JP4244721B2 - Forming method of coaxial structure through hole - Google Patents

Forming method of coaxial structure through hole Download PDF

Info

Publication number
JP4244721B2
JP4244721B2 JP2003177540A JP2003177540A JP4244721B2 JP 4244721 B2 JP4244721 B2 JP 4244721B2 JP 2003177540 A JP2003177540 A JP 2003177540A JP 2003177540 A JP2003177540 A JP 2003177540A JP 4244721 B2 JP4244721 B2 JP 4244721B2
Authority
JP
Japan
Prior art keywords
hole
coaxial structure
forming
metal layer
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003177540A
Other languages
Japanese (ja)
Other versions
JP2005012145A (en
Inventor
達広 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2003177540A priority Critical patent/JP4244721B2/en
Publication of JP2005012145A publication Critical patent/JP2005012145A/en
Application granted granted Critical
Publication of JP4244721B2 publication Critical patent/JP4244721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置やプリント配線回路基板に関連する同軸構造のスルーホールの形成方法に関する。
【0002】
【従来の技術】
従来の方法では、同軸構造のスルーホール(以下導通路と記す)を形成するために、両面金属層の基板に導通路を形成し、その導通路の穴部分に樹脂を流し込み穴埋めを行った後に、再度穴開け加工、導通路の形成を行っている。スルーホールとは、基板を貫通する穴を形成後、該穴内壁に導電層を形成し、基板内部及び表裏両面上の配線層は、前記導電層を介して電気的に接続して回路を形成するものである。導通路は前記穴内壁の導電層である。以下、スルーホールを導通路と記す。
【0003】
図5は、従来の同軸構造の導通路を有する配線回路基板を説明する側断面図である。基板中央の絶縁層11の表裏には、配線パターンが形成されている。前記導通路を有する配線パターン16a上面には、絶縁層11を挟んで導通路を有する配線パターン19aが形成されている。中心の導通路2及び側面の導通路2は同軸構造のスルーホールであり、2度の穴加工により穴を形成する。なお、上層及び下層の導通路を有する配線パターン16a、19aはビアスルーホール3を介して電気的に接続され回路が形成されている。
【0004】
従来の配線回路基板に用いられる同軸構造の導通路の形成において、同軸構造の導通路の形成に2度の穴加工が必要となり、工程が長くなるため基板のコストを上昇させる原因となっていた。また、2度の穴加工の位置がずれると、電気特性が設計値とは異なり、所望の性能が発揮できない問題があった。その改善の提案は、電気特性での信頼性向上(特許文献1、2参照)、導通路の微細化及びその個数の削減(特許文献2、3参照)、又は、接着強度改善(特許文献5参照)等、多数有る。
【0005】
【特許文献1】
特開2002−204075号公報
【特許文献2】
特開2002−204076号公報
【特許文献3】
特開2002−64256号公報
【特許文献4】
特開2002−204074号公報
【特許文献5】
特開2002−168489号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、配線回路基板に用いられる同軸構造の導通路の形成において、同軸構造の導通路の形成が2度の穴加工を1度の穴加工に減らし、その工程を短縮する同軸構造のスルーホールの形成方法を提供することである。更に、基板の製造コストを減少させ、同軸構造の導通路の位置がずれることがない形成方法であり、電気特性が設計値と整合し、所望の性能が発揮することである。
【0007】
【課題を解決するための手段】
次の方法で基板形成をすることで穴加工の回数を減らし、同時に位置ずれの問題も解決している。本発明の請求項1に係る発明は、同軸構造のスルーホールを有する配線回路基板の同軸構造のスルーホールの形成方法において、少なくとも次の工程を用いて形成することを特徴とする同軸構造のスルーホールの形成方法。
(a)スルーホールを形成した配線回路基板の金属層に導通路を含めて全面に電着樹脂層を形成する工程。
(b)配線回路基板の下面に接着シートを貼り付ける工程。
(c)スルーホール部分に金属ボールを挿入する工程。
(d)接着シートを剥離する工程
(e)めっき、又はスパッタ工程により電着樹脂層及びスルーホール内を金属層で埋める工程。
(f)フォトリソグラフィ工程ならびにエッチング工程を用いて配線パターンを形成する工程である。
【0008】
この方法であれば、穴加工は一度で済み、導通路の穴径に合わせて金属ボールのサイズを選択することで、同軸構造の導通路は穴の中心を通すことができる。
【0009】
さらに、本発明の請求項2に係る発明は、同軸構造のスルーホールを有する配線回路基板の同軸構造のスルーホールの形成方法において、少なくとも次の工程を用いて形成することを特徴とする同軸構造のスルーホールの形成方法。
(a)スルーホールを形成した配線回路基板の金属層に導通路を含めて全面に電着樹脂層を形成する工程。
(b)配線回路基板の下面に接着シートを貼り付ける工程。
(c)スルーホール部分に金属ボールを挿入する工程。
(d)接着シートを剥離する工程
(e)めっき、又はスパッタ工程により電着樹脂層及びスルーホール内を金属層で埋める工程。
(f)フォトリソグラフィ工程ならびにめっきを用いて配線パターンを形成する工程。
(g)レジストを剥離し、めっき部以外の薄膜金属層をソフトエッチングする工程である。
【0010】
この方法は、めっきレジストパターンの開口部に電解めっき層を形成するため配線パターンが微細化となった場合に有効な方法である。
【0011】
【発明の実施の形態】
本発明の配線基板構造は、図1及び図2を使って説明する。図1(a)〜(f)及び図2(g)〜(i)は、本発明の同軸構造のスルーホールを形成する方法である。
【0012】
まず、図1(a)では、上面に金属層10,下面に金属層12及び中面に絶縁層11からなる導通路を形成した配線基板20を用いる。図1(b)では、金属層上に電着法を用いて絶縁層の電着樹脂層13を金属層の全面に形成する。図1(c)では、電着樹脂層を半硬化の状態にした後、接着シート14を基板の下面に貼り付ける。次に、図1(d)の導通路の形成では、導通路部分の窪みに金属ボール15を挿入し、金属ボールが窪み内の電着樹脂層と接するぐらいに加圧する。図1(e)では、加圧した後に、基板全体を加熱し、ボールを電着樹脂層13に仮固定するとともに、接着シート14を剥離除去する。図1(f)では、基板全体に無電解銅めっき及び電解銅めっきを施し、電着樹脂層の表面と導通路の窪みをめっき金属層16で覆い埋め尽くす。
【0013】
図2(g)では、フォトリソグラフィ法を用いてエッチングレジストパターン17を形成する。図2(h)では、エッチングによってめっき金属層16をパターニングし、導通路を有する配線パターン16aを形成する。最終工程で、パターン上のレジストを除去する。図2(i)では、これらの工程で本発明の同軸構造のスルーホールを有した配線回路基板1を形成することができる。
【0014】
本発明の同軸構造のスルーホールの形成方法では、導通路用の穿孔は1回となり、且つ導通路の中心位置がずれない方法であり、形成工程では、電着法による絶縁層の形成と金属ボールを用いたため、同軸構造の導通路を有した同軸構造のスルーホールを具備する配線回路基板が形成できる。
【0015】
【実施例】
以下、実施例について、図1(a)〜(f)及び図2(g)〜(i)を用いて詳細に説明する。図1及び図2は本発明の同軸構造のスルーホールの形成方法の一例を説明する製造工程図である。
【0016】
〈実施例1〉
本発明の同軸構造のスルーホールは、図1及び図2の工程で作製した。まず図1のように両面に金属層10,12を有した基板(銅箔9μm、絶縁層50μm)にUV−YAGレーザー加工機を用いて貫通穴(大口径120μm,小口径100μm)の加工を行った後、電解めっき法によって貫通穴内及び金属層上にめっき膜厚10μmで金属層を形成し、導通路を有した基板20を形成した。(図1(a)参照)
【0017】
導通路を有した基板20の金属層上に電着法を用いて、絶縁層の電着樹脂層13を30μmの厚みで形成した。電着樹脂を電着した後、120℃,30分加熱乾燥することで、半硬化の状態にした。
【0018】
その後、基板下面に接着シート14(熱剥離タイプ)を貼り付け、貫通穴部に直径50μmの銅の金属ボール15を挿入した。挿入後に穴内部の電着樹脂層13に銅ボールが接触するように加圧した。基板を130℃,30分の加熱で接着シート14を剥離すると同時に、電着樹脂層13と銅の金属ボール15を仮接着することができた。接着シートを剥離した後、さらに160℃,1時間の加熱で電着樹脂層13を硬化させ、耐薬品性を向上させた(図1(e)参照)。さらに無電解銅めっきによって電着樹脂層13及び貫通穴内に1μm厚の薄膜金属層を形成し、さらに電解銅めっきによって金属層16が10μm以上になるように銅めっきを施した。(図1(f)参照)
【0019】
次に15μmのドライフィルムレジストを基板表面にラミネートし、フォトリソグラフィ工程で露光現像を行い、エッチングレジストパターン17を形成した(図2(g)参照)。さらに塩化第2鉄を用いたエッチング法でレジスト部以外の金属層を除去し、レジスト層を剥離することで本発明の同軸構造のスルーホールを形成した。(図2(i)参照)
【0020】
〈実施例2〉
図3(a)〜(f)及び図4(g)〜(j)は、本発明の同軸構造のスルーホールの形成方法の一実施例を説明する製造工程図であり、以下、実施例について図3及び図4を用いて詳細に説明する。本発明の同軸構造のスルーホールは、図3(a)〜(f)及び図4(g)〜(j)の工程で作製した。まず図3のように両面に金属層10,12を有した基板(銅箔3μm、絶縁層50μm)にUV−YAGレーザー加工機を用いて貫通穴(大口径120μm,小口径100μm)の加工を行った後、電解めっき法によって貫通穴内及び金属層上にめっき膜厚10μmで金属層を形成し、導通路を有した基板20を形成した。(図3(a)参照)
【0021】
導通路を有した基板20の金属層上に電着法を用いて、絶縁層の電着樹脂層13を30μmの厚みで形成した。電着樹脂を電着した後、120℃,30分加熱乾燥することで、半硬化の状態にした。(図3(b)参照)
【0022】
その後、基板下面に接着シート14(熱剥離タイプ)を貼り付け、貫通穴部に直径50μmの銅の金属ボール15を挿入した。挿入後に穴内部の電着樹脂層13に銅ボールが接触するように加圧した。基板を130℃,30分の加熱で接着シート14を剥離すると同時に、電着絶脂層13と銅ボールを仮接着した。接着シートを剥離した後、さらに160℃,1時間の加熱で電着樹脂層を硬化させ、耐薬品性を向上した。さらにスパッタ法を用いて、基板両面に銅の薄膜金属層6を0.3μm厚で形成した。(図3(f)参照)
【0023】
次に、図4(g)では、15μmのドライフィルムレジストを基板表面にラミネートし、フォトリソグラフィ工程で露光現像を行い、めっきレジストパターン18を形成した。つぎに電解銅めっきを用いて、レジストパターンの開口部に電解銅めっきを10μm厚でめっきし、めっき金属層19を形成した。レジストを剥離除去した後、薄膜金属層6をソフトエッチングによって除去し、導通路を有した配線パターン19aを形成した。(図4(j)参照)
【0024】
これらの工程で同軸構造の導通路を有する本発明の同軸構造のスルーホールを形成した。
【0025】
【発明の効果】
同軸構造のスルーホールを本発明の同軸構造のスルーホールの形成方法を用いることにより、簡便な工程で形成することができた。本発明の同軸構造のスルーホールの形成方法によって、穴加工の工程が減少し、基板の納期を短縮できるとともにコスト減少につながった。また、金属ボールを円形の導通路内に挿入することで、セルフアライメントによる位置ずれ修正機能によって、導通路の中心がずれることがないため、電気特性もより安定した。
【図面の簡単な説明】
【図1】本発明の同軸構造のスルーホールの形成方法の一例を説明する製造工程図で、(a)〜(f)は、側断面である。
【図2】本発明の同軸構造のスルーホールの形成方法の一例を説明する製造工程図で、(g)〜(i)は、側断面である。
【図3】本発明の同軸構造のスルーホールの形成方法の一実施例を説明する製造工程図で、(a)〜(f)は、側断面である。
【図4】本発明の同軸構造のスルーホールの形成方法の一実施例を説明する製造工程図で、(g)〜(j)は、側断面である。
【図5】従来の同軸構造の導通路を有した配線回路基板の側断面図である。
【符号の説明】
1…導通路を有した配線回路基板
2…導通路(スルーホール)
3…ビアスルーホール
6…薄膜金属層
10…金属層
11…絶縁層
12…金属層
13…(絶縁層の)電着樹脂層
14…接着シート
15…金属ボール
16…めっき金属層
16a…導通路を有する配線パターン
17…エッチングレジストパターン
18…めっきレジストパターン
19…めっき金属層
19a…導通路を有する配線パターン
20…ベース基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a through hole having a coaxial structure related to a semiconductor device or a printed wiring circuit board.
[0002]
[Prior art]
In the conventional method, in order to form a through hole having a coaxial structure (hereinafter referred to as a conduction path), a conduction path is formed on the double-sided metal layer substrate, and a resin is poured into the hole portion of the conduction path to fill the hole. The drilling process and the conduction path are formed again. A through hole is a hole that penetrates the substrate, and then a conductive layer is formed on the inner wall of the hole. The wiring layers on the inside of the substrate and both front and back surfaces are electrically connected via the conductive layer to form a circuit. To do. The conduction path is a conductive layer on the inner wall of the hole. Hereinafter, the through hole is referred to as a conduction path.
[0003]
FIG. 5 is a side sectional view for explaining a conventional printed circuit board having a coaxial conductive path. A wiring pattern is formed on the front and back of the insulating layer 11 at the center of the substrate. A wiring pattern 19a having a conduction path is formed on the upper surface of the wiring pattern 16a having the conduction path with the insulating layer 11 interposed therebetween. The center conduction path 2 and the side conduction path 2 are through-holes having a coaxial structure, and a hole is formed by drilling twice. The wiring patterns 16a and 19a having the upper and lower conductive paths are electrically connected through the via through hole 3 to form a circuit.
[0004]
In the formation of a coaxial structure conducting path used in a conventional wired circuit board, the formation of the coaxial structure conducting path requires two holes, which increases the cost of the board because the process becomes longer. . In addition, when the position of drilling twice is shifted, there is a problem that the electrical characteristics are different from the design value and the desired performance cannot be exhibited. The proposal of the improvement is improvement in reliability in electrical characteristics (see Patent Documents 1 and 2), miniaturization of conduction paths and reduction in the number thereof (see Patent Documents 2 and 3), or improvement in adhesive strength (Patent Document 5). There are many).
[0005]
[Patent Document 1]
JP 2002-204075 [Patent Document 2]
JP 2002-204076 A [Patent Document 3]
JP 2002-64256 A [Patent Document 4]
JP 2002-204074 A [Patent Document 5]
Japanese Patent Laid-Open No. 2002-168489
[Problems to be solved by the invention]
An object of the present invention is to form a coaxial-structured conductive path used in a printed circuit board, wherein the coaxial-structured conductive path formation reduces the number of drilling operations to two holes and shortens the process. A through hole forming method is provided. Furthermore, it is a forming method that reduces the manufacturing cost of the substrate and does not shift the position of the conductive path of the coaxial structure, and the electrical characteristics are consistent with the design values and the desired performance is exhibited.
[0007]
[Means for Solving the Problems]
By forming the substrate by the following method, the number of drilling operations is reduced, and at the same time, the problem of misalignment is solved. According to a first aspect of the present invention, in the method for forming a coaxial structure through hole of a printed circuit board having a coaxial structure through hole, the coaxial structure through hole is formed using at least the following steps. How to form holes.
(A) A step of forming an electrodeposition resin layer on the entire surface including a conduction path in the metal layer of the printed circuit board in which the through hole is formed.
(B) A step of attaching an adhesive sheet to the lower surface of the printed circuit board.
(C) A step of inserting a metal ball into the through hole portion.
(D) Step of peeling the adhesive sheet (e) Step of filling the electrodeposition resin layer and the through hole with a metal layer by plating or sputtering.
(F) A step of forming a wiring pattern using a photolithography step and an etching step.
[0008]
With this method, the hole processing is only required once, and by selecting the size of the metal ball according to the hole diameter of the conduction path, the conduction path of the coaxial structure can pass through the center of the hole.
[0009]
Further, according to a second aspect of the present invention, in the method for forming a coaxial structure through hole of a printed circuit board having a coaxial structure through hole, the coaxial structure is formed using at least the following steps. Through hole formation method.
(A) A step of forming an electrodeposition resin layer on the entire surface including a conduction path in the metal layer of the printed circuit board in which the through hole is formed.
(B) A step of attaching an adhesive sheet to the lower surface of the printed circuit board.
(C) A step of inserting a metal ball into the through hole portion.
(D) Step of peeling the adhesive sheet (e) Step of filling the electrodeposition resin layer and the through hole with a metal layer by plating or sputtering.
(F) A step of forming a wiring pattern using a photolithography step and plating.
(G) A step of peeling the resist and soft-etching the thin-film metal layer other than the plated portion.
[0010]
This method is effective when the wiring pattern is miniaturized because an electrolytic plating layer is formed in the opening of the plating resist pattern.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The wiring board structure of the present invention will be described with reference to FIGS. 1 (a) to 1 (f) and FIGS. 2 (g) to (i) are methods for forming a coaxial structure through hole of the present invention.
[0012]
First, in FIG. 1A, a wiring board 20 is used in which a conductive path made of a metal layer 10 on the upper surface, a metal layer 12 on the lower surface, and an insulating layer 11 on the inner surface is formed. In FIG. 1B, an electrodeposition resin layer 13 as an insulating layer is formed on the entire surface of the metal layer by electrodeposition on the metal layer. In FIG.1 (c), after making an electrodeposition resin layer into a semi-hardened state, the adhesive sheet 14 is affixed on the lower surface of a board | substrate. Next, in the formation of the conduction path in FIG. 1 (d), the metal ball 15 is inserted into the depression in the conduction path portion, and pressure is applied to the extent that the metal ball is in contact with the electrodeposition resin layer in the depression. In FIG.1 (e), after pressurizing, the whole board | substrate is heated, while fixing a ball | bowl to the electrodeposition resin layer 13, the adhesive sheet 14 is peeled and removed. In FIG. 1 (f), electroless copper plating and electrolytic copper plating are applied to the entire substrate, and the surface of the electrodeposited resin layer and the recess of the conductive path are covered with the plated metal layer 16.
[0013]
In FIG. 2G, the etching resist pattern 17 is formed using a photolithography method. In FIG. 2 (h), the plated metal layer 16 is patterned by etching to form a wiring pattern 16a having a conduction path. In the final step, the resist on the pattern is removed. In FIG. 2I, the printed circuit board 1 having the coaxial through hole of the present invention can be formed by these steps.
[0014]
In the method for forming a through hole having a coaxial structure according to the present invention, the perforation for the conduction path is performed once and the center position of the conduction path is not shifted. In the formation process, the formation of the insulating layer by the electrodeposition method and the metal Since the ball is used, a printed circuit board having a coaxial through hole having a coaxial conductive path can be formed.
[0015]
【Example】
Hereinafter, an Example is described in detail using FIG. 1 (a)-(f) and FIG. 2 (g)-(i). 1 and 2 are manufacturing process diagrams illustrating an example of a method for forming a through hole having a coaxial structure according to the present invention.
[0016]
<Example 1>
The through hole having the coaxial structure according to the present invention was produced by the steps shown in FIGS. First, as shown in FIG. 1, through holes (large diameter 120 μm, small diameter 100 μm) are processed using a UV-YAG laser processing machine on a substrate (copper foil 9 μm, insulating layer 50 μm) having metal layers 10 and 12 on both sides. After performing, the metal layer was formed with a plating film thickness of 10 μm in the through hole and on the metal layer by the electrolytic plating method, and the substrate 20 having a conduction path was formed. (See Fig. 1 (a))
[0017]
An electrodeposition resin layer 13 of an insulating layer was formed to a thickness of 30 μm on the metal layer of the substrate 20 having a conduction path by using an electrodeposition method. After electrodeposition of the electrodeposition resin, it was in a semi-cured state by heating and drying at 120 ° C. for 30 minutes.
[0018]
Thereafter, an adhesive sheet 14 (thermal release type) was attached to the lower surface of the substrate, and a copper metal ball 15 having a diameter of 50 μm was inserted into the through hole. After the insertion, pressure was applied so that the copper ball was in contact with the electrodeposition resin layer 13 inside the hole. The adhesive sheet 14 was peeled off by heating the substrate at 130 ° C. for 30 minutes, and at the same time, the electrodeposition resin layer 13 and the copper metal balls 15 could be temporarily bonded. After peeling off the adhesive sheet, the electrodeposition resin layer 13 was further cured by heating at 160 ° C. for 1 hour to improve chemical resistance (see FIG. 1 (e)). Further, a 1 μm-thick thin metal layer was formed in the electrodeposition resin layer 13 and the through hole by electroless copper plating, and further, copper plating was performed by electrolytic copper plating so that the metal layer 16 was 10 μm or more. (See Fig. 1 (f))
[0019]
Next, a dry film resist having a thickness of 15 μm was laminated on the substrate surface, and exposure and development were performed in a photolithography process to form an etching resist pattern 17 (see FIG. 2G). Further, the metal layer other than the resist portion was removed by an etching method using ferric chloride, and the resist layer was peeled off to form the through hole having the coaxial structure of the present invention. (See Fig. 2 (i))
[0020]
<Example 2>
3 (a) to 3 (f) and FIGS. 4 (g) to (j) are manufacturing process diagrams for explaining an embodiment of a method for forming a through hole having a coaxial structure according to the present invention. This will be described in detail with reference to FIGS. The through hole having the coaxial structure according to the present invention was produced by the steps shown in FIGS. 3 (a) to 3 (f) and FIGS. 4 (g) to (j). First, as shown in FIG. 3, through holes (large diameter 120 μm, small diameter 100 μm) are processed using a UV-YAG laser processing machine on a substrate (copper foil 3 μm, insulating layer 50 μm) having metal layers 10 and 12 on both sides. After performing, the metal layer was formed with a plating film thickness of 10 μm in the through hole and on the metal layer by the electrolytic plating method, and the substrate 20 having a conduction path was formed. (See Fig. 3 (a))
[0021]
An electrodeposition resin layer 13 of an insulating layer was formed to a thickness of 30 μm on the metal layer of the substrate 20 having a conduction path by using an electrodeposition method. After electrodeposition of the electrodeposition resin, it was in a semi-cured state by heating and drying at 120 ° C. for 30 minutes. (See Fig. 3 (b))
[0022]
Thereafter, an adhesive sheet 14 (thermal release type) was attached to the lower surface of the substrate, and a copper metal ball 15 having a diameter of 50 μm was inserted into the through hole. After the insertion, pressure was applied so that the copper ball was in contact with the electrodeposition resin layer 13 inside the hole. The adhesive sheet 14 was peeled off by heating the substrate at 130 ° C. for 30 minutes, and at the same time, the electrodeposited degreased layer 13 and the copper ball were temporarily bonded. After peeling off the adhesive sheet, the electrodeposition resin layer was further cured by heating at 160 ° C. for 1 hour to improve chemical resistance. Further, a copper thin film metal layer 6 having a thickness of 0.3 μm was formed on both surfaces of the substrate by sputtering. (See Fig. 3 (f))
[0023]
Next, in FIG. 4G, a 15 μm dry film resist was laminated on the surface of the substrate, exposed and developed in a photolithography process, and a plating resist pattern 18 was formed. Next, electrolytic copper plating was used to plate the opening of the resist pattern with electrolytic copper plating to a thickness of 10 μm to form a plated metal layer 19. After stripping off the resist, the thin metal layer 6 was removed by soft etching to form a wiring pattern 19a having a conduction path. (See Fig. 4 (j))
[0024]
Through these steps, a coaxial structure through-hole of the present invention having a coaxial conductive path was formed.
[0025]
【The invention's effect】
By using the method for forming a coaxial structure through hole according to the present invention, the coaxial structure through hole could be formed by a simple process. According to the method for forming a through hole having a coaxial structure according to the present invention, the number of drilling steps is reduced, so that the delivery time of the substrate can be shortened and the cost is reduced. Further, by inserting the metal ball into the circular conduction path, the center of the conduction path is not shifted by the position shift correction function by self-alignment, so that the electrical characteristics are more stable.
[Brief description of the drawings]
FIGS. 1A to 1F are manufacturing process diagrams for explaining an example of a method for forming a through hole having a coaxial structure according to the present invention, wherein FIGS.
FIGS. 2A and 2B are manufacturing process diagrams for explaining an example of a method for forming a through hole having a coaxial structure according to the present invention, wherein FIGS.
FIGS. 3A to 3F are manufacturing process diagrams for explaining an embodiment of a method for forming a through hole having a coaxial structure according to the present invention, wherein FIGS.
FIG. 4 is a manufacturing process diagram for explaining one embodiment of a method for forming a through hole having a coaxial structure according to the present invention, wherein (g) to (j) are side cross sections.
FIG. 5 is a side sectional view of a printed circuit board having a conductive path of a conventional coaxial structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wiring circuit board which has a conduction path 2 ... Conduction path (through hole)
DESCRIPTION OF SYMBOLS 3 ... Via-through hole 6 ... Thin film metal layer 10 ... Metal layer 11 ... Insulating layer 12 ... Metal layer 13 ... Electrodeposition resin layer 14 (of insulating layer) ... Adhesive sheet 15 ... Metal ball 16 ... Plating metal layer 16a ... Conducting path Wiring pattern 17 having etching pattern 18 plating resist pattern 19 plating metal layer 19a wiring pattern 20 having a conductive path base substrate

Claims (2)

同軸構造のスルーホールを有する配線回路基板の同軸構造のスルーホールの形成方法において、少なくとも次の工程を用いて形成することを特徴とする同軸構造のスルーホールの形成方法。
(a)スルーホールを形成した配線回路基板の金属層に導通路を含めて全面に電着樹脂層を形成する工程。
(b)配線回路基板の下面に接着シートを貼り付ける工程。
(c)スルーホール部分に金属ボールを挿入する工程。
(d)接着シートを剥離する工程
(e)めっき、又はスパッタ工程により電着樹脂層及びスルーホール内を金属層で埋める工程。
(f)フォトリソグラフィ工程ならびにエッチング工程を用いて配線パターンを形成する工程。
A method of forming a coaxial structure through hole in a method of forming a coaxial structure through hole of a printed circuit board having a coaxial structure through hole, using at least the following steps.
(A) A step of forming an electrodeposition resin layer on the entire surface including a conduction path in the metal layer of the printed circuit board in which the through hole is formed.
(B) A step of attaching an adhesive sheet to the lower surface of the printed circuit board.
(C) A step of inserting a metal ball into the through hole portion.
(D) Step of peeling the adhesive sheet (e) Step of filling the electrodeposition resin layer and the through hole with a metal layer by plating or sputtering.
(F) A step of forming a wiring pattern using a photolithography step and an etching step.
同軸構造のスルーホールを有する配線回路基板の同軸構造のスルーホールの形成方法において、少なくとも次の工程を用いて形成することを特徴とする同軸構造のスルーホールの形成方法。
(a)スルーホールを形成した配線回路基板の金属層に導通路を含めて全面に電着樹脂層を形成する工程。
(b)配線回路基板の下面に接着シートを貼り付ける工程。
(c)スルーホール部分に金属ボールを挿入する工程。
(d)接着シートを剥離する工程
(e)めっき、又はスパッタ工程により電着樹脂層及びスルーホール内を金属層で埋める工程。
(f)フォトリソグラフィ工程ならびにめっきを用いて配線パターンを形成する工程。
(g)レジストを剥離し、めっき部以外の薄膜金属層をソフトエッチングする工程。
A method of forming a coaxial structure through hole in a method of forming a coaxial structure through hole of a printed circuit board having a coaxial structure through hole, using at least the following steps.
(A) A step of forming an electrodeposition resin layer on the entire surface including a conduction path in the metal layer of the printed circuit board in which the through hole is formed.
(B) A step of attaching an adhesive sheet to the lower surface of the printed circuit board.
(C) A step of inserting a metal ball into the through hole portion.
(D) Step of peeling the adhesive sheet (e) Step of filling the electrodeposition resin layer and the through hole with a metal layer by plating or sputtering.
(F) A step of forming a wiring pattern using a photolithography step and plating.
(G) A step of peeling the resist and soft-etching the thin-film metal layer other than the plated portion.
JP2003177540A 2003-06-23 2003-06-23 Forming method of coaxial structure through hole Expired - Fee Related JP4244721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177540A JP4244721B2 (en) 2003-06-23 2003-06-23 Forming method of coaxial structure through hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177540A JP4244721B2 (en) 2003-06-23 2003-06-23 Forming method of coaxial structure through hole

Publications (2)

Publication Number Publication Date
JP2005012145A JP2005012145A (en) 2005-01-13
JP4244721B2 true JP4244721B2 (en) 2009-03-25

Family

ID=34100070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177540A Expired - Fee Related JP4244721B2 (en) 2003-06-23 2003-06-23 Forming method of coaxial structure through hole

Country Status (1)

Country Link
JP (1) JP4244721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620947B2 (en) 2012-11-08 2017-04-11 Albert S. Richardson, Jr. Antigalloping device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904242B2 (en) * 2007-10-12 2012-03-28 新光電気工業株式会社 Wiring board and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620947B2 (en) 2012-11-08 2017-04-11 Albert S. Richardson, Jr. Antigalloping device

Also Published As

Publication number Publication date
JP2005012145A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP2006278774A (en) Double-sided wiring board, method for manufacturing the same and base substrate thereof
JPH04309290A (en) Manufacture of printed circuit board
JPH11186698A (en) Manufacture of circuit board, and circuit board
JP2006245213A (en) Manufacturing method of wiring circuit board
JP2001036200A (en) Printed wiring board, manufacture of the printed wiring board, and manufacture of small-sized plastic molded item
JP4244721B2 (en) Forming method of coaxial structure through hole
JPH10178271A (en) Manufacture of multilayered wiring board and multilayfred wiring board
JP4975581B2 (en) Wiring board and manufacturing method thereof
JP3500977B2 (en) Manufacturing method of double-sided circuit board
JPH05259639A (en) Manufacture of printed wiring board
JP4479180B2 (en) Multilayer circuit board manufacturing method
JP2655447B2 (en) Multilayer printed wiring board for surface mounting and method of manufacturing the same
JP2009146926A (en) Multilayer wiring board and its manufacturing method
JP3941463B2 (en) Manufacturing method of multilayer printed wiring board
JP2003008204A (en) Method of manufacturing double-sided printed wiring board
JP2004072125A (en) Manufacturing method of printed wiring board, and printed wiring board
US20100193232A1 (en) Printed circuit board and method of manufacturing the same
JP2015204379A (en) Printed wiring board
JP4395959B2 (en) Method for manufacturing printed wiring board
JP2002141637A (en) Printed-wiring board and its manufacturing method
JP3713726B2 (en) Multilayer printed wiring board
KR100797695B1 (en) Manufacturing method of rigid-flexible printed circuit board
JPH09326561A (en) Multilayer printed wiring board and manufacture thereof
JP2003188535A (en) Double-sided flexible wiring board and manufacturing method therefor
JP4736251B2 (en) Film carrier and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees