WO2015174117A1 - Light-detecting device - Google Patents

Light-detecting device Download PDF

Info

Publication number
WO2015174117A1
WO2015174117A1 PCT/JP2015/055175 JP2015055175W WO2015174117A1 WO 2015174117 A1 WO2015174117 A1 WO 2015174117A1 JP 2015055175 W JP2015055175 W JP 2015055175W WO 2015174117 A1 WO2015174117 A1 WO 2015174117A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection device
receiving element
light guide
emitting element
Prior art date
Application number
PCT/JP2015/055175
Other languages
French (fr)
Japanese (ja)
Inventor
松井 克之
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015174117A1 publication Critical patent/WO2015174117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Definitions

  • the present invention relates to a light detection device and an electronic device, for example, a light detection device suitable as a proximity sensor that detects an object to be detected and an illuminance sensor that detects ambient light, and an electronic device such as a mobile device including the light detection device.
  • a light detection device suitable as a proximity sensor that detects an object to be detected and an illuminance sensor that detects ambient light
  • an electronic device such as a mobile device including the light detection device.
  • smartphones and mobile phones with touch panel functions are generally equipped with proximity sensors and illuminance sensors.
  • the proximity sensor detects human skin (mainly cheeks) as an object to be detected, and automatically adjusts whether the screen is turned on or off, the touch panel function is turned on or off, and the like.
  • the illuminance sensor detects ambient brightness.
  • the proximity illuminance sensor includes a light emitting unit having an infrared LED (Light-Emitting Diode) and the like, and a light receiving unit having a photodiode or the like.
  • the proximity illuminance sensor In the proximity illuminance sensor, light (infrared rays) emitted from the light emitting unit is reflected by an object near the proximity illuminance sensor, and the reflected light is received by the light receiving unit. Thereby, an object can be detected and the intensity of ambient ambient light incident on the light receiving unit can be measured.
  • Patent Document 1 describes an optical sensor that irradiates a surface to be irradiated of light to be measured with light from a light emitting element and detects the reflected light by a light receiving element.
  • This optical sensor includes a housing attached to a substrate on which a light emitting element and a light receiving element are mounted. Further, the housing includes a light shielding wall disposed between the light emitting element and the light receiving element.
  • Patent Document 2 describes a reflection type optical coupler including a casing that separates a light emitting element and a light receiving element.
  • This housing has two through holes in which light emitting elements or light receiving elements are arranged.
  • the housing is made of a light shielding resin.
  • two transparent holes are filled with a transparent resin.
  • the conventional technology as described above has a problem that a countermeasure for noise light is insufficient when used as a proximity sensor, and a directivity angle at the time of detecting illuminance becomes narrow when used as an illuminance sensor.
  • Patent Document 1 and Patent Document 2 do not describe the application of the optical sensor and the reflective optical coupler as a proximity sensor or an illuminance sensor of a mobile device such as a mobile phone.
  • the optical sensor described in Patent Document 1 is assumed to be used as a toner detection device, and is not supposed to be applied to mobile devices.
  • the optical sensor described in Patent Document 1 or the reflective optical coupler described in Patent Document 2 is applied as a proximity sensor, the optical sensor or the reflective optical coupler is provided in a housing of a mobile device. It is installed at a certain distance at the bottom of the panel.
  • the panel is formed with a panel window that transmits irradiation light (emitted light) from the light emitting element to the object to be detected and reflected light from the object to be detected to the light receiving element.
  • the light shielding wall formed in the optical sensor of Patent Document 1 is to prevent the light from reaching the light receiving element through the housing or the substrate on which the light emitting element and the light receiving element are mounted, and becoming disturbance light. It is intended and does not suggest preventing noise light when applied to mobile devices.
  • the directivity angle at which the illuminance can be detected depends on the size of the panel window part and the panel window part. Limited by the distance to the optical sensor or reflective optical coupler. However, the size of the panel window is required to be as small as possible due to the design of the mobile device. On the other hand, tall parts such as a CMOS image sensor are mounted on the mobile device in addition to the optical sensor or the reflective optical coupler. For this reason, in the mobile device, there is a limit in increasing the size of the panel window part and shortening the distance. Therefore, the directivity angle that can be actually detected by the optical sensor or the reflective optical coupler is narrower than the directivity angle inherent in the optical sensor or the reflective optical coupler.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a photodetector and an electronic apparatus that can suppress the generation of noise light when applied as a proximity sensor. . Another object of the present invention is to provide a photodetection device and an electronic apparatus that can improve the reduction of the directivity angle when detecting illuminance when applied as an illuminance sensor.
  • a photodetector partitions a substrate, a light-emitting element and a light-receiving element provided over the substrate, and the light-emitting element and the light-receiving element over the substrate.
  • An opening is formed at a position corresponding to the light emitting element and the light receiving element, and a protruding part protrudes from the partition part in the light emitting direction of the light emitting element.
  • the protruding part is located at a position corresponding to the light receiving element.
  • a light guide material is filled in the formed opening.
  • a photodetection device and an electronic device when applied as a proximity sensor, a photodetection device and an electronic device that can suppress generation of noise light, or a directivity angle when detecting illuminance when applied as an illuminance sensor.
  • FIG. 1 It is a figure which shows schematic structure of the photon detection apparatus which concerns on Embodiment 1 of this invention, (a) is sectional drawing, (b) is a top view. It is a fragmentary sectional view of the mobile device by which the photon detection apparatus which concerns on Embodiment 1 of this invention is mounted. It is a fragmentary sectional view of the mobile apparatus by which the photon detection apparatus which concerns on the comparison structure 1 was mounted. It is a fragmentary sectional view of the mobile apparatus by which the photon detection apparatus which concerns on the comparison structure 1 was mounted. It is a fragmentary sectional view of the mobile apparatus by which the photon detection apparatus which concerns on the comparison structure 2 was mounted.
  • Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
  • FIG. 1 is a diagram illustrating a schematic configuration of a light detection device 10 according to the present embodiment, where (a) is a cross-sectional view and (b) is a plan view.
  • the light detection device 10 includes a light emitting element 2, a light receiving element 3, and a light blocking body (partition part) on the same surface of the element substrate 1.
  • the light detection device 10 further includes a light blocking cap 6.
  • the light detection device 10 has a function as a proximity sensor and a function as an illuminance sensor.
  • the direction in which the light emitting element 2 emits light is referred to as “upward”
  • the opposite direction the direction in which light enters the light receiving element 3 is referred to as “downward”.
  • the element substrate 1 is a substrate on which each element of the light detection device 10 is mounted.
  • the material which comprises the element substrate 1 is not specifically limited, It is preferable that the material which does not permeate
  • the light emitting element 2 emits light for detecting an object to be detected.
  • an LED chip that emits infrared light can be used as the light emitting element 2.
  • the light emitting element 2 is sealed with a translucent resin 5a.
  • the light receiving element 3 includes a light receiving unit capable of detecting the light emitted from the light emitting element 2 and a control IC.
  • the light receiving unit is constituted by, for example, a photodiode.
  • the light receiving element 3 is sealed with a translucent resin 5b.
  • the light-transmitting resins 5a and 5b may be any resin that transmits light emitted from the light-emitting element 2.
  • the translucent resin 5b may be a resin that transmits ambient light.
  • the light shielding resin 4 partitions the light emitting element 2 and the light receiving element 3 provided apart from each other. Further, the light shielding resin 4 surrounds the element mounting surface on the element substrate 1 while ensuring the path of outgoing light from the light emitting element 2 and the path of incident light to the light receiving element 3.
  • the light-shielding resin 4 is provided around the light-transmitting resins 5a and 5b (outer periphery) and between the light-transmitting resins 5a and 5b. The upper surfaces of the resins 5a and 5b are exposed.
  • the light shielding resin 4 can be made of a material that does not transmit at least part of the light emitted from the light emitting element 2.
  • the light detection device 10 has a sealing structure in which the light emitting element 2 and the light receiving element 3 are sealed on the element substrate 1 by the light shielding resin 4 and the light transmitting resins 5a and 5b.
  • the light-shielding cap 6 is a protruding portion that protrudes from the light-shielding resin 4 in the light emitting direction of the light-emitting element 2, and covers the upper surface and side surfaces of the sealing structure.
  • the light shielding cap 6 has an opening (cavity) 6 a at a position corresponding to the light emitting element 2 and an opening (cavity) 6 b at a position corresponding to the light receiving element 3.
  • the light shielding cap 6 can be made of a material that does not transmit at least a part of the light emitted from the light emitting element 2, for example, a light shielding resin.
  • the light shielding resin 4 and the light shielding cap 6 may be made of the same material or different materials.
  • the light guide 7b is filled (embedded) in the opening 6b.
  • the light guide member 7 b is formed of a material that transmits light emitted from the light emitting element 2.
  • the light guide material 7b can be formed from the same material as the translucent resins 5a and 5b, for example.
  • the light guide material 7b is filled to the extent that it does not exceed the upper surface of the light blocking cap 6, and the length of the light guide material 7b is less than the length of the opening 6b. Therefore, a gap G is formed between the upper surface of the light shielding cap 6 and the upper surface (incident surface) of the light guide material 7b.
  • FIG. 2 is a partial cross-sectional view of the mobile device 20 on which the photodetecting device 10 of this embodiment is mounted.
  • the mobile device 20 includes a main mounting substrate 21 on which the photodetecting device 10 is mounted, and a panel 22 provided on the housing of the mobile device 20.
  • the light detection device 10 is mounted on the main mounting substrate 21 by a method such as reflow soldering.
  • the photodetection device 10 is held with a certain distance D between the lower surface of the panel 22 and the upper surface of the sealing structure in the photodetection device 10 (the upper surface of the translucent resin 5a). This distance D is constant because the upper surface of the light-shielding cap 6 of the light detection device 10 is in close contact with the lower surface of the panel 22.
  • the panel 22 actually has a structure in which a translucent printing portion and a light-shielding printing portion are formed on the lower surface of the transparent glass, but is simplified in FIG.
  • the translucent printing portion corresponds to the translucent portions 22a and 22b in FIG.
  • the translucent printing portion is generally black, and has a very high infrared light transmittance, and is printed so that visible light can pass through at least several percent.
  • the light-shielding print portion corresponds to a region other than the light-transmitting portions 22a and 22b, and is printed with light shielding by white or black.
  • the panel 22 transmits a light transmitting portion (panel window portion) 22a that transmits the irradiation light (emitted light) from the light emitting element 2 to the object to be detected, and transmits ambient light and reflected light from the object to be detected toward the light receiving element 3.
  • a translucent part (panel window part) 22b to be formed is formed.
  • the light detection device 10 when the light detection device 10 operates as a proximity sensor, the light emitted from the light emitting element 2 reaches an object to be detected (not shown) via the light transmitting resin 5a and the light transmitting portion 22a. . Further, the light reflected by the object to be detected enters the light receiving portion of the light receiving element 3 through the light transmitting portion 22b, the light guide material 7b, and the light transmitting resin 5b.
  • the control IC provided in the light receiving element 3 determines whether or not the amount of light detected by the light receiving unit exceeds a preset detection threshold value, and detects the presence or absence of an object to be detected.
  • the control IC detects the ambient brightness based on the amount of ambient light detected by the light receiving unit.
  • FIGS. 3 to 6 are partial cross-sectional views of a mobile device in which the photodetectors according to comparative configurations 1 to 4 are mounted.
  • FIGS. 3 to 6 members having the same functions as those described in the light detection device 10 of the present embodiment are denoted by reference numerals obtained by adding 100 to the reference numerals of the light detection device of the first embodiment. Appendices are omitted. In the following description, differences from the light detection device 10 will be mainly described.
  • the light detection device 110 according to the comparative structure 1 corresponds to a structure in which the light-shielding cap 6 and the light guide material 7 b are not provided in the light detection device 10.
  • FIG. 3 shows an example in which the light detection device 110 is used as a proximity sensor.
  • the irradiation light 111 irradiated from the light emitting element 102 is reflected by the detection object 130, and the reflected light 112 enters the light receiving element 103.
  • the light detection device 110 and the panel 122 are provided apart from each other, a part of the irradiation light 113 emitted from the light emitting element 102 is reflected by the panel 122, and the reflected light 114 is also reflected by the light receiving element 103. Will be incident.
  • the reflected light 114 incident on the light receiving element 103 is noise light (stray light). For this reason, when the photodetection device 110 is adapted as a proximity sensor, there is a problem that when the amount of noise light increases, a false detection that becomes a detection state occurs even if there is no object to be detected.
  • FIG. 4 shows an example in which the light detection device 110 is used as an illuminance sensor.
  • the ambient light around the mobile device 120 passes through a light transmitting part (panel window part) 122 b corresponding to the light receiving element 103 formed on the panel 122 and enters the light receiving part of the light receiving element 103.
  • the amount of light incident on the light receiving unit is calculated as illuminance by an internal circuit mounted on the control IC of the light receiving element 103.
  • the directivity angle A3 at which the light receiving element 103 can actually detect the illuminance is limited by the size of the light transmitting part 122b and the distance D from the panel 122 to the light detection device 110. Is done. However, due to the design of the mobile device 120, the size of the light transmitting portion 122b is required to be as small as possible. On the other hand, tall parts such as a CMOS image sensor are mounted on the mobile device 120 in addition to the light detection device 110. For this reason, in the mobile device 120, there is a limit in increasing the size of the translucent part 122b and shortening the distance D. Therefore, there is a problem that the directivity angle A3 that can be actually detected by the light detection device 110 is narrower than the directivity angle A1 that the light detection device 110 originally has.
  • the light detection device 110 a according to the comparative configuration 2 corresponds to a configuration in which the light guide member 7 b is not provided in the light detection device 10.
  • the light detection device 110a also corresponds to the configuration in which the light-shielding cap 106 is covered in the light detection device 110 of FIG.
  • FIG. 5 shows an example in which the light detection device 110a is used as a proximity sensor.
  • the upper surface of the light blocking cap 106 is in close contact with the lower surface of the panel 122. Therefore, the irradiation light from the light emitting element 102 (irradiation light 113 in FIG. 3) is blocked by the light blocking cap 106. Thereby, even if the distance D is long, the reflected light from the panel 122 that causes noise light does not enter the light receiving element 103. Therefore, when the light detection device 110a is applied as a proximity sensor, generation of noise light can be suppressed.
  • the directivity angle that can be actually detected by the light detection device 110a is still greater than the directivity angle that the light detection device 110a originally has, as shown in FIG. There is a problem that it becomes narrow.
  • the photodetector 110b according to the comparative configuration 3 corresponds to a configuration in which the light-shielding cap 6 and the light guide member 7b are not provided in the photodetector 10, like the photodetector 110 of FIG.
  • FIG. 6 shows an example in which the light detection device 110b is used as an illuminance sensor.
  • the light detection device 110b is different from the light detection device 10 and the light detection device 110 in the manner of mounting on the main mounting substrate 121.
  • the light detection device 110b is mounted on the sub-mounting substrate 123 by a method such as reflow soldering, and is fixed at a position near the light transmitting portion 122b of the panel 122.
  • the sub mounting substrate 123 is integrated with the flexible substrate 124.
  • the flexible board 124 is electrically connected to the main mounting board 121 via a connector 125 mounted on the main mounting board 121 by a method such as reflow soldering.
  • the mobile device 120b including the light detection device 110b can detect the illuminance at the directivity angle A1 inherent to the light receiving element 103 without increasing the size of the light transmitting part 122b on the light receiving element 103 side during the operation of the illuminance sensor. Become. Furthermore, since the light detection device 110b and the panel 122 are arranged close to each other, the reflected light 114 from the panel 122 is less likely to enter the light receiving element 103 even when the proximity sensor is operating. Therefore, generation of noise light can be suppressed.
  • the illuminance directivity angle at the time of the illuminance sensor operation of the light detection device 110b is improved, and the proximity sensor operation is performed.
  • the influence of noise due to the reflected light from the panel 122 can be reduced.
  • the sub-mounting board 123, the flexible board 124, and the connector 125 are required, resulting in an increase in the price due to an increase in the number of components and a complicated mechanism structure.
  • the light detection device 10 includes a light shielding cap 6 that protrudes from the upper surface of the light shielding resin 4 in the light emitting direction (upward) of the light emitting element 2. Further, the light shielding cap 6 is in close contact with the panel 22. For this reason, the irradiation light from the light emitting element 2 (irradiation light 113 in FIG. 3) is shielded by the light shielding cap 6. Thereby, even if the distance D is long, the reflected light from the panel 22 that causes noise light does not enter the light receiving element 3. Therefore, when the light detection device 10 is applied as a proximity sensor, generation of noise light can be suppressed.
  • the light guide material 7 b is filled in the opening 6 b of the light shielding cap 6.
  • the ambient light incident through the light transmitting element 22b on the light receiving element 3 side formed on the panel 22 and the opening 6b of the light shielding cap 6 is reflected on the inner wall of the opening 6b of the light shielding cap 6.
  • the light is guided through the light guide 7 b and enters the light receiving element 3. Therefore, as shown in FIG. 2, the directivity angle A2 that can be actually detected by the light detection device 10 is wider than the directivity angle A1 that the light detection device 10 originally has. Therefore, when the light detection device 10 is applied as an illuminance sensor, it is possible to improve the reduction of the directivity angle when detecting the illuminance.
  • the light detection device 10 and the mobile device 20 can both suppress the generation of noise light and improve the directivity angle at the time of detecting illuminance.
  • the light guide member 7 b is formed of a material having a refractive index larger than that of the light-shielding cap 6 by 0.2 or more, preferably 0.3 or more, more preferably 0.4 or more. preferable.
  • the light incident on the light guide material 7 b is reflected by the inner wall of the opening 6 b of the light shielding cap 6, and more efficiently enters the light receiving element 3. Incident. Therefore, it is possible to improve the reduction of the directivity angle at the time of detecting illuminance more reliably. Such an effect increases as the difference in refractive index increases.
  • the material for forming the light-shielding cap 6 is preferably a material having a refractive index lower than that of the light guide material 7b and having flexibility.
  • the refractive index of the light-shielding cap 6 can be selected in the range of 1.35 to 1.47. Thereby, the reflected light rate at the inner wall of the opening 6 b of the light shielding cap 6 and the incident light rate to the light receiving element 3 can be increased.
  • a material having flexibility is, for example, a hardness of 50 or less.
  • the adhesiveness of the light-shielding cap 6 and the panel 22 can be improved.
  • the dimensional tolerance of the light-shielding cap 6 can also be absorbed by the flexibility. Therefore, it is possible to reliably prevent the reflected light from the panel 22 that causes noise light from entering the light receiving element 3 through the gap between the light shielding cap 6 and the panel 22.
  • the impact can be absorbed, so that the panel 22 and the mobile device 20 can be prevented from being damaged.
  • Examples of the material of the light-shielding cap 6 that satisfies such conditions include fluorine rubber (refractive index 1.38 to 1.39), silicone rubber (refractive index 1.40 to 1.43), and acrylic rubber (refractive index 1. 465).
  • the material for forming the light guide member 7b may be any material that transmits the light of the light emitting element 2 when the light detection device 10 is applied as a proximity sensor.
  • the material forming the light guide member 7b is preferably an optical resin (optical plastic).
  • the refractive index of the light guide member 7b is preferably larger than the refractive index of the light-shielding cap 6 as described above.
  • the lower limit value of the refractive index of the light guide material 7b is, for example, 1.6, preferably 1.66, and more preferably 1.72.
  • the upper limit value of the refractive index of the light guide material 7b is not particularly limited. Thereby, the incident light rate to the light receiving element 3 of the light incident on the light guide member 7b can be increased.
  • Examples of the material of the light guide 7b that satisfies such conditions include polymethyl methacrylate resin (refractive index 1.67 to 1.76), polyester resin (refractive index 1.60), polystyrene (refractive index 1.592).
  • Examples include polycarbonate (refractive index 1.59), phenol resin (refractive index 1.58 to 1.66), epoxy resin (refractive index 1.55 to 1.61), and the like.
  • the length of the light guide member 7 b is less than the length of the opening 6 b formed at the position corresponding to the light receiving element 3 in the light shielding cap 6. Therefore, a gap G is formed between the upper surface of the light shielding cap 6 and the upper surface (incident surface) of the light guide material 7b.
  • the light guide material 7b and the translucent resin 5b may be made of the same material or different materials.
  • FIG. 7 is a partial cross-sectional view of a mobile device 20a on which the photodetecting device 10a of this embodiment is mounted.
  • the light detection device 10a is different from the light detection device 10 in that the length of the light guide member 7b is equal to the length of the opening 6b formed at a position corresponding to the light receiving element 3 in the light blocking cap 6.
  • the gap G is not formed between the upper surface of the light-shielding cap 6 and the upper surface of the light guide member 7b.
  • the light guide 7b can be brought into close contact with the panel 22.
  • the light guide effect is enhanced and the amount of light incident on the light receiving element 3 can be increased. Therefore, when the light detection device 10 is applied as a proximity sensor, detection accuracy can be improved.
  • the light guide member 7b is preferably formed from a flexible material (soft material) such as urethane rubber (refractive index: 1.50 to 1.55).
  • a flexible material such as urethane rubber (refractive index: 1.50 to 1.55).
  • FIG. 8 is a partial cross-sectional view of a mobile device 20b on which the photodetecting device 10b of this embodiment is mounted.
  • the light detection device 10b is different from the light detection device 10 in that another light guide material 8b is provided around the light guide material 7b (between the opening 6b and the light guide material 7b).
  • the light guide material 7b first light guide material
  • the light guide material 8b second light guide material covering the outer periphery of the light guide material 7b
  • the refractive index of the light guide material 7b is larger than the refractive index of the light guide material 8b.
  • the refractive index difference between the light guide material 7b and the light guide material 8b is preferably as large as possible. For example, it is 0.3 or more, preferably 0.35 or more, and more preferably 0.4 or more.
  • the refractive index difference is 0.41.
  • This refractive index difference can be made larger than the refractive index difference between the light guide material 7 b and the light shielding cap 6. For this reason, if the light guide material 7b and the light guide material 8b having such a multiple structure are provided, the refractive index of the light-shielding cap 6 can be arbitrarily selected. Therefore, the selection range of the material of the light-shielding cap 6 is expanded.
  • the light incident on the light guide material 7b is reflected by the light guide material 8b, and enters the light receiving element 3 more efficiently. Therefore, the detection accuracy at the time of detecting illuminance can be improved.
  • FIG. 9 is a partial cross-sectional view of a mobile device 20c on which the photodetecting device 10c of this embodiment is mounted.
  • the light detection device 10 c is different from the light detection device 10 in that the light guide material 7 a is also filled in the opening 6 a formed at a position corresponding to the light emitting element 2 in the light shielding cap 6.
  • the irradiation light 11 emitted from the light emitting element 2 can be reduced from being absorbed by the light shielding cap 6. For this reason, the irradiation light 11 is guided while being reflected inside the light guide member 7 a, and is irradiated to the detected object 30. As a result, the amount of reflected light 12 from the object to be detected 9 increases, and the amount of light incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
  • FIG. 10 is a partial cross-sectional view of a mobile device 20d on which the photodetecting device 10d of this embodiment is mounted.
  • the light detection device 10 d is different from the light detection device 10 in that the length of the light guide members 7 a and 7 b is equal to the length of the openings 6 a and 6 b formed in the light-shielding cap 6. That is, the photodetector 10d corresponds to a configuration in which the light guide 7a is also filled in the opening 6a in the photodetector 10a of FIG.
  • the gap G is not formed between the upper surface of the light-shielding cap 6 and the upper surface of the light guide material 7b, similarly to the mobile device 20a.
  • the light guide materials 7 a and 7 b can be brought into close contact with the panel 22.
  • the light guide effect is enhanced and the amount of light incident on the light receiving element 3 can be increased. Therefore, when the light detection device 10 is applied as a proximity sensor, detection accuracy can be improved.
  • the amount of the reflected light 12 from the detected object 9 increases as in the mobile device 20c, so that the amount of light incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
  • FIG. 11 is a partial cross-sectional view of a mobile device 20e on which the photodetecting device 10e of this embodiment is mounted.
  • the light detection device 10e is different from the light detection device 10 in that another light guide material 8b is provided around the light guide material 7b (between the opening 6b and the light guide material 7b). Furthermore, the light detection device 10e is different from the light detection device 10 in that the light guide materials 7a and 8a are filled in the opening 6a.
  • the light detection device 10e corresponds to the configuration in which the light guide materials 7a and 8a are also filled in the opening 6a in the light detection device 10b of FIG.
  • the light incident on the light guide material 7b is reflected by the light guide material 8b and is incident on the light receiving element 3 more efficiently. Therefore, the detection accuracy at the time of detecting illuminance can be improved.
  • the amount of the reflected light 12 from the detected object 9 increases as in the mobile device 20c, so that the amount of light incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
  • a proximity illuminance sensor having both a proximity sensor function and an illuminance sensor function has been described as an example of the light detection device of the present invention.
  • the photodetection device of the present invention is not limited to this, and a photodetection device having one of a proximity sensor function and an illuminance sensor can achieve the same effect.
  • the light detection apparatus partitions a substrate (element substrate 1), a light emitting element 2 and a light receiving element 3 provided on the substrate, and the light emitting element 2 and the light receiving element 3 on the substrate. Openings 6a and 6b are formed at positions corresponding to the partition portion (light shielding resin 4) and the light emitting element 2 and the light receiving element 3, and projecting portions (light shielding cap 6) projecting from the partition portion in the light emitting direction of the light emitting element.
  • the light guide material 7b is filled in an opening 6b formed at a position corresponding to the light receiving element in the protruding portion.
  • the ambient light incident through the opening 6b of the light-shielding cap 6 is guided through the light guide 7b while being reflected by the inner wall of the opening 6b of the light-shielding cap 6. 3 is incident. Therefore, as shown in FIG. 2, the directivity angle A2 that can be actually detected by the light detection device 10 is wider than the directivity angle A1 that the light detection device 10 originally has. Therefore, when the light detection device 10 is applied as an illuminance sensor, it is possible to improve the reduction of the directivity angle when detecting the illuminance.
  • the refractive index of the light guide material 7b is 0.2 or more larger than the refractive index of the protruding portion (light-shielding cap 6).
  • the light incident on the light guide material 7 b is reflected by the inner wall of the opening 6 b of the light shielding cap 6, and more efficiently enters the light receiving element 3. Incident. Therefore, it is possible to more reliably improve the reduction of the directivity angle at the time of detecting the illuminance.
  • the protruding portion in the aspect 1 or 2, may be formed of silicone rubber, fluorine rubber, or acrylic rubber. Thereby, the adhesiveness of the light-shielding cap 6 and the panel 22 can be improved.
  • the light guide material 7b may be formed of an optical resin.
  • the light guide material 7b is formed of polymethyl methacrylate resin, polyester resin, polystyrene, polycarbonate, phenol resin, or epoxy resin. May be. Thereby, the incident light rate to the light receiving element 3 of the light incident on the light guide member 7b can be increased.
  • the length of the light guide material 7b is an opening formed at a position corresponding to the light receiving element 3 in the protruding portion (light shielding cap 6).
  • the length may be less than 6b.
  • the light detection device is the light detection apparatus according to aspects 1 to 5, wherein the length of the light guide material 7b is an opening formed at a position corresponding to the light receiving element in the protrusion (light shielding cap 6). It may be equal to the length. Thereby, the light guide 7b can be brought into close contact with the panel 22. As a result, the light guide effect is enhanced and the amount of light incident on the light receiving element 3 can be increased.
  • the light detection device is the light detection apparatus according to any one of aspects 1 to 7, wherein the light guide material includes a first light guide material (light guide material 7b) and a second covering the outer periphery of the first light guide material.
  • the light guide material (light guide material 8b) may be provided, and the refractive index of the first light guide material may be larger than the refractive index of the second light guide material.
  • the light guide material (light guide material 7a) is formed at a position corresponding to the light emitting element 2 in the protruding portion (light shielding cap 6). It is preferable that the opening 6a is also filled. According to said structure, since the light guide material 7a is filled in the opening 6a, it can reduce that the light irradiated from the light emitting element 2 is absorbed by the light-shielding cap 6. FIG. For this reason, since the light quantity of the irradiation light 11 irradiated to the detected object and the light quantity of the reflected light 12 from the detected object 9 increase, the light quantity incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
  • the electronic device according to the tenth aspect of the present invention is equipped with any one of the photodetectors according to the first to ninth aspects. Therefore, the same effects as those of Embodiments 1 to 9 are obtained.
  • the present invention can be used in various electronic devices such as an illuminance sensor, an RGB color sensor, a proximity sensor, an optical sensor such as a proximity illuminance sensor, a smartphone equipped with a reflective optical sensor, a digital camera, and a car navigation system. .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

When applied as a proximity sensor, this invention suppresses the generation of noise light, and when applied as an illuminance sensor, helps ameliorate decreases in the directivity angle exhibited thereby during illuminance detection. This light-detecting device (10) is provided with the following: a piece of light-blocking resin (4) that separates a light-emitting element (2) and a light-receiving element (3) on an element substrate (1); and a light-blocking cap (6) that protrudes from the light-blocking resin (4) in the direction in which light is emitted by the light-emitting element (2). Openings (6a and 6b) are formed in the light-blocking cap (6) in positions corresponding to the light-emitting element (2) and the light-receiving element (3). The opening (6b) formed in the light-blocking cap (6) in a position corresponding to the light-receiving element (3) is filled with a light-guiding material (7b).

Description

光検出装置Photodetector
 本発明は、光検出装置および電子機器に関し、例えば、被検出物を検知する近接センサおよび環境光を検出する照度センサとして好適な光検出装置およびそれを備えたモバイル機器等の電子機器に関する。 The present invention relates to a light detection device and an electronic device, for example, a light detection device suitable as a proximity sensor that detects an object to be detected and an illuminance sensor that detects ambient light, and an electronic device such as a mobile device including the light detection device.
 近年、スマートフォンなどに代表される画面付きモバイル機器が広く利用されている。モバイル機器においては、電池寿命を延長して利便性を高めることが求められている。例えば、携帯電話の通話中には画面を見ることがないため、液晶バックライトを消灯させたり、モバイル機器を使用している環境の明るさを検知してバックライトの明るさをコントロールすることにより、液晶パネルの消費電力を低減させ、バッテリを長時間持たせることが可能となる。 In recent years, mobile devices with screens such as smartphones have been widely used. In mobile devices, it is required to extend battery life and improve convenience. For example, since the screen is not seen during a mobile phone call, the LCD backlight is turned off, or the brightness of the environment where the mobile device is used is detected to control the brightness of the backlight. The power consumption of the liquid crystal panel can be reduced and the battery can be held for a long time.
 さらに、近年のスマートフォンでは、タッチパネル機能付き画面が採用され、入力ヒューマンインターフェースの機能が向上している。しかし、タッチパネル機能付きの携帯電話では、通話中にタッチパネルが人の肌に触れて、タッチパネル機能が誤作動する問題が生じる恐れがある。 Furthermore, in recent smartphones, a screen with a touch panel function is adopted, and the function of the input human interface is improved. However, in a mobile phone with a touch panel function, there is a possibility that the touch panel touches human skin during a call and the touch panel function malfunctions.
 このような背景から、スマートフォンやタッチパネル機能付きの携帯電話は、近接センサや照度センサを搭載することが一般的となっている。近接センサは、被検出物としての人の肌(主に頬)を検出し、画面の点灯または消灯、タッチパネル機能のオンまたはオフなどを自動調整する。照度センサは、周囲の明るさを検出する。 For this reason, smartphones and mobile phones with touch panel functions are generally equipped with proximity sensors and illuminance sensors. The proximity sensor detects human skin (mainly cheeks) as an object to be detected, and automatically adjusts whether the screen is turned on or off, the touch panel function is turned on or off, and the like. The illuminance sensor detects ambient brightness.
 また、近接センサと照度センサとを一体化した近接照度センサがモバイル機器に多く利用されるようになっている。近接照度センサは、赤外LED(Light-Emitting Diode)等を有する発光部と、フォトダイオード等を有する受光部とを備えている。近接照度センサでは、発光部から照射された光(赤外線)が近接照度センサの近傍の物体で反射され、その反射された光を受光部で受光する。これにより、物体を検知することができると共に、受光部に入射する周囲の環境光の強度を測定することができる。 Also, a proximity illuminance sensor that integrates a proximity sensor and an illuminance sensor is often used in mobile devices. The proximity illuminance sensor includes a light emitting unit having an infrared LED (Light-Emitting Diode) and the like, and a light receiving unit having a photodiode or the like. In the proximity illuminance sensor, light (infrared rays) emitted from the light emitting unit is reflected by an object near the proximity illuminance sensor, and the reflected light is received by the light receiving unit. Thereby, an object can be detected and the intensity of ambient ambient light incident on the light receiving unit can be measured.
 一方、特許文献1には、発光素子からの光をトナーが付着される測定対象物の被照射面に照射し、その反射光を受光素子によって検知する光学センサが記載されている。この光学センサは、発光素子および受光素子が実装される基板に取り付けられたハウジングを備えている。さらに、ハウジングは、発光素子と受光素子との間に配置された遮光壁を備えている。 On the other hand, Patent Document 1 describes an optical sensor that irradiates a surface to be irradiated of light to be measured with light from a light emitting element and detects the reflected light by a light receiving element. This optical sensor includes a housing attached to a substrate on which a light emitting element and a light receiving element are mounted. Further, the housing includes a light shielding wall disposed between the light emitting element and the light receiving element.
 特許文献2には、発光素子と受光素子とを隔てる筐体を備えた反射型光結合器が記載されている。この筐体は、発光素子または受光素子が配置される2つの透孔を有している。また、筐体は、遮光性樹脂から形成されている。この反射型光結合器では、2つの透孔内に透光性樹脂が充填されている。 Patent Document 2 describes a reflection type optical coupler including a casing that separates a light emitting element and a light receiving element. This housing has two through holes in which light emitting elements or light receiving elements are arranged. The housing is made of a light shielding resin. In this reflection type optical coupler, two transparent holes are filled with a transparent resin.
日本国公開特許公報「特開2013-191835号公報(2013年9月26日公開)」Japanese Patent Publication “JP 2013-191835 A (published September 26, 2013)” 日本国公開実用新案公報「実開昭61-157346号公報(1986年9月30日)」Japanese public utility model publication "Japanese Utility Model Publication No. 61-157346 (September 30, 1986)"
 しかし、上述のような従来技術は、近接センサとして利用した場合にノイズ光の対策が不十分であり、照度センサとして利用した場合に照度検出時の指向角が狭くなるという問題がある。 However, the conventional technology as described above has a problem that a countermeasure for noise light is insufficient when used as a proximity sensor, and a directivity angle at the time of detecting illuminance becomes narrow when used as an illuminance sensor.
 特許文献1および特許文献2には、光学センサおよび反射型光結合器を携帯電話などのモバイル機器の近接センサまたは照度センサとして適用することは記載されていない。特に、特許文献1に記載の光学センサは、トナー検知装置としての利用が想定されており、モバイル機器への適用は全く想定されていない。 Patent Document 1 and Patent Document 2 do not describe the application of the optical sensor and the reflective optical coupler as a proximity sensor or an illuminance sensor of a mobile device such as a mobile phone. In particular, the optical sensor described in Patent Document 1 is assumed to be used as a toner detection device, and is not supposed to be applied to mobile devices.
 ここで仮に、特許文献1に記載の光学センサまたは特許文献2に記載の反射型光結合器を近接センサとして適用する場合、光学センサまたは反射型光結合器は、モバイル機器の筐体に設けられたパネルの下部に、一定の距離を保って設置される。このパネルには、発光素子から被検出物への照射光(出射光)および被検出物から受光素子へ向かう反射光を透過させるパネル窓部が形成されている。 Here, if the optical sensor described in Patent Document 1 or the reflective optical coupler described in Patent Document 2 is applied as a proximity sensor, the optical sensor or the reflective optical coupler is provided in a housing of a mobile device. It is installed at a certain distance at the bottom of the panel. The panel is formed with a panel window that transmits irradiation light (emitted light) from the light emitting element to the object to be detected and reflected light from the object to be detected to the light receiving element.
 しかし、発光素子からの出射光の一部は、パネルで反射され、その反射光が受光素子に入射してしまう。このようにして受光素子に入射した光は、ノイズ光(迷光)である。このため、従来技術を近接センサとして適応すると、ノイズ光の量が多くなった場合に、被検出物が無くても検知状態となる誤検知が発生する。 However, part of the light emitted from the light emitting element is reflected by the panel, and the reflected light enters the light receiving element. The light incident on the light receiving element in this way is noise light (stray light). For this reason, when the conventional technology is applied as a proximity sensor, when the amount of noise light increases, a false detection occurs in a detection state even if there is no object to be detected.
 なお、特許文献1の光学センサに形成された遮光壁は、あくまで、ハウジング内、または、発光素子および受光素子が実装される基板内を伝わって受光素子に届き外乱光となるのを防ぐことを意図しており、モバイル機器に適用した場合のノイズ光を防ぐことを示唆するものではない。 In addition, the light shielding wall formed in the optical sensor of Patent Document 1 is to prevent the light from reaching the light receiving element through the housing or the substrate on which the light emitting element and the light receiving element are mounted, and becoming disturbance light. It is intended and does not suggest preventing noise light when applied to mobile devices.
 一方、特許文献1に記載の光学センサまたは特許文献2に記載の反射型光結合器を照度センサとして適用する場合、照度を検出可能な指向角は、パネル窓部のサイズと、パネル窓部から光学センサまたは反射型光結合器までの距離とにより制限される。しかし、モバイル機器のデザイン上、パネル窓部のサイズは可能な限り小さくすることが求められている。一方、モバイル機器には、光学センサまたは反射型光結合器の他にも、例えば、CMOSイメージセンサなどの背の高い部品も実装されている。このため、モバイル機器では、パネル窓部のサイズを大きくするにも、上記距離を短縮するにも限界がある。したがって、光学センサまたは反射型光結合器が実際に検出可能な指向角は、光学センサまたは反射型光結合器が本来もつ指向角よりも狭くなってしまう。 On the other hand, when the optical sensor described in Patent Document 1 or the reflective optical coupler described in Patent Document 2 is applied as an illuminance sensor, the directivity angle at which the illuminance can be detected depends on the size of the panel window part and the panel window part. Limited by the distance to the optical sensor or reflective optical coupler. However, the size of the panel window is required to be as small as possible due to the design of the mobile device. On the other hand, tall parts such as a CMOS image sensor are mounted on the mobile device in addition to the optical sensor or the reflective optical coupler. For this reason, in the mobile device, there is a limit in increasing the size of the panel window part and shortening the distance. Therefore, the directivity angle that can be actually detected by the optical sensor or the reflective optical coupler is narrower than the directivity angle inherent in the optical sensor or the reflective optical coupler.
 なお、上述した問題については、〔発明を実施するための形態〕においても詳細に説明する。 The above-described problem will be described in detail in [Mode for Carrying Out the Invention].
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、近接センサとして適用した場合に、ノイズ光の発生を抑制することのできる光検出装置および電子機器を提供することにある。また、本発明の別の目的は、照度センサとして適用した場合に、照度検出時の指向角の減少を改善することのできる光検出装置および電子機器を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a photodetector and an electronic apparatus that can suppress the generation of noise light when applied as a proximity sensor. . Another object of the present invention is to provide a photodetection device and an electronic apparatus that can improve the reduction of the directivity angle when detecting illuminance when applied as an illuminance sensor.
 上記の課題を解決するために、本発明の一態様に係る光検出装置は、基板と、上記基板上に設けられた発光素子および受光素子と、上記基板上の発光素子と受光素子とを仕切る仕切り部と、上記発光素子および受光素子に対応する位置に開口が形成され、上記仕切り部から発光素子の光出射方向に突出した突出部とを備え、上記突出部において受光素子に対応する位置に形成された開口内に、導光材が充填されていることを特徴としている。 In order to solve the above-described problems, a photodetector according to one embodiment of the present invention partitions a substrate, a light-emitting element and a light-receiving element provided over the substrate, and the light-emitting element and the light-receiving element over the substrate. An opening is formed at a position corresponding to the light emitting element and the light receiving element, and a protruding part protrudes from the partition part in the light emitting direction of the light emitting element. The protruding part is located at a position corresponding to the light receiving element. A light guide material is filled in the formed opening.
 本発明の一態様によれば、近接センサとして適用した場合に、ノイズ光の発生を抑制することのできる光検出装置および電子機器、または、照度センサとして適用した場合に、照度検出時の指向角の減少を改善することのできる光検出装置および電子機器を提供することができるという効果を奏する。 According to one aspect of the present invention, when applied as a proximity sensor, a photodetection device and an electronic device that can suppress generation of noise light, or a directivity angle when detecting illuminance when applied as an illuminance sensor. There is an effect that it is possible to provide a photodetection device and an electronic apparatus that can improve the decrease in the above.
本発明の実施形態1に係る光検出装置の概略構成を示す図であり、(a)は断面図であり、(b)は平面図である。It is a figure which shows schematic structure of the photon detection apparatus which concerns on Embodiment 1 of this invention, (a) is sectional drawing, (b) is a top view. 本発明の実施形態1に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile device by which the photon detection apparatus which concerns on Embodiment 1 of this invention is mounted. 比較構成1に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile apparatus by which the photon detection apparatus which concerns on the comparison structure 1 was mounted. 比較構成1に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile apparatus by which the photon detection apparatus which concerns on the comparison structure 1 was mounted. 比較構成2に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile apparatus by which the photon detection apparatus which concerns on the comparison structure 2 was mounted. 比較構成3に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile apparatus by which the photon detection apparatus which concerns on the comparison structure 3 was mounted. 本発明の実施形態2に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile device by which the photon detection apparatus which concerns on Embodiment 2 of this invention is mounted. 本発明の実施形態3に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile device by which the photon detection apparatus which concerns on Embodiment 3 of this invention is mounted. 本発明の実施形態4に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile device by which the photon detection apparatus which concerns on Embodiment 4 of this invention is mounted. 本発明の実施形態5に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile device by which the photon detection apparatus which concerns on Embodiment 5 of this invention is mounted. 本発明の実施形態6に係る光検出装置が搭載されたモバイル機器の部分断面図である。It is a fragmentary sectional view of the mobile device by which the photon detection apparatus which concerns on Embodiment 6 of this invention is mounted.
 〔実施形態1〕
 以下、本発明の実施の形態について、図1~図6に基づいて詳細に説明する。
Embodiment 1
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
 <光検出装置の構成>
 図1は、本実施形態の光検出装置10の概略構成を示す図であり、(a)は断面図であり、(b)は平面図である。図1の(a)および(b)に示すように、光検出装置10は、素子基板1の同一面に、発光素子2、受光素子3、および、遮光体(仕切り部)を備えている。光検出装置10は、さらに、遮光性キャップ6を備えている。光検出装置10は、近接センサとしての機能と照度センサとしての機能を兼ね備えている。以下の説明では、便宜上、発光素子2が光を出射する方向を「上方」、その逆方向(受光素子3に光が入射する方向)を「下方」とする。
<Configuration of photodetection device>
FIG. 1 is a diagram illustrating a schematic configuration of a light detection device 10 according to the present embodiment, where (a) is a cross-sectional view and (b) is a plan view. As shown in FIGS. 1A and 1B, the light detection device 10 includes a light emitting element 2, a light receiving element 3, and a light blocking body (partition part) on the same surface of the element substrate 1. The light detection device 10 further includes a light blocking cap 6. The light detection device 10 has a function as a proximity sensor and a function as an illuminance sensor. In the following description, for convenience, the direction in which the light emitting element 2 emits light is referred to as “upward”, and the opposite direction (the direction in which light enters the light receiving element 3) is referred to as “downward”.
 素子基板1は、光検出装置10の各素子が実装される基板である。素子基板1を構成する材料は特に限定されるものではないが、発光素子2から出射される光の少なくとも一部を透過しない材料を含むことが好ましい。これにより、素子基板1内の遮光が可能になるため、素子基板1内部を透過する発光素子2からの漏れ光を受光素子3で受光するのを防止できる。 The element substrate 1 is a substrate on which each element of the light detection device 10 is mounted. Although the material which comprises the element substrate 1 is not specifically limited, It is preferable that the material which does not permeate | transmit at least one part of the light radiate | emitted from the light emitting element 2 is included. As a result, light can be shielded in the element substrate 1, so that the light receiving element 3 can prevent leakage light from the light emitting element 2 that passes through the element substrate 1.
 発光素子2は、被検出物を検出するための光を出射する。発光素子2は、例えば、赤外光を出射するLEDチップを用いることができる。発光素子2は、透光樹脂5aによって封止されている。 The light emitting element 2 emits light for detecting an object to be detected. For example, an LED chip that emits infrared light can be used as the light emitting element 2. The light emitting element 2 is sealed with a translucent resin 5a.
 受光素子3は、発光素子2から出射された光を検知することができる受光部と、制御用ICとを備えている。受光部は、例えば、フォトダイオードから構成されている。受光素子3は、透光樹脂5bによって封止されている。 The light receiving element 3 includes a light receiving unit capable of detecting the light emitted from the light emitting element 2 and a control IC. The light receiving unit is constituted by, for example, a photodiode. The light receiving element 3 is sealed with a translucent resin 5b.
 なお、光検出装置10を近接センサとして機能させるには、透光樹脂5a、5bは、発光素子2から出射される光を透過する樹脂であればよい。光検出装置10を照度センサとして機能させるには、透光樹脂5bは、環境光を透過する樹脂であればよい。 In order to make the light detection device 10 function as a proximity sensor, the light-transmitting resins 5a and 5b may be any resin that transmits light emitted from the light-emitting element 2. In order for the light detection device 10 to function as an illuminance sensor, the translucent resin 5b may be a resin that transmits ambient light.
 遮光樹脂4は、互いに離間して設けられた発光素子2と受光素子3とを仕切っている。さらに、遮光樹脂4は、発光素子2の出射光の経路、受光素子3への入射光の経路を確保しつつ、素子基板1上の素子実装面を包囲している。光検出装置10では、透光樹脂5a,5bが設けられているため、遮光樹脂4は、透光樹脂5a,5bの周囲(外周)および透光樹脂5a,5bの間に設けられ、透光樹脂5a,5bの上面は露出している。遮光樹脂4は、発光素子2から出射される光の少なくとも一部を透過しない材料から構成することができる。 The light shielding resin 4 partitions the light emitting element 2 and the light receiving element 3 provided apart from each other. Further, the light shielding resin 4 surrounds the element mounting surface on the element substrate 1 while ensuring the path of outgoing light from the light emitting element 2 and the path of incident light to the light receiving element 3. In the light detection device 10, since the light-transmitting resins 5a and 5b are provided, the light-shielding resin 4 is provided around the light-transmitting resins 5a and 5b (outer periphery) and between the light-transmitting resins 5a and 5b. The upper surfaces of the resins 5a and 5b are exposed. The light shielding resin 4 can be made of a material that does not transmit at least part of the light emitted from the light emitting element 2.
 このように、光検出装置10は、発光素子2および受光素子3が、遮光樹脂4および透光樹脂5a,5bによって素子基板1上に封止された封止構造を有する。 As described above, the light detection device 10 has a sealing structure in which the light emitting element 2 and the light receiving element 3 are sealed on the element substrate 1 by the light shielding resin 4 and the light transmitting resins 5a and 5b.
 遮光性キャップ6は、遮光樹脂4から発光素子2の光出射方向に突出した突出部であり、この封止構造の上面および側面を被覆している。ただし、遮光性キャップ6は、発光素子2に対応する位置に開口(空洞)6a、および、受光素子3に対応する位置に開口(空洞)6bが形成されている。このため、発光素子2から出射される光の経路(出射経路)、および、発光素子2から出射され被検出物で反射された光が受光素子3に入射する経路(入射経路)が確保される。遮光性キャップ6は、発光素子2から出射される光の少なくとも一部を透過しない材料、例えば、遮光樹脂から構成することができる。遮光樹脂4と遮光性キャップ6とは同一材料から構成されていても、異なる材料から構成されていてもよい。 The light-shielding cap 6 is a protruding portion that protrudes from the light-shielding resin 4 in the light emitting direction of the light-emitting element 2, and covers the upper surface and side surfaces of the sealing structure. However, the light shielding cap 6 has an opening (cavity) 6 a at a position corresponding to the light emitting element 2 and an opening (cavity) 6 b at a position corresponding to the light receiving element 3. For this reason, the path | route (outgoing path | route) of the light radiate | emitted from the light emitting element 2, and the path | route (incident path | route) where the light radiate | emitted from the light emitting element 2 and reflected by the to-be-detected object enter into the light receiving element 3 are ensured. . The light shielding cap 6 can be made of a material that does not transmit at least a part of the light emitted from the light emitting element 2, for example, a light shielding resin. The light shielding resin 4 and the light shielding cap 6 may be made of the same material or different materials.
 光検出装置10では、開口6b内に、導光材7bが充填(埋設)されている。導光材7bは、発光素子2から出射される光を透過する材料から形成されている。導光材7bは、例えば、透光樹脂5a,5bと同様の材料から形成することができる。光検出装置10では、導光材7bは、遮光性キャップ6の上面を超えない程度に充填されており、導光材7bの長さは、開口6bの長さ未満となっている。このため、遮光性キャップ6の上面と導光材7bの上面(入射面)との間には、ギャップGが形成される。 In the light detection device 10, the light guide 7b is filled (embedded) in the opening 6b. The light guide member 7 b is formed of a material that transmits light emitted from the light emitting element 2. The light guide material 7b can be formed from the same material as the translucent resins 5a and 5b, for example. In the light detection device 10, the light guide material 7b is filled to the extent that it does not exceed the upper surface of the light blocking cap 6, and the length of the light guide material 7b is less than the length of the opening 6b. Therefore, a gap G is formed between the upper surface of the light shielding cap 6 and the upper surface (incident surface) of the light guide material 7b.
 <光検出装置10の電子機器への適用例>
 次に、本実施形態の光検出装置10を電子機器に適用する一例として、スマートフォンなどに代表される画面付きモバイル機器への適用について説明する。
<Example of Application of Photodetector 10 to Electronic Device>
Next, as an example of applying the light detection device 10 of the present embodiment to an electronic device, application to a mobile device with a screen represented by a smartphone or the like will be described.
 図2は、本実施形態の光検出装置10が搭載されたモバイル機器20の部分断面図である。モバイル機器20は、光検出装置10が実装されたメイン実装基板21と、モバイル機器20の筐体に設けられたパネル22とを備えている。光検出装置10は、メイン実装基板21にリフローはんだ付けなどの方法で実装されている。光検出装置10は、パネル22の下面と、光検出装置10における封止構造の上面(透光樹脂5aの上面)との間に一定の距離Dを保って保持されている。この距離Dは、光検出装置10の遮光性キャップ6の上面がパネル22の下面に密着することで、一定になっている。 FIG. 2 is a partial cross-sectional view of the mobile device 20 on which the photodetecting device 10 of this embodiment is mounted. The mobile device 20 includes a main mounting substrate 21 on which the photodetecting device 10 is mounted, and a panel 22 provided on the housing of the mobile device 20. The light detection device 10 is mounted on the main mounting substrate 21 by a method such as reflow soldering. The photodetection device 10 is held with a certain distance D between the lower surface of the panel 22 and the upper surface of the sealing structure in the photodetection device 10 (the upper surface of the translucent resin 5a). This distance D is constant because the upper surface of the light-shielding cap 6 of the light detection device 10 is in close contact with the lower surface of the panel 22.
 パネル22は、実際には、透明ガラスの下面に透光性印刷部分と遮光性印刷部部分とが形成された構造であるが、図2では簡略化して図示されている。透光性印刷部分は図2における透光部22a,22bに対応する。透光性印刷部分は、黒色が一般的であり、赤外光の透過率が非常に高く、可視光も最低でも数%は透過する印刷がされている。一方、遮光性印刷部部分は、透光部22a,22b以外の領域に対応し、白色や黒色などにより遮光する印刷がされている。 The panel 22 actually has a structure in which a translucent printing portion and a light-shielding printing portion are formed on the lower surface of the transparent glass, but is simplified in FIG. The translucent printing portion corresponds to the translucent portions 22a and 22b in FIG. The translucent printing portion is generally black, and has a very high infrared light transmittance, and is printed so that visible light can pass through at least several percent. On the other hand, the light-shielding print portion corresponds to a region other than the light-transmitting portions 22a and 22b, and is printed with light shielding by white or black.
 パネル22には、発光素子2から被検出物への照射光(出射光)を透過させる透光部(パネル窓部)22aと、環境光および被検出物から受光素子3へ向かう反射光を透過させる透光部(パネル窓部)22bとが形成されている。 The panel 22 transmits a light transmitting portion (panel window portion) 22a that transmits the irradiation light (emitted light) from the light emitting element 2 to the object to be detected, and transmits ambient light and reflected light from the object to be detected toward the light receiving element 3. A translucent part (panel window part) 22b to be formed is formed.
 モバイル機器20において、光検出装置10が近接センサとして動作する場合、発光素子2から出射された光が、透光樹脂5aおよび透光部22aを介して、被検出物(図示せず)に達する。さらに、被検出物で反射された光が、透光部22b、導光材7b、および透光樹脂5bを介して、受光素子3の受光部に入射する。受光素子3に設けられた制御用ICは、受光部で検出された光の量が、予め設定した検知閾値を越えるか否かを判定して、被検出物の有無を検出する。 In the mobile device 20, when the light detection device 10 operates as a proximity sensor, the light emitted from the light emitting element 2 reaches an object to be detected (not shown) via the light transmitting resin 5a and the light transmitting portion 22a. . Further, the light reflected by the object to be detected enters the light receiving portion of the light receiving element 3 through the light transmitting portion 22b, the light guide material 7b, and the light transmitting resin 5b. The control IC provided in the light receiving element 3 determines whether or not the amount of light detected by the light receiving unit exceeds a preset detection threshold value, and detects the presence or absence of an object to be detected.
 一方、モバイル機器20において、光検出装置10が照度センサとして動作する場合、制御用ICは、受光部で検出された環境光の量により、周囲の明るさを検出する。 On the other hand, in the mobile device 20, when the light detection device 10 operates as an illuminance sensor, the control IC detects the ambient brightness based on the amount of ambient light detected by the light receiving unit.
 <光検出装置を搭載した電子機器の問題>
 本実施形態の光検出装置10をモバイル機器に搭載した場合の問題について、図3~図6に基づき説明する。図3~図6は、比較構成1~4に係る光検出装置が搭載されたモバイル機器の部分断面図である。なお、説明の便宜上、図3~図6では、本実施形態の光検出装置10で説明した部材と同じ機能を有する部材については、実施形態1の光検出装置の符号に100を加えた符号を付記し、その説明を省略する。また、以下の説明では、光検出装置10との相違点を中心に説明する。
<Problems with electronic devices equipped with photodetection devices>
Problems when the photodetection device 10 of this embodiment is mounted on a mobile device will be described with reference to FIGS. 3 to 6 are partial cross-sectional views of a mobile device in which the photodetectors according to comparative configurations 1 to 4 are mounted. For convenience of description, in FIGS. 3 to 6, members having the same functions as those described in the light detection device 10 of the present embodiment are denoted by reference numerals obtained by adding 100 to the reference numerals of the light detection device of the first embodiment. Appendices are omitted. In the following description, differences from the light detection device 10 will be mainly described.
 (比較構成1)
 図3のように、比較構成1にかかる光検出装置110は、光検出装置10において遮光性キャップ6および導光材7bを備えない構成に対応する。図3は、光検出装置110を近接センサとして利用した例を示している。
(Comparative configuration 1)
As illustrated in FIG. 3, the light detection device 110 according to the comparative structure 1 corresponds to a structure in which the light-shielding cap 6 and the light guide material 7 b are not provided in the light detection device 10. FIG. 3 shows an example in which the light detection device 110 is used as a proximity sensor.
 光検出装置110を備えたモバイル機器120において、発光素子102から照射された照射光111は、被検出物130で反射され、その反射光112が、受光素子103に入射する。しかし、光検出装置110とパネル122とは離間して設けられているため、発光素子102から照射される一部の照射光113は、パネル122で反射され、その反射光114も、受光素子103に入射してしまう。受光素子103に入射した反射光114は、ノイズ光(迷光)である。このため、光検出装置110を近接センサとして適応すると、ノイズ光の量が多くなった場合に、被検出物が無くても検知状態となる誤検知が発生するという問題が生じる。 In the mobile device 120 provided with the light detection device 110, the irradiation light 111 irradiated from the light emitting element 102 is reflected by the detection object 130, and the reflected light 112 enters the light receiving element 103. However, since the light detection device 110 and the panel 122 are provided apart from each other, a part of the irradiation light 113 emitted from the light emitting element 102 is reflected by the panel 122, and the reflected light 114 is also reflected by the light receiving element 103. Will be incident. The reflected light 114 incident on the light receiving element 103 is noise light (stray light). For this reason, when the photodetection device 110 is adapted as a proximity sensor, there is a problem that when the amount of noise light increases, a false detection that becomes a detection state occurs even if there is no object to be detected.
 一方、図4は、光検出装置110を照度センサとして利用した例を示している。モバイル機器120周辺の環境光は、パネル122に形成された受光素子103に対応する透光部(パネル窓部)122bを透過して、受光素子103の受光部に入射する。受光部に入射した光の量は、受光素子103の制御用ICに搭載された内部回路によって、照度として演算される。 On the other hand, FIG. 4 shows an example in which the light detection device 110 is used as an illuminance sensor. The ambient light around the mobile device 120 passes through a light transmitting part (panel window part) 122 b corresponding to the light receiving element 103 formed on the panel 122 and enters the light receiving part of the light receiving element 103. The amount of light incident on the light receiving unit is calculated as illuminance by an internal circuit mounted on the control IC of the light receiving element 103.
 光検出装置110を照度センサとして適用する場合、受光素子103で実際に照度を検出可能な指向角A3は、透光部122bのサイズと、パネル122から光検出装置110までの距離Dとにより制限される。しかし、モバイル機器120のデザイン上、透光部122bのサイズは可能な限り小さくすることが求められている。一方、モバイル機器120には、光検出装置110の他にも、例えば、CMOSイメージセンサなどの背の高い部品も実装されている。このため、モバイル機器120では、透光部122bのサイズを大きくするにも、距離Dを短縮するにも限界がある。したがって、光検出装置110が実際に検出可能な指向角A3は、光検出装置110が本来もつ指向角A1よりも狭くなってしまうという問題がある。 When the light detection device 110 is applied as an illuminance sensor, the directivity angle A3 at which the light receiving element 103 can actually detect the illuminance is limited by the size of the light transmitting part 122b and the distance D from the panel 122 to the light detection device 110. Is done. However, due to the design of the mobile device 120, the size of the light transmitting portion 122b is required to be as small as possible. On the other hand, tall parts such as a CMOS image sensor are mounted on the mobile device 120 in addition to the light detection device 110. For this reason, in the mobile device 120, there is a limit in increasing the size of the translucent part 122b and shortening the distance D. Therefore, there is a problem that the directivity angle A3 that can be actually detected by the light detection device 110 is narrower than the directivity angle A1 that the light detection device 110 originally has.
 (比較構成2)
 図5のように、比較構成2にかかる光検出装置110aは、光検出装置10において導光材7bを備えない構成に対応する。光検出装置110aは、図3の光検出装置110において遮光性キャップ106を被せた構成にも対応する。図5は、光検出装置110aを近接センサとして利用した例を示している。
(Comparison configuration 2)
As illustrated in FIG. 5, the light detection device 110 a according to the comparative configuration 2 corresponds to a configuration in which the light guide member 7 b is not provided in the light detection device 10. The light detection device 110a also corresponds to the configuration in which the light-shielding cap 106 is covered in the light detection device 110 of FIG. FIG. 5 shows an example in which the light detection device 110a is used as a proximity sensor.
 上述のように、図3の光検出装置110では、発光素子102から照射される一部の照射光113がパネル122で反射され、その反射光114も、受光素子103に入射してノイズ光となる。 As described above, in the light detection device 110 in FIG. 3, a part of the irradiation light 113 emitted from the light emitting element 102 is reflected by the panel 122, and the reflected light 114 is also incident on the light receiving element 103 and becomes noise light. Become.
 これに対し、図5の光検出装置110aでは、遮光性キャップ106の上面が、パネル122の下面に密着している。このため、発光素子102からの照射光(図3の照射光113)は、遮光性キャップ106によって遮光される。これにより、たとえ、距離Dが長い場合であっても、ノイズ光の原因となるパネル122からの反射光が、受光素子103に入射しない。したがって、光検出装置110aを近接センサとして適用した場合に、ノイズ光の発生を抑制することができる。 In contrast, in the light detection device 110a of FIG. 5, the upper surface of the light blocking cap 106 is in close contact with the lower surface of the panel 122. Therefore, the irradiation light from the light emitting element 102 (irradiation light 113 in FIG. 3) is blocked by the light blocking cap 106. Thereby, even if the distance D is long, the reflected light from the panel 122 that causes noise light does not enter the light receiving element 103. Therefore, when the light detection device 110a is applied as a proximity sensor, generation of noise light can be suppressed.
 ただし、光検出装置110aを照度センサとして適用した場合には、依然として、図4に示したように、光検出装置110aが実際に検出可能な指向角は、光検出装置110aが本来もつ指向角よりも狭くなってしまうという問題がある。 However, when the light detection device 110a is applied as an illuminance sensor, the directivity angle that can be actually detected by the light detection device 110a is still greater than the directivity angle that the light detection device 110a originally has, as shown in FIG. There is a problem that it becomes narrow.
 (比較構成3)
 図6のように、比較構成3にかかる光検出装置110bは、図3の光検出装置110と同様、光検出装置10において遮光性キャップ6および導光材7bを備えない構成に対応する。図6は、光検出装置110bを照度センサとして利用した例を示している。
(Comparison configuration 3)
As shown in FIG. 6, the photodetector 110b according to the comparative configuration 3 corresponds to a configuration in which the light-shielding cap 6 and the light guide member 7b are not provided in the photodetector 10, like the photodetector 110 of FIG. FIG. 6 shows an example in which the light detection device 110b is used as an illuminance sensor.
 光検出装置110bは、メイン実装基板121への実装様式が、光検出装置10および光検出装置110とは異なる。具体的には、光検出装置110bは、サブ実装基板123にリフローはんだ付けなどの方法で実装され、パネル122の透光部122bに近い位置に固定される。サブ実装基板123はフレキシブル基板124と一体となっている。フレキシブル基板124はメイン実装基板121にリフローはんだ付けなどの方法で実装されたコネクタ125を介してメイン実装基板121と電気的に接続されている。 The light detection device 110b is different from the light detection device 10 and the light detection device 110 in the manner of mounting on the main mounting substrate 121. Specifically, the light detection device 110b is mounted on the sub-mounting substrate 123 by a method such as reflow soldering, and is fixed at a position near the light transmitting portion 122b of the panel 122. The sub mounting substrate 123 is integrated with the flexible substrate 124. The flexible board 124 is electrically connected to the main mounting board 121 via a connector 125 mounted on the main mounting board 121 by a method such as reflow soldering.
 光検出装置110bを備えたモバイル機器120bは、照度センサ動作時に、受光素子103側の透光部122bの寸法を大きくすることなく、受光素子103が本来もつ指向角A1での照度検出が可能となる。さらに、光検出装置110bとパネル122とが接近して配置されているため、近接センサ動作時においても、パネル122からの反射光114が受光素子103に入射しにくくなる。したがって、ノイズ光の発生を抑制することができる。 The mobile device 120b including the light detection device 110b can detect the illuminance at the directivity angle A1 inherent to the light receiving element 103 without increasing the size of the light transmitting part 122b on the light receiving element 103 side during the operation of the illuminance sensor. Become. Furthermore, since the light detection device 110b and the panel 122 are arranged close to each other, the reflected light 114 from the panel 122 is less likely to enter the light receiving element 103 even when the proximity sensor is operating. Therefore, generation of noise light can be suppressed.
 このように、比較構成3によれば、モバイル機器120bの透光部122bのサイズを小さく保ちながら、光検出装置110bの照度センサ動作時の照度指向角を改善し、なお且つ近接センサ動作時のパネル122からの反射光によるノイズの影響を低減することができる。 As described above, according to the comparative configuration 3, while the size of the light transmitting part 122b of the mobile device 120b is kept small, the illuminance directivity angle at the time of the illuminance sensor operation of the light detection device 110b is improved, and the proximity sensor operation is performed. The influence of noise due to the reflected light from the panel 122 can be reduced.
 しかし、比較構成3では、サブ実装基板123、フレキシブル基板124、コネクタ125が必要となり、部品点数の増加に伴う価格上昇、および、機構構造の複雑化を招来する。 However, in the comparative configuration 3, the sub-mounting board 123, the flexible board 124, and the connector 125 are required, resulting in an increase in the price due to an increase in the number of components and a complicated mechanism structure.
 <光検出装置10およびモバイル機器20の効果>
 図2のように、光検出装置10は、遮光樹脂4の上面から発光素子2の光出射方向(上方)に突出した遮光性キャップ6を備えている。さらに、遮光性キャップ6は、パネル22に密着している。このため、発光素子2からの照射光(図3の照射光113)は、遮光性キャップ6によって遮光される。これにより、たとえ、距離Dが長い場合であっても、ノイズ光の原因となるパネル22からの反射光が、受光素子3に入射しない。したがって、光検出装置10を近接センサとして適用した場合に、ノイズ光の発生を抑制することができる。
<Effects of Photodetection Device 10 and Mobile Device 20>
As shown in FIG. 2, the light detection device 10 includes a light shielding cap 6 that protrudes from the upper surface of the light shielding resin 4 in the light emitting direction (upward) of the light emitting element 2. Further, the light shielding cap 6 is in close contact with the panel 22. For this reason, the irradiation light from the light emitting element 2 (irradiation light 113 in FIG. 3) is shielded by the light shielding cap 6. Thereby, even if the distance D is long, the reflected light from the panel 22 that causes noise light does not enter the light receiving element 3. Therefore, when the light detection device 10 is applied as a proximity sensor, generation of noise light can be suppressed.
 さらに、光検出装置10では、遮光性キャップ6の開口6bに、導光材7bが充填されている。これにより、パネル22に形成された受光素子3側の透光部22b、および、遮光性キャップ6の開口6bを介して入射した環境光は、遮光性キャップ6の開口6bの内壁で反射しながら導光材7b内部を導光し、受光素子3に入射する。したがって、図2に示したように、光検出装置10が実際に検出可能な指向角A2は、光検出装置10が本来もつ指向角A1よりも広くなる。それゆえ、光検出装置10を照度センサとして適用した場合に、照度検出時の指向角の減少を改善することができる。 Furthermore, in the light detection device 10, the light guide material 7 b is filled in the opening 6 b of the light shielding cap 6. Thereby, the ambient light incident through the light transmitting element 22b on the light receiving element 3 side formed on the panel 22 and the opening 6b of the light shielding cap 6 is reflected on the inner wall of the opening 6b of the light shielding cap 6. The light is guided through the light guide 7 b and enters the light receiving element 3. Therefore, as shown in FIG. 2, the directivity angle A2 that can be actually detected by the light detection device 10 is wider than the directivity angle A1 that the light detection device 10 originally has. Therefore, when the light detection device 10 is applied as an illuminance sensor, it is possible to improve the reduction of the directivity angle when detecting the illuminance.
 このように、光検出装置10およびモバイル機器20では、ノイズ光の発生の抑制と、照度検出時の指向角の改善とを両立することが可能となる。 As described above, the light detection device 10 and the mobile device 20 can both suppress the generation of noise light and improve the directivity angle at the time of detecting illuminance.
 <光検出装置10の好ましい形態>
 光検出装置10において、導光材7bは、遮光性キャップ6よりも屈折率が0.2以上、好ましくは0.3以上、より好ましくは0.4以上、大きい材料から形成されていることが好ましい。これにより、導光材7bと遮光性キャップ6との屈折率の差によって、導光材7bに入射した光が、遮光性キャップ6の開口6bの内壁で反射し、より効率よく受光素子3に入射する。したがって、照度検出時の指向角の減少をより確実に改善することができる。このような効果は、屈折率の差が大きいほど高まる。
<Preferred Form of Photodetector 10>
In the light detection device 10, the light guide member 7 b is formed of a material having a refractive index larger than that of the light-shielding cap 6 by 0.2 or more, preferably 0.3 or more, more preferably 0.4 or more. preferable. Thereby, due to the difference in refractive index between the light guide material 7 b and the light shielding cap 6, the light incident on the light guide material 7 b is reflected by the inner wall of the opening 6 b of the light shielding cap 6, and more efficiently enters the light receiving element 3. Incident. Therefore, it is possible to improve the reduction of the directivity angle at the time of detecting illuminance more reliably. Such an effect increases as the difference in refractive index increases.
 遮光性キャップ6を形成する材料は、導光材7bよりも屈折率が低く、柔軟性を有る材料であることが好ましい。例えば、遮光性キャップ6の屈折率は、1.35~1.47の範囲で選択することができる。これにより、遮光性キャップ6の開口6bの内壁での反射光率、および、受光素子3への入射光率を高めることができる。 The material for forming the light-shielding cap 6 is preferably a material having a refractive index lower than that of the light guide material 7b and having flexibility. For example, the refractive index of the light-shielding cap 6 can be selected in the range of 1.35 to 1.47. Thereby, the reflected light rate at the inner wall of the opening 6 b of the light shielding cap 6 and the incident light rate to the light receiving element 3 can be increased.
 一方、柔軟性を有する材料(軟質材)とは、例えば、硬度50以下であることが目安となる。これにより、遮光性キャップ6とパネル22との密着性を高めることができる。また、遮光性キャップ6が軟質材である場合、遮光性キャップ6の寸法公差をその柔軟性によって吸収することもできる。したがって、ノイズ光の原因となるパネル22での反射光が、遮光性キャップ6とパネル22との隙間から、受光素子3に入射するのを確実に防ぐことができる。また、モバイル機器20に落下などの衝撃が加わっても、その衝撃を吸収することができるため、パネル22およびモバイル機器20の破損を防止することができる。 On the other hand, a material having flexibility (soft material) is, for example, a hardness of 50 or less. Thereby, the adhesiveness of the light-shielding cap 6 and the panel 22 can be improved. Moreover, when the light-shielding cap 6 is a soft material, the dimensional tolerance of the light-shielding cap 6 can also be absorbed by the flexibility. Therefore, it is possible to reliably prevent the reflected light from the panel 22 that causes noise light from entering the light receiving element 3 through the gap between the light shielding cap 6 and the panel 22. In addition, even if an impact such as a drop is applied to the mobile device 20, the impact can be absorbed, so that the panel 22 and the mobile device 20 can be prevented from being damaged.
 このような条件を満たす遮光性キャップ6の材料としては、フッ素ゴム(屈折率1.38~1.39)やシリコーンゴム(屈折率1.40~1.43)、アクリルゴム(屈折率1.465)などを挙げることができる。 Examples of the material of the light-shielding cap 6 that satisfies such conditions include fluorine rubber (refractive index 1.38 to 1.39), silicone rubber (refractive index 1.40 to 1.43), and acrylic rubber (refractive index 1. 465).
 一方、導光材7bを形成する材料は、光検出装置10を近接センサとして適用する場合、発光素子2の光を透過する材料であればよく、光検出装置10を照度センサとして適用する場合、環境光を透過する材料であればよい。さらに、導光材7bを形成する材料は、光学樹脂(光学プラスチック)であることが好ましい。また、例えば、導光材7bの屈折率は、上述のように遮光性キャップ6の屈折率よりも大きいことが好ましい。導光材7bの屈折率の下限値は、例えば、1.6、好ましくは1.66、より好ましくは1.72である。導光材7bの屈折率の上限値は、特に限定されない。これにより、導光材7bに入射した光の受光素子3への入射光率を高めることができる。 On the other hand, the material for forming the light guide member 7b may be any material that transmits the light of the light emitting element 2 when the light detection device 10 is applied as a proximity sensor. When the light detection device 10 is applied as an illuminance sensor, Any material that transmits ambient light may be used. Furthermore, the material forming the light guide member 7b is preferably an optical resin (optical plastic). For example, the refractive index of the light guide member 7b is preferably larger than the refractive index of the light-shielding cap 6 as described above. The lower limit value of the refractive index of the light guide material 7b is, for example, 1.6, preferably 1.66, and more preferably 1.72. The upper limit value of the refractive index of the light guide material 7b is not particularly limited. Thereby, the incident light rate to the light receiving element 3 of the light incident on the light guide member 7b can be increased.
 このような条件を満たす導光材7bの材料としては、ポリメタクリル酸メチル樹脂(屈折率1.67~1.76)やポリエステル樹脂(屈折率1.60)、ポリスチレン(屈折率1.592)ポリカーボネート(屈折率1.59)、フェノール樹脂(屈折率1.58~1.66)、エポキシ樹脂(屈折率1.55~1.61)などを挙げることができる。 Examples of the material of the light guide 7b that satisfies such conditions include polymethyl methacrylate resin (refractive index 1.67 to 1.76), polyester resin (refractive index 1.60), polystyrene (refractive index 1.592). Examples include polycarbonate (refractive index 1.59), phenol resin (refractive index 1.58 to 1.66), epoxy resin (refractive index 1.55 to 1.61), and the like.
 また、光検出装置10では、導光材7bの長さは、遮光性キャップ6において受光素子3に対応する位置に形成された開口6bの長さ未満になっている。このため、遮光性キャップ6の上面と導光材7bの上面(入射面)との間には、ギャップGが形成される。これにより、光検出装置10をモバイル機器20に適用した場合に、導光材7bとパネル22(透光部22b)とが密着しない。その結果、導光材7bに硬質材を使用したとしても、導光材7bとパネル22とが接触しない。したがって、モバイル機器20に落下などの衝撃が加わっても、パネル22およびモバイル機器20の破損を防止することができる。 In the light detection device 10, the length of the light guide member 7 b is less than the length of the opening 6 b formed at the position corresponding to the light receiving element 3 in the light shielding cap 6. Therefore, a gap G is formed between the upper surface of the light shielding cap 6 and the upper surface (incident surface) of the light guide material 7b. Thereby, when the photodetection device 10 is applied to the mobile device 20, the light guide 7b and the panel 22 (translucent portion 22b) do not adhere to each other. As a result, even if a hard material is used for the light guide material 7b, the light guide material 7b and the panel 22 do not contact each other. Therefore, even if an impact such as a drop is applied to the mobile device 20, damage to the panel 22 and the mobile device 20 can be prevented.
 また、光検出装置10において、導光材7bと透光樹脂5bは、同一材料からなるものであっても、異なる材料からなるものであってもよい。 Further, in the light detection device 10, the light guide material 7b and the translucent resin 5b may be made of the same material or different materials.
 〔実施形態2〕
 本発明の他の実施形態について、図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、以下の説明では、光検出装置10との相違点を中心に説明する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In the following description, differences from the light detection device 10 will be mainly described.
 図7は、本実施形態の光検出装置10aが搭載されたモバイル機器20aの部分断面図である。光検出装置10aは、導光材7bの長さが、遮光性キャップ6おいて受光素子3に対応する位置に形成された開口6bの長さと等しい点が、光検出装置10と異なる。このため、モバイル機器20aでは、遮光性キャップ6の上面と導光材7bの上面との間には、ギャップGが形成されない。これにより、導光材7bをパネル22に密着させることができる。その結果、導光効果が高まり受光素子3への入射光量を増加させることができる。したがって、光検出装置10を近接センサとして適用した場合に、検知精度を向上させることができる。 FIG. 7 is a partial cross-sectional view of a mobile device 20a on which the photodetecting device 10a of this embodiment is mounted. The light detection device 10a is different from the light detection device 10 in that the length of the light guide member 7b is equal to the length of the opening 6b formed at a position corresponding to the light receiving element 3 in the light blocking cap 6. For this reason, in the mobile device 20a, the gap G is not formed between the upper surface of the light-shielding cap 6 and the upper surface of the light guide member 7b. Thereby, the light guide 7b can be brought into close contact with the panel 22. As a result, the light guide effect is enhanced and the amount of light incident on the light receiving element 3 can be increased. Therefore, when the light detection device 10 is applied as a proximity sensor, detection accuracy can be improved.
 なお、光検出装置10aにおいては、導光材7bは、ウレタンゴム(屈折率1.50~1.55)などの柔軟性を有する材料(軟質材)から形成することが好ましい。これにより、パネル22との密着性をより高めた上で、モバイル機器20に落下などの衝撃が加わっても、パネル22およびモバイル機器20の破損を防止することができる。 In the light detection device 10a, the light guide member 7b is preferably formed from a flexible material (soft material) such as urethane rubber (refractive index: 1.50 to 1.55). As a result, it is possible to prevent the panel 22 and the mobile device 20 from being damaged even when an impact such as a drop is applied to the mobile device 20 while further improving the adhesion with the panel 22.
 〔実施形態3〕
 本発明の他の実施形態について、図8に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、以下の説明では、光検出装置10との相違点を中心に説明する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In the following description, differences from the light detection device 10 will be mainly described.
 図8は、本実施形態の光検出装置10bが搭載されたモバイル機器20bの部分断面図である。光検出装置10bは、導光材7bの周囲(開口6bと導光材7bとの間)に、別の導光材8bを備える点が、光検出装置10と異なる。 FIG. 8 is a partial cross-sectional view of a mobile device 20b on which the photodetecting device 10b of this embodiment is mounted. The light detection device 10b is different from the light detection device 10 in that another light guide material 8b is provided around the light guide material 7b (between the opening 6b and the light guide material 7b).
 具体的には、光検出装置10bでは、開口6b内に、導光材7b(第1の導光材)と、導光材7bの外周を覆う導光材8b(第2の導光材)とが充填されている。さらに、導光材7bの屈折率は、導光材8bの屈折率よりも大きくなっている。導光材7bと導光材8bとの屈折率差は、大きければ大きいほど好ましく、例えば、0.3以上、好ましくは0.35以上、より好ましくは0.4以上である。例えば、導光材7bとして光学プラスチック(屈折率1.76)、導光材8bとしてフッ素樹脂(屈折率1.35)を用いれば、屈折率差は0.41となる。この屈折率差は、導光材7bと遮光性キャップ6との屈折率差よりも大きくすることできる。このため、このような多重構造の導光材7bおよび導光材8bを備えていれば、遮光性キャップ6の屈折率は任意に選択することができる。したがって、遮光性キャップ6の材料の選択範囲が広がる。 Specifically, in the light detection device 10b, the light guide material 7b (first light guide material) and the light guide material 8b (second light guide material) covering the outer periphery of the light guide material 7b are provided in the opening 6b. And are filled. Furthermore, the refractive index of the light guide material 7b is larger than the refractive index of the light guide material 8b. The refractive index difference between the light guide material 7b and the light guide material 8b is preferably as large as possible. For example, it is 0.3 or more, preferably 0.35 or more, and more preferably 0.4 or more. For example, if an optical plastic (refractive index: 1.76) is used as the light guide material 7b and a fluororesin (refractive index: 1.35) is used as the light guide material 8b, the refractive index difference is 0.41. This refractive index difference can be made larger than the refractive index difference between the light guide material 7 b and the light shielding cap 6. For this reason, if the light guide material 7b and the light guide material 8b having such a multiple structure are provided, the refractive index of the light-shielding cap 6 can be arbitrarily selected. Therefore, the selection range of the material of the light-shielding cap 6 is expanded.
 このように、モバイル機器20bでは、導光材7bに入射した光は、導光材8bで反射し、より効率よく受光素子3に入射する。したがって、照度検出時の検出精度を改善することができる。 As described above, in the mobile device 20b, the light incident on the light guide material 7b is reflected by the light guide material 8b, and enters the light receiving element 3 more efficiently. Therefore, the detection accuracy at the time of detecting illuminance can be improved.
 〔実施形態4〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、以下の説明では、光検出装置10との相違点を中心に説明する。
[Embodiment 4]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In the following description, differences from the light detection device 10 will be mainly described.
 図9は、本実施形態の光検出装置10cが搭載されたモバイル機器20cの部分断面図である。光検出装置10cは、遮光性キャップ6において発光素子2に対応する位置に形成された開口6a内にも導光材7aが充填されている点が、光検出装置10と異なる。 FIG. 9 is a partial cross-sectional view of a mobile device 20c on which the photodetecting device 10c of this embodiment is mounted. The light detection device 10 c is different from the light detection device 10 in that the light guide material 7 a is also filled in the opening 6 a formed at a position corresponding to the light emitting element 2 in the light shielding cap 6.
 光検出装置10cでは、発光素子2から出射された照射光11が、遮光性キャップ6に吸収されるのを低減することができる。このため、照射光11は、導光材7a内部を反射しながら導光し、被検出物30に照射される。その結果、被検出物9からの反射光12の光量が増えるため、受光素子3に入射する光量も増える。したがって、光検出装置10cを近接センサとして適用した場合に、近接センサ動作時の特性向上(検出精度の向上)が可能となる。 In the light detection device 10 c, the irradiation light 11 emitted from the light emitting element 2 can be reduced from being absorbed by the light shielding cap 6. For this reason, the irradiation light 11 is guided while being reflected inside the light guide member 7 a, and is irradiated to the detected object 30. As a result, the amount of reflected light 12 from the object to be detected 9 increases, and the amount of light incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
 〔実施形態5〕
 本発明の他の実施形態について、図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、以下の説明では、光検出装置10との相違点を中心に説明する。
[Embodiment 5]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In the following description, differences from the light detection device 10 will be mainly described.
 図10は、本実施形態の光検出装置10dが搭載されたモバイル機器20dの部分断面図である。光検出装置10dは、導光材7a,7bの長さが、遮光性キャップ6に形成された開口6a,6bの長さと等しい点が、光検出装置10と異なる。つまり、光検出装置10dは、図7の光検出装置10aにおいて、開口6aにも導光材7aが充填された構成に対応する。 FIG. 10 is a partial cross-sectional view of a mobile device 20d on which the photodetecting device 10d of this embodiment is mounted. The light detection device 10 d is different from the light detection device 10 in that the length of the light guide members 7 a and 7 b is equal to the length of the openings 6 a and 6 b formed in the light-shielding cap 6. That is, the photodetector 10d corresponds to a configuration in which the light guide 7a is also filled in the opening 6a in the photodetector 10a of FIG.
 このため、モバイル機器20dでは、モバイル機器20aと同様に、遮光性キャップ6の上面と導光材7bの上面との間には、ギャップGが形成されない。これにより、導光材7a,7bをパネル22に密着させることができる。その結果、導光効果が高まり受光素子3への入射光量を増加させることができる。したがって、光検出装置10を近接センサとして適用した場合に、検知精度を向上させることができる。 For this reason, in the mobile device 20d, the gap G is not formed between the upper surface of the light-shielding cap 6 and the upper surface of the light guide material 7b, similarly to the mobile device 20a. Thereby, the light guide materials 7 a and 7 b can be brought into close contact with the panel 22. As a result, the light guide effect is enhanced and the amount of light incident on the light receiving element 3 can be increased. Therefore, when the light detection device 10 is applied as a proximity sensor, detection accuracy can be improved.
 また、モバイル機器20dでは、モバイル機器20cと同様に、被検出物9からの反射光12の光量が増えるため、受光素子3に入射する光量も増える。したがって、光検出装置10cを近接センサとして適用した場合に、近接センサ動作時の特性向上(検出精度の向上)が可能となる。 Further, in the mobile device 20d, the amount of the reflected light 12 from the detected object 9 increases as in the mobile device 20c, so that the amount of light incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
 〔実施形態6〕
 本発明の他の実施形態について、図11に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、以下の説明では、光検出装置10との相違点を中心に説明する。
[Embodiment 6]
Another embodiment of the present invention is described below with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In the following description, differences from the light detection device 10 will be mainly described.
 図11は、本実施形態の光検出装置10eが搭載されたモバイル機器20eの部分断面図である。光検出装置10eは、導光材7bの周囲(開口6bと導光材7bとの間)に、別の導光材8bを備える点が、光検出装置10と異なる。さらに、光検出装置10eは、開口6a内にも導光材7a,8aが充填されている点が、光検出装置10と異なる。つまり、光検出装置10eは、図8の光検出装置10bにおいて、開口6aにも導光材7a,8aが充填された構成に対応する。 FIG. 11 is a partial cross-sectional view of a mobile device 20e on which the photodetecting device 10e of this embodiment is mounted. The light detection device 10e is different from the light detection device 10 in that another light guide material 8b is provided around the light guide material 7b (between the opening 6b and the light guide material 7b). Furthermore, the light detection device 10e is different from the light detection device 10 in that the light guide materials 7a and 8a are filled in the opening 6a. In other words, the light detection device 10e corresponds to the configuration in which the light guide materials 7a and 8a are also filled in the opening 6a in the light detection device 10b of FIG.
 このため、モバイル機器20eでは、モバイル機器20bと同様に、導光材7bに入射した光は、導光材8bで反射し、より効率よく受光素子3に入射する。したがって、照度検出時の検出精度を改善することができる。 For this reason, in the mobile device 20e, similarly to the mobile device 20b, the light incident on the light guide material 7b is reflected by the light guide material 8b and is incident on the light receiving element 3 more efficiently. Therefore, the detection accuracy at the time of detecting illuminance can be improved.
 また、モバイル機器20eでは、モバイル機器20cと同様に、被検出物9からの反射光12の光量が増えるため、受光素子3に入射する光量も増える。したがって、光検出装置10cを近接センサとして適用した場合に、近接センサ動作時の特性向上(検出精度の向上)が可能となる。 Further, in the mobile device 20e, the amount of the reflected light 12 from the detected object 9 increases as in the mobile device 20c, so that the amount of light incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
 なお、各実施形態では、本発明の光検出装置の一例として、近接センサ機能および照度センサ機能を兼ね備えた近接照度センサについて説明した。しかし、本発明の光検出装置はこれに限定されるものではなく、近接センサ機能または照度センサの一方の機能を有する光検出装置であっても同様の効果を奏する。 In each embodiment, a proximity illuminance sensor having both a proximity sensor function and an illuminance sensor function has been described as an example of the light detection device of the present invention. However, the photodetection device of the present invention is not limited to this, and a photodetection device having one of a proximity sensor function and an illuminance sensor can achieve the same effect.
 〔まとめ〕
 本発明の態様1に係る光検出装置は、基板(素子基板1)と、上記基板上に設けられた発光素子2および受光素子3と、上記基板上の発光素子2と受光素子3とを仕切る仕切り部(遮光樹脂4)と、上記発光素子2および受光素子3に対応する位置に開口6a,6bが形成され、上記仕切り部から発光素子の光出射方向に突出した突出部(遮光性キャップ6)とを備え、上記突出部において受光素子に対応する位置に形成された開口6b内に、導光材7bが充填されている。
[Summary]
The light detection apparatus according to the first aspect of the present invention partitions a substrate (element substrate 1), a light emitting element 2 and a light receiving element 3 provided on the substrate, and the light emitting element 2 and the light receiving element 3 on the substrate. Openings 6a and 6b are formed at positions corresponding to the partition portion (light shielding resin 4) and the light emitting element 2 and the light receiving element 3, and projecting portions (light shielding cap 6) projecting from the partition portion in the light emitting direction of the light emitting element. The light guide material 7b is filled in an opening 6b formed at a position corresponding to the light receiving element in the protruding portion.
 上記の構成によれば、発光素子2からの照射光のうち、被検出物で反射されずに受光素子3に入射する光(ノイズ光の原因となる光)は、遮光性キャップ6によって遮光される。これにより、ノイズ光の原因となる光が、受光素子3に入射しない。したがって、光検出装置10を近接センサとして適用した場合に、ノイズ光の発生を抑制することができる。 According to the above configuration, light that is incident on the light receiving element 3 without being reflected by the detection object (light that causes noise light) out of the irradiation light from the light emitting element 2 is blocked by the light blocking cap 6. The Thereby, the light that causes noise light does not enter the light receiving element 3. Therefore, when the light detection device 10 is applied as a proximity sensor, generation of noise light can be suppressed.
 また、上記の構成によれば、遮光性キャップ6の開口6bを介して入射した環境光は、遮光性キャップ6の開口6bの内壁で反射しながら導光材7b内部を導光し、受光素子3に入射する。したがって、図2に示したように、光検出装置10が実際に検出可能な指向角A2は、光検出装置10が本来もつ指向角A1よりも広くなる。それゆえ、光検出装置10を照度センサとして適用した場合に、照度検出時の指向角の減少を改善することができる。 Further, according to the above configuration, the ambient light incident through the opening 6b of the light-shielding cap 6 is guided through the light guide 7b while being reflected by the inner wall of the opening 6b of the light-shielding cap 6. 3 is incident. Therefore, as shown in FIG. 2, the directivity angle A2 that can be actually detected by the light detection device 10 is wider than the directivity angle A1 that the light detection device 10 originally has. Therefore, when the light detection device 10 is applied as an illuminance sensor, it is possible to improve the reduction of the directivity angle when detecting the illuminance.
 本発明の態様2に係る光検出装置は、態様1において、上記導光材7bの屈折率は、上記突出部(遮光性キャップ6)の屈折率よりも、0.2以上大きいことが好ましい。 In the light detection device according to aspect 2 of the present invention, in aspect 1, it is preferable that the refractive index of the light guide material 7b is 0.2 or more larger than the refractive index of the protruding portion (light-shielding cap 6).
 これにより、導光材7bと遮光性キャップ6との屈折率の差によって、導光材7bに入射した光が、遮光性キャップ6の開口6bの内壁で反射し、より効率よく受光素子3に入射する。したがって、照度検出時の指向角の減少をより確実に改善することができる。 Thereby, due to the difference in refractive index between the light guide material 7 b and the light shielding cap 6, the light incident on the light guide material 7 b is reflected by the inner wall of the opening 6 b of the light shielding cap 6, and more efficiently enters the light receiving element 3. Incident. Therefore, it is possible to more reliably improve the reduction of the directivity angle at the time of detecting the illuminance.
 本発明の態様3に係る光検出装置は、態様1または2において、上記突出部(遮光性キャップ6)が、シリコーンゴム、フッ素ゴム、またはアクリルゴムから形成されていてもよい。これにより、遮光性キャップ6とパネル22との密着性を高めることができる。 In the light detection device according to aspect 3 of the present invention, in the aspect 1 or 2, the protruding portion (light-shielding cap 6) may be formed of silicone rubber, fluorine rubber, or acrylic rubber. Thereby, the adhesiveness of the light-shielding cap 6 and the panel 22 can be improved.
 本発明の態様4に係る光検出装置は、態様1~3において、上記導光材7bが、光学樹脂から形成されていてもよい。また、本発明の態様5に係る光検出装置は、態様1~4において、上記導光材7bが、ポリメタクリル酸メチル樹脂、ポリエステル樹脂、ポリスチレン、ポリカーボネート、フェノール樹脂、またはエポキシ樹脂から形成されていてもよい。これにより、導光材7bに入射した光の受光素子3への入射光率を高めることができる。 In the light detection device according to aspect 4 of the present invention, in the aspects 1 to 3, the light guide material 7b may be formed of an optical resin. In the light detection device according to aspect 5 of the present invention, in the aspects 1 to 4, the light guide material 7b is formed of polymethyl methacrylate resin, polyester resin, polystyrene, polycarbonate, phenol resin, or epoxy resin. May be. Thereby, the incident light rate to the light receiving element 3 of the light incident on the light guide member 7b can be increased.
 本発明の態様6に係る光検出装置は、態様1~5において、上記導光材7bの長さは、上記突出部(遮光性キャップ6)において受光素子3に対応する位置に形成された開口6bの長さ未満であってもよい。これにより、光検出装置10をモバイル機器20に適用した場合に、導光材7bとパネル22(透光部22b)とが密着しない。その結果、導光材7bに硬質材を使用したとしても、導光材7bとパネル22とが接触しない。したがって、モバイル機器20に落下などの衝撃が加わっても、パネル22およびモバイル機器20の破損を防止することができる。 In the light detection device according to aspect 6 of the present invention, in the aspects 1 to 5, the length of the light guide material 7b is an opening formed at a position corresponding to the light receiving element 3 in the protruding portion (light shielding cap 6). The length may be less than 6b. Thereby, when the photodetection device 10 is applied to the mobile device 20, the light guide 7b and the panel 22 (translucent portion 22b) do not adhere to each other. As a result, even if a hard material is used for the light guide material 7b, the light guide material 7b and the panel 22 do not contact each other. Therefore, even if an impact such as a drop is applied to the mobile device 20, damage to the panel 22 and the mobile device 20 can be prevented.
 本発明の態様7に係る光検出装置は、態様1~5において、上記導光材7bの長さは、上記突出部(遮光性キャップ6)において受光素子に対応する位置に形成された開口の長さと等しくてもよい。これにより、導光材7bをパネル22に密着させることができる。その結果、導光効果が高まり受光素子3への入射光量を増加させることができる。 The light detection device according to aspect 7 of the present invention is the light detection apparatus according to aspects 1 to 5, wherein the length of the light guide material 7b is an opening formed at a position corresponding to the light receiving element in the protrusion (light shielding cap 6). It may be equal to the length. Thereby, the light guide 7b can be brought into close contact with the panel 22. As a result, the light guide effect is enhanced and the amount of light incident on the light receiving element 3 can be increased.
 本発明の態様8に係る光検出装置は、態様1~7において、上記導光材は、第1の導光材(導光材7b)と、第1の導光材の外周を覆う第2の導光材(導光材8b)とを備え、第1の導光材の屈折率が、第2の導光材の屈折率よりも大きい構成であってもよい。これにより、導光材7bに入射した光は、導光材8bで反射し、より効率よく受光素子3に入射する。したがって、照度検出時の検出精度を改善することができる。 The light detection device according to aspect 8 of the present invention is the light detection apparatus according to any one of aspects 1 to 7, wherein the light guide material includes a first light guide material (light guide material 7b) and a second covering the outer periphery of the first light guide material. The light guide material (light guide material 8b) may be provided, and the refractive index of the first light guide material may be larger than the refractive index of the second light guide material. Thereby, the light that has entered the light guide material 7 b is reflected by the light guide material 8 b and enters the light receiving element 3 more efficiently. Therefore, the detection accuracy at the time of detecting illuminance can be improved.
 本発明の態様9に係る光検出装置は、態様1~8において、上記導光材(導光材7a)は、上記突出部(遮光性キャップ6)において発光素子2に対応する位置に形成された開口6a内にも充填されていることが好ましい。上記の構成によれば、開口6a内に導光材7aが充填されているため、発光素子2からの照射光が、遮光性キャップ6に吸収されるのを低減することができる。このため、被検出物に照射される照射光11の光量、および、被検出物9からの反射光12の光量が増えるため、受光素子3に入射する光量も増える。したがって、光検出装置10cを近接センサとして適用した場合に、近接センサ動作時の特性向上(検出精度の向上)が可能となる。 In the light detection device according to aspect 9 of the present invention, in any of aspects 1 to 8, the light guide material (light guide material 7a) is formed at a position corresponding to the light emitting element 2 in the protruding portion (light shielding cap 6). It is preferable that the opening 6a is also filled. According to said structure, since the light guide material 7a is filled in the opening 6a, it can reduce that the light irradiated from the light emitting element 2 is absorbed by the light-shielding cap 6. FIG. For this reason, since the light quantity of the irradiation light 11 irradiated to the detected object and the light quantity of the reflected light 12 from the detected object 9 increase, the light quantity incident on the light receiving element 3 also increases. Therefore, when the photodetection device 10c is applied as a proximity sensor, it is possible to improve characteristics (improvement of detection accuracy) during operation of the proximity sensor.
 本発明の態様10に係る電子機器は、態様1~9のいずれかの光検出装置が搭載されている。したがって、態様1~9と同様の効果を奏する。 The electronic device according to the tenth aspect of the present invention is equipped with any one of the photodetectors according to the first to ninth aspects. Therefore, the same effects as those of Embodiments 1 to 9 are obtained.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、照度センサ、RGBカラーセンサ、近接センサ、近接照度センサどの光センサや、反射型の光センサを搭載したスマートフォン、デジタルカメラ、カーナビゲーションシステムなどの様々な電子機器に利用することができる。 The present invention can be used in various electronic devices such as an illuminance sensor, an RGB color sensor, a proximity sensor, an optical sensor such as a proximity illuminance sensor, a smartphone equipped with a reflective optical sensor, a digital camera, and a car navigation system. .
1 素子基板(基板)
2 発光素子
3 受光素子
4 遮光樹脂(仕切り部)
5a,5b 透光樹脂
6 遮光性キャップ
6a,6b 開口
7a,7b 導光材
7a,8a 導光材
9 被検出物
10,10a~10e 光検出装置
20,20a~20e モバイル機器(電子機器)
1 Element substrate (substrate)
2 Light emitting element 3 Light receiving element 4 Light shielding resin (partition part)
5a, 5b Translucent resin 6 Light blocking cap 6a, 6b Opening 7a, 7b Light guide material 7a, 8a Light guide material 9 Detected object 10, 10a- 10e Photodetection device 20, 20a-20e Mobile device (electronic device)

Claims (5)

  1.  基板と、
     上記基板上に設けられた発光素子および受光素子と、
     上記基板上の発光素子と受光素子とを仕切る仕切り部と、
     上記発光素子および受光素子に対応する位置に開口が形成され、上記仕切り部から発光素子の光出射方向に突出した突出部とを備え、
     上記突出部において受光素子に対応する位置に形成された開口内に、導光材が充填されていることを特徴とする光検出装置。
    A substrate,
    A light emitting element and a light receiving element provided on the substrate;
    A partition for separating the light emitting element and the light receiving element on the substrate;
    An opening is formed at a position corresponding to the light emitting element and the light receiving element, and includes a protruding portion protruding from the partition portion in the light emitting direction of the light emitting element,
    An optical detection device, wherein a light guide material is filled in an opening formed at a position corresponding to the light receiving element in the protruding portion.
  2.  上記導光材の屈折率は、上記突出部の屈折率よりも、0.2以上大きいことを特徴とする請求項1に記載の光検出装置。 The light detection device according to claim 1, wherein a refractive index of the light guide material is 0.2 or more larger than a refractive index of the protruding portion.
  3.  上記導光材の長さは、上記突出部において受光素子に対応する位置に形成された開口の長さ未満であることを特徴とする請求項1または2に記載の光検出装置。 3. The light detection device according to claim 1, wherein a length of the light guide material is less than a length of an opening formed at a position corresponding to the light receiving element in the protruding portion.
  4.  上記導光材は、第1の導光材と、第1の導光材の外周を覆う第2の導光材とを備え、
     第1の導光材の屈折率が、第2の導光材の屈折率よりも大きいことを特徴とする請求項1~3のいずれか1項に記載の光検出装置。
    The light guide material includes a first light guide material and a second light guide material covering an outer periphery of the first light guide material,
    The light detection device according to any one of claims 1 to 3, wherein a refractive index of the first light guide member is larger than a refractive index of the second light guide member.
  5.  上記導光材は、上記突出部において発光素子に対応する位置に形成された開口内にも充填されていることを特徴とする請求項1~4のいずれか1項に記載の光検出装置。 The light detection device according to any one of claims 1 to 4, wherein the light guide member is also filled in an opening formed at a position corresponding to the light emitting element in the projecting portion.
PCT/JP2015/055175 2014-05-12 2015-02-24 Light-detecting device WO2015174117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-099036 2014-05-12
JP2014099036 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174117A1 true WO2015174117A1 (en) 2015-11-19

Family

ID=54479664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055175 WO2015174117A1 (en) 2014-05-12 2015-02-24 Light-detecting device

Country Status (1)

Country Link
WO (1) WO2015174117A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179507A1 (en) * 2016-04-14 2017-10-19 株式会社村田製作所 Optical sensor
JP2017216281A (en) * 2016-05-30 2017-12-07 ローム株式会社 Light-receiving/emitting module, electronic device, and method for manufacturing light-receiving/emitting module
WO2018068240A1 (en) * 2016-10-12 2018-04-19 华为技术有限公司 Electronic device and method for detecting proximity of object
WO2019044381A1 (en) * 2017-09-01 2019-03-07 株式会社村田製作所 Optical sensor device and manufacturing method therefor
CN110475507A (en) * 2017-03-31 2019-11-19 株式会社村田制作所 Biological body sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575170U (en) * 1978-11-20 1980-05-23
JPS6343460U (en) * 1986-09-02 1988-03-23
JPH11345997A (en) * 1998-05-29 1999-12-14 Rohm Co Ltd Semiconductor device and photointerrupter
JP2007201360A (en) * 2006-01-30 2007-08-09 Citizen Electronics Co Ltd Photo-reflector device
JP2009088434A (en) * 2007-10-03 2009-04-23 Citizen Electronics Co Ltd Photoreflector
JP2010258165A (en) * 2009-04-23 2010-11-11 Omron Corp Optical coupler
JP2013029508A (en) * 2011-07-26 2013-02-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Multidirectional proximity sensor
JP2013157372A (en) * 2012-01-27 2013-08-15 Nec Saitama Ltd Optical sensor device, and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575170U (en) * 1978-11-20 1980-05-23
JPS6343460U (en) * 1986-09-02 1988-03-23
JPH11345997A (en) * 1998-05-29 1999-12-14 Rohm Co Ltd Semiconductor device and photointerrupter
JP2007201360A (en) * 2006-01-30 2007-08-09 Citizen Electronics Co Ltd Photo-reflector device
JP2009088434A (en) * 2007-10-03 2009-04-23 Citizen Electronics Co Ltd Photoreflector
JP2010258165A (en) * 2009-04-23 2010-11-11 Omron Corp Optical coupler
JP2013029508A (en) * 2011-07-26 2013-02-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Multidirectional proximity sensor
JP2013157372A (en) * 2012-01-27 2013-08-15 Nec Saitama Ltd Optical sensor device, and manufacturing method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179507A1 (en) * 2016-04-14 2017-10-19 株式会社村田製作所 Optical sensor
JP2017216281A (en) * 2016-05-30 2017-12-07 ローム株式会社 Light-receiving/emitting module, electronic device, and method for manufacturing light-receiving/emitting module
WO2018068240A1 (en) * 2016-10-12 2018-04-19 华为技术有限公司 Electronic device and method for detecting proximity of object
CN109804338A (en) * 2016-10-12 2019-05-24 华为技术有限公司 The electronic device close for detecting object, method
CN109804338B (en) * 2016-10-12 2020-11-10 华为技术有限公司 Electronic device and method for detecting the approach of an object
CN110475507A (en) * 2017-03-31 2019-11-19 株式会社村田制作所 Biological body sensor
WO2019044381A1 (en) * 2017-09-01 2019-03-07 株式会社村田製作所 Optical sensor device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
CN107451513B (en) Fingerprint identification device
WO2015174117A1 (en) Light-detecting device
JP2011049473A (en) Light detector, and electronic apparatus
CN106453723B (en) Sensor assembly and terminal
JP6223779B2 (en) Photodetector and electronic device
JP2013061555A (en) Electronic apparatus and manufacturing method of infrared ray shielding plate mounted thereto
TW201407448A (en) Light source device and light transmitting and sensing device applied the same
CN108833615B (en) Electronic device
CN114740994B (en) Display screen and display device
JP2006203111A (en) Object detection sensor
KR20100068930A (en) Optical joy stick and portable electronic device having the same
CN111294435B (en) Mobile terminal
KR101414050B1 (en) Structure and method for eliminating impact of ambient light for optical sensors
JP6170392B2 (en) Electronics
KR101414049B1 (en) Package structure for eliminating impact of ambient light for optical sensors
KR101550273B1 (en) Device for non contact user interface
WO2015025593A1 (en) Proximity sensor
JP6017054B2 (en) Display device
JP5052485B2 (en) Reflective optical coupling device and electronic device equipped with the reflective optical coupling device
JP2013157372A (en) Optical sensor device, and manufacturing method of the same
KR101021072B1 (en) Optical Joy Stick and Portable Electronic Device Having the Same
KR20100068590A (en) Terminal of electronic device
CN217425687U (en) Optical sensor and terminal device
CN111337995B (en) Optical proximity sensor and portable terminal device
KR102160740B1 (en) Proximity sensor apparatus, display apparatus, distance image system and manufacturing method of proximity sensor apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP