JP4217108B2 - 多点型光式ガス濃度検出方法及びそのシステム - Google Patents

多点型光式ガス濃度検出方法及びそのシステム Download PDF

Info

Publication number
JP4217108B2
JP4217108B2 JP2003157009A JP2003157009A JP4217108B2 JP 4217108 B2 JP4217108 B2 JP 4217108B2 JP 2003157009 A JP2003157009 A JP 2003157009A JP 2003157009 A JP2003157009 A JP 2003157009A JP 4217108 B2 JP4217108 B2 JP 4217108B2
Authority
JP
Japan
Prior art keywords
gas
optical path
gas detection
optical
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003157009A
Other languages
English (en)
Other versions
JP2004361128A (ja
Inventor
稔雄 熊澤
信晴 中桐
雅利 櫻井
弘一 穂苅
智 桔梗谷
正孝 相馬
晃之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2003157009A priority Critical patent/JP4217108B2/ja
Publication of JP2004361128A publication Critical patent/JP2004361128A/ja
Application granted granted Critical
Publication of JP4217108B2 publication Critical patent/JP4217108B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光の透過量から雰囲気中のガス濃度を検出する光式ガス濃度検出方法及びそのシステムに係り、特に、ガス雰囲気を通過しない基準光路からの信号と、ガス雰囲気を通過する複数のガス検出光路からの信号とを比較し、複数箇所のガス濃度を高精度に検出できる多点型ガス濃度検出方法及びそのシステムに関するものである。
【0002】
【従来の技術】
従来のガス濃度検出方法には、ガスを検出するためのセンサとして、半導体式など電気式センサを使用する方法がある。この方法では、センサ近傍に電源設備が必要であり、また、定期的に校正が必要なため、長距離監視の場合、保守性や経済性の面で問題となっている。
【0003】
一方で、ガスを検出するためのセンサとして、光を応用したセンサを使用する方法がある。この方法は、ある特定波長のレーザ光をガス分子が吸収する性質を持っていることから、この現象を利用してガスの有無を検出でき、この原理を応用したセンシング技術が工業計測、公害監視などで広く用いられている。また、このレーザ光を光ファイバで伝送すれば、遠隔監視も可能となる。
【0004】
そこで、本発明者らは特許文献1に開示されている発明を応用して、光ファイバを伝送路とした新規の遠隔ガス検出装置を開発した。この原理を応用した方法では、半導体レーザの駆動電流を所定の電流を中心として高周波で変調し、波長及び強度の変調されたレーザ光を発振させる。さらに電流及び温度を制御して発振の中心波長がガス吸収線の中心になるよう半導体レーザの後方に出射するレーザ光をモニタ用として用いる。そうして安定し前方に出射されたレーザ光を、光ファイバを介して未知濃度を含む測定用のガスセルに透過させ、その透過光を対向する別の光ファイバで受光部まで導き、レーザ光の2倍波検波信号、または基本波検波信号により、ガス濃度を高いSN比で検出できる。
【0005】
【特許文献1】
特開平5−256769号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来の方法では以下のような問題がある。
【0007】
電気式センサを使用する方法、光式センサを利用する方法のいずれの方法においても、多点(複数箇所)のガス濃度を高精度に検出する方法が確立されていないという問題がある。
【0008】
さらに、上述したように、電気式センサを使用する方法は、センサ(ガス検出部)近傍に電源設備が必要であり、また、定期的に校正が必要なため、長距離監視の場合、保守性や経済性の面で問題である。
【0009】
一方、光式センサを使用する方法においても、長距離で複数箇所のガスを検出する場合、管理事務所等で、一括してガス検出部の異常等の有無を監視する必要があるが、そのメンテナンス方法が確立されていないという問題がある。
【0010】
そこで、本発明の目的は、上記課題を解決し、多点のガス濃度を高精度に検出できる多点型光式ガス濃度検出方法及びそのシステムを提供することにある。また、長距離監視において、ガス検出部近傍に電気設備を設置することなく、ガス検出部のメンテナンスを容易にすることも目的としている。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、レーザ光を測定対象とするガス雰囲気に通して得られる透過光の強度を多点で検出し、得られた信号からガス濃度を検出する多点型光式ガス濃度検出方法であって、レーザと受光器間に光切替器を接続し、光切替器に、ガス雰囲気を通過しない基準光路を接続すると共に、ガス雰囲気を通過する送受信光路にガス検出部を設けたガス検出光路を複数接続し、前記基準光路から得られる信号を予め記憶し、前記各ガス検出光路から得られる信号と、前記記憶した基準光路から得られる信号とを処理装置でそれぞれ差分し、処理装置で得られるガス信号から多点のガス濃度を検出し、他方、基準光路から得られる信号と前記各ガス検出光路から得られる信号の内、ガス濃度に依存しない基本波成分をそれぞれ抽出し、該基準光路の基本波成分と、前記各ガス検出光路の基本波成分とのそれぞれの比を、前記ガス検出部毎に予め記憶しておき、これら基本波成分の比を常時監視し、前記各ガス検出部の異常の有無をそれぞれ判定する多点型光式ガス濃度検出方法である。
【0012】
請求項2の発明は、レーザ光を測定対象とするガス雰囲気に通して得られる透過光の強度を多点で検出し、得られた各信号からガス濃度を検出する多点型光式ガス濃度検出システムであって、ガス雰囲気を通過しない基準光路と、ガス雰囲気を通過する送受信光路にガス検出部を設けた複数のガス検出光路と、前記基準光路と前記各ガス検出光路を切り替えるための光切替器と、該光切替器を切り替え、前記基準光路から得られる信号を予め記憶し、前記各ガス検出光路から得られる信号と前記記憶した基準光路から得られる信号とをそれぞれ差分する処理装置とを備え、該処理装置は、前記基準光路から得られる信号の基本波成分と、前記各ガス検出光路から得られる信号の基本波成分とのそれぞれの比を、前記ガス検出部毎に予め記憶しておき、これら基本波成分の比を常時監視し、前記各ガス検出部の異常の有無をそれぞれ判定する多点型光式ガス濃度検出システムである。
【0014】
【発明の実施の形態】
以下、本発明の好適実施の形態を添付図面にしたがって説明する。
【0015】
図1は、本発明の好適実施の形態である多点型ガス濃度検出システムの概略図を示したものである。
【0016】
図1に示すように、本発明に係る多点型ガス濃度検出システム1は、主として地下街・高層ビル等の都市ガス(メタンガス)の漏洩やLNGタンク周辺のガス漏れを多点(複数箇所)検出するものであり、レーザ2を駆動してレーザ光を発振させるためのレーザ部3と、発振したレーザ光を導くための光学系4と、光学系4を通過したレーザ光を受光器5で検出し、その検出信号を処理する信号処理部6とから全体が構成されている。
【0017】
レーザ部3は、単一波長のレーザ光を発振させる分布帰還型半導体レーザ(DFB−LD)2と、DFB−LD2を搭載してその温度をペルチェ素子用電源7により制御するためのペルチェ素子8と、周波数fの正弦波信号を出力する発振器9と、この周波数fの信号により周波数fの2倍波信号を生成する倍周器10と、DFB−LD2にバイアス電流を付加するためのバイアス電流源11と、バイアス電流源11の掃引の仕方を決定する三角波掃引器12とから構成されている。
【0018】
また、バイアス電流源11の出力側には、発振器9の出力による影響を防ぐためにインダクタンスLが接続されており、発振器9の出力側には、直流分をカットするためのコンデンサCが接続されている。
【0019】
このレーザ部3により、発振器9からの周波数fの正弦波信号が、バイアス電流源11からの出力に重畳されて、DFB−LD2が駆動される。
【0020】
光学系4は、DFB−LD2と受光器5間に接続される光切替器13と、光切替器13に接続され、ガス雰囲気を通過しないループ状の基準光路用光ファイバ14と、光切替器13にそれぞれ接続され、ガス雰囲気を通過する送受信光路15a〜n,16a〜nにガス検出部17a〜nをそれぞれ設けた複数のループ状のガス検出光路18a〜nとから構成されている。
【0021】
すなわち、各ガス検出光路18a〜nは、送信用光ファイバ15a〜nと、受信用光ファイバ16a〜nと、各送信用光ファイバ15a〜nと各受信用光ファイバ16a〜n間にそれぞれ接続されるガス検出部17a〜nとからなっている。
【0022】
光切替器13は、基準光路用光ファイバ14と各ガス検出光路18a〜nを切り替えるためのものであり、2×nの構成となっている。より具体的に言えば、DFB−LD2からの1入力に対し、送信用光ファイバ15a〜nへのn出力を有し、受信用光ファイバ16a〜nからのn入力に対し、受光器5への1出力を有している。
【0023】
この光切替器13は、後述する処理装置に接続されており、その処理装置により、DFB−LD2から受光器5までのレーザ光の経路を、まず基準光路用光ファイバ14、次にガス検出光路18a,18b…、と順次光の送受信を切り替えるようにしている。
【0024】
各検出対象ガス検出部17a〜nは、測定対象である未知濃度の種々のガス(メタン等)が充填される容器であり、検出対象とする位置に、容易に設置することができるようになっている。各ガス検出部17a〜nの一端には、送信用光ファイバ15a〜nがそれぞれ接続され、各ガス検出部17a〜nの他端には、受信用光ファイバ16a〜nがそれぞれ接続されており、DFB−LD2からのレーザ光の一部が測定対象ガス雰囲気を通過し、受光器5で受光されるようになっている。
【0025】
信号処理部6は、基準光路用光ファイバ14、各ガス検出光路18a〜nのいずれかを通過したレーザ光を受光する受光器5と、発振器9からの正弦波信号の周波数fに同期して受光器5の出力の位相敏感検波を行う位相検波器19と、倍周器10からの正弦波信号の周波数2fに同期して受光器5の出力の位相敏感検波を行う位相検波器20と、両位相検波器19,20の出力や出力比を記録・演算処理すると共に、光切替器13を切り替える処理装置としてのコンピュータ21とから構成されている。位相検波器19,20としては、例えば、ロックインアンプを使用することができる。
【0026】
ここで、位相敏感検波について簡単に説明する。分光測定において測定感度を向上させる方法に周波数変調法という手法がある。光の周波数を何らかの手段で変調し、その光を対象とするガスを含む雰囲気に透過させると、その透過光の検出信号(本実施の形態で言えば、受光器5で得られる信号)は、直流分の他、変調周波数と同じ周波数の基本波成分およびその高調波成分を持つ。このうち、基本波成分と2倍波成分を位相敏感検波すると、それぞれガス吸収線の一次微分と二次微分に対応する。位相敏感検波とは、特定の周波数および位相を持つ成分だけを抽出して、その振幅を測定することである。位相敏感検波することで、ガス濃度を高いSN比で検出できる。
【0027】
次に、多点型光式ガス濃度検出システム1を用いたガス濃度検出方法を説明する。
【0028】
まず、コンピュータ21により、DFB−LD2からのレーザ光が、基準光路用光ファイバ14を介して受光器5で受光されるように、光切替器13を予め切り替えておく。
【0029】
レーザ部3では、レーザ光の中心波長をガス吸収波長線上に掃引するため、DFB−LD2の温度をペルチェ素子用電源7によって制御するペルチェ素子8により一定に固定し、DFB−LD2のバイアス電流を三角波掃引器12により三角波状にし、一方向に掃引させる。このとき、同時に、発振器9により正弦波状に、交流電源(変調電流)を重畳させる。
【0030】
このようにして発振されたレーザ光は、光切替器13、基準用光ファイバ14、光切替器13を通って受光器5で受光される。受光器5で検出された基準用光ファイバ14からの信号の内、発振器9からの正弦波信号の周波数fに同期した信号は位相検波器19で検出され、倍周器10の正弦波信号の周波数2fに同期した信号は位相検波器20によって検出される。両位相検波器19,20で抽出された信号は、コンピュータ21に伝送される。コンピュータ21は、両位相検波器19,20で抽出された信号の出力比2f/1f(基準)を求めて予め記憶しておく。
【0031】
図2には、この出力比、すなわち、基準用光ファイバ14から得られるガス信号波形pの一例を、横軸をレーザ光の中心波長にとり、縦軸をガス信号にとって示してある。
【0032】
その後、コンピュータ21は、DFB−LD2からのレーザ光が、ガス検出光路18aを介して受光器5で受光されるように、光切替器13を切り替える。この場合、レーザ光は、光切替器13、送信用光ファイバ15a、ガス検出部17a、受信用光ファイバ16a、光切替器13を通って受光器5で受光される。上述と同様にして、受光器5で検出されたガス検出光路18aからの信号の内、両位相検波器19,20で抽出された信号は、それぞれコンピュータ21に伝送される。コンピュータ21は、両位相検波器19,20で抽出された信号の出力比2f/1f(ガス)を求める。
【0033】
図2には、この出力比、すなわち、ガス検出光路18aから得られるガス信号波形qの一例を、横軸をレーザ光の中心波長にとり、縦軸をガス信号にとって示してある。
【0034】
コンピュータ21は、ガス検出光路18aから得られた出力比2f/1f(ガス)と、記憶した基準光路用光ファイバ14から得られた出力比2f/1f(基準)との差分(引き算)を行うことにより、図3に示すようなガス信号差分波形rを得る。このガス信号差分波形rの波高値から、例えば、予めコンピュータ21内にデータベースとして記憶されている波高値と基準ガス濃度の関係により、ガス検出部17aのガス濃度を求めることができる。
【0035】
以後同様にして、コンピュータ21により、光切替器13を順次切り替え、各ガス検出光路18b〜nからそれぞれ得られた出力比2f/1f(ガス)と、記憶した基準光路用光ファイバ14から得られた出力比2f/1f(基準)との差分を順次行ってガス信号差分波形をそれぞれ求め、これらガス信号差分波形の波高値から各ガス検出部17b〜nのガス濃度をそれぞれ求めることができる。
【0036】
このように、本発明に係る多点型光式ガス濃度検出方法は、基準光路14から得られる信号の出力比2f/1f(基準)を予め記憶しておき、この出力比2f/1f(基準)を、各ガス検出光路18a〜nから得られる信号のそれぞれの出力比2f/1f(ガス)との差分処理に用いることで、レーザ部3、光切替器13などの光学系4、信号処理部6の波長依存性を除去できるので、各ガス検出部17a〜n毎に正確なガス信号を得ることができる。これにより、多点(複数箇所)のガス濃度を高精度に検出することができる。
【0037】
次に、各ガス検出部17a〜nのメンテナンス方法を説明する。
【0038】
図4は、受光器5で得られる信号強度を示す図である。
【0039】
図4に示すように、受光器5で得られる信号は、横軸をレーザ光の中心波長にとり、縦軸を信号強度にとると、ガス吸収の中心波長λ0において信号強度が最小となる直流(DC)成分波形sの他、λ0において信号強度が0となるガス濃度に依存しない基本波(1f)成分波形t、λ0において信号強度が最大となる2倍波(2f)成分波形uを含んでいる。
【0040】
基本波成分波形tは、ガス濃度に依存せず、しかも、位相検波器19により、受光器5で得られる信号から抽出できるので、以下に説明する各ガス検出部17a〜nのメンテナンス方法に利用できる。
【0041】
図5は、基準光路用光ファイバ14と各ガス検出光路18a〜nのガス検出部17a〜n毎における基本波成分の比を示す図である。
【0042】
図4のD部および図5に示すように、コンピュータ21は、基準光路用光ファイバ14から得られた信号の内、ガス濃度に依存しない基本波成分波形tの波長λにおける値1f(基準)と、各ガス検出光路18a〜nから得られた信号の内、ガス濃度に依存しない基本波成分波形tの波長λにおける値1f(ガス)とのそれぞれの比1f(ガス)/1f(基準)を、基準比(図5の黒丸の点)としてガス検出部17a〜n毎に予め記憶しておき、これら基準比を常時監視し、各ガス検出部17a〜nの異常の有無をそれぞれ判定する。
【0043】
例えば、ガス検出部17kの故障、破損、あるいは、ガス検出部17kに接続された送信用光ファイバや受信用光ファイバの外れなどにより、ガス検出部17kに異常が発生すると、1f(ガス)/1f(基準)の値は、黒丸の点k0から白丸の点k1にずれる。
【0044】
これにより、コンピュータ21は、異常が発生したガス検出部17kを特定し、管理事務所の作業員に、ガス検出部17kのメンテナンスが必要なことを、表示装置に表示するなどして通知する。これは、他のガス検出部についても同様である。
【0045】
したがって、長距離監視において、ガス検出部近傍に電気設備を設置することなく、異常が発生したガス検出部を特定することができ、各ガス検出部の交換、点検などのメンテナンスを容易にかつ素早く行うことができる。
【0046】
上述したガス検出部のメンテナンス方法では、基本波成分波形tの波長λにおける値を用いた例で説明したが、基本波成分波形tのガス吸収の中心波長λ0における値を用いてもよい。
【0047】
【発明の効果】
以上説明したことから明らかなように、本発明によれば、次のような優れた効果を発揮する。
【0048】
(1)多点(複数箇所)のガス濃度を高精度に検出することができる。
【0049】
(2)異常が発生したガス検出部を特定することができ、各ガス検出部のメンテナンスを容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の好適実施の形態を示す概略図である。
【図2】基準光路およびガス検出光路透過後のガス信号(2f/1f)波形を示す図である。
【図3】基準光路とガス検出光路透過後のガス信号(2f/1f)差分波形を示す図である。
【図4】受光器で得られる信号強度を示す図である。
【図5】基準光路とガス検出光路のガス検出部毎における基本波成分の比を示す図である。
【符号の説明】
1 多点型光式ガス濃度検出システム
2 DFB−LD(分布帰還型半導体レーザ)
5 受光器
13 光切替器
14 基準光路用光ファイバ
15a〜n 送信用光ファイバ
16a〜n 受信用光ファイバ
17a〜n ガス検出部
18a〜n ガス検出光路
21 コンピュータ(処理装置)

Claims (2)

  1. レーザ光を測定対象とするガス雰囲気に通して得られる透過光の強度を多点で検出し、得られた各信号からガス濃度を検出する多点型光式ガス濃度検出方法であって、
    レーザと受光器間に光切替器を接続し、該光切替器に、ガス雰囲気を通過しない基準光路を接続すると共に、ガス雰囲気を通過する送受信光路にガス検出部を設けたガス検出光路を複数接続し、前記基準光路から得られる信号を予め記憶し、前記各ガス検出光路から得られる信号と、前記記憶した基準光路から得られる信号とを処理装置でそれぞれ差分し、該処理装置で得られるガス信号から多点のガス濃度を検出し、他方、基準光路から得られる信号と前記各ガス検出光路から得られる信号の内、ガス濃度に依存しない基本波成分をそれぞれ抽出し、該基準光路の基本波成分と、前記各ガス検出光路の基本波成分とのそれぞれの比を、前記ガス検出部毎に予め記憶しておき、これら基本波成分の比を常時監視し、前記各ガス検出部の異常の有無をそれぞれ判定することを特徴とする多点型光式ガス濃度検出方法。
  2. レーザ光を測定対象とするガス雰囲気に通して得られる透過光の強度を多点で検出し、得られた各信号からガス濃度を検出する多点型光式ガス濃度検出システムであって、
    ガス雰囲気を通過しない基準光路と、ガス雰囲気を通過する送受信光路にガス検出部を設けた複数のガス検出光路と、前記基準光路と前記各ガス検出光路を切り替えるための光切替器と、該光切替器を切り替え、前記基準光路から得られる信号を予め記憶し、前記各ガス検出光路から得られる信号と前記記憶した基準光路から得られる信号とをそれぞれ差分する処理装置とを備え、該処理装置は、前記基準光路から得られる信号の基本波成分と、前記各ガス検出光路から得られる信号の基本波成分とのそれぞれの比を、前記ガス検出部毎に予め記憶しておき、これら基本波成分の比を常時監視し、前記各ガス検出部の異常の有無をそれぞれ判定することを特徴とする多点型光式ガス濃度検出システム。
JP2003157009A 2003-06-02 2003-06-02 多点型光式ガス濃度検出方法及びそのシステム Expired - Fee Related JP4217108B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157009A JP4217108B2 (ja) 2003-06-02 2003-06-02 多点型光式ガス濃度検出方法及びそのシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157009A JP4217108B2 (ja) 2003-06-02 2003-06-02 多点型光式ガス濃度検出方法及びそのシステム

Publications (2)

Publication Number Publication Date
JP2004361128A JP2004361128A (ja) 2004-12-24
JP4217108B2 true JP4217108B2 (ja) 2009-01-28

Family

ID=34050909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157009A Expired - Fee Related JP4217108B2 (ja) 2003-06-02 2003-06-02 多点型光式ガス濃度検出方法及びそのシステム

Country Status (1)

Country Link
JP (1) JP4217108B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575695A (zh) * 2012-07-20 2014-02-12 无锡凯睿传感技术有限公司 一种气体氮氧化物含量检测装置
CN104535529A (zh) * 2014-11-27 2015-04-22 北京航天易联科技发展有限公司 一种分布式气体传感系统及其控制方法
US10473579B2 (en) 2017-09-14 2019-11-12 Samsung Electronics Co., Ltd. Apparatus for inspecting material property of plurality of measurement objects

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218844A (ja) * 2006-02-20 2007-08-30 Hitachi Cable Ltd 光式多ガス濃度検出方法及び装置
JP4905106B2 (ja) * 2006-12-13 2012-03-28 富士電機株式会社 レーザの波長制御装置、ガス濃度測定装置、レーザの波長制御方法およびガス濃度測定方法
JP4918865B2 (ja) * 2007-01-17 2012-04-18 富士電機株式会社 レーザの波長制御装置、ガス濃度測定装置、レーザの波長制御方法およびガス濃度測定方法
US7957001B2 (en) * 2008-10-10 2011-06-07 Ge Infrastructure Sensing, Inc. Wavelength-modulation spectroscopy method and apparatus
JP5370248B2 (ja) * 2010-04-07 2013-12-18 株式会社島津製作所 ガス分析装置
US8891085B2 (en) 2012-11-02 2014-11-18 Shimadzu Corporation Gas analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575695A (zh) * 2012-07-20 2014-02-12 无锡凯睿传感技术有限公司 一种气体氮氧化物含量检测装置
CN104535529A (zh) * 2014-11-27 2015-04-22 北京航天易联科技发展有限公司 一种分布式气体传感系统及其控制方法
US10473579B2 (en) 2017-09-14 2019-11-12 Samsung Electronics Co., Ltd. Apparatus for inspecting material property of plurality of measurement objects

Also Published As

Publication number Publication date
JP2004361128A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5142320B2 (ja) 光式可燃性ガス濃度検出方法及び光式可燃性ガス濃度検出装置
Duffin et al. Tunable diode-laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line shapes
JP4331741B2 (ja) ガス検出方法及びガス検出装置
JP4065452B2 (ja) 多点型光式ガス濃度検出システム
US8243369B2 (en) Wavelength monitored and stabilized source
JP4217108B2 (ja) 多点型光式ガス濃度検出方法及びそのシステム
US10451738B2 (en) Laser processing device and laser processing system
JP2007240248A (ja) 光式多ガス濃度検出方法及び装置
US9869632B2 (en) Absorption spectrometer and method for measuring the concentration of a gaseous component of interest in a measurement gas
JP3114959B2 (ja) ガス濃度検出方法及びその装置
CN104729996A (zh) 反射式的激光在线气体分析仪光路装置
KR20200076311A (ko) 온도 및 변형률 동시 측정용 레일레이-브릴루앙 하이브리드 분포형 광섬유 센서 장치 및 그 제어방법
JPH0830680B2 (ja) ガス検出装置
JP2007218783A (ja) 光ファイバ式ガス濃度検出方法及び装置
JP2004361129A (ja) 多点型ガス濃度検出方法
JP4853255B2 (ja) ガス分析装置
JPH04326041A (ja) ガス濃度測定方法及びその測定装置
CN209930263U (zh) 一种基于偏振选择的不等臂干涉仪测量装置
JP5423496B2 (ja) レーザ式ガス分析計
CN104515746A (zh) 用于测量在测试气体中的气体成分的浓度的方法
JP2744728B2 (ja) ガス濃度測定方法およびその測定装置
JP2792782B2 (ja) ガス濃度測定方法およびその測定装置
JPH09304274A (ja) 光式ガス濃度検出方法及びその装置
JPH0526804A (ja) 多種ガス検出装置
JP4066921B2 (ja) 多点光路切替式ガス濃度検知方法及びその装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees