JP4222256B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4222256B2
JP4222256B2 JP2004150892A JP2004150892A JP4222256B2 JP 4222256 B2 JP4222256 B2 JP 4222256B2 JP 2004150892 A JP2004150892 A JP 2004150892A JP 2004150892 A JP2004150892 A JP 2004150892A JP 4222256 B2 JP4222256 B2 JP 4222256B2
Authority
JP
Japan
Prior art keywords
ignition
internal combustion
combustion engine
gaseous fuel
compression wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004150892A
Other languages
English (en)
Other versions
JP2005330915A (ja
Inventor
健治 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004150892A priority Critical patent/JP4222256B2/ja
Publication of JP2005330915A publication Critical patent/JP2005330915A/ja
Application granted granted Critical
Publication of JP4222256B2 publication Critical patent/JP4222256B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の筒内に噴射された気体燃料と空気との混合気に点火して燃焼させる内燃機関の制御装置に関する。
近年、自動車等に搭載される内燃機関の燃料として、水素や天然ガス等の気体燃料が注目されている。しかし、この気体燃料を内燃機関の筒内(燃焼室)に噴射して燃焼させる場合には、a)気体燃料の運動量が小さいために空気と混ざり難く、可燃混合気を形成しにくいため、良好な燃焼状態が得られ難いという問題がある。
また、b)気体燃料は、ガソリン等の液体燃料を燃焼させた時に生じる液体から気体への蒸発過程がないことから、特に水素燃料では、燃焼が急速に行われて圧力上昇が急激であるため、高負荷側での運転が困難である。
上記a)の問題に対し、例えば、特許文献1では、シリンダの側方より燃料噴射弁を取り付けて、圧縮行程の途中で気体燃料を筒内(燃焼室)に噴射する(つまり、噴射タイミングを早くする)ことにより、時間をかけて空気との混合を促進させる技術が開示されている。
また、b)の問題に対して、例えば、特許文献2では、比較的混ざり易い気体燃料の噴流外周部に点火源(点火プラグ)を配置している。これにより、噴射期間中での点火が行われ、気体燃料の噴流により、燃料と空気とが火炎中に供給されながら燃焼するため、燃焼期間中の圧力上昇が緩やかになって、急激な燃焼を抑制できる。
特開2000−161066号公報 特開2003−254068号公報
ところが、特許文献1に開示された公知技術では、早いタイミングで噴射を行うため、燃料噴射が略終了した時点で点火させることになる。その結果、急激な燃焼を生じるため、燃焼騒音が増大する、およびエンジン振動が増大する等の問題が生じる。
また、特許文献2に開示された公知技術では、低速低負荷域から高速高負荷域までの広い使用領域を必要とするエンジンにおいて、筒内の空気流動が大きく変動する場合には、安定した着火が出来ない恐れがある。これを回避するため、つまり安定した着火を得るためには、点火エネルギを増大させることも考えられるが、これでは、点火装置の大型化およびコストアップを生じてしまう。
本発明は、上記事情に基づいて成されたもので、その目的は、点火装置のコストアップおよび体格の増大を招くことなく、点火安定性を高めることができ、それにより、安定した燃焼を実現できる内燃機関の制御装置を提供することにある。
(請求項1の発明)
本発明は、内燃機関の筒内に気体燃料を直接噴射する燃料噴射弁と、筒内に噴射された気体燃料と空気との混合気に点火するための点火装置とを有する内燃機関の制御装置であり、燃料噴射弁は、気体燃料を噴射するための噴孔の流路断面積が一旦狭まるスロート部を有し、そのスロート部から噴孔出口に向かって、噴孔の断面形状がテーパ状に拡大する先広がり形状に設けられることにより、気体燃料を噴孔より超音速で噴出できる。また、点火装置は、噴孔より超音速で放出された気体燃料の噴流境界に発生する圧力衝撃波が圧縮する領域(圧縮波となる領域)を圧縮波領域と呼ぶ時に、その圧縮波領域において点火を行うことを特徴とする。
本発明の燃料噴射弁では、スロート部から噴孔出口に向かって先広がり形状の噴孔を採用することで、噴孔より筒内へ噴出される気体燃料の噴流速度が超音速となるため、気体燃料と空気との混合を促進できる。また、圧力衝撃波が圧縮する圧縮波領域では、気体が圧縮されて高温となり、点火・着火が容易となる。一方、圧力衝撃波が膨張する膨張波領域では、気体が膨張して低温であるため、点火する際に大きな点火エネルギが必要となる。そこで、本発明では、気体温度が高温となる圧縮波領域において点火を行うことにより、低点火エネルギで安定した点火が可能であり、且つ、点火装置のコストアップおよび大型化を防止できる。
なお、本発明の燃料噴射弁に設けられる噴孔は、上記の様に、噴孔の断面形状が、スロート部から噴孔出口に向かってテーパ状に拡大する先広がり形状を有する、いわゆるラバールノズルと呼ばれるもので、気体燃料を超音速で噴出できる超音速ノズルを採用している。

(請求項2の発明) 請求項1に記載した内燃機関の制御装置において、点火装置は、噴孔より噴出する気体燃料の噴流が不足膨張流になる場合と、噴孔より噴出する気体燃料の噴流が過膨張流になる場合とに応じて、常に圧縮波領域で点火できる様に、点火位置を変化させることを特徴とする。
噴孔より噴出する気体燃料は、例えば、噴孔出口の噴射圧と内燃機関の筒内圧との大小関係によって、気体燃料の噴流が不足膨張流になる場合と、過膨張流になる場合とがある。しかも、不足膨張流と過膨張流とでは、それぞれの圧縮波領域が異なる。つまり、不足膨張流に圧縮波が発生する位置(圧縮波領域)と、過膨張流に圧縮波が発生する位置(圧縮波領域)とが異なるため、点火装置の点火位置が1か所に固定されていると、圧縮波領域で点火できない場合が生じる。そこで、不足膨張流と過膨張流とに応じて、常に圧縮波領域で点火できる様に、点火装置の点火位置を変化させることで、低点火エネルギによる安定した点火が可能となる。
(請求項3の発明)
請求項2に記載した内燃機関の制御装置において、点火装置は、不足膨張流の圧縮波領域に点火位置を有する第1の点火装置と、過膨張流の圧縮波領域に点火位置を有する第2の点火装置とを備えていることを特徴とする。
この構成では、噴孔より噴出する気体燃料の噴流が不足膨張流の場合は、第1の点火装置を使用して、不足膨張流の圧縮波領域にて点火を行うことができる。一方、噴孔より噴出する気体燃料の噴流が過膨張流の場合は、第2の点火装置を使用して、過膨張流の圧縮波領域にて点火を行うことができる。この結果、噴孔より噴出する気体燃料の噴流が不足膨張流であるか過膨張流であるかに係わらず、常に圧縮波領域にて点火を行うことができる。
(請求項4の発明)
請求項2に記載した内燃機関の制御装置において、点火装置は、圧縮波領域に点火位置を変更できる可変焦点レーザを採用していることを特徴とする。
この構成では、点火装置として可変焦点レーザを用いることにより、例えば、不足膨張流と過膨張流とで圧縮波領域の位置が異なる場合でも、その圧縮波領域に合わせて点火位置を変更できる。その結果、噴孔より噴出する気体燃料の噴流が不足膨張流であるか過膨張流であるかに係わらず、常に圧縮波領域にて点火を行うことができる。
(請求項5の発明)
請求項1に記載した内燃機関の制御装置において、点火装置の点火位置を基準として、圧縮波領域の位置を変化させることを特徴とする。
内燃機関に取り付けられる点火装置の位置が固定されていると、請求項2の発明でも記載した様に、噴孔より噴出する気体燃料の噴流が不足膨張流になる場合と、過膨張流になる場合とで、それぞれの圧縮波領域が異なるため、何方か一方の圧縮波領域に点火位置を合わせると、他方の圧縮波領域では点火できなくなる。
これに対し、本発明では、不足膨張流と過膨張流とに応じて点火装置の点火位置を変更するのではなく、点火装置の点火位置を固定した状態で、その点火位置に圧縮波領域の位置を合わせるものである。これにより、点火装置の点火位置が1か所に固定されている場合でも、その点火位置に圧縮波の発生位置を変化させることにより、常に圧縮波領域にて点火を行うことができるので、低点火エネルギによる安定した点火が可能である。
(請求項6の発明)
請求項5に記載した内燃機関の制御装置において、噴孔より噴出する気体燃料の噴流が常に不足膨張流となる時に、点火装置は、不足膨張流の圧縮波領域に点火位置を有し、且つ噴孔より噴出する気体燃料の噴流が常に不足膨張流となる様に、燃料噴射弁の噴射圧力を規定圧以上で供給することを特徴とする。
噴孔より噴出する気体燃料の噴流が常に不足膨張流であれば、圧縮波の位置(圧縮波領域)も略特定できる(圧縮波の位置が大きくずれることがない)ため、その圧縮波領域に点火装置の点火位置を設けることで、常に圧縮波領域での点火が可能となる。
(請求項7の発明)
請求項5に記載した内燃機関の制御装置において、噴孔より噴出する気体燃料の噴流が常に過膨張流となる時に、点火装置は、過膨張流の圧縮波領域に点火位置を有し、且つ噴孔より噴出する気体燃料の噴流が常に過膨張流となる様に、燃料噴射弁の噴射圧力を規定圧未満で供給することを特徴とする。
噴孔より噴出する気体燃料の噴流が常に過膨張流であれば、圧縮波の位置(圧縮波領域)も略特定できる(圧縮波の位置が大きくずれることがない)ため、その圧縮波領域に点火装置の点火位置を設けることで、常に圧縮波領域での点火が可能となる。
(請求項8の発明)
請求項2、3、4、6、7に記載した何れかの内燃機関の制御装置において、燃料噴射弁の噴孔出口の噴射圧Peと、内燃機関の筒内圧Pa(噴射時の筒内圧)との大小関係において、
Pe>Pa…………(1)
Pe<Pa…………(2)
上記(1)の関係が成立する時に、噴孔より噴出する気体燃料の噴流が不足膨張流となり、上記(2)の関係が成立する時に、噴孔より噴出する気体燃料の噴流が過膨張流となることを特徴とする。なお、噴射圧Peは、燃料噴射弁に供給される燃料圧力(例えばコモンレール式燃料噴射装置のコモンレール圧)ではなく、噴孔の出口、つまり先広がり形状の噴孔内部の燃料圧力である。
上記(1)の関係が成立する時、つまり、内燃機関の筒内圧Paに対して、噴孔出口の噴射圧Peが相対的に高い場合は、気体燃料の膨張エネルギが大きいため、先広がり形状の噴孔内で気体燃料が膨張しきれず、膨張エネルギを伴った気体燃料が、噴孔出口から膨張波となって筒内へ放出される。
一方、上記(2)の関係が成立する時、つまり、内燃機関の筒内圧Paに対して、噴孔出口の噴射圧Peが相対的に低い場合は、気体燃料の膨張エネルギが小さいため、噴孔内で気体燃料の膨張が略収束する。その結果、膨張エネルギの小さい(あるいは膨張エネルギを使い切った)気体燃料が、噴孔出口から圧縮波となって筒内へ放出される。
本発明を実施するための最良の形態を以下の実施例により詳細に説明する。
図1は内燃機関1の断面図である。
実施例1に記載する内燃機関1は、図1に示す様に、シリンダブロック2に形成されたシリンダ3内を往復動するピストン4と、このピストン4の上部に形成される筒内3a(燃焼室)に気体燃料を直接噴射するインジェクタ5と、筒内3aに噴射された気体燃料と空気との混合気に点火させる点火装置(後述する)等を備え、図示しない電子制御ユニット(以下、ECUと呼ぶ)により内燃機関1の運転状態が電子制御される。
ピストン4は、内燃機関1のクランク軸(図示せず)にコンロッド6を介して連結され、シリンダ3内を往復動するピストン4の往復運動が、コンロッド6を介してクランク軸に回転運動として伝達される。
インジェクタ5は、ECUによって電子制御される電磁弁(図示せず)、この電磁弁の開弁動作によって気体燃料を噴射するノズル7(図2参照)とを有し、図1に示す様に、ノズル7の先端部が内燃機関1の筒内3aに突き出た状態でシリンダヘッド8に取り付けられている。シリンダヘッド8は、シリンダブロック2の上端面に配置されて、ピストン4の上端面との間に燃焼室を形成すると共に、その燃焼室に連通する吸気ポート9と排気ポート10とが形成されている。
吸気ポート9と排気ポート10は、それぞれカム(図示せず)によって駆動される吸気弁11と排気弁12とにより開閉される。吸気弁11は、ピストン4がシリンダ3内を降下(図示下方へ移動)する吸入行程の際に駆動されて吸気ポート9を開くことにより、新気(外気)をシリンダ3内へ吸入させる。排気弁12は、ピストン4がシリンダ3内を上昇(図示上方へ移動)する排気行程の際に駆動されて排気ポート10を開くことにより、シリンダ3内から燃焼ガスを排気させる。
ノズル7は、図2に示す様に、ノズルボディ13とニードル14とで構成される。
ノズルボディ13は、ニードル14を収容するガイド孔13aと、このガイド孔13aに気体燃料を導く燃料通路13bと、ニードル14がガイド孔13aをリフト(図示上方へ移動)した時に、気体燃料を噴射する噴孔13c等が形成されている。
ガイド孔13aは、ノズルボディ13の軸芯部(径方向中央部)を長手方向に穿設されて、その下端部に円錐状のシート面13d(図3参照)が形成され、更に、シート面13dの円錐中心部に袋状のサック室13eが凹設されている。また、ガイド孔13aの途中には、孔径が拡大して設けられた燃料溜め室13fを有し、この燃料溜め室13fに燃料通路13bが連通している。
ニードル14は、ガイド孔13aに数μmのクリアランスで挿入される摺動軸部14aと、燃料溜め室13fの燃料圧力を受けるテーパ状の受圧面14bと、この受圧面14bより図示下方へ延びるニードル軸部14cとで構成され、このニードル軸部14cの外径が摺動軸部14aの外径より細く設けられて、ガイド孔13aとの間に環状の空間が形成されている。この環状の空間は、燃料溜め室13fからノズルボディ13のシート面13dまで燃料を導く燃料通路15として形成されている。また、ニードル軸部14cの先端部は、先細り形状となる段付き円錐状に設けられ、その上段側円錐面と下段側円錐面との境界線(稜線)が、ノズルボディ13のシート面13dに着座するシート部14dとして設けられている。
上記のノズル7は、ガソリン機関あるいはディーゼル機関等に使用されるインジェクタと比較した場合に、基本的な構造は略同一であるが、噴孔13cの形状に特徴を有している。すなわち、本実施例のノズル7に設けられる噴孔13cは、サック室13eに開口する噴孔入口から、ノズルボディ13の外面に開口する噴孔出口までの孔径が同一ではなく、図3に示す様に、噴孔入口の下流側(出口側)に孔径が小さくなるスロート部13c1が設けられ、このスロート部13c1から噴孔出口に向かって、噴孔13cの断面形状がテーパ状に拡大する先広がり形状を有している。
この先広がり形状の噴孔13cは、いわゆるラバールノズルと呼ばれるもので、気体燃料を超音速で噴出できる超音速ノズルである。なお、上記の噴孔13cは、ノズル7の周方向に複数個、例えば等間隔あるいは不等間隔に設けることができる。また、ノズル7の上下方向に多段に設けることも可能であり、その両方を組み合わせる(つまり、周方向に複数個設けると共に、ノズル7の上下方向にも多段に配置する)ことも可能である。
点火装置は、気体燃料と空気との混合気に着火する点火プラグ16(図1参照)と、こ点火プラグ16に高電圧を供給する点火コイル(図示せず)、および点火コイルに発生する高電圧を制御するイグナイタ(図示せず)等より構成され、イグナイタの通電時間および点火タイミングなどがECUにより電子制御される。なお、図1では点火装置における点火プラグ16のみが図示されている。
点火プラグ16は、ガソリン機関に使用される一般的な点火プラグを使用することが可能であり、例えば、図4に示す様に、中心電極16aと外側電極16bから成る一対の電極を有し、電極間に生じる火花放電によって混合気に点火する。なお、本発明の「点火位置」は、火花放電が発生する中心電極16aと外側電極16bとの略中間点(図中A点)とする。
ところで、インジェクタ5のノズル7の噴孔13cを先広がり形状(超音速ノズル)とした場合、図5に示す様に、噴孔出口の噴射圧Peと、噴孔13cから気体燃料が噴射される時(噴射タイミング)の内燃機関1の筒内圧Paとの大小関係に応じて、筒内3aに噴出される気体燃料の噴流状態が異なる。
つまり、
Pe>Pa…………(1)
Pe<Pa…………(2)
上記(1)の関係が成立する時には、噴孔13cより噴出する気体燃料の噴流が不足膨張流となり、上記(2)の関係が成立する時には、噴孔13cより噴出する気体燃料の噴流が過膨張流となる。
詳述すると、上記(1)の関係が成立する時、つまり、内燃機関1の筒内圧Paに対して、噴孔出口の噴射圧Peが相対的に高い場合は、気体燃料の膨張エネルギが大きいため、先広がり形状の噴孔13c内で気体燃料が膨張しきれず、図5(a)に示す様に、膨張エネルギを伴った気体燃料が、噴孔出口から膨張波となって筒内3aへ放出されるため、不足膨張流となる。
一方、上記(2)の関係が成立する時、つまり、内燃機関1の筒内圧Paに対して、噴孔出口の噴射圧Peが相対的に低い場合は、気体燃料の膨張エネルギが小さいため、噴孔13c内で気体燃料の膨張が略収束する。その結果、図5(b)に示す様に、膨張エネルギの小さい(あるいは膨張エネルギを使い切った)気体燃料が、噴孔出口から圧縮波となって筒内3aへ放出されるため、過膨張流となる。
ここで、噴孔13cより超音速で放出された気体燃料の噴流境界に発生する圧力衝撃波が圧縮する圧縮波領域(図5の圧縮波が発生する領域)では、気体が圧縮されて高温となり、点火・着火が容易となる。一方、圧力衝撃波が膨張する膨張波領域(図5の膨張波が発生する領域)では、気体が膨張して低温であるため、点火する際に大きな点火エネルギが必要となる。そこで、実施例1では、少なくとも2本の点火プラグ16を使用することにより、気体温度が高温となる圧縮波領域において常に点火を行うことを特徴とする。
すなわち、不足膨張流が発生する時と、過膨張流が発生する時とで、どちらの圧縮波領域にも対応できる様に、少なくとも2本の点火プラグ16を異なる位置に取り付けるものとする。具体的には、不足膨張流が発生する時の圧縮波領域に点火位置を有する第1の点火プラグ16と、過膨張流が発生する時の圧縮波領域に点火位置を有する第2の点火プラグ16とを使用する(なお、図1には1本の点火プラグ16のみを示している)。
一方、ECUは、例えば、図6に示す方法に従って、噴射圧Peと筒内圧Paとの大小関係を基に不足膨張流か過膨張流かを判定し、不足膨張流の時には、第1の点火プラグ16に点火を行わせ、過膨張流の時には、第2の点火プラグ16に点火を行わせる様に制御する。
図6は不足膨張流か過膨張流かを判定するための処理手順を示す方法(フローチャート)であり、先ず、ステップ10、20において、筒内圧Paと噴射圧Peとを求めた後、ステップ30にて両者の差(Pa−Pe)を算出する。続いて、ステップ40にて、両者の差が0以上か否かを判定し、判定結果がNOの場合、つまり、Peの方がPaより高い時は、不足膨張流であると判断する。一方、判定結果がYESの場合、つまり、Paの方がPeより高い時は、過膨張流であると判断する。
筒内圧Paは、図7に示す方法によって求めることができる。つまり、内燃機関1の筒内圧を検出できる筒内圧センサ17を有している場合は、図7(a)に示す様に、噴射タイミング18に同期して検出される筒内圧センサ17の検出値(筒内圧)を入力することができる。また、筒内圧センサ17を持たない場合でも、図7(b)に示す様に、スロットル開度19とサージタンク圧20および筒内圧に関する諸元情報21(例えば、ターボ回転数、EGR率等)から、噴射タイミング18に同期して筒内圧を演算することができる。
噴射圧Peは、図7(c)に示す様に、噴射圧センサ22(例えばコモンレール内の燃料圧力を検出する圧力センサ)あるいは噴射圧情報23、機関負荷24(例えばアクセル開度)、噴孔13cに関する諸元情報25(噴孔径、噴孔長さ、噴孔13cの先広がり形状のテーパ角度等)、燃料情報26等を基に演算可能である。
(実施例1の効果)
実施例1に記載した内燃機関1では、インジェクタ5に超音速ノズルを採用しているので、筒内3aへ噴出される気体燃料の噴流速度が超音速となり、空気との混合が促進されて、充分に混合された混合気を得ることができる。
また、不足膨張流が発生する時の圧縮波領域に点火位置を有する第1の点火プラグ16と、過膨張流が発生する時の圧縮波領域に点火位置を有する第2の点火プラグ16とを使用することにより、常に圧縮波領域にて点火することが可能である。
つまり、不足膨張流が発生する時は、第1の点火プラグ16を使用して、不足膨張流の圧縮波領域にて点火を行うことができる。また、過膨張流が発生する時は、第2の点火プラグ16を使用して、過膨張流の圧縮波領域にて点火を行うことができる。これにより、噴孔13cより噴出する気体燃料の噴流が不足膨張流であるか過膨張流であるかに係わらず、常に圧縮波領域にて点火を行うことができるので、低点火エネルギで安定した点火が可能であり、且つ、点火装置のコストアップおよび大型化を防止できる。
この実施例2は、実施例1に記載した点火プラグ16の代わりに、点火位置を変更できる可変焦点レーザ(図示せず)を採用した場合の一例である。
可変焦点レーザを採用することにより、常に圧縮波領域に合わせて点火位置を変更できるので、実施例1の場合と同様に、低点火エネルギで安定した点火が可能であり、且つ、点火装置のコストアップおよび大型化を防止できる。
なお、可変焦点レーザを採用する場合は、実施例1に記載した様に、噴射圧Peと筒内圧Paとの大小関係から不足膨張流か過膨張流かを判定し、不足膨張流の時に発生する圧縮波領域と、過膨張流の時に発生する圧縮波領域とに合わせて点火位置を変更することができる。また、その他の方法として、図8に示す様に、噴出マッハ数27、燃料物性値28、噴孔形状の諸元情報29などを基に、圧縮波の位置(圧縮波領域)を演算によって求めることも可能であり、その求められた圧縮波領域に合わせて点火位置を変更することにより、常に圧縮波領域での点火が可能となる。
この実施例3では、点火プラグ16の点火位置に合わせて圧縮波領域を変化させる場合の一例を説明する。
点火プラグ16の取付け位置が固定されていると、実施例1でも記載した様に、噴孔13cより噴出する気体燃料の噴流が不足膨張流になる場合と、過膨張流になる場合とで、それぞれの圧縮波領域が異なるため、何方か一方の圧縮波領域に点火位置を合わせて点火プラグ16を取り付けると、他方の圧縮波領域では点火できなくなる。
そこで、本実施例では、不足膨張流と過膨張流とに応じて点火プラグ16の点火位置を変更するのではなく、点火プラグ16の取付け位置を固定した状態で、その点火プラグ16の点火位置に圧縮波領域の位置を合わせるものである。具体的には、噴孔13cより噴出する気体燃料の噴流が常に不足膨張流となる様に、あるいは常に過膨張流となる様に、インジェクタ5の噴射圧力を調整する。
例えば、噴孔13cより噴出する気体燃料の噴流が常に不足膨張流となる様に、インジェクタ5の噴射圧力を規定圧以上で供給することで、圧縮波領域の発生位置を点火プラグ16の点火位置に合わせることが可能である。言い換えると、不足膨張流が発生する時の圧縮波領域に点火位置を合わせて点火プラグ16を取り付けておくことで、常に不足膨張流の圧縮波領域にて点火を行うことができる。
あるいは、噴孔13cより噴出する気体燃料の噴流が常に過膨張流となる様に、インジェクタ5の噴射圧力を規定圧未満で供給することで、圧縮波領域の発生位置を点火プラグ16の点火位置に合わせることが可能である。言い換えると、過膨張流が発生する時の圧縮波領域に点火位置を合わせて点火プラグ16を取り付けておくことで、常に過膨張流の圧縮波領域にて点火を行うことができる。
これにより、点火プラグ16の点火位置が1か所に固定されている場合でも、その点火位置に合わせて圧縮波の発生位置を変化させることにより、常に圧縮波領域にて点火を行うことができるので、低点火エネルギによる安定した点火が可能である。
内燃機関の断面図である(実施例1)。 インジェクタのノズル断面図である。 ノズル先端部の断面図である。 点火プラグの断面図である。 不足膨張流(a)と過膨張流(b)の説明図である。 ECUの処理手順を示すフローチャートである。 筒内圧Paおよび噴射圧Peの算出方法を示すブロック図である(実施例2)。 圧縮波の位置を求めるためのブロック図である(実施例2)。
符号の説明
1 内燃機関
3a 筒内
5 インジェクタ(燃料噴射弁)
16 点火プラグ(点火装置)
13c 噴孔
Pe 噴孔出口の噴射圧
Pa 内燃機関の筒内圧

Claims (8)

  1. 内燃機関の筒内に気体燃料を直接噴射する燃料噴射弁と、
    前記筒内に噴射された気体燃料と空気との混合気に点火するための点火装置とを有する内燃機関の制御装置であって、
    前記燃料噴射弁は、気体燃料を噴射するための噴孔の流路断面積が一旦狭まるスロート部を有し、そのスロート部から噴孔出口に向かって、前記噴孔の断面形状がテーパ状に拡大する先広がり形状に設けられることにより、気体燃料を噴孔より超音速で噴出でき、
    前記点火装置は、前記噴孔より超音速で放出された気体燃料の噴流境界に発生する圧力衝撃波が圧縮する領域(圧縮波となる領域)を圧縮波領域と呼ぶ時に、その圧縮波領域において点火を行うことを特徴とする内燃機関の制御装置。
  2. 請求項1に記載した内燃機関の制御装置において、
    前記点火装置は、前記噴孔より噴出する気体燃料の噴流が不足膨張流になる場合と、前記噴孔より噴出する気体燃料の噴流が過膨張流になる場合とに応じて、常に圧縮波領域で点火できる様に、点火位置を変化させることを特徴とする内燃機関の制御装置。
  3. 請求項2に記載した内燃機関の制御装置において、
    前記点火装置は、前記不足膨張流の圧縮波領域に点火位置を有する第1の点火装置と、前記過膨張流の圧縮波領域に点火位置を有する第2の点火装置とを備えていることを特徴とする内燃機関の制御装置。
  4. 請求項2に記載した内燃機関の制御装置において、
    前記点火装置は、前記圧縮波領域に点火位置を変更できる可変焦点レーザを採用していることを特徴とする内燃機関の制御装置。
  5. 請求項1に記載した内燃機関の制御装置において、
    前記点火装置の点火位置を基準として、前記圧縮波領域の位置を変化させることを特徴とする内燃機関の制御装置。
  6. 請求項5に記載した内燃機関の制御装置において、
    前記噴孔より噴出する気体燃料の噴流が常に不足膨張流となる時に、前記点火装置は、前記不足膨張流の圧縮波領域に点火位置を有し、且つ前記噴孔より噴出する気体燃料の噴流が常に不足膨張流となる様に、前記燃料噴射弁の噴射圧力を規定圧以上で供給することを特徴とする内燃機関の制御装置。
  7. 請求項5に記載した内燃機関の制御装置において、
    前記噴孔より噴出する気体燃料の噴流が常に過膨張流となる時に、前記点火装置は、前記過膨張流の圧縮波領域に点火位置を有し、且つ前記噴孔より噴出する気体燃料の噴流が常に過膨張流となる様に、前記燃料噴射弁の噴射圧力を規定圧未満で供給することを特徴とする内燃機関の制御装置。
  8. 請求項2、3、4、6、7に記載した何れかの内燃機関の制御装置において、
    前記燃料噴射弁の噴孔出口の噴射圧Peと、前記内燃機関の筒内圧Pa(噴射時の筒内圧)との大小関係において、
    Pe>Pa…………(1)
    Pe<Pa…………(2)
    上記(1)の関係が成立する時に、前記噴孔より噴出する気体燃料の噴流が不足膨張流となり、上記(2)の関係が成立する時に、前記噴孔より噴出する気体燃料の噴流が過膨張流となることを特徴とする内燃機関の制御装置。
JP2004150892A 2004-05-20 2004-05-20 内燃機関の制御装置 Expired - Fee Related JP4222256B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150892A JP4222256B2 (ja) 2004-05-20 2004-05-20 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150892A JP4222256B2 (ja) 2004-05-20 2004-05-20 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2005330915A JP2005330915A (ja) 2005-12-02
JP4222256B2 true JP4222256B2 (ja) 2009-02-12

Family

ID=35485752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150892A Expired - Fee Related JP4222256B2 (ja) 2004-05-20 2004-05-20 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP4222256B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0712403D0 (en) * 2007-06-26 2007-08-01 Delphi Tech Inc A Spray Hole Profile
JP5780943B2 (ja) * 2011-12-15 2015-09-16 株式会社日本自動車部品総合研究所 着火制御装置
JP5786875B2 (ja) * 2013-02-05 2015-09-30 株式会社デンソー 燃料噴射ノズル
JP7350533B2 (ja) * 2019-06-28 2023-09-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 燃料噴射弁及び燃料噴射弁を備える内燃機関

Also Published As

Publication number Publication date
JP2005330915A (ja) 2005-12-02

Similar Documents

Publication Publication Date Title
US7740002B2 (en) Fuel injector
EP1898064A1 (en) Cylinder injection type spark ignition internal combustion engine
JP5002566B2 (ja) エンジン及びエンジン用点火プラグ
JP2003534495A (ja) 燃料噴射システム
JP2008202483A (ja) 筒内噴射型の内燃機関、及び筒内噴射型の内燃機関に用いるインジェクタ
JP2006510843A (ja) 直接噴射火花点火内燃機関
JP2015007376A (ja) 機関制御装置
JP2008151000A (ja) 内燃機関
JP2007138779A (ja) 筒内噴射内燃機関
KR102638105B1 (ko) 이중 연료 엔진을 위한 분사 노즐 및 이중 연료 엔진
JP2001227344A (ja) トーチ点火式ガスエンジンの噴孔構造
JP4244745B2 (ja) 筒内直噴式ガソリン機関
JP2003534485A (ja) 燃料噴射システム
JP4222256B2 (ja) 内燃機関の制御装置
JP2007162631A (ja) 内燃機関の制御装置
EP1316697B1 (en) Cylinder injection type spark ignition engine
JP2013204455A (ja) 燃料噴射弁
JP2007231913A (ja) 内燃機関の燃料噴射装置
US9605585B2 (en) Internal combustion engine, in particular for a motor vehicle, and a method for operating such an internal combustion engine
JP4720799B2 (ja) 筒内直接噴射式内燃機関
JP4609227B2 (ja) 内燃機関
JP2005155570A (ja) 内燃機関の燃料供給装置及び方法
WO2004099584A1 (ja) 副室式ガス機関の燃焼室構造及び副室式ガス機関
JP2022081705A (ja) 副室式内燃機関
JP2006322392A (ja) 燃料噴射弁

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees