され、出射コア部5aおよび入射コア部5bの各内部に閉じ込められる。また、入射コア部5bに囲まれて出射コア部5aを伝播する光は、出射コア部5aと入射コア部5bとの光屈折率差により、出射コア部5aの内部に閉じ込められる。このような構成によっても、上記の実施形態と同様な作用効果が奏される。   In the above embodiment, the optical waveguide 5 is formed of a transparent resin, and the light propagating through the output core portion 5a and the incident core portion 5b is the light from the output core portion 5a, the incident core portion 5b, and the cladding portion 5c. The case where it is confined inside each of the output core portion 5a and the incident core portion 5b due to the difference in refractive index has been described. However, the output core portion 5a and the incident core portion 5b are formed from a transparent resin, the light refractive index N1 of the output light guide portion is made larger than the light refractive index N2 of the incident light guide portion, and the cladding portion 5c is formed from a light shielding resin. You may comprise. According to this configuration, the light propagating through the exit core portion 5a and the entrance core portion 5b is shielded by the cladding portion 5c surrounding the exit core portion 5a and the entrance core portion 5b, and each of the exit core portion 5a and the entrance core portion 5b. Confined inside. In addition, the light that is surrounded by the incident core portion 5b and propagates through the output core portion 5a is confined inside the output core portion 5a due to the difference in the refractive index between the output core portion 5a and the incident core portion 5b. Even with such a configuration, the same effects as the above-described embodiment can be obtained.

また、上記の実施形態においては、出射コア部5aの光放出端面5a1から出射される出射光Aが、入射コア部5bの光導入端面5b1に対して所定の角度を持つ方向に設定される場合について説明した。しかし、迷光が問題にならない場合には、出射光Aは必ずしも所定の角度を持つ必要はなく、光導入端面5b1に対して垂直に出射するように構成してもよい。また、光放出端面5a1は光導入端面5b1の中央に位置する必要はなく、光導入端面5b1の面内であればよい。   Moreover, in said embodiment, when the emitted light A radiate | emitted from the light emission end surface 5a1 of the output core part 5a is set to the direction which has a predetermined angle with respect to the light introduction end surface 5b1 of the incident core part 5b Explained. However, when stray light is not a problem, the emitted light A does not necessarily have a predetermined angle, and may be configured to be emitted perpendicular to the light introduction end face 5b1. Further, the light emission end face 5a1 does not need to be positioned at the center of the light introduction end face 5b1, but may be within the plane of the light introduction end face 5b1.

上記の実施形態では、光導波路型光センサ1をスマートホン203の近接検知用透光部205を小さくするために用いたが、その用途はこれに限定されるものではない。例えば、携帯電話機等のその他の電子機器における近接検知用透光部を小さくするために、用いることもできる。また、面発光レーザー3を光らせないことで、光導波路型光センサ1を照度検知の用途に用いることもできる。   In the above embodiment, the optical waveguide type optical sensor 1 is used to reduce the proximity detecting light transmitting portion 205 of the smart phone 203, but the application is not limited to this. For example, it can also be used to reduce the proximity detecting light transmitting portion in other electronic devices such as mobile phones. Further, by not emitting the surface emitting laser 3, the optical waveguide optical sensor 1 can be used for illuminance detection.

1…光導波路型光センサ
2…プリント基板
3…面発光レーザー(発光素子)
4…PD(フォトダイオード:受光素子)
5a…出射コア部(出射光導光部)
5a1…光放出端面
5b…入射コア部(入射光導光部)
5b1…光導入端面
5c…クラッド部(導光部包囲部)
206…ガラス板
207…近接検知用透光部
DESCRIPTION OF SYMBOLS 1 ... Optical waveguide type optical sensor 2 ... Printed circuit board 3 ... Surface emitting laser (light emitting element)
4 ... PD (photodiode: light receiving element)
5a: Output core part (output light guide part)
5a1 ... light emission end face 5b ... incident core part (incident light guide part)
5b1 ... light introduction end face 5c ... cladding part (light guide part surrounding part)
206 ... Glass plate 207 ... Transmission part for proximity detection

Claims (4)

発光素子と受光素子とが並んで配置されて構成され、前記発光素子から出射されて反射した光を前記受光素子で受光して検出対象物を検出する光センサにおいて、
前記発光素子は面発光レーザーから構成され、
前記面発光レーザーから出射される光を導いて外部空間へ放出させる出射光導光部と、外部空間から入射する光を前記受光素子へ導く入射光導光部と、前記出射光導光部および前記入射光導光部の各周囲を覆って前記出射光導光部および前記入射光導光部によって導かれる光を前記出射光導光部および前記入射光導光部に閉じ込める導光部包囲部とから形成され、前記出射光導光部によって導く光を外部空間へ放出させる光放出端面が、外部空間から入射する光を受光する前記入射光導光部の光導入端面の面内に形成される光導波路を備える
ことを特徴とする光導波路型光センサ。
In the optical sensor that is configured by arranging the light emitting element and the light receiving element side by side, and that receives the light emitted from the light emitting element and reflected by the light receiving element and detects the detection target,
The light emitting element is composed of a surface emitting laser,
An outgoing light guide that guides the light emitted from the surface emitting laser and emits it to the external space, an incident light guide that guides light incident from the external space to the light receiving element, the outgoing light guide, and the incident light A light guide portion surrounding portion that covers each periphery of the light portion and that guides the light guided by the output light guide portion and the incident light guide portion to the output light guide portion and the incident light guide portion, and the output light The light emission end face that emits light guided by the light section to the external space includes an optical waveguide formed in the plane of the light introduction end face of the incident light guide section that receives light incident from the external space. Optical waveguide type optical sensor.
前記光導波路は透明樹脂から形成され、前記出射光導光部および前記入射光導光部の各光屈折率は前記導光部包囲部の光屈折率よりも大きく、前記出射光導光部の光屈折率は前記入射光導光部の光屈折率よりも大きく形成されることを特徴とする請求項1に記載の光導波路型光センサ。   The optical waveguide is formed of a transparent resin, and each light refractive index of the outgoing light guide portion and the incident light guide portion is larger than a light refractive index of the light guide portion surrounding portion, and the light refractive index of the outgoing light guide portion. The optical waveguide type optical sensor according to claim 1, wherein the optical waveguide type optical sensor is formed to be larger than a light refractive index of the incident light guide portion. 前記出射光導光部および前記入射光導光部は透明樹脂から形成され、前記出射光導光部の光屈折率は前記入射光導光部の光屈折率よりも大きく、前記導光部包囲部は遮光樹脂から形成されることを特徴とする請求項1に記載の光導波路型光センサ。   The outgoing light guide part and the incident light guide part are made of a transparent resin, the light refractive index of the outgoing light guide part is larger than the light refractive index of the incident light guide part, and the light guide surrounding part is a light shielding resin. The optical waveguide type optical sensor according to claim 1, wherein the optical waveguide type optical sensor is formed of: 前記出射光導光部の光放出端面から出射される出射光は、前記入射光導光部の光導入端面に対して所定の角度を持つ方向に設定されることを特徴とする請求項1から請求項3のいずれか1項に記載の光導波路型光センサ。   The outgoing light emitted from the light emission end face of the outgoing light guide part is set in a direction having a predetermined angle with respect to the light introduction end face of the incident light guide part. 4. The optical waveguide optical sensor according to any one of 3 above.
JP2018037530A 2018-03-02 2018-03-02 Optical waveguide type photosensor Pending JP2019153683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037530A JP2019153683A (en) 2018-03-02 2018-03-02 Optical waveguide type photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037530A JP2019153683A (en) 2018-03-02 2018-03-02 Optical waveguide type photosensor

Publications (1)

Publication Number Publication Date
JP2019153683A true JP2019153683A (en) 2019-09-12

Family

ID=67946931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037530A Pending JP2019153683A (en) 2018-03-02 2018-03-02 Optical waveguide type photosensor

Country Status (1)

Country Link
JP (1) JP2019153683A (en)

Similar Documents

Publication Publication Date Title
US7778503B2 (en) Electronic device having optical data connection of movable housing parts
US20090202244A1 (en) Bidirectional optical transceiver module using a single optical fiber cable
CN102033661A (en) Optical pointing device and electronic equipment
US20190094069A1 (en) Electronic Devices Having Infrared Blocking Light Guides
KR20140119605A (en) Optical module and optical transmitting and receiving module
TW200406067A (en) Optical link device
JP4699551B2 (en) Optical pointing device and electronic device including the same
WO2017179507A1 (en) Optical sensor
US20110280037A1 (en) Optical pointing module having lighting function and electronic apparatus
KR101238568B1 (en) Optical waveguide and optical touch panel
JP2019153683A (en) Optical waveguide type photosensor
TW201323952A (en) Optical coupling module and method of making the same
US20100259508A1 (en) Optical waveguide with photoelectric conversion element and optical touch panel
JP5107218B2 (en) Optical waveguide and optical touch panel
JP5052485B2 (en) Reflective optical coupling device and electronic device equipped with the reflective optical coupling device
CN112887453B (en) Terminal equipment
JP2022518940A (en) Optical sensor assembly
KR101021072B1 (en) Optical Joy Stick and Portable Electronic Device Having the Same
KR100964165B1 (en) Optical joy stick and portable electronic device having the same
KR100964169B1 (en) Optical joy stick and portable electronic device having the same
JP2019046981A (en) Optical sensor device and method for manufacturing the same
JP2006126875A (en) Bidirectional optical semiconductor device
KR20100066687A (en) Optical joy stick key inputting device and portable electronic device having the same
KR100964166B1 (en) Optical joy stick and portable electronic device having the same
JP2001194560A (en) Bi-directional optical communication device and bi- directional optical communication equipment