JP4221502B2 - 水晶振動子センサーシステム - Google Patents

水晶振動子センサーシステム Download PDF

Info

Publication number
JP4221502B2
JP4221502B2 JP2003431953A JP2003431953A JP4221502B2 JP 4221502 B2 JP4221502 B2 JP 4221502B2 JP 2003431953 A JP2003431953 A JP 2003431953A JP 2003431953 A JP2003431953 A JP 2003431953A JP 4221502 B2 JP4221502 B2 JP 4221502B2
Authority
JP
Japan
Prior art keywords
counter
signal
frequency
measurement
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003431953A
Other languages
English (en)
Other versions
JP2005189133A (ja
Inventor
基成 芝上
俊二 土屋
忠正 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003431953A priority Critical patent/JP4221502B2/ja
Publication of JP2005189133A publication Critical patent/JP2005189133A/ja
Application granted granted Critical
Publication of JP4221502B2 publication Critical patent/JP4221502B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Description

この発明は、高感度で微量物質の付着を検出することのできる水晶振動子センサーシステムに関するものである。
水晶振動子の表面や、それに付着して形成された電極表面に何らかの物質が付着すると、その質量の変化によって、水晶振動子の周波数特性が変化することは、すでによく知られている。この性質を利用して、極めて微量な物質の付着を検出し計測するセンサーが実現されており、これはQCM水晶センサーと呼ばれている。また、このQCMセンサーの表面に物質の付着特性に選択性のある膜を形成して、特定の物質の検出や計測を行うことも行われている。
また、水晶振動子の周波数特性の変化は、水晶発信器を用いて高周波発振を行い、その発振周波数をカウンターで計測することにより行われている。
電極のみに物質が付着するものとするとき、QCMセンサーの電極面積をA、F0を発振周波数、ΔFを物質が付着したことによる周波数の変化値、μを水晶のせん断応力、pを水晶の比重、ΔmをQCMセンサーの質量の変化量、と、するとき、その発信周波数の変化量ΔFは、以下の関係にあることが知られている。
Figure 0004221502
例えば、直径5mmで基本波の発振周波数が9MHzの場合は、約1.1ng/Hzと言われている。また、数1において、発振周波数の2乗にしたがって、質量の変化に対する周波数の変化の係数が増大する。このため、できるだけ高い発信周波数とすることが望ましい。
しかし、高い周波数を高精度に測定するためには、高精度の周波数カウンターの他に、ノイズやジッタの少ない波形を用いて周波数を計測できる条件や環境を整える必要がある。このため、一般に、発振回路は、センサーヘッドに設けられることが多い。また、センサーヘッドから、周波数カウンターまでの距離は、伝送路の途中でノイズを拾わないようにするため、できるだけ短く設定される。
上記の様に、一般に、高い発振周波数で計測するほうが高精度にし易いが、水晶振動子の物理的制約や、製造コスト的な制約からの限界がある。
しかし、このようなQCMセンサーを多数の位置に設ける計測システムの場合は、次のような問題が発生する。1)高精度周波数カウンターを多数用いると、コストダウンが困難である。2)用いる周波数カウンターの数を減らすために遠隔地にある多数のセンサーヘッドから送られる高周波信号をそのまま伝送し、ひとつあるいは少数の周波数カウンターで測定する構成にするとノイズの影響を受けやすくなる。
この発明は上記に鑑み提案されたもので、互いに離間した位置にある多数のセンサーヘッドをもったQCMセンサーを用いたシステムで、雑音の影響を受けづらく、高精度でありながら、それに用いる高精度の周波数カウンターの数をセンサーの数よりも減らすことのできる水晶振動子センサーシステムを提供することを目的とする。
一般に、高感度の水晶振動子センサーシステムでは、高い発振周波数となるが、その発振信号の周波数をより低周波数に変換して伝送することにより、ノイズによる擾乱を受けづらくなる。しかし、これにともなって従来は、水晶振動子センサーの検出感度が低下したが、本発明では、上記のように、この信号の周波数を計測する周波数カウンターの構成を工夫することにより、上記の検出感度の低下を抑制できる。これにより、伝送線に重畳されるノイズの影響を抑制し、しかも分周による検出感度の低下を防止することができる。また、比較的長距離の伝送が可能であるので、1台の周波数カウンターで、複数の水晶振動子センサーの発信周波数を計測することができる。
上記目的を達成するために、本発明の水晶振動子センサーシステムは、水晶振動子センサーと、前記水晶振動子センサーから送られる信号の周波数を計測するカウンターと、前記水晶振動子センサーの発生信号の周波数を前記のカウンターの計測帯域に整合させるように変換する周波数変換器と、計測した値から前記変換の逆変換を行って水晶振動子センサーの発振周波数を求めることのできるデータ処理器とを備え、
上記水晶振動子センサーで周期的信号を発生し、その周期的信号を上記のカウンターの計測帯域に整合させるように周波数変換し、その周波数変換された信号を伝送して、その伝送された信号について予め決められた周波数確度に達するまでの時間にわたり上記のカウンターで計測し、上記データ処理器で上記の逆変換を行なって水晶振動子センサーの発振周波数を求める計測システムであって、
上記のカウンターは、
1ビット分の2進カウンター(前段カウンターと称する)と、
多ビット分の2進カウンター(後段カウンターと称する)と、
後段カウンターの最低位桁の2進データと前段カウンターの2進データとの排他的論理和を出力する演算器と、
後段カウンターから2進データを読み出す構成と、を備え、
測定区間信号で指定された測定区間の中に、複数の副測定区間を設け、それぞれの副測定区間では上記の後段カウンターで計数し、副測定区間と、それに引き続く副測定区間との間では前段カウンターで計数し、
上記の副測定区間を指定する副測定区間信号、あるいは、その波形整形された副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)で、リセットされた後段カウンターで計数を開始し、
副測定区間信号の終わりに当たるその信号の立下り(あるいは立ち上がり)で後段カウンターの計数を一時的に終了して2進データを読み出し部へ送り、
引き続く副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)までは、前段カウンターで計数をし、
前記の引き続く副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)において、後段カウンターをリセットし、後段カウンターの最低位桁の2進データと前段カウンターの2進データとの排他的論理和を後段カウンターの最低位桁にセットして計測するカウンターであるものである。
以下にこの発明の実施の形態を図面に基づいて詳細に説明する。以下の説明においては、同様の構成あるいは同様の機能を有するものについては、同じ符号を用いることを原則とする。
第1の実施形態を図1に示す。これは、複数(1からNまでで、また、以下では、1からNまでのnについて述べる)の水晶振動子4(あるいは4n)、と発振回路とで構成かれたセンサーヘッド2(あるいは2n)を用いている。但し、図1においては、便宜的に、複数のもののうち、n番目のものを代表として示す。このセンサーヘッド2(あるいは2n)からの高周波信号は、周波数変換部3(あるいは3n)で、周波数カウンターの計測帯域に整合する周波数の信号に、上記の高周波信号の周波数を低下させる。例えば、水晶振動子をセンサーヘッド4では、60MHzの発振周波数を2分の1に分周して30MHzにして伝送し、センサーヘッド4nでは、90MHzの発振周波数を3分の1に分周して30MHzにして伝送する。この低下方法は、既によく知られており、例えば、上記の高周波信号を分周するものである。あるいは、既に周波数の明らかな信号との混合による周波数変換を行う方法でも、用いることができる。この様に周波数を変換するのは、上記のように、発振周波数の2乗にしたがって、質量の変化に対する周波数の変化の係数が増大するので、発振周波数を2倍にして質量の変化を検出し、その後この周波数を2分の1にしても、同じ質量変化にたいして、発振周波数の変化は2倍あるためである。あるいは、既に周波数の明らかな信号との混合による周波数変換を行う場合には、その周波数の変化分は、縮小されず、その感度を維持することができる。
周波数変換された高周波信号は、被測定信号であって、この信号は、信号線10(あるいは10n)で選択部5まで伝送される。この伝送は、1m程度の場合もあるし、数10m程度の場合もあるが、これは、測定のための設定によって異なるのが一般的である。
選択部5では、どのセンサーヘッドの発振周波数を計測するかを選択する、選択された高周波信号はカウンター6でその周波数が計測される。この計測に当たっては、十分に長い時間にわたって計数して周波数計測することが望ましく、たとえば、12秒に渡って計数して、その値を計数に要した時間で割り、上記の分周の逆数を乗ずる。分周でなく、周波数混合により周波数変換した場合は、その周波数変換の逆算となるように演算する。この様な、上記の計測によって得られたデータはデータ処理部7で処理され、発振周波数の変化や、それから得られる付着した物質の質量などが計算されて出力される。
この計測は、同一の長さの計測時間(T、例えば1秒)に渡り、水晶振動子センサーを起源とする高周波信号の振動数を、複数の計測時間にわたり順次計測し、複数(n)の計測値の和(S)を用いて、周波数(f)を、f=wS/nT、から求めることができる。また、最初の周波数の提示においては、その直前の提示のために用いた計測値と共通の計測値(たとえば、1回目の計測値)をその一部に用いることにより、nT時間ごとの表示ではなく、T時間ごとの表示を行うことができる。
図2は、図1のカウンター6の詳細を示すブロック図である。カウンター6に入力した信号は波形整形部21で波形が整えられる。この波形整形部21においては、例えば、同期式遅延型フリップフロップを用いることができる。この同期式遅延型フリップフロップを用いた波形整形の特徴は、ノイズによる擾乱の影響を抑制でき、デジタルパルス波形が得られることである。ゲート22では、基準信号発生部35からの測定区間信号に従って、計測するパルス列を断続する。カウンター回路23では、断続された上記のデジタルパルス列のパルス数を計数し、この計数値からデータ処理部24が、選択された水晶振動子センサーの発振周波数を算出し、必要に応じて、その水晶振動子センサーに付着した物質の質量を見積もる。
図3は、カウンター6の他の構成を示す図である。これは、水晶振動子センサーから送られる信号の振動数を計測する複数のカウンター(33−1から33−nまで)を用いており、これらを、単位時間ごとにデータ記録部を順次切り換えて、巡回的に用いるものである。これは、次のように行われる。
1)カウンター回路で計測されたデータをデータ記録部切換部31が受け取ると、順次データ記録部に記録される。最後のデータ記録部まで達すると次は、先頭のデータ記録部−1に巡回する。
2)記録されたデータを用いる場合は、制御部からの制御信号34により、記録されたデータから必要な個数のデータ、たとえば検出感度をm倍(例えば10倍)にする場合は最新のm個のデータをデータ記録部切換部32で切り換えて、データ加算部35に送る。
3)データ加算部35では送られたデータを加算し、m倍の時間分のデータに加工する。このことにより、検出感度をm倍にすることができる。
また、図4に表示に用いる計測値を示す様に、
1)最初は、計測値1(データ記録部―1の値)をn倍(図4ではn=5)して使用し、
2)次は計測値1と、計測値2(データ記録部―2の値)のデータの(n−1)倍と、の和を用い、
3)その次は、計測値1から2までのデータの和と、計測値3(データ記録部−3の値)の(n−2)倍と、の和を用い、
4)nまでのk番目では、計測値1から計測値(k−1)までのデータ和と、計測値(データ記録部−kの値)の(n−k)倍と、の和を表示し、
5)これをn番目まで行い、
6)その後は、それぞれのカウンターの最近の値を用いて表示する。
このようにすることによって、測定者には、まず、その概要を短時間で表示することができる。
また、図5に示す構成では、水晶振動子センサーの発信信号を分周してから送られる信号の振動数を計測する複数(n)のカウンターを用いるが、図3の構成では、複数のデータ記録部を用いている点が異なっている。図5の構成では、それぞれのカウンターの桁数が十分に長く、表示単位時間のn倍の時間分の累積を行うことが出来る長さである。これらのカウンターについて、予め決められた単位時間をおいて順次(時点、U1、U2、・・・、Un)計測を開始し、最後のカウンターから最初カウンターに巡回する。その巡回の一巡する時間(V)は、それぞれのカウンターで計測する時間よりも長い時間(T<V)であり、上記のそれぞれのカウンターの計測値をその計測時間で除算し、低下割合の逆数(w)を乗じて周波数を求める処理を順次行って提示するものである。測定の開始時点では、上記の1)から4)と同様の処理と同じようにして、順次表示することも可能である。
図5に示す構成でカウンターを2個に制限して用いる場合には、カウンター切換部をさらに簡素化することができる。図6に示す構成は、このような構成にあたるもので、カウンター1と、2とは、相互に補完しながら計数するものである。つまり、カウンター1が計数し、そのデータを転送している間は、カウンター2が計数し、次にカウンター1が計数し、・・・、という具合に、交互に計数を行い、それらの計数データは、それぞれ順次データ処理部に送られて累積される。計数が終了した後、カウンター1とカウンター2とが重複して計数した分を差し引く。この重複して計数する値は、周波数の明らかな標準信号を複数の周波数帯で計数して補間することによって容易に得ることができる。上記の差し引いた値に、水晶振動子センサーの発信信号を分周した比率(1/w)の逆数wを乗じて、水晶振動子センサーの振動数とするものである。このように交互に計数することを制御するのは2重制御部である。また、基準信号発生部では、タイムベースとなる信号を発生し、測定区間信号をゲート1、ゲート2に供給する。
このようにして、2つの時点(t1、t2)における計測値は、第1カウンターと第2カウンターとからの計測値(C1とC2)を累積したものであり、上記のC1とC2のそれぞれを共通の時間軸上の計測値に換算してそれらの時点での計測差を求め、その計測差をその計測時間で除算し、上記の低下割合の逆数(w)を乗じて周波数を求める処理を行って提示するものである。
また、図6に示す構成の場合、カウンター1(65a)とカウンター2(65b)の計数する時間帯には重なりがある場合があるが、この場合は、重複して計数することになるので、これを避けるために、データ処理部63で補正することが必要である。このような補正の必要がない構成として、図7に示すように、間隙制御部72を設けて、カウンター1とカウンター2とが、入力信号の周期の1/4程度の誤差で連続するように調整することが望ましい。この間隙制御部72は、基準信号発生部71からの信号にあわせて同期用の信号を発するものである。
また、図8に示すカウンターの構成では、入力信号は、波形整形部21で整形され、前段カウンター82と後段カウンター81に送られる。前段カウンター82は、1ビット分の2進カウンターで、後段カウンター81は、多ビット分の2進カウンターである。後段カウンター81aの最低位桁の2進データと前段カウンターの2進データとの排他的論理和を出力する演算器(カウンタ設定部83)と、後段カウンターから2進データを読み出す構成とを備えている。
この構成の装置は、図9のタイムチャートに示すように、図9(a)の測定区間信号で指定された測定区間の中に、複数の副測定区間(副測定区間−1、副測定区間−2、・・・)を設け、それぞれの副測定区間では上記の後段カウンターで計数し、副測定区間と、それに引き続く副測定区間との間では前段カウンターで計数する。上記の副測定区間を指定する副測定区間信号、あるいは、その波形整形された副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)で、リセットされた後段カウンターで計数を開始し、副測定区間信号の終わりに当たるその信号の立下り(あるいは立ち上がり)で後段カウンターの計数を一時的に終了して2進データを読み出し部86へ送り、引き続く副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)までは、前段カウンターで計数し、前記の引き続く副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)において、後段カウンターをリセットし、後段カウンターの最低位桁の2進データと前段カウンターの2進データとの排他的論理和を後段カウンターの最低位桁にセットして計測を再開する。
より具体的には、以下のようにする。
1)副測定区間(例えば一秒)信号の状態変化を、同期式遅延型フリップフロップで観測する。その同期式遅延型フリップフロップに供給するクロック(CLK)の立ち上がり/立下りでの観測では、状態の変化に出力信号の立ち上がり、あるいは、立下りが引き起こされる。立ち上がり、あるいは、立下りの信号をトリガーとして用いて、カウンターデータを、カウンター読み出しデータ部に読み込む。引き続く次のクロック変化の時点で、2段以降の後段カウンターを全部リセットする。
2)カウンター部の最初のカウンターの状態について、
・副測定区間(例えば一秒)信号の状態変化を同期式遅延型フリップフロップがとらえた時、つまり測定が開始されるときで、入力データが0から1に変化しているとき(図9のt1、あるいは、t3点)、あるいは、
・副測定区間(例えば一秒)信号の状態変化を上記の同期式遅延型フリップフロップがとらえ、また、2段以降のカウンターのリセット時点(図9のt3点)で、上記の同期式遅延型フリップフロップの出力が0から1に変化しているとき(図9のt3点)、前段カウンターの状態を1にセットし、それ以外の場合はリセットする。図9のt1、あるいは、t3点で計数が開始(あるいは再開)され、t2点でカウンターのデータが読み出し部へ送られる。また、t3点で後段カウンターがリセットされ、後段カウンターの1桁目には、読出し部データと前段カウンタデータとの排他的論理和が入力され、1ビット分の和がとられる。
図9においては、内部クロックCAとCBの間隔Aが副測定区間−1と2との間隔になっているが、これは、内部クロックCAとCBの立ち上がりを用いているためである。これをたとえば、内部クロックCAと、内部クロックCAをわずかに遅延させた信号を用いることによって、内部クロックCAとCBの間隔よりも小さな間隔とすることができる。
また、カウンター読み出しデータ部のデータは外部からのデータ読み出し制御信号により読み出して使用する。この構成のカウンターを用いる利点は、回路構成を簡単にすることができるか、同じ回路規模である場合は、測定精度を改善することができる点にある。
上記したカウンター部を用いて水晶振動子センサーシステムを構成することにより、センサーヘッド部の発信信号を、分周して、より低周波の信号として、1から数10m伝送して周波数を計測することができる。これにより、伝送線に重畳されるノイズの影響を抑制し、しかも分周による検出感度の低下を防止することができる。また、比較的長距離の伝送が可能であるので、1台の周波数カウンターで、複数の水晶振動子センサーの発信周波数を計測することができる。
一般に、高感度の水晶振動子センサーシステムでは、高い発振周波数となるが、その発振信号の周波数をより低周波数に変換して伝送することにより、ノイズによる擾乱を受けづらくなる。しかし、これにともなって従来は、水晶振動子センサーの検出感度が低下したが、本発明では、上記のように、この信号の周波数を計測する周波数カウンターの構成を工夫することにより、上記の検出感度の低下を抑制できる。これにより、伝送線に重畳されるノイズの影響を抑制し、しかも分周による検出感度の低下を防止することができる。また、比較的長距離の伝送が可能であるので、1台の周波数カウンターで、複数の水晶振動子センサーの発信周波数を計測することができる。
本発明の実施の形態を示すブロック図である。 図1のカウンター6の詳細を示すブロック図である。 図1のカウンター6の他の構成を示す図である。 表示に用いる計測値を示す図である。 図1のカウンター6の他の構成を示す図である。 図1のカウンター6の他の構成を示す図である。 図1のカウンター6の他の構成を示す図である。 図1のカウンター6の他の構成を示す図である。 図8の構成のタイムチャートである。
符号の説明
1、1n 水晶振動子センサー
2、2n センサーヘッド
3 周波数変換部
4、4n 水晶振動子
5 選択部
6 カウンター
7 データ処理部
8 選択性吸着膜
9 振動子電極
10 信号線
21 波形整形部
22 ゲート
23 カウンター回路
24 データ処理部
25 基準信号発生部
31、32 データ記録部切換部
33−1、33−n カウンター
34 制御信号
35 基準信号発生部
36 データ加算部
37 初期データ生成モジュール
38 カウンタ番号カウンタ
51、52 n倍カウンタ切換部
53−1、53−2、53−n n倍カウンター
54 制御部
57 初期データ生成モジュール
58 カウンタ番号カウンタ
62 2重制御部
63 データ処理部
64a ゲート1
64b ゲート2
65a カウンター1
65b カウンター2
72 隙間制御部
73 データ処理部
74a ゲート1
74b ゲート2
75a カウンター1
75b カウンター2
81a 後段カウンター最低位1桁目
81b 後段カウンター2桁目以上
82 前段カウンター
83 カウンター設定部
84 区間信号発生部
85 読み出し/リセット制御部
86 読み出し部

Claims (1)

  1. 水晶振動子センサーと、前記水晶振動子センサーから送られる信号の周波数を計測するカウンターと、前記水晶振動子センサーの発生信号の周波数を前記のカウンターの計測帯域に整合させるように変換する周波数変換器と、計測した値から前記変換の逆変換を行って水晶振動子センサーの発振周波数を求めることのできるデータ処理器とを備え、上記水晶振動子センサーで周期的信号を発生し、その周期的信号を上記のカウンターの計測帯域に整合させるように周波数変換し、その周波数変換された信号を伝送してその伝送された信号について予め決められた周波数確度に達するまでの時間にわたり上記のカウンターで計測し、上記データ処理器で上記の逆変換を行なって水晶振動子センサーの発振周波数を求める計測システムであって、
    上記のカウンターは、
    1ビット分の2進カウンター(前段カウンターと称する)と、
    多ビット分の2進カウンター(後段カウンターと称する)と、
    後段カウンターの最低位桁の2進データと前段カウンターの2進データとの排他的論理和を出力する演算器と、
    後段カウンターから2進データを読み出す構成と、を備え、
    測定区間信号で指定された測定区間の中に、複数の副測定区間を設け、それぞれの副測定区間では上記の後段カウンターで計数し、副測定区間と、それに引き続く副測定区間との間では前段カウンターで計数し、
    上記の副測定区間を指定する副測定区間信号、あるいは、その波形整形された副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)で、リセットされた後段カウンターで計数を開始し、
    副測定区間信号の終わりに当たるその信号の立下り(あるいは立ち上がり)で後段カウンターの計数を一時的に終了して2進データを読み出し部へ送り、
    引き続く副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)までは、前段カウンターで計数をし、
    前記の引き続く副測定区間信号の始まりに当たる立ち上がり(あるいは立下り)において、後段カウンターをリセットし、後段カウンターの最低位桁の2進データと前段カウンターの2進データとの排他的論理和を後段カウンターの最低位桁にセットして計測するカウンターである、
    ことを特徴とする水晶振動子センサーシステム。
JP2003431953A 2003-12-26 2003-12-26 水晶振動子センサーシステム Expired - Lifetime JP4221502B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431953A JP4221502B2 (ja) 2003-12-26 2003-12-26 水晶振動子センサーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431953A JP4221502B2 (ja) 2003-12-26 2003-12-26 水晶振動子センサーシステム

Publications (2)

Publication Number Publication Date
JP2005189133A JP2005189133A (ja) 2005-07-14
JP4221502B2 true JP4221502B2 (ja) 2009-02-12

Family

ID=34789803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431953A Expired - Lifetime JP4221502B2 (ja) 2003-12-26 2003-12-26 水晶振動子センサーシステム

Country Status (1)

Country Link
JP (1) JP4221502B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936921B2 (ja) * 2007-01-30 2012-05-23 独立行政法人産業技術総合研究所 水晶振動子センサー装置
JP2009229353A (ja) * 2008-03-25 2009-10-08 Seiko Epson Corp 気体センサデバイス及び気体センサシステム
JP5876975B2 (ja) * 2009-10-08 2016-03-02 セイコーエプソン株式会社 周波数測定装置及び周波数測定装置における変速分周信号の生成方法
JP2011080911A (ja) * 2009-10-08 2011-04-21 Seiko Epson Corp 周波数測定装置及び同周波数測定装置を備えた電子機器
CN114544449B (zh) * 2022-01-20 2023-10-20 华南师范大学 高精度测量与数据高速传输的多通道pm2.5检测装置和方法

Also Published As

Publication number Publication date
JP2005189133A (ja) 2005-07-14

Similar Documents

Publication Publication Date Title
AU2006202661B2 (en) High resolution time interval measurement apparatus and method
JP2010506523A5 (ja)
JP5682812B2 (ja) 周波数差分出力装置、周波数測定装置、電子機器、及び周波数測定方法
JP2019049423A (ja) 超音波流量計
JP4221502B2 (ja) 水晶振動子センサーシステム
KR101240798B1 (ko) 리얼타임클럭 주파수 오프셋 검출장치 및 그 방법
JP2002116231A (ja) ゲート遷移をカウントする回路
JP3355370B2 (ja) 周波数変化測定装置
JP2675733B2 (ja) 化学センシング装置
US9383726B2 (en) Physical quantity measuring apparatus and physical quantity measuring method
US7057978B2 (en) Time interval measurement device
JP5914718B2 (ja) 発振器を有する時間ベース、周波数分割回路及びクロックパルス抑制回路
CN104067555A (zh) 同步处理设备、同步处理方法和程序
US9116511B2 (en) Self temperature-compensated high precision event timer using standard time reference frequency and its method
JP5787096B2 (ja) 物理量測定装置、物理量測定方法
US6944099B1 (en) Precise time period measurement
RU2278390C1 (ru) Цифровой частотомер
JP2019028040A (ja) 超音波流量計
JPS642905B2 (ja)
RU2583165C1 (ru) Интерполирующий преобразователь интервала времени в цифровой код
JP4485641B2 (ja) 超音波流量計
JP3031970B2 (ja) フィルタ回路
JP2003315115A5 (ja)
JP2003315115A (ja) 流量計測装置
RU2546075C1 (ru) Цифровой измерительный преобразователь интервала времени

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4221502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term