JP4239849B2 - 搬送装置 - Google Patents

搬送装置 Download PDF

Info

Publication number
JP4239849B2
JP4239849B2 JP2004041362A JP2004041362A JP4239849B2 JP 4239849 B2 JP4239849 B2 JP 4239849B2 JP 2004041362 A JP2004041362 A JP 2004041362A JP 2004041362 A JP2004041362 A JP 2004041362A JP 4239849 B2 JP4239849 B2 JP 4239849B2
Authority
JP
Japan
Prior art keywords
circuit
thyristor
motor
power generation
dynamic braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004041362A
Other languages
English (en)
Other versions
JP2005237082A (ja
Inventor
光義 黒田
Original Assignee
アシスト テクノロジーズ ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アシスト テクノロジーズ ジャパン株式会社 filed Critical アシスト テクノロジーズ ジャパン株式会社
Priority to JP2004041362A priority Critical patent/JP4239849B2/ja
Publication of JP2005237082A publication Critical patent/JP2005237082A/ja
Application granted granted Critical
Publication of JP4239849B2 publication Critical patent/JP4239849B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は主に製造工場にて使用される搬送装置に係り、特に、駆動系または電源系の不具合が発生した場合に発電制動を行う搬送装置に関する。
一般の製造工場や半導体製造工場においては、部品や製品の搬送装置として、地上を走行する無人搬送装置や天井を走行する天井搬送装置等が用いられる。天井搬送装置の移動体は軌道に沿って、接触式給電、非接触式給電またはバッテリー等のいずれかの電源により軌道上を走行用のモータによって走行する。モータは回転型モータまたはリニアモータが用いられている。そして、搬送装置の停止方法としては、駆動系に機械的にブレーキを掛ける方法や、電気制御でモータを停止させる方法や、この両者を併用した方法が採用されている。
しかしながら、走行中に移動体の駆動系または電源系に異常が発生した場合、機械的ブレーキ方式によっては、移動体にブレーキが掛からず、移動体がフリーラン状態になり、制動距離が非常に長くなり、例えば異常が発生した移動体が前走の移動体に追突したり、移動体が停止位置で停止しないために、搬送システム全体が破損することがあるという問題があった。
また、電源系に異常時が発生した場合に、励磁時にはブレーキが作動せず無励磁時にブレーキが作動する無励磁式の機械的なブレーキ機構を用いて移動体を制動させる方法があるが、メンテナンス時や移動体を軌道上に載せる時に、ブレーキ解除のための励磁電源が必要となり、移動体の台数が多くなると、それだけ多くの励磁電源が必要になるという問題もあった。
また、抵抗等を用いて走行用モータの線間を短絡し、発電制動を行う方法も考えられるが、電源系の異常時においては、モータ駆動回路や制御回路の電源供給がなくなるためにモータの線間短絡を行うための制御信号もなくなり、モータの線間の短絡を長く維持できず、結果として移動体はフリーラン状態となってしまうという問題もあった。
尚、発電制動回路を有し、モ−タを急停止させる電動ドライバとして、特許文献1または特許文献2に記載されるものが知られている。しかし、これらにおいても、制御回路の電源系がストップした場合、モータに発電制動が掛からなくなるという問題があった。
特公平6−83966号公報 実開平6−85762号公報
本発明は、上記事情を考慮してなされたもので、その目的は、移動体が走行中に駆動系または電源系に異常が発生した場合でも、必ず制動が掛かり、フリーラン状態にならない搬送装置を提供することにある。
また、この発明の他の目的は、無励磁式のブレーキ機構を用いずに制動でき、メンテナンス時や移動体を軌道上に載せる場合にブレーキ解除を行うための励磁電源を必要としない搬送装置を提供することにある。
上記目的を達成するために、この発明では、以下の手段を提案している。
請求項1に記載の発明は、軌道に沿って走行する移動体と、前記移動体を駆動する電動機と、前記電動機を駆動または制御する電動機駆動手段とからなる搬送装置であって、
前記移動体の駆動系もしくは電源系に何らかの異常が発生したときに、発電制動指令信号を出力する発電制動制御手段と、前記電動機に対して発電制動を行う発電制動手段とを備え、前記発電制動手段は、陽極がグランドに接続され、前記電動機に加えられる電流を全波整流する全波整流部と、前記全波整流部の陰極に接続され、前記電動機の巻線抵抗に応じて抵抗値が設定される第1の抵抗と、前記第1の抵抗に陽極が接続されたダイオードと、前記ダイオードの陰極に自身の陽極が接続されるとともに、自身の陰極が前記グランドに接続されたサイリスタと、前記サイリスタの陽極と前記グランドとの間において前記サイリスタに並列に接続され、互いに直列接続されたスナバ抵抗及びスナバコンデンサと、前記全波整流部の陰極と前記グランドとの間において前記第1の抵抗、前記ダイオード及び前記サイリスタと並列に接続され、前記サイリスタに対する陽極電流の立ち上がりの遅れ時間を補償し、前記サイリスタに対する急激な電圧変化を抑制する第2の抵抗及びコンデンサとを備え、前記異常が発生したときに、前記サイリスタは、前記発電制動指令信号によりオン状態となり、前記全波整流部を介して、前記電動機の巻線抵抗、前記第1の抵抗及び前記ダイオードとともに閉ループを構成することを特徴とする。
この発明によれば、移動体の走行中に駆動系または電源系に異常が発生した場合に、発電制動制御手段がサイリスタをターンオンする構成としたため、発電制動制御手段の制御電源がダウンしても、発電制動を働かせることが可能となる。
また、この発明によれば、電動機の運転速度が遅く、かつ、電動機のインダクタンスと巻線抵抗等による時定数が長い場合、電動機の発電機としての動作における電流の立ち上りが遅くなり、パルス幅数ミリ秒のオン信号にてサイリスタを駆動したときに、サイリスタがターンオンしても直ぐにターンオフしてしまう不具合を、電流の立ち上がりを速くすることにより、回避することが可能となる。
この発明によれば、スナバコンデンサに所定の電圧を蓄積し、所定の電圧以下の電圧に対しては、ダイオードがオフして、サイリスタの陽極と陰極の間の電圧を安定化する構成としたため、サイリスタにパルス性の電圧が掛かることによる誤動作を防ぐことが可能となる。また、スナバコンデンサに蓄積された電荷により、時定数が長い回路においても、サイリスタを確実にターンオンすることが可能になる。
この発明によれば、モータの巻線抵抗が小さい場合に、代わりに、第1の抵抗によって電動機が発電した電力を消費させる構成としたため、発電制動を効果的に働かすことが可能となる。
請求項2に記載の発明は、請求項1に記載の搬送装置であって、前記発電制動制御手段が、パルス信号を出力するパルス信号発生手段と、パルストランス等の絶縁回路とを備えることを特徴とする。
この発明によれば、発電制動制御手段が、パルス信号を出力する構成としたため、それを受けて発電制動を行うデバイスとして、一旦ターンオンするとその状態を保つサイリスタを用いることとなり、発電制動制御手段の制御電源がダウンしても、発電制動を働かせることが可能となる。
また、この発明によれば、発電制動制御手段が、絶縁回路によって、入出力のグランドを分離して信号を伝達するので、入力信号と出力信号のグランド電位が異なる場合にも、信号伝達を行うことが可能となる。
請求項3に記載の発明は、請求項1に記載の搬送装置であって、前記発電制動制御手段が、前記サイリスタ及び前記グランドに接続されたゲート回路と、前記ゲート回路に駆動パルスを出力する駆動パルス回路と、前記ゲート回路と前記駆動パルス回路との間に接続された絶縁回路とを備えることを特徴とする。
請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の搬送装置であって、前記電動機駆動手段が、内部のスイッチング素子を切り替える制御回路の電源部を、コンデンサを付加した回路で構成することを特徴とする。
この発明によれば、電動機駆動手段の内部のスイッチング素子の制御回路の電源部にコンデンサを付加することによって、電動機駆動手段の制御回路の電源電圧を一定時間保っておく構成としたため、移動体の電源系がダウンすることによる、移動体のフリーラン状態への移行を回避することが可能となる。
以上をまとめると、本発明は次のようになる。
軌道に沿って走行する移動体が、走行中に駆動系または電源系に異常が発生した場合にフリーラン状態にならないように、サイリスタやトライアック等を用いて発電制動を働かせ、且つ、メンテナンス時や軌道の上に載せるときにブレーキ解除装置の電源を必要とせず、確実に停止するまでは、モータの制御回路が動作して、制動力が働くようにした搬送装置である。
本発明によれば、移動体が前走の移動体に追突したり、搬送システム全体を破損したりすることがなくなり、また、ブレーキ系、電源系の簡略化が図れ、搬送システム全体として、コストダウンを図ることができる効果がある。
<第1の実施形態>
以下、本発明の第1の実施形態を図面を参照して説明する。
図1は本発明の第1の実施形態による搬送装置の運転部の構成図である。この図において、搬送装置は、交流モータのモータ1(電動機)と、モータ駆動回路2a(電動機駆動手段)と、全波整流回路5ならびにサイリスタ3とからなる発電制動回路9a(発電制動手段)と、発電制動信号(パルス)を作り、サイリスタ3に伝達する発電制動制御回路12(発電制動制御手段)とから構成される。モータ1は、移動体を駆動する。モータ駆動回路2aは、モータ1の運転と停止の制御を行う。
本実施形態においては、モータ駆動回路2aの制御により、モータ1が停止した後には、発電制動制御回路12がオフする。
図2(a)はモータ駆動回路2aの構成図である。この図において、モータ駆動回路2aは、交流電源201と、交流電源201から加えられる交流電流を全波整流する全波整流器202と、全波整流器202から入力される直流電流を交流電流に変換して出力するインバータ203とから構成され、モータ1の駆動を行う。インバータ203は、図示しないスイッチング素子とそのスイッチングを行う制御回路から構成される。
再び、図1に戻り、発電制動回路9aは、サイリスタ3と、直列抵抗4(第1の抵抗)と、モータ1に加えられる電流を全波整流する全波整流回路5とから構成され、移動体の電源系に異常が発生した場合、モータ1に対して発電制動を行う。サイリスタ3は、発電制動制御回路12が出力する、パルス幅数ミリ秒のパルス信号である、オン信号(発電制動指令信号)を入力されると、サイリスタ3に信号を送り、サイリスタ3をターンオンさせ、発電制動回路9aを閉じる。直列抵抗4は、モータ1の巻線抵抗により値が決定される。尚、モータ1の巻線抵抗が大きい場合には、直列抵抗4を省略できる。また、全波整流回路5を用いたため、発電制動回路9aを、多相交流回路でなく、直流回路にて構成できるので、サイリスタが1つですみ、安価に装置を構成することが可能となる。
全波整流回路5の入力端に、モータ1の発電モードにより発電された電圧をモータならびに直列抵抗4によるインピーダンスで割った電流が入力される。全波整流回路5の出力端の陰極側は、直列抵抗4を介して、サイリスタ3の陽極側に接続される。一方、全波整流回路5の出力端の陽極側は、サイリスタ3の陰極側に接続される。また、サイリスタ3のゲートは発電制動制御回路12の出力端Tdbに接続され、陰極側は発電制動制御回路12のグランドGndc1と接続される。
発電制動制御回路12は、ゲート回路6(パルス信号発生手段)と、絶縁回路7と、ゲート駆動パルス回路8(パルス信号発生手段)とから構成され、発電制動回路9aの制御を行う。ゲート駆動パルス回路8は、絶縁回路7を介して、ゲート回路6に接続され、移動体の駆動系または電源系に何らかの異常が発生すると、パルス幅数ミリ秒のゲート駆動パルスを出力する。
絶縁回路7は、入力信号と出力信号のグランド電位が異なる信号の伝達を行う回路であり、パルストランスやフォトカプラ等によって構成されている。ゲート回路6は、ゲート抵抗や、ノイズによる誤作動防止のためのフィルタで構成され、サイリスタ3をターンオンする。
次に、第1の実施形態の動作を図1および図2を参照して説明する。
搬送装置の各部の電源が投入され、移動体の運転がスタートすると、モータ駆動回路2a内において、交流電源201から出力された交流電流が全波整流回路202によって整流され、整流された直流電流がインバータ203内のスイッチング素子および制御回路に出力される。該制御回路によって、スイッチング素子が制御され、該直流電流から交流電流を生成してモータ1に出力し、それにより、モータ1を運転し、また、停止させる。移動体の運転に異常がない場合、発電制動制御回路12はオン信号を出力せず、発電制動回路9aは動作しない。
ここで、移動体の駆動系または電源系に何らかの異常が発生し、制動を掛けなければならない状態になると、モータ駆動回路2aが、モータ1を駆動する電圧の供給を止めると同時に、ゲート駆動パルス回路8が、パルス幅数ミリ秒のゲート駆動パルスを最低一発は出力する。該パルスは、絶縁回路7を介して、ゲート回路6に入力され、サイリスタ3をターンオンする。
このとき、モータ1は発電機として働き、移動体が走行している速度に応じて発電を行う。ここで、サイリスタ3をターンオンしているので、全波整流回路5を介してモータ1の巻線抵抗と直列抵抗4とから構成される閉ループができ、巻線抵抗と直列抵抗4が、発電機として動作しているモータ1の負荷となり、モータ1に制動力が働く。この時、移動体は惰性で走行しているので、この惰性による走行に対してモータ1は発電機として働き、発電制動は、移動体が停止するまで動作する。
サイリスタ3をオンからオフにするためには、陽極電流を保持電流以下にしなければならない。移動体の速度が速い時は、モータ1の発電機としての発電量が多く、サイリスタ3に流れる電流が大きいが、しかし、サイリスタ3のオンによる発電制動により、移動体の速度が低下していくとモータ1の発電量も低下し、サイリスタ3に流れる電流は低下していき、移動体の速度がある速度以下になるとサイリスタ3に流れる陽極電流は保持電流以下になりサイリスタ3はオフになる。この速度以下において、搬送装置はフリーラン状態となるが、サイリスタ3の保持電流や直列抵抗4の値を、フリーラン状態となったとき、殆ど停止しているような状態に設定しておくと、実際には、前走の移動体への追突や、移動体が停止せず搬送システムを破壊するような問題は発生しない。
以上の発電制動方式によると、メンテナンス時や搬送装置の移動体の軌道投入時にはサイリスタ3はオンしないため、ブレーキ解除装置も不要であり、発電制動も作動しないので、メンテナンスが容易になる。
<第2の実施形態>
次に、この発明の第2の実施形態について図3を参照して説明する。
本実施形態による搬送装置の運転部の構成を示すブロック図(図3)は図1と類似しているが、発電制動回路9b(発電制動手段)の構成および動作が第1の実施形態における発電制動回路9aと異なっている。図3に示す第2の実施形態においては、抵抗10(第2の抵抗)とコンデンサ11とを直列接続した回路が、全波整流回路5と並列に設けられている。
次に、上述した発電制動回路9bの動作を図3を参照して説明する。
図3において、発電制動制御回路12からサイリスタ3にオン信号が印加されると、サイリスタ3がターンオンする。そして、コンデンサ11が供給する電流によって、サイリスタ3のターンオン状態が維持される。コンデンサ11に蓄えられたエネルギーは減少し、それにつれて、陽極電流が低下していくが、この間に、モータ1の巻線抵抗、インダクタンスによる電流立ち上がりの遅れが追いつき、陽極電流が増加するので、その後も、サイリスタ3のターンオン状態は維持され、発電制動が行われる。追加する抵抗10およびコンデンサ11の値は、モータ1のインダクタンス、巻線抵抗および直列抵抗4との時定数により選定する。
また、上記実施形態によれば、移動体の速度が遅く、かつ、モータ1のインダクタンスと巻線抵抗および直列抵抗4の合成抵抗値による時定数が長い場合の以下の不具合を解決することができる。すなわち、この場合は、モータ1の発電機としての動作における陽極電流の立ち上りは遅くなり、数ミリ秒のオン信号にてサイリスタ3を駆動したときに、サイリスタ3はターンオンしても直ぐにターンオフしてしまう不具合が起こり得る。この不具合を、抵抗10とコンデンサ11からなる回路にて陽極電流の立ち上がりの遅れ時間分補償をすることにより、回避することができる。
また、サイリスタ3は、陽極と陰極間の急激な電圧変化(dV/dt)により誤作動してターンオンする場合があり、発電機として動作しているモータ1の端子間電圧は常に変化するため、この急激な電圧変化によりサイリスタ3が誤作動する可能性がある。このとき、追加した抵抗10とコンデンサ11により、サイリスタ3に対する急激な電圧変化を抑えることができる。
また、本実施例の変形例として、図4に示すように、発電制動回路9bを、抵抗10と並列にダイオード30を追設して、発電制動回路9c(発電制動手段)とした構成が考えられる。この変形例において、例えば、モータ駆動回路のモータ駆動電圧が、移動体の加速等により急増した時、サイリスタ3がオンした時の電流制限用にも用いられる抵抗10が大きい場合には、サイリスタ3の陽極、陰極電位は、抵抗10、コンデンサ11によっては吸収しきれず、大きく変化してしまう。一方、ダイオード30を追設すると、上記の場合においてもダイオード30がオンし、抵抗10をバイパスするため、コンデンサ11を急速に充電する。このように、ダイオード30は、コンデンサ11の充電をスピードアップするスピードアップダイオードの役割をする。このように、ダイオード30によって、コンデンサ11の充電を速くして、上述したように、サイリスタ3の陽極、陰極間の電圧変化を抑えることができ、より電圧の安定化が可能である。
<第3の実施形態>
次に、この発明の第3の実施形態について図5を参照して説明する。
本実施形態による搬送装置の運転部の構成を示すブロック図(図5)は図1と類似しているが、発電制動回路9d(発電制動手段)の構成および動作が第1の実施形態における発電制動回路9aと異なっている。図5に示す第3の実施形態においては、抵抗20コンデンサ21とを直列接続した回路が、サイリスタ3と並列に設けられている。
次に、上述した発電制動回路9dの動作を図5を参照して説明する。
図5において、抵抗20とコンデンサ21との直列回路は、抵抗10とコンデンサ11との直列回路と同様の構成であるため、第2の実施形態にて述べた電流、また電圧の安定化の効果を同様に得ることができる。そして、第2の実施形態に比して、抵抗20とコンデンサ21との直列回路が介挿される接続点が、抵抗10とコンデンサ11との直列回路が介挿される接続点と異なり、直列抵抗4を介さずにサイリスタ3に接続されるため、より、サイリスタ3の電流または電圧の安定化を図ることができる。
また、本実施例の変形例として、図6に示すように、発電制動回路9dを、抵抗20と並列にダイオード40を追設して、発電制動回路9e(発電制動手段)とした構成が考えられる。この変形例において、第2の実施形態の変形例と同様に、例えば、モータ駆動回路のモータ駆動電圧が、移動体の加速等により急増した時、抵抗20が大きい場合には、サイリスタ3の陽極、陰極電位は、抵抗20、コンデンサ21によっては吸収しきれず、大きく変化してしまう。一方、ダイオード40を追設すると、上記の場合においてもダイオード40がオンし、抵抗20をバイパスするため、コンデンサ21を急速に充電する。このように、ダイオード40は、コンデンサ21の充電をスピードアップするスピードアップダイオードの役割をする。このように、ダイオード40によって、コンデンサ21の充電を速くして、上述したように、サイリスタ3の陽極、陰極間の電圧変化を抑えることができ、より電圧の安定化が可能である。
<第4の実施形態>
次に、この発明の第4の実施形態について図7を参照して説明する。
図7に示す発電制動回路9fは、第2の実施形態による発電制動回路9bと比較して、ダイオード50が、陽極側を直列抵抗4に、陰極側をサイリスタ3の陽極側に接続されるように介挿され、抵抗とコンデンサの直列回路からなるスナバ51(電位保持手段)が、サイリスタ3の陽極と陰極間に並列に接続される点が異なっている。
次に、上述した発電制動回路9fの動作を図7を参照して説明する。
先ず、スナバ51内のコンデンサには、電荷が蓄積されていないとする。全波整流回路5から出力される電圧によって、直列抵抗4およびダイオード50を介してスナバ51内のコンデンサが充電される。その後、全波整流回路5からパルス性の電圧が印加されても、スナバ51内のコンデンサは、放電経路がないため、モータ線間電圧のピーク値をホールドしており、スナバ51の電位より低い入力電圧に対してはダイオード50がオンせず、サイリスタ3へのパルス性の電圧印加を抑制する。
上記実施形態によれば、ダイオード50とスナバ51とを追設することにより、サイリスタ3の陽極、陰極間にパルス性の電圧が掛かり、ターンオンしてしまうという誤動作を回避することができる。また、直列抵抗4もしくは抵抗10が大きい値の場合、モータ1のインダクタンスが大きいことと相俟って、発電制動制御回路12からオン信号(パルス)によってサイリスタ3をターンオンさせるときに、時定数が大きいために電流の立ち上がりが遅れ、サイリスタ3はターンオンしても直ぐにターンオフしてしまう不具合が起こり得るが、この不具合を、ダイオード50とスナバ51とを追設して、電流をスナバ51内のコンデンサから一時的に供給することより、上記問題を回避している。
尚、本実施形態では、ダイオード50は、過渡特性の向上のため、逆回復時間が短い、高速タイプが望ましい。また、スナバ51として、抵抗とコンデンサの直列回路からなるRCスナバを想定したが、ダイオードを抵抗に並列に接続したRCDスナバでもよい。この場合、第2の実施形態の変形例および第3の実施形態の変形例と同様に、移動体の加速等によりモータの駆動電圧が急増した時等に、サイリスタ3の陽極、陰極電位変動が、スナバ51によっては吸収しきれず、大きく変化してしまう状況においても、ダイオードを追設して該ダイオードによって、スナバ51内の抵抗をバイパスして、コンデンサを急速に充電することにより、サイリスタ3の陽極、陰極間の電圧変化を抑えることが可能となる。
<第5の実施形態>
次に、この発明の第5の実施形態について図8を参照して説明する。
第5の実施形態による搬送装置の運転部の構成を示すブロック図(図8)および動作は図1と類似しているが、発電制動回路9g(発電制動手段)の構成が第1の実施形態における発電制動回路9aと異なっている。
図8を参照して、発電制動回路9gは、第1の実施形態による発電制動回路9aと比較して、トライアック60によって、サイリスタ3が置き換えられ、モータ1に2線式を用いて、全波整流回路5が省略されていることが異なっている。
上記実施形態によれば、トライアック60によって、サイリスタ3と同一の機能を、モータ1を2線式とした上で、全波整流回路5を省略して実現することができる。
尚、上述した全ての回路において、搬送装置の電源系の異常時には、移動体の全ての電源供給がストップするため、モータ駆動回路2aへの電源供給もストップする。この時、モータ駆動回路2aの制御回路が動作しなくなるため、出力信号が不定となり、一瞬モータ駆動回路2aのインバータ回路が全導通となって、発電制動において、モータ1からサイリスタ3もしくはトライアック60に流れるべき電流がモータ駆動回路2aに分流してしまい、サイリスタ3の陽極電流が保持電流以下となって、サイリスタ3はオフしてしまう。その後、モータ駆動回路2a自体がダウンするため、インバータ回路が全導通状態を脱して、移動体がフリーラン状態となる。これを防止するために、搬送装置が停止するまでモータ駆動回路2aの制御回路の電源電圧を維持できるように、前述した各実施形態において、モータ駆動回路2aを、図2(b)に示す、モータ駆動回路2bに変更する。すなわち、モータ駆動回路2a内の全波整流回路202とインバータ203の入力部との間にコンデンサCbuを付加する。
このとき、コンデンサCbuの値は、搬送装置が最高速度で走行している状態から発電制動により停止するまでの時間だけ、モータ駆動回路2bの制御回路へ電源が供給できるような容量とする。
上記のように、モータ駆動回路2aを、コンデンサCbuを付加した構成のモータ駆動回路2bに変更することによって、移動体の電源系がダウンすることによる、移動体のフリーラン状態への移行を回避することができる。
また、モータ1が交流サーボモータの場合、インバータ203が、内部のスイッチング素子と制御回路とに共通の電源を供給する構成であることが多いが、別々の電源端子からスイッチング素子と制御回路に電源を供給する構成のインバータの場合、コンデンサCbuは、搬送装置が停止するまで制御回路の電源電圧を維持するように、制御回路の電源端子間に付加する。
また、各実施形態においては、モータ駆動回路2aまたはモータ駆動回路2bを、交流電源201から交流電流を入力してモータ1を駆動する構成としたが、全波整流回路202に直流を入力しても問題ないため、全波整流回路202に、交流電源201の代わりに直流電源を接続してもよい。
本発明は、一般の製造工場や半導体製造工場において、軌道に沿って走行する部品または製品の搬送装置としての無人搬送車や天井を走行する天井搬送車の走行中の駆動系または電源系の異常に対して、発電制動により確実に移動体を停止させる技術として利用できる。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲での設計変更も含まれる。
本発明の第1の実施形態による搬送装置の運転部の構成図である。 本発明の各実施形態によるモータ駆動回路2aおよびコンデンサCbuを追設したモータ駆動回路2bの構成図である。 本発明の第2の実施形態による搬送装置の運転部の構成図である。 同実施形態の変形例による搬送装置の運転部の構成図である。 本発明の第3の実施形態による搬送装置の運転部の構成図である。 同実施形態の変形例による搬送装置の運転部の構成図である。 本発明の第4の実施形態による搬送装置の運転部の構成図である。 本発明の第5の実施形態による搬送装置の運転部の構成図である。
符号の説明
1 モータ(電動機)
2a、2b モータ駆動回路(電動機駆動手段)
3 サイリスタ
4 直列抵抗(第1の抵抗
5、202 全波整流回路
6 ゲート回路(パルス信号発生手段)
7 絶縁回路
8 ゲート駆動パルス回路(パルス信号発生手段)
9a、9b、9c、9d、9e、9f、9g 発電制動回路(発電制動手段)
10 抵抗(第2の抵抗
11 コンデンサ
12 発電制動制御回路(発電制動制御手段)
20 抵抗
21 コンデンサ
30 ダイオード
40 ダイオード
50 ダイオード(高速タイプ)
51 スナバ(電位保持手段)
60 トライアック
201 交流電源
203 インバータ

Claims (4)

  1. 軌道に沿って走行する移動体と、前記移動体を駆動する電動機と、前記電動機を駆動または制御する電動機駆動手段とからなる搬送装置であって、
    前記移動体の駆動系もしくは電源系に何らかの異常が発生したときに、発電制動指令信号を出力する発電制動制御手段と、
    前記電動機に対して発電制動を行う発電制動手段とを備え、
    前記発電制動手段は、
    陽極がグランドに接続され、前記電動機に加えられる電流を全波整流する全波整流部と、
    前記全波整流部の陰極に接続され、前記電動機の巻線抵抗に応じて抵抗値が設定される第1の抵抗と、
    前記第1の抵抗に陽極が接続されたダイオードと、
    前記ダイオードの陰極に自身の陽極が接続されるとともに、自身の陰極が前記グランドに接続されたサイリスタと、
    前記サイリスタの陽極と前記グランドとの間において前記サイリスタに並列に接続され、互いに直列接続されたスナバ抵抗及びスナバコンデンサと、
    前記全波整流部の陰極と前記グランドとの間において前記第1の抵抗、前記ダイオード及び前記サイリスタと並列に接続され、前記サイリスタに対する陽極電流の立ち上がりの遅れ時間を補償し、前記サイリスタに対する急激な電圧変化を抑制する第2の抵抗及びコンデンサとを備え、
    前記異常が発生したときに、前記サイリスタは、前記発電制動指令信号によりオン状態となり、前記全波整流部を介して、前記電動機の巻線抵抗、前記第1の抵抗及び前記ダイオードとともに閉ループを構成することを特徴とする搬送装置。
  2. 前記発電制動制御手段は、
    パルス信号を出力するパルス信号発生手段と、
    パルストランス等の絶縁回路とを備えることを特徴とする請求項1に記載の搬送装置。
  3. 前記発電制動制御手段は、
    前記サイリスタ及び前記グランドに接続されたゲート回路と、
    前記ゲート回路に駆動パルスを出力する駆動パルス回路と、
    前記ゲート回路と前記駆動パルス回路との間に接続された絶縁回路とを備えることを特徴とする請求項1に記載の搬送装置。
  4. 前記電動機駆動手段が、内部のスイッチング素子を切り替える制御回路の電源部を、コンデンサを付加した回路で構成することを特徴とする請求項1から請求項3のいずれか一項に記載の搬送装置。
JP2004041362A 2004-02-18 2004-02-18 搬送装置 Expired - Fee Related JP4239849B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041362A JP4239849B2 (ja) 2004-02-18 2004-02-18 搬送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041362A JP4239849B2 (ja) 2004-02-18 2004-02-18 搬送装置

Publications (2)

Publication Number Publication Date
JP2005237082A JP2005237082A (ja) 2005-09-02
JP4239849B2 true JP4239849B2 (ja) 2009-03-18

Family

ID=35019487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041362A Expired - Fee Related JP4239849B2 (ja) 2004-02-18 2004-02-18 搬送装置

Country Status (1)

Country Link
JP (1) JP4239849B2 (ja)

Also Published As

Publication number Publication date
JP2005237082A (ja) 2005-09-02

Similar Documents

Publication Publication Date Title
KR102243467B1 (ko) 전기 자동차를 위한 인버터
EP1626491B1 (en) Converter apparatus, inverter apparatus, and DC link voltage control method
US9086048B2 (en) Pitch drive device capable of emergency operation for a wind or water power plant
CN101367479B (zh) 电梯的制动装置
JP2018074794A (ja) 共通の順変換器を有するモータ駆動装置
US10110144B2 (en) Device and method for safe control of a semiconductor switch of an inverter
JP2007325388A (ja) 電動機の制御装置及び車載用電動機駆動システム
US9590554B2 (en) Electric power converter
CN108701556B (zh) 直流电压开关
JP2015159684A (ja) 回転電機制御装置
CN108011533B (zh) 感应负载驱动电路
US20190252987A1 (en) Power conversion device
FI122048B (fi) Kuljetusjärjestelmä
CN109792163B (zh) 非接触供电装置
JP4239849B2 (ja) 搬送装置
JP2017147849A (ja) 非接触給電装置
JP2011166954A (ja) 電動機制御装置
JP2008005636A (ja) 電力変換装置
KR102639091B1 (ko) 프리 차져
US9627981B2 (en) Bidirectional switched mode power supply
US11142075B2 (en) Efficient regenerative electrical braking
SE537080C2 (sv) Förbättrat strömställarskydd för resonansomriktare
JP2013132129A (ja) 電源制御装置
JP2019140755A (ja) 結線切換装置
JP7525740B2 (ja) 電力変換装置および電力変換方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4239849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees