JP4207485B2 - Rod-like fiber molded body - Google Patents

Rod-like fiber molded body Download PDF

Info

Publication number
JP4207485B2
JP4207485B2 JP2002221891A JP2002221891A JP4207485B2 JP 4207485 B2 JP4207485 B2 JP 4207485B2 JP 2002221891 A JP2002221891 A JP 2002221891A JP 2002221891 A JP2002221891 A JP 2002221891A JP 4207485 B2 JP4207485 B2 JP 4207485B2
Authority
JP
Japan
Prior art keywords
rod
fiber
molded body
split
fiber molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002221891A
Other languages
Japanese (ja)
Other versions
JP2004060115A (en
Inventor
聡彦 筒井
明範 前川
和之 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2002221891A priority Critical patent/JP4207485B2/en
Publication of JP2004060115A publication Critical patent/JP2004060115A/en
Application granted granted Critical
Publication of JP4207485B2 publication Critical patent/JP4207485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、棒状繊維成形体に関する。更に詳しくは掃除用棒、インクタンク用詰物、油吸着材、フィルター等に好適に使用することのできる棒状繊維成形体に関する。
【0002】
【従来の技術】
従来から棒状の繊維成形体はマジックペンのインクタンク用詰物やタバコ用のフィルター等に使用されている。このような棒状の繊維成形体を製造する方法としては、繊維を熱接着して棒状繊維成形体とする方法が知られている。例えば特公昭53−47730号公報には、ポリエチレン成分とポリプロピレン成分とからなるポリオレフィン系複合繊維の繊維束を加熱処理し、ポリエチレン成分により熱融着させて繊維束の外周面を固着すると共に、繊維束内部の熱融着の度合いを少なくしたインクタンク用詰物が開示されている。また特公昭55−40231号公報には、融点の異なる2種類以上の成分を複合紡糸し、これを前記両成分の融点間の温度で熱処理したタバコフィルターが開示されている。更に特開2001−214388公報には、芯鞘比率が50/50〜90/10wt%の複合繊維トウを収束した後、芯鞘両成分の融点間の温度で加熱処理した成形棒の製造法が開示されている。
【0003】
また、特許第3227388号公報には、直方体以外の形状を有する繊維塊の表面を熱処理したインクジェット用インクタンクが開示され、特開平11−192246号公報には、歯牙の平滑面と隣接面に付着したヤニやステイン、歯垢等を除去する歯牙清掃具が開示されている。
【0004】
しかしこれらの棒状繊維成形体を構成する繊維は、比較的太い繊度であり、タバコフィルター等の比較的高い通気性が求められる用途では好ましく用いられるものの、ワイピング用途では、汚れの掻き取り効果が弱く、またインクの保液性を高める上でも繊維表面積は多いことが好ましく、これまで満足できる性能を有する棒状繊維成形体は得られていなかった。
【0005】
【発明が解決しようとする課題】
本発明は、汚れ等の払拭性の他、吸水性、吸油性に優れ、掃除用棒、インクタンク用詰物に好適に使用できる、形成安定性に優れた棒状繊維成形体を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは前記課題を解決するために鋭意検討した。その結果、熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した棒状繊維成形体であって、該分割型複合繊維の一部分が分割し、該棒状繊維成形体中に未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満である棒状繊維成形体とすることにより、前記課題を解決できることを知り、これらの知見に基づき本発明を完成するに至った。
【0007】
本発明は、以下の構成からなる。
(1)熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した棒状繊維成形体であって、棒状繊維成形体の長軸方向と、該棒状繊維成形体を構成する繊維の繊維軸方向との配向度が36度以下であり、該分割型複合繊維の一部分が分割し、該棒状繊維成形体中に未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満であることを特徴とする棒状繊維成形体。
【0008】
削除
【0009】
)棒状繊維成形体が、45〜95%の空隙率である前記(1)項記載の棒状繊維成形体。
【0010】
)棒状繊維成形体に機能剤が付着または包含されていることを特徴とする前記(1)〜()のいずれか1項に記載の棒状繊維成形体。
【0011】
)前記(1)〜()のいずれか1項記載の棒状繊維成形体を用いた掃除用棒。
【0012】
)前記(1)〜()のいずれか1項記載の棒状繊維成形体を用いたインクタンク用詰物。
【0013】
)前記(1)〜()のいずれか1項記載の棒状繊維成形体を用いた油吸着材。
【0014】
)前記(1)〜()のいずれか1項記載の棒状繊維成形体を用いたフィルター。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の棒状繊維成形体は、熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した繊維集合体からなる棒状繊維成形体である。この棒状繊維成形体中には、分割型複合繊維の一部分が分割し、未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満である。
【0016】
本発明の棒状繊維成形体に用いる繊維を形成する熱可塑性樹脂は、溶融紡糸工程で繊維成形性を有するものであれば特に限定されない。例えばポリプロピレン(プロピレン単独重合体)、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、プロピレンとエチレンの共重合体、プロピレンと他のαオレフィンとの2〜3元共重合体等をはじめとするチーグラーナッタ触媒やメタロセン触媒を用いて重合されたポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、酸成分をテレフタル酸以外にイソフタル酸を併用して共重合した低融点ポリエステル等のポリエステル系樹脂、ナイロン−6、ナイロン−66等のポリアミド系樹脂、アタクチックポリスチレン、シンジオタクチックポリスチレン等のポリスチレン系樹脂、ポリウレタンエラストマー、ポリエステルエラストマー等のエラストマー系樹脂、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートテレフタレート、ポリブチレンテレフタレートアジペート等の生分解性樹脂、ポリフッ化ビニリデン等のフッ素系樹脂、ポリフェニレンスルフィド、ポリケトン等の樹脂が挙げられる。また前記以外の熱可塑性樹脂としては、例えばビニル系重合体が挙げられ、具体的には、エチレンビニルアルコール共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、エチレン酢酸ビニル共重合体、エチレン無水マレイン酸グラフト共重合体も使用することができる。
【0017】
本発明に使用する熱可塑性樹脂には、本発明の効果を妨げない範囲内で更に、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤、親水剤等の添加剤を適宜必要に応じて添加しても良い。
【0018】
本発明の棒状繊維成形体を構成する分割型複合繊維について説明する。前記分割型複合繊維の断面構造は、図1〜7に例示したような、前記熱可塑性樹脂の異なる二成分が交互に配列された断面構造をとる。便宜的に、異なる二成分の一方をA成分とし、もう一方をB成分として表すと、図1〜図7の分割型複合繊維は、−A−(B−A)n−B−で表すことができ、両末端は連結していても、していなくてもどちらでもよい(nは正の整数)。具体的には、図1及び図2に例示したような各成分が交互に配列された放射状分割型断面、図3及び図4に例示したような各成分が交互に配置された中空状分割型断面、図5及び図6に例示したような各成分が交互に層状に配置された層状分割型断面、図7に例示したような各成分が交互に配列されて繊維断面が屈曲、湾曲または扁平形状となった分割型断面形状を挙げることができる。もちろん、多成分の樹脂から構成される分割型複合繊維にあっては、同成分が隣り合うことなく多成分が配列した断面構造を形成する。尚、図1〜7に例示した分割型複合繊維の断面構造及び形状はモデル図であり、実際の繊維製造時には、該複合繊維は種々の外部応力を受け断面形状に変形が生じている場合があるが実用上、特に問題はない
【0019】
前記分割型複合繊維の樹脂成分の組合せとしては、ポリエステル系樹脂/ポリアミド系樹脂、ポリエステル系樹脂/ポリオレフィン系樹脂、ポリオレフィン系樹脂/ポリオレフィン系樹脂を例示することができる。これらの組合せは、目的、用途に応じて適宜選択すればよいが、例えば高温条件下で使用する場合には、ポリエチレンテレフタレート樹脂/ナイロン66樹脂の組合せが好ましく、またインクジェット用インクタンクや、耐薬品性が要求される分野、油等の吸着、掃除用途には、特にポリプロピレン樹脂/ポリエチレン樹脂の組合せが好ましい。
【0020】
ポリオレフィン系樹脂/ポリオレフィン系樹脂の樹脂成分の組合せにおいて、ポリエチレン系樹脂/ポリプロピレン樹脂の組合せを用いた分割型複合繊維にあっては、ポリプロピレン樹脂の融点よりも低いポリエチレン樹脂が低融点樹脂となり、ポリプロピレン樹脂が高融点樹脂となる。ポリエチレン樹脂としては、具体的には、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンを例示することができる。またポリエチレン樹脂は、これら2種以上の混合物であっても良い。前記分割型複合繊維において、2成分の熱可塑性樹脂より構成される複合繊維の複合比は、容量比で10/90〜90/10の範囲で、より好ましくは30/70〜70/30である。
【0021】
本発明において重要なことは、前記分割型複合繊維の一部分が分割していることである。本発明では、分割細繊化した繊維の繊度が0.5dtex未満となることが必要であり、0.3dtex未満であることが更に好ましい。該分割型複合繊維の分割セグメント数は、分割細繊化した繊維の平均繊度が0.5dtex未満となるように適宜設定すれば良い。なお、分割型複合繊維のセグメント数が多ければ分割後の繊度を小さくすることができるが、繊維製造上の容易さから実際にはセグメント数を4〜32にすることが好ましい。また個々のセグメントの繊度は、同一である必要はなく、複数の異なった繊度の繊維が混在していても良い。これは、分割型複合繊維が完全に分割されずに、未分割状態の分割型複合繊維と分割細繊化した繊維とが混合された状態となっている。
【0022】
細繊化した繊維を製造する方法としては、メルトブロー法が一般に知られている。しかし、メルトブロー法で作製した極細繊維ウェブ(細繊化した繊維ウェブ)を用い、これを棒状に成形した成形体は、繊維間が狭く油のような高粘性液の吸収を阻害し、またインクタンク用詰物に用いた場合には、毛細管現象による吸液性が高く、インクタンク内にインクを保持してしまい、インクタンク寿命を短くしてしまう不具合がある。これに対して本発明の分割型複合繊維を使用して製造された棒状繊維成形体には、棒状繊維成形体に、0.5dtex未満の分割細繊化した繊維と0.5〜20dtexの繊維とが含まれることで、油等の高粘性液の吸収性、掻き取り効果、毛細管現象、機能剤の包含等に適度に優れた効果を発揮する。このことから、掃除棒、インクタンク用詰物、油吸着材、フィルターの素材として好ましく使用することができる。特にインクタンク用詰物や油吸着剤に使用する場合には、分割型複合繊維が部分的に分割していることが好ましい。分割型複合繊維が部分的に分割細繊化していることで、繊維間に狭い所と広い所がランダムに存在し、前記メルトブロー極細繊維ような弊害は生じない。なお、分割細繊化は、分割型複合繊維の分割率で調整しても良いし、他の繊維の混綿で調整しても良い。
【0023】
本発明において前記分割型複合繊維の分割前の単糸繊度は、0.5〜20dtexであり、好ましくは1dtex〜10dtexである。分割前の単糸繊度が0.5dtex未満であると溶融紡糸工程での曳糸性が低下する傾向にある。更に分割前の単糸繊度が0.5dtexを大きく下回ると繊維間隔のコントロールが難しくなる。また20dtexを大幅に超えると、得られた棒状繊維性形体の空隙率をコントロールすることが難しく、また分割細繊化した繊維(分割後)の単糸繊度を0.5dtex未満にするために分割数を多くする必要があり、製造が難しくなる。なお、本発明では、吸水性、吸油性の点から、棒状繊維成形体中に、0.5dtex未満の分割細繊化した繊維が10〜95重量%含まれていることが好ましく、15〜75重量%含まれていることがより好ましい。
【0024】
前記分割型複合繊維の分割細繊化する方法は特に限定されないが、例えば捲縮加工時に、クリンプエッジ部を捲縮付与時の応力により部分的に分割させても良い。また、カード機でウェブを作製する際に、捲縮付与した短繊維をカード機のシリンダー回転の応力により一部分を分割させても良い。更にニードルパンチや水流交絡法によりウェブを分割させた後、棒状繊維成形体に加工しても良い。また棒状繊維成形体とした後に応力を加えて分割させたい部分のみを分割細繊化させることもできる。特に細かい部分や凹凸部分の掃除用に使用する場合には、本発明の棒状繊維成形体が好適に使用でき、汚れを掻き取る時に、応力が掛かるため分割が更に進行し、汚れを掻き取るほど分割するので、結果として掻き取り性能は更に向上する。
【0025】
本発明の棒状繊維成形体は、分割型複合繊維と、前記熱可塑性樹脂からなる繊維とから、混綿または混繊により構成されていても良い。これらは、2種類以上併用しても良い。混綿される熱可塑性樹脂からなる繊維としては、特に制限がなく、例えば成分単一型、複合型の繊維を利用できる。前記熱可塑性樹脂からなる繊維の断面形状は、円形、異形のいずれであっても良い。また、複合型(複合繊維)の断面構造は、鞘芯型、偏心鞘芯型、並列型、多層型、海島型、放射状型、中空放射状型等のいずれであっても良い。接着成分または溶着成分として繊維を混綿する場合には、分割型複合繊維を接着し棒状繊維成形体とするために、熱可塑性樹脂からなる繊維が分割型複合繊維を構成している熱可塑性樹脂と同種類の樹脂を含む繊維であることが好ましい。また混綿した繊維を熱処理により溶融し、接着加工する場合には、分割型複合繊維の低融点樹脂よりも低い温度で溶融する樹脂を接着成分とすることで、該分割型複合繊維を構成する成分樹脂を溶融することなく、棒状繊維成形体を成形でき、更に分割細繊化も進み易くなるために好ましい。また接着繊維として複合型の繊維を用いることで、繊維成形体の強度を更に高くすることができる。なお、混綿、混繊の量は、最終的に得られる棒状繊維成形体中に、0.5dtex未満の分割細繊化した繊維が少なくとも10、好ましくは少なくとも15重量%含まれるように調整を行う必要がある。
【0026】
棒状繊維成形体に親水性を付与する場合には、親水性繊維を混綿または混繊するとよい。ここで親水性繊維は、親水性を示す繊維であれば限定されることはなく、例えば、レーヨン、キュブラに代表される再生繊維、アセテート、トリアセテートに代表される半合成繊維、ポリアミド、アクリル等の合成繊維、綿、羊毛、麻等の天然繊維が利用できる。また、棒状繊維成形体に親水性の薬剤を含浸することでも、棒状繊維成形体に親水性を付与することができる。
【0027】
本発明の棒状繊維成形体は、短繊維の分割型複合繊維、または長繊維の分割型複合繊維のいずれから構成されていても良く、また、該分割型複合繊維からなる不織布で構成されていても良い。分割型複合繊維からなる長繊維ウェブは、スパンボンド法、トウ開繊法、メルトブロー法等で製造することができる。また分割型複合繊維からなる短繊維ウェブは、カーディング、エアレイド、湿式積層等の方法で製造することができる。これらのウェブを用いて、熱処理や溶剤処理により繊維交点を接着することで棒状繊維成形体にすることができる。なお、不織布とは分割型複合繊維からなるウェブが、交絡、融着、接着され、繊維間が結合された成形体をさす。繊維間を結合する接着の方法としては、熱的接着、機械的接着、または化学的接着等が例示できる。熱的接着法は従来公知の方法を採用することができ、具体的には熱風循環法(スルーエアー法)、ポイントボンド法、カレンダー法等を例示できる。ここでウェブや不織布は前記繊維を混綿したものでも良いし、積層したものでも良い。
【0028】
本発明の棒状繊維成形体の空隙率を製造時にコントロールし易くするためには、分割型複合繊維に捲縮を付与することが好ましい。捲縮を付与することにより均一な空隙を持つ棒状繊維成形体に成形することができる。また機能剤を棒状繊維成形体に包含させる場合は、より空隙率が高いほうが機能材の充填率を高めることができ、かつ捲縮により3次元的に繊維のネットワークができるので、充填した機能材の脱落を抑えることができる。
【0029】
次に本発明の棒状繊維成形体の成形方法について説明する。成形方法は従来公知の方法が利用できる。分割型複合繊維を含む布帛(ウェブまたは不織布)を棒状に成形し、熱処理または溶剤処理により繊維成形体に成形する。前記布帛を棒状に成形する方法としては、布帛の機械方向と直交するように布帛を巻く方法、布帛の機械方向と直交するように布帛を収束する方法、布帛の機械方向に平行に布帛を巻く方法、布帛の機械方向と直交するように布帛を収束する方法が例示できる。布帛の機械方向と直交するように布帛を巻く方法は、棒状繊維成形体の長軸方向に繊維を配向させ難いが、機械方向に平行に布帛を収束する方法では、棒状繊維成形体の長軸方向に繊維方向が略一致するため好ましい。その他の方法として、一旦任意の形に成形した後、それを任意の棒状の形状に切断し、製造しても良い。
【0030】
本発明の棒状繊維成形体は、該棒状繊維成形体の長軸方向と、それを構成する繊維の繊維軸方向との配向度が45度以下であることが好ましい。これにより繊維成形体の長軸方向の引張り強力を高くでき、更に折れ難くすることができる。配向度が45度であれば掃除用棒として使用する際の形態安定性が得られ易く、高温で長時間の加熱成形が不要となる。配向度を45度以下にした棒状繊維成形体の製造方法としては、トウやスライバー状のウェブを加熱成形する方法が例示できる。
【0031】
本発明の棒状繊維成形体を構成する分割型複合繊維の製造方法の一例として、以下に、ポリプロピレン樹脂と高密度ポリエチレン樹脂との2成分を組み合わせた分割型複合繊維の製造方法を例示する。前記2成分を通常の溶融紡糸機で紡糸し、長繊維として紡出する。紡糸に際し、紡糸温度は180〜300℃の範囲とすることが良く、引き取り速度は40m/分〜1500m/分程度とすることが良い。延伸は必要に応じて多段延伸を行っても良く、延伸倍率は通常3〜9倍程度とするのが良い。更に得られたトウは必要に応じて捲縮を付与した後、所定長に切断して短繊維として利用する。以上は短繊維の製造工程を開示したが、トウを切断せず、長繊維トウを分繊ガイド等によりウェブとすることもできる。その後は必要に応じて公知公用の高次加工工程を経て、種々の用途に応じた棒状繊維成形体に成形される。また単繊維とせずマルチフィラメント糸としても良い。
【0032】
かかる工程において、繊維を紡出後、繊維の静電気発生防止、繊維成形体への加工性向上、平滑性付与、親水性の付与等を目的として、界面活性剤や親水化剤を用いることができる。界面活性剤の種類、濃度は用途に合わせて適宜調整する。界面活性剤は、繊維表面に適量付着されることで利用でき、その付着の方法は、ローラ法、浸漬法等を用いることができる。付着は、紡糸工程、延伸工程、捲縮工程のいずれで付着させても差し支えない。更に短繊維、長繊維を問わず、紡糸工程、延伸工程、捲縮工程以外に、例えば繊維成形体に成形後に界面活性剤を付着させることもできる。
【0033】
次に棒状繊維成形体の製造方法の一例を示す。前記分割型複合繊維の短繊維を用いて、カード法で必要な目付のウェブを作製する。カード機で作製したウェブを、公知の方法で任意の径のスライバーとし、分割型複合繊維を構成する低融点樹脂が溶融する温度で熱処理を行い、棒状繊維成形体を作製する。なお、この時にウェブに予めウェブを構成する繊維よりも低融点で融解する樹脂パウダーを混ぜておき、スライバーにした後、筒状容器内でこれを該パウダーが融解する温度で熱処理を行い、棒状繊維成形体に成形した後、取り出すことで製造することもできる。
【0034】
溶着には前記熱可塑性樹脂を溶解する溶剤を必要に応じて適宜選択し利用すれば良く、該繊維を溶解して繊維間を溶着することにより棒状繊維成形体に成形することができる。例えばポリオレフィン系繊維の場合は、トリクロルエチレン、トルエン、シクロヘキサン、キシレン、石油エーテル等を使用して繊維間を融着し棒状繊維成形体に成形することができる。
【0035】
本発明の繊維成形体の空隙率は、特に限定されるものではないが、45〜95%の範囲が好ましい。空隙率が45%以上であれば、例えば油吸着材、掃除用棒に使用する場合、隙間が充分になり、油やゴミを収集保持する空間が確保でき、空隙率が95%以下であれば棒状繊維成形体の剛性が強く、例えば掃除用として使用する際、折れにくくなる。また均一な空隙を作ることが容易である
【0036】
本発明の棒状繊維成形体を掃除用に用いる場合は、先端部を円錐状に研磨しても良いし、棒状繊維成形体の先端部を該棒状繊維成形体の長軸方向に対して30〜150度の範囲で鋭角に切り落としても良い。先端部を鋭角にすることで細かな部分の汚れを取り易くすることができる。
【0037】
更に本発明の棒状繊維成形体に機能剤を付着または包含させることにより、他の繊維の混繊、混綿では付与しにくい機能を付与することができる。機能剤としては従来公知のものを使用することがきる。例えば抗菌防臭剤、防カビ剤、消臭剤、吸着剤、研磨剤、イオン交換樹脂、高分子吸水ポリマー等を挙げることができる。前記機能剤が溶液の場合は、多孔質基材に含浸して使用しても良い。多孔質基材としては、アロフェン、イモゴライト、人工ゼオライト、天然ゼオライト、合成ゼオライト、活性炭等が例示できる。また吸着剤としては、前記多孔性基材を用いることができる。棒状繊維成形体に機能剤を包含させる方法としては、機能剤がゼオライト等の粉末の場合、ウェブに加工した分割型複合繊維を水流交絡処理により分割細繊化と不織布化させ、これを熱風等で乾燥した後、機能剤を篩等で不織布上に均一になるように散布し、その後、不織布をガラス管に詰め、適当な温度で加熱、冷却する方法が例にできる。このとき、機能剤表面に空隙が生ずるように機能剤を包含させて棒状繊維成形体を製造することで、機能剤の性能を充分に発揮させることができる。
【0038】
抗菌防臭剤、防カビ剤としては、銀、銅、亜鉛に代表される無機系抗菌剤、塩化ベンザルコニウム、有機シリコン系第4級アンモニウム塩、ポリヘキサメチレンビグアニジン塩酸塩、グルコン酸クロルヘキシジンに代表される有機系抗菌剤、キチン、キトサン、ポリリジン、ヒバ油、ユーカリ、カテキン、アロエ等の天然系抗菌剤が例示できる。消臭剤としては、ベタイン系両面活性剤、カルボニル系化合物、二酸化チタンに代表される光触媒、活性炭、ゼオライト、カテキン、無機系消臭剤、銅−フタロシアニン、鉄−フタロシアニン、金属イオン等が例示できる。
【0039】
研磨剤としては、ガーネット、エメリー、溶融アルミナ、炭化ケイ素等が例示できる。
【0040】
機能剤を包含させる場合は、機能剤との親和性に優れる熱可塑性樹脂からなる繊維を併用することにより、機能剤の脱落を更に抑えることができる。このような熱可塑性樹脂としては、エチレンビニルアルコール共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、エチレン酢酸ビニル共重合体、エチレン無水マレイン酸グラフト共重合体が例示できる。
【0041】
本発明の棒状繊維成形体は、油吸着剤やろ過用フィルターに好適に使用することができるが、機能剤を付着または包含させることにより、更に性能を上げることができる。例えば人工ゼオライトを包含させた棒状繊維成形体は吸油量を大幅に向上させることができ、また陽イオン吸着能にも優れ、特定の物質を選択的に吸着できるフィルターとしても好適に用いることができる。
【0042】
以上、本発明の棒状繊維成形体は、分割型複合繊維の一部分が分割細繊化しているため掃除用棒やインクタンクにも好適に使用できる。またインクタンク用詰物に使用する場合、特に水溶液系のインクを使用する場合は、棒状繊維成形体を親水性にすることが好ましい。その方法としては、親水性繊維の混繊、混綿、界面活性剤の付着、親水化剤の練り込み等が例示できる。また繊維加工用に塗布した界面活性剤が不都合な場合には、棒状繊維成形体に加工する前後で洗い落としておけば良く、水流交絡処理を使用して分割細繊化する場合は、その処理時点で、該界面活性剤が殆ど洗い落とされるため、別途、洗い落とす処理は不要となる。
【0043】
【実施例】
以下、本発明を実施例、比較例によって説明を行うが、本発明はこれらにより限定されるものではない。尚、実施例、比較例における用語と物性の測定方法は以下の通りである。
【0044】
(a)融点:デュポン社製熱分析装置DSC10(商品名)を用い、JIS K7122に準拠して測定を行った。
【0045】
(b)メルトフローレート(MFR):JIS K 7210に準拠して測定した。
原料ポリプロピレン樹脂:表1の条件14
原料ポリエチレン樹脂:表1の条件4
【0046】
(c)密度:JIS K 6760に準拠して密度勾配管による測定を行った。
【0047】
(d)ポリエチレンテレフタレートの固有粘度:フェノールと四塩化エタンの等重量混合溶媒を用い、濃度0.5g/100ml、温度20℃で測定した。
【0048】
(e)分割後繊度:以下の式より算出した。
分割後繊度(dtex)=分割前繊度/分割数
【0049】
(f)分割率:棒状繊維成形体の長軸に対して垂直にかみそりで棒状繊維成形体を切断し、その断面を電子顕微鏡で撮影した。得られた写真から、任意に50本の分割型複合繊維を選び、その平均繊度から以下の式を用いて算出した。
分割率(%)=(分割後繊度/平均繊度)×100
【0050】
(g)吸水性(mm):JIS L 1096記載のバイレック法に準じて測定した。即ち、試料片(試料長20cm、試料径15mm)を、20±2℃の水を入れた水槽に試料片の下端の1cmがちょうど水に浸かるようにする。10分間放置後の水の上昇した高さ(mm)を3回測定し、3点の平均値で吸水性を表した。なお、イオン交換樹脂に通して脱イオンした水を使用した。
【0051】
(h)吸水量:試料片(試料長5cm、試料径15mm)を、20±2℃の水に10分間浸漬して吸水させ、その後引き上げて吊り下げ、10分間水切りを行った後、重量を測定し絶乾試料1g当りに吸収された水の重量を測定し吸液量(g/g)とした。なお、イオン交換樹脂に通して脱イオンした水を使用した。
【0052】
(i)吸油性:JIS L 1096記載のバイレック法に準じて測定した。即ち、試料片(試料長20cm、試料径15mm)を、20±2℃のサラダオイルを入れた水槽に試料片の下端の1cmが油にちょうど浸かるようにする。10分間放置後の油の上昇した高さ(mm)を3回測定し、3回の平均値で吸油性を表した。
【0053】
(j)吸油量:試料片(試料長5cm、試料径15mm)を、20℃±2℃のサラダオイルに10分間浸漬して吸油させ、その後引き上げて吊り下げ、10分間油切りを行った後、重量を測定し絶乾試料1g当りに吸収された油の重量を測定し吸油量(g/g)とした。
【0054】
(k)油拭取性:5cm×5cmのガラス板上に0.5gのサラダオイルを垂らし、コットンネルでガラス表面に油膜を作る。棒状繊維成形体の試料片(試料長20cm、試料径12mm)を手で持ち、棒状繊維成形体の先端で油膜を拭き取ることができるかを以下の基準で判定した。
○:ガラス表面に筋を残さず拭き取れる。
△:ガラス表面に僅かに拭き残りがある。
×:明らかに拭き取れない。
【0055】
(l)形態安定性:(k)で行った試験で棒状繊維成形体が折れたり、歪んだりせず形態を保持したかどうかについて以下の基準で判定した。
○:拭取り時の応力で折れず、更に歪みがなく作業性が良い。
△:拭取り時の応力で僅かに歪むが作業性は大幅に低下しない。
×:拭取り時の応力で折れて作業性が悪い。
【0056】
(m)配向度:棒状繊維成形体の長軸に対して平行に切断して、棒状繊維成形体をまず2等分し、更に該長軸に対して平行に切断した面に垂直かつ長軸に対して平行に切断して2等分とし、棒状繊維成形体を計4等分する。この切断面を電子顕微鏡で観察し、任意に繊維を50本選び、棒状繊維成形体の長軸方向となす角度(0〜90度)を求める。他の3切片も同様に測定した。これらの平均値で配向度を表した。
【0057】
(n)水流交絡処理:ウェブを80メッシュの平織りからなるコンベアーベルト上に載せ、コンベアネット速度5m/分で、ノズル径0.1mm、ノズルピッチ1mmのノズル直下を通過させ、高圧水流を噴射した。まず、4MPaを1段、8MPaを4段処理した。ここで段とは、ノズル直下を通過した回数のことである。
【0058】
実施例1
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度8dtexの未延伸糸とした。得られた未延伸糸を90℃、4倍で延伸し、トータル5万dtex、単糸繊度2dtexの延伸糸トウとした。このトウを開繊機で開繊して、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0059】
実施例2
実施例1で作製した未延伸糸を90℃、4倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。この短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0060】
比較例1
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR36g/10分)を芯成分、高密度ポリエチレン樹脂(融点131℃、MFR26g/10分)を鞘成分とし、鞘芯型複合繊維用口金を用いて、容積比率50/50の鞘芯型複合繊維を紡糸した。引き取り工程において、未延伸の鞘芯型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度8dtexの未延伸糸とした。得られた未延伸糸を90℃、4倍で延伸し、機械捲縮(13山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。この短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0061】
参考例1
実施例2に準拠して、図4のような断面構造をした、12dtexの短繊維を作製した。得られた短繊維をローラカード機でウェブにし、水流交絡処理を行って分割細繊化するのと同時に不織布化を行った。得られた不織布を更に90℃で乾燥した後、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0062】
比較例2
実施例2に準拠して、図4のような断面構造をした、22dtexの短繊維を作製し、この短繊維から繊維成形体を作製した。
【0063】
実施例3
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR36g/10分)を芯成分、直鎖状低密度ポリエチレン樹脂(融点100℃、MFR30g/10分、密度0.910g/cm)を鞘成分とし、鞘芯型複合繊維用口金を用いて、容積比率50/50の未延伸の鞘芯型複合繊維(未延伸糸)を紡糸した。引き取り工程において、未延伸の鞘芯型複合繊維にアルキルフォスフェートカリウム塩を付着し、単糸繊度7dtexの未延伸糸とした。得られた未延伸糸を90℃、3.5倍で延伸し、機械捲縮(13山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。得られた短繊維(30重量%)と実施例2で作製した分割型複合繊維(70重量%)を混綿してローラカード機でウェブにし、直径15mmのガラス管に詰め、125℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0064】
実施例4
実施例2で作製した分割型複合繊維50重量%とレーヨン(1.7dtex、繊維長44mm)50重量%とを混綿して、ローラカード機でウェブにし、直径15mmのガラス管に詰め、125℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0065】
実施例5
実施例2に準拠して空隙率40%の棒状繊維成形体を作製した。
【0066】
参考例2
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度35dtexの未延伸糸とした。得られた未延伸糸を90℃、5倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、51mmに切断して、7dtexの短繊維とした。この短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0067】
実施例6
相対粘度0.60のポリエチレンテレフタレート(鐘紡(株)製、K101)をA成分、ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をB成分とし、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度7dtexの未延伸糸とした。得られた未延伸糸を90℃、3.5倍で延伸し、機械捲縮(13山/2.54cm)を付与した後、38mmに切断して、2dtexの短繊維とした。得られた短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、185℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0068】
実施例7
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR26g/10分)と変性ポリエチレン(密度0.931g/cmの直鎖状低密度ポリエチレンを幹ポリマーとした無水マレイン酸グラフト変性率0.15モル/kgのポリマー。MFR14g/10分)を重量比80/20でブレンドした樹脂をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度7dtexの未延伸糸とした。得られた未延伸糸を90℃、3.5倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。この短繊維をカード機で開繊してウェブにし、水流交絡処理を行って分割細繊化するのと同時に不織布化を行った。得られた不織布を更に90℃で乾燥した後、繊維重量の1/3の重量の人工ゼオライト(平均粒子径10〜30μm、平均細孔径20×10−8〜50×10−8cm、比表面積40〜100m/g)を篩で均一に散布し、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。この棒状繊維成形体は、極細繊維から構成されているため、棒状繊維成形体表面から、包含した人工ゼオライトの脱落が非常に少なかった。
【0069】
参考例3
実施例1で作製した未延伸糸を90℃、4倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、5mmに切断して、2dtexの短繊維とした。この短繊維をエアレイド機で開繊してウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0070】
実施例8
実施例1と比較例1の棒状繊維成形体を掃除棒として、工具の油汚れ落しに使用した。その結果、実施例の棒状繊維成形体は比較例1の棒状繊維成形体と比較して汚れ除去に優れていた。
【0071】
参考例4
参考例3で作製した棒状繊維成形体(直径15mm×長さ5cm)をシリコンチューブ(内径15mm、長さ15cm)の中心付近まで押し込め、簡易ろ過フィルターを作製する。前記吸油性試験で使用したサラダオイル50gと脱イオン水50gを混合して良く振とうし、この油水混合液をシリコンチューブの上部から注ぎ、自然ろ過して、下方から滴下した液体を捕集する。サラダオイルはフィルターに吸着されており、捕集された液体は水のみであった。
【0072】
以上、実施例1〜からわかるように本発明の棒状繊維成形体は、吸水性、吸油性及び拭き取り性に優れるので、掃除棒、インクタンク用詰物、油吸着材に適している。またろ過機能にも優れているのでフィルターとしても適している。
【0073】
【表1】

Figure 0004207485
【0074】
【発明の効果】
本発明の棒状繊維成形体は、分割型複合繊維の一部分が分割細繊化されて表面積が大きくなり、かつ分割細繊化した繊維間に空隙層を形成するので、汚れ等の払拭性の他、吸水性、吸油性に優れる。このため、掃除用棒、インクタンク用詰物に好適に使用できる。更に分割細繊化繊維の空隙層に、種々の機能剤を包含できるため、種々の機能付与ができる。また空隙が均一でないことから、分割細繊化繊維は油吸着材やフィルターとしても好適に使用することができる。
【図面の簡単な説明】
【図1】本発明で使用する分割型複合繊維の断面の1模式図である。
【図2】本発明で使用する分割型複合繊維の断面の1模式図である。
【図3】本発明で使用する分割型複合繊維の断面の1模式図である。
【図4】本発明で使用する分割型複合繊維の断面の1模式図である。
【図5】本発明で使用する分割型複合繊維の断面の1模式図である。
【図6】本発明で使用する分割型複合繊維の断面の1模式図である。
【図7】本発明で使用する分割型複合繊維の断面の1模式図である。
【符合の説明】
1:中空部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rod-like fiber molded body. More specifically, the present invention relates to a rod-like fiber molded body that can be suitably used for cleaning rods, ink tank fillings, oil adsorbents, filters, and the like.
[0002]
[Prior art]
Conventionally, rod-shaped fiber molded bodies have been used for filling ink tanks for magic pens, filters for cigarettes, and the like. As a method for producing such a rod-shaped fiber molded body, a method is known in which fibers are thermally bonded to form a rod-shaped fiber molded body. For example, in Japanese Patent Publication No. 53-47730, a fiber bundle of a polyolefin-based composite fiber composed of a polyethylene component and a polypropylene component is heat-treated, and the outer peripheral surface of the fiber bundle is fixed by heat-sealing with a polyethylene component. An ink tank filling with a reduced degree of heat fusion inside the bundle is disclosed. Japanese Examined Patent Publication No. 55-40231 discloses a cigarette filter in which two or more components having different melting points are compound-spun and heat-treated at a temperature between the melting points of the two components. Furthermore, Japanese Patent Laid-Open No. 2001-214388 discloses a method for producing a forming rod in which a composite fiber tow having a core-sheath ratio of 50/50 to 90/10 wt% is converged and then heat-treated at a temperature between the melting points of both core-sheath components. It is disclosed.
[0003]
Japanese Patent No. 3227388 discloses an ink-jet ink tank in which the surface of a fiber lump having a shape other than a rectangular parallelepiped is heat-treated, and Japanese Patent Application Laid-Open No. 11-192246 is attached to the smooth surface and adjacent surface of a tooth. A tooth cleaning tool for removing spears, stains, plaque and the like has been disclosed.
[0004]
However, the fibers constituting these rod-shaped fiber molded bodies have a relatively large fineness and are preferably used in applications that require relatively high air permeability such as tobacco filters, but in the wiping applications, the effect of scraping dirt is weak. Also, in order to improve the liquid retention of the ink, it is preferable that the fiber surface area is large, and a rod-like fiber molded body having satisfactory performance has not been obtained so far.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to provide a rod-shaped fiber molded article having excellent formation stability, which is excellent in water absorption and oil absorption, in addition to wiping properties such as dirt, and can be suitably used for a cleaning rod and a filling for an ink tank. And
[0006]
[Means for Solving the Problems]
The present inventors diligently studied to solve the above problems. As a result, a rod-shaped fiber molded body in which a part of the contact of the fiber including the split-type composite fiber made of thermoplastic resin is fused or welded, and a part of the split-type composite fiber is split, and the rod-shaped fiber molded body The split-type composite fiber in the undivided state and the split-fine fiber are included, and the fineness of the split-type composite fiber in the non-split state is 0.5 to 20 dtex. Knowing that the above problems can be solved by using a rod-like fiber molded body having a fineness of less than 0.5 dtex, the present invention has been completed based on these findings.
[0007]
  The present invention has the following configuration.
(1) A rod-like fiber molded body in which a part of a contact point of a fiber including a split-type conjugate fiber made of a thermoplastic resin is fused or welded,The degree of orientation of the long axis direction of the rod-shaped fiber molded body and the fiber axis direction of the fibers constituting the rod-shaped fiber molded body is 36 degrees or less,A part of the split-type composite fiber is split, and the rod-shaped fiber molded body includes split-type composite fibers in an unsplit state and split fine fibers, and the fineness of the split-type composite fiber in an unsplit state Is a rod-shaped fiber molded body characterized in that the fineness of the finely divided fibers is less than 0.5 dtex.
[0008]
  Delete
[0009]
(2) The rod-shaped fiber molded body has a porosity of 45 to 95%.(1) descriptionRod-shaped fiber molded body.
[0010]
(3(1) to (1) above, wherein the functional agent is attached to or contained in the rod-shaped fiber molded body.2The rod-shaped fiber molded body according to any one of the above.
[0011]
(4) (1) to (3A cleaning rod using the rod-shaped fiber molded body according to any one of the above.
[0012]
(5) (1) to (3) A filling for an ink tank using the rod-like fiber molded article according to any one of the above.
[0013]
(6) (1) to (3An oil adsorbent using the rod-shaped fiber molded body according to any one of the above.
[0014]
(7) (1) to (3A filter using the rod-shaped fiber molded body according to any one of the above.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The rod-shaped fiber molded body of the present invention is a rod-shaped fiber molded body made of a fiber assembly in which a part of the contact points of fibers including a split type composite fiber made of a thermoplastic resin is fused or welded. In this rod-shaped fiber molded body, a part of the split-type composite fiber is divided, and includes a split-type composite fiber in an unsplit state and a split-fine fiber. The fineness is 0.5 to 20 dtex, and the fineness of the finely divided fibers is less than 0.5 dtex.
[0016]
The thermoplastic resin that forms the fibers used in the rod-shaped fiber molded body of the present invention is not particularly limited as long as it has fiber moldability in the melt spinning process. For example, polypropylene (propylene homopolymer), low density polyethylene, high density polyethylene, linear low density polyethylene, copolymers of propylene and ethylene, 2-3 terpolymers of propylene and other α-olefins, etc. Polyolefin resin polymerized using Ziegler-Natta catalyst or metallocene catalyst, polyethylene terephthalate, polybutylene terephthalate, polyester resin such as low melting point polyester copolymerized with isophthalic acid in addition to terephthalic acid, nylon Polyamide resins such as nylon-6 and nylon-66, polystyrene resins such as atactic polystyrene and syndiotactic polystyrene, elastomer resins such as polyurethane elastomer and polyester elastomer, polylactic acid, polybutylene Shineto, polybutylene succinate adipate, polybutylene succinate terephthalate, polybutylene terephthalate adipate biodegradable resins, fluorine-based resins such as polyvinylidene fluoride, polyphenylene sulfide, and a resin polyketone like. Examples of the thermoplastic resin other than those mentioned above include, for example, vinyl polymers. Specifically, ethylene vinyl alcohol copolymer, polyvinyl acetate, polyacrylic acid ester, ethylene vinyl acetate copolymer, ethylene anhydride maleate. Acid graft copolymers can also be used.
[0017]
The thermoplastic resin used in the present invention further includes an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, an epoxy stabilizer, a lubricant, an antibacterial agent within the range not impeding the effects of the present invention. Additives such as additives, flame retardants, antistatic agents, pigments, plasticizers, hydrophilic agents and the like may be added as necessary.
[0018]
The split type composite fiber constituting the rod-shaped fiber molded body of the present invention will be described. The cross-sectional structure of the split-type composite fiber has a cross-sectional structure in which two different components of the thermoplastic resin are alternately arranged as illustrated in FIGS. For convenience, when one of the two different components is represented as an A component and the other as a B component, the split-type conjugate fiber of FIGS. 1 to 7 is represented by -A- (BA) n-B-. And both ends may be linked or not (n is a positive integer). Specifically, a radial division type cross section in which the components illustrated in FIGS. 1 and 2 are alternately arranged, and a hollow division type in which the components illustrated in FIGS. 3 and 4 are alternately arranged. Cross section, layered split type cross section in which each component illustrated in FIG. 5 and FIG. 6 is alternately arranged in layers, each component illustrated in FIG. 7 is arranged alternately, and the fiber cross section is bent, curved or flat Examples of the divided sectional shape that has become a shape can be given. Of course, in a split type composite fiber composed of a multi-component resin, a cross-sectional structure in which the multi-components are arranged without forming the same components adjacent to each other is formed. The cross-sectional structure and shape of the split-type composite fibers illustrated in FIGS. 1 to 7 are model views. During actual fiber production, the composite fibers may be deformed in cross-sectional shape due to various external stresses. There is no problem in practical use
[0019]
Examples of the combination of the resin components of the split type composite fiber include polyester resin / polyamide resin, polyester resin / polyolefin resin, and polyolefin resin / polyolefin resin. These combinations may be appropriately selected depending on the purpose and application. For example, when used under high temperature conditions, a combination of polyethylene terephthalate resin / nylon 66 resin is preferable. In particular, a combination of polypropylene resin / polyethylene resin is preferable for fields where properties are required, such as oil adsorption and cleaning applications.
[0020]
In the combination of polyolefin resin / polyolefin resin component, in the split type composite fiber using the combination of polyethylene resin / polypropylene resin, a polyethylene resin lower than the melting point of the polypropylene resin becomes a low melting point resin. The resin becomes a high melting point resin. Specific examples of the polyethylene resin include high-density polyethylene, linear low-density polyethylene, and low-density polyethylene. The polyethylene resin may be a mixture of two or more of these. In the split type composite fiber, the composite ratio of the composite fiber composed of the two-component thermoplastic resin is in the range of 10/90 to 90/10, more preferably 30/70 to 70/30, in terms of volume ratio. .
[0021]
What is important in the present invention is that a part of the split type composite fiber is split. In the present invention, it is necessary that the fineness of the finely divided fibers is less than 0.5 dtex, and more preferably less than 0.3 dtex. What is necessary is just to set suitably the division | segmentation segment number of this division | segmentation type composite fiber so that the average fineness of the fiber which carried out the division | segmentation fineness may be less than 0.5 dtex. In addition, although the fineness after a division | segmentation can be made small if there are many segments of a split type composite fiber, it is preferable to actually make the number of segments into 4-32 from the ease on fiber manufacture. Moreover, the fineness of each segment does not need to be the same, and a plurality of fibers having different finenesses may be mixed. This is a state in which the split-type composite fibers are not completely split, and the split-type composite fibers in an unsplit state and the split fine fibers are mixed.
[0022]
As a method for producing a fine fiber, a melt blow method is generally known. However, a molded body obtained by forming an extra fine fiber web (fine fiber web) produced by a melt-blowing method into a rod-like shape has a narrow gap between fibers and inhibits absorption of a highly viscous liquid such as oil. When used for tank filling, there is a problem that the liquid absorption due to the capillary phenomenon is high, the ink is retained in the ink tank, and the life of the ink tank is shortened. On the other hand, in the rod-like fiber molded body manufactured using the split-type conjugate fiber of the present invention, the rod-like fiber molded body is divided into less fine fibers of less than 0.5 dtex and fibers of 0.5 to 20 dtex. Is included, it exhibits moderately excellent effects in the absorbability of high viscosity liquids such as oil, scraping effect, capillary action, inclusion of functional agents, and the like. From this, it can be preferably used as a cleaning rod, ink tank filling, oil adsorbent, and filter material. In particular, when used for ink tank fillings and oil adsorbents, it is preferable that the split-type composite fiber is partially split. Since the split-type composite fibers are partially split and finely divided, narrow spaces and wide spaces exist between the fibers at random, and no adverse effects such as the melt blown ultra-fine fibers occur. In addition, division | segmentation refinement | miniaturization may be adjusted with the division | segmentation rate of a division | segmentation type composite fiber, and may be adjusted with the mixed cotton of another fiber.
[0023]
In the present invention, the single yarn fineness before splitting of the split composite fiber is 0.5 to 20 dtex, preferably 1 dtex to 10 dtex. If the single yarn fineness before division is less than 0.5 dtex, the spinnability in the melt spinning process tends to be lowered. Furthermore, if the single yarn fineness before division is much less than 0.5 dtex, it becomes difficult to control the fiber spacing. Further, if it greatly exceeds 20 dtex, it is difficult to control the porosity of the obtained rod-like fibrous form, and it is divided to make the single yarn fineness of the divided finely divided fiber (after division) less than 0.5 dtex. It is necessary to increase the number, and manufacturing becomes difficult. In the present invention, from the viewpoint of water absorption and oil absorption, the rod-like fiber molded body preferably contains 10 to 95% by weight of finely divided fibers less than 0.5 dtex. More preferably, it is contained by weight%.
[0024]
The method for dividing and finening the split type composite fiber is not particularly limited. For example, the crimp edge portion may be partially divided by the stress at the time of crimping during crimping. Moreover, when producing a web with a card machine, you may divide a part of the crimped short fiber by the stress of the cylinder rotation of a card machine. Further, the web may be divided by a needle punch or hydroentanglement method, and then processed into a rod-like fiber molded body. Further, after forming a rod-like fiber molded body, only a portion to be divided by applying stress can be divided and refined. In particular, when used for cleaning fine parts and uneven parts, the rod-shaped fiber molded body of the present invention can be used suitably, and when scraping off dirt, stress is applied, so that the division further proceeds and the dirt is scraped off. As a result, the scraping performance is further improved.
[0025]
The rod-like fiber molded body of the present invention may be constituted by blended cotton or blended fiber from split-type conjugate fibers and fibers made of the thermoplastic resin. Two or more of these may be used in combination. There is no restriction | limiting in particular as a fiber which consists of a thermoplastic resin mixed, For example, a component single type and a composite type fiber can be utilized. The cross-sectional shape of the fiber made of the thermoplastic resin may be either circular or irregular. The cross-sectional structure of the composite type (composite fiber) may be any of a sheath core type, an eccentric sheath core type, a parallel type, a multilayer type, a sea island type, a radial type, a hollow radial type, and the like. In the case of mixing fibers as an adhesive component or a welding component, in order to bond the split composite fiber to form a rod-like fiber molded body, a thermoplastic resin in which the fiber made of a thermoplastic resin constitutes the split composite fiber and A fiber containing the same type of resin is preferable. In addition, when the mixed cotton fiber is melted by heat treatment and bonded, a component that forms the split-type composite fiber by using a resin that melts at a temperature lower than the low-melting point resin of the split-type composite fiber as an adhesive component This is preferable because a rod-like fiber molded body can be formed without melting the resin, and further, the splitting and finening can be facilitated. Moreover, the strength of the fiber molded body can be further increased by using composite fibers as the adhesive fibers. The amount of blended cotton and blended fibers is adjusted so that the finally obtained rod-like fiber molded body contains at least 10, preferably at least 15% by weight of split fine fibers less than 0.5 dtex. There is a need.
[0026]
In the case of imparting hydrophilicity to the rod-shaped fiber molded body, it is preferable that the hydrophilic fiber is blended or mixed. Here, the hydrophilic fiber is not limited as long as it is a fiber exhibiting hydrophilicity. For example, regenerated fiber represented by rayon and cuvula, semi-synthetic fiber represented by acetate and triacetate, polyamide, acrylic and the like. Natural fibers such as synthetic fibers, cotton, wool and hemp can be used. Moreover, hydrophilicity can be imparted to the rod-shaped fiber molded body by impregnating the rod-shaped fiber molded body with a hydrophilic agent.
[0027]
The rod-like fiber molded body of the present invention may be composed of either a short-fiber split-type composite fiber or a long-fiber split-type composite fiber, or a non-woven fabric made of the split-type composite fiber. Also good. A long fiber web composed of split composite fibers can be produced by a spunbond method, a tow opening method, a melt blow method, or the like. Moreover, the short fiber web which consists of a split type composite fiber can be manufactured by methods, such as carding, airlaid, and wet lamination. Using these webs, the fiber intersections can be bonded by heat treatment or solvent treatment to form a rod-like fiber molded body. The non-woven fabric refers to a molded body in which a web composed of split-type composite fibers is entangled, fused, and bonded, and the fibers are bonded. Examples of the bonding method for bonding fibers include thermal bonding, mechanical bonding, and chemical bonding. A conventionally well-known method can be employ | adopted for a thermal bonding method, Specifically, a hot air circulation method (through air method), a point bond method, a calendar method etc. can be illustrated. Here, the web or the nonwoven fabric may be a mixture of the above fibers or may be a laminate.
[0028]
In order to make it easy to control the porosity of the rod-shaped fiber molded body of the present invention during production, it is preferable to impart crimp to the split-type composite fiber. By imparting crimps, it can be formed into a rod-like fiber molded body having uniform voids. In addition, when the functional agent is included in the rod-shaped fiber molded body, the higher the porosity, the higher the filling rate of the functional material, and the three-dimensional fiber network can be formed by crimping. Can be prevented from falling off.
[0029]
Next, a method for forming the rod-shaped fiber molded body of the present invention will be described. A conventionally known method can be used as the molding method. A cloth (web or non-woven fabric) containing split-type composite fibers is formed into a rod shape and formed into a fiber molded body by heat treatment or solvent treatment. As a method of forming the fabric into a rod shape, a method of winding the fabric so as to be orthogonal to the machine direction of the fabric, a method of converging the fabric so as to be orthogonal to the machine direction of the fabric, and winding the fabric parallel to the machine direction of the fabric. Examples thereof include a method and a method of converging the fabric so as to be orthogonal to the machine direction of the fabric. In the method of winding the fabric so as to be orthogonal to the machine direction of the fabric, it is difficult to orient the fibers in the long axis direction of the rod-shaped fiber molded body. However, in the method of converging the fabric parallel to the machine direction, the long axis of the rod-shaped fiber molded body It is preferable because the fiber direction substantially coincides with the direction. As another method, once formed into an arbitrary shape, it may be cut into an arbitrary bar shape and manufactured.
[0030]
In the rod-shaped fiber molded body of the present invention, the degree of orientation between the major axis direction of the rod-shaped fiber molded body and the fiber axis direction of the fibers constituting the rod-shaped fiber molded body is preferably 45 degrees or less. Thereby, the tensile strength of the long axis direction of a fiber molded object can be made high, and it can make it hard to break. If the degree of orientation is 45 degrees, it is easy to obtain form stability when used as a cleaning rod, and it is not necessary to perform heat molding for a long time at a high temperature. Examples of the method for producing a rod-shaped fiber molded body having an orientation degree of 45 degrees or less include a method of thermoforming a tow or sliver-shaped web.
[0031]
As an example of the manufacturing method of the split type composite fiber which comprises the rod-shaped fiber molded object of this invention, the manufacturing method of the split type composite fiber which combined two components of a polypropylene resin and a high density polyethylene resin is illustrated below. The two components are spun by a normal melt spinning machine and spun as long fibers. In spinning, the spinning temperature is preferably in the range of 180 to 300 ° C., and the take-up speed is preferably about 40 m / min to 1500 m / min. Stretching may be performed by multistage stretching as necessary, and the stretching ratio is usually about 3 to 9 times. Further, the obtained tow is crimped as necessary, then cut into a predetermined length and used as a short fiber. Although the manufacturing process of the short fiber has been disclosed above, the long fiber tow can be formed into a web by a fiber separation guide or the like without cutting the tow. After that, it is formed into a rod-like fiber molded body according to various uses through a publicly known high-order processing step as necessary. Moreover, it is good also as a multifilament yarn without making it a single fiber.
[0032]
In such a process, after spinning the fiber, a surfactant or a hydrophilizing agent can be used for the purpose of preventing the generation of static electricity of the fiber, improving processability to the fiber molded body, imparting smoothness, imparting hydrophilicity, and the like. . The type and concentration of the surfactant are appropriately adjusted according to the application. The surfactant can be used by adhering an appropriate amount to the fiber surface, and a roller method, a dipping method, or the like can be used as the method of adhesion. The attachment may be performed in any of a spinning process, a drawing process, and a crimping process. In addition to the spinning process, the drawing process, and the crimping process, for example, a short-fiber and a long-fiber, for example, a surfactant can be attached to the fiber molded body after molding.
[0033]
Next, an example of the manufacturing method of a rod-shaped fiber molded object is shown. A web having a basis weight necessary for the card method is produced using the short fibers of the split type composite fibers. The web produced by the card machine is made into a sliver having an arbitrary diameter by a known method, and heat-treated at a temperature at which the low melting point resin constituting the split-type conjugate fiber is melted to produce a rod-like fiber molded body. At this time, the resin powder that melts at a lower melting point than the fibers constituting the web is mixed with the web in advance, and after making a sliver, heat treatment is performed at a temperature at which the powder melts in a cylindrical container. It can also be produced by taking out after forming into a fiber molded body.
[0034]
For the welding, a solvent for dissolving the thermoplastic resin may be appropriately selected and used as necessary, and a rod-like fiber molded body can be formed by dissolving the fibers and welding the fibers. For example, in the case of polyolefin fibers, trichloroethylene, toluene, cyclohexane, xylene, petroleum ether or the like can be used to fuse the fibers to form a rod-shaped fiber molded body.
[0035]
The porosity of the fiber molded body of the present invention is not particularly limited, but is preferably in the range of 45 to 95%. If the porosity is 45% or more, for example, when used for an oil adsorbent or a cleaning rod, the gap becomes sufficient, a space for collecting and holding oil and dust can be secured, and if the porosity is 95% or less. The rod-shaped fiber molded body has high rigidity, and is difficult to break when used for cleaning, for example. It is also easy to create a uniform gap
[0036]
When the rod-shaped fiber molded body of the present invention is used for cleaning, the tip portion may be polished in a conical shape, or the tip portion of the rod-shaped fiber molded body may be 30 to the major axis direction of the rod-shaped fiber molded body. You may cut off at an acute angle in the range of 150 degrees. By making the tip part an acute angle, it is possible to make it easy to remove fine portions.
[0037]
Further, by attaching or including a functional agent to the rod-like fiber molded body of the present invention, it is possible to impart a function that is difficult to be imparted by blending or blending other fibers. A conventionally well-known thing can be used as a functional agent. For example, an antibacterial deodorant, an antifungal agent, a deodorant, an adsorbent, an abrasive, an ion exchange resin, a polymer water-absorbing polymer and the like can be mentioned. When the functional agent is a solution, it may be used by impregnating the porous substrate. Examples of the porous substrate include allophane, imogolite, artificial zeolite, natural zeolite, synthetic zeolite, activated carbon and the like. As the adsorbent, the porous substrate can be used. As a method of including the functional agent in the rod-shaped fiber molded body, when the functional agent is a powder such as zeolite, the split composite fiber processed into a web is divided into fine fibers and nonwoven fabric by hydroentanglement treatment, and this is heated with air For example, the functional agent can be sprayed uniformly on the nonwoven fabric with a sieve or the like, and then the nonwoven fabric is packed in a glass tube and heated and cooled at an appropriate temperature. At this time, the performance of the functional agent can be sufficiently exhibited by manufacturing the rod-shaped fiber molded body by including the functional agent so that voids are generated on the surface of the functional agent.
[0038]
Antibacterial and deodorant agents include antibacterial agents such as silver, copper and zinc, benzalkonium chloride, organic silicon quaternary ammonium salts, polyhexamethylene biguanidine hydrochloride and chlorhexidine gluconate. Illustrative organic antibacterial agents such as chitin, chitosan, polylysine, hiba oil, eucalyptus, catechin and aloe can be exemplified. Examples of deodorizers include betaine double-sided activators, carbonyl compounds, photocatalysts typified by titanium dioxide, activated carbon, zeolite, catechin, inorganic deodorants, copper-phthalocyanine, iron-phthalocyanine, metal ions, and the like. .
[0039]
Examples of the abrasive include garnet, emery, fused alumina, silicon carbide and the like.
[0040]
In the case where the functional agent is included, dropping of the functional agent can be further suppressed by using together a fiber made of a thermoplastic resin excellent in affinity with the functional agent. Examples of such thermoplastic resins include ethylene vinyl alcohol copolymer, polyvinyl acetate, polyacrylic ester, ethylene vinyl acetate copolymer, and ethylene maleic anhydride graft copolymer.
[0041]
The rod-like fiber molded body of the present invention can be suitably used for an oil adsorbent or a filter for filtration, but the performance can be further improved by attaching or including a functional agent. For example, a rod-shaped fiber molded body containing artificial zeolite can greatly improve the oil absorption amount, has excellent cation adsorption ability, and can be suitably used as a filter that can selectively adsorb a specific substance. .
[0042]
As described above, the rod-shaped fiber molded body of the present invention can be suitably used for a cleaning rod and an ink tank because a part of the split-type composite fiber is split and finely divided. Further, when used as a filling for an ink tank, particularly when an aqueous ink is used, it is preferable to make the rod-like fiber molded body hydrophilic. Examples of the method include blending of hydrophilic fibers, blended cotton, adhesion of a surfactant, and kneading of a hydrophilizing agent. In addition, if the surfactant applied for fiber processing is inconvenient, it can be washed off before and after processing into a rod-shaped fiber molded body. Therefore, since the surfactant is almost washed away, a separate washing process is unnecessary.
[0043]
【Example】
Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited by these. In addition, the term and the measuring method of a physical property in an Example and a comparative example are as follows.
[0044]
(A) Melting point: Measured according to JIS K7122 using a thermal analyzer DSC10 (trade name) manufactured by DuPont.
[0045]
(B) Melt flow rate (MFR): measured in accordance with JIS K 7210.
Raw material polypropylene resin: Condition 14 in Table 1
Raw material polyethylene resin: Condition 4 in Table 1
[0046]
(C) Density: A density gradient tube was used in accordance with JIS K 6760.
[0047]
(D) Intrinsic viscosity of polyethylene terephthalate: Measured at a concentration of 0.5 g / 100 ml and a temperature of 20 ° C. using an equal weight mixed solvent of phenol and ethane tetrachloride.
[0048]
(E) Fineness after division: calculated from the following formula.
Fineness after division (dtex) = fineness before division / number of divisions
[0049]
(F) Division ratio: The rod-shaped fiber molded body was cut with a razor perpendicular to the long axis of the rod-shaped fiber molded body, and the cross section was photographed with an electron microscope. 50 split-type composite fibers were arbitrarily selected from the obtained photographs, and the average fineness was calculated using the following formula.
Division rate (%) = (fineness after division / average fineness) × 100
[0050]
(G) Water absorption (mm): Measured according to the birec method described in JIS L 1096. That is, a sample piece (sample length: 20 cm, sample diameter: 15 mm) is immersed in water in a water tank containing 20 ± 2 ° C. water. The elevated height (mm) of water after standing for 10 minutes was measured three times, and the water absorption was expressed by the average value of three points. Water deionized through an ion exchange resin was used.
[0051]
(H) Amount of water absorption: A sample piece (sample length: 5 cm, sample diameter: 15 mm) was immersed in water at 20 ± 2 ° C. for 10 minutes to absorb water, then lifted and suspended, drained for 10 minutes, and then weighted. The weight of the water measured per 1 g of the absolutely dry sample was measured to obtain the liquid absorption (g / g). Water deionized through an ion exchange resin was used.
[0052]
(I) Oil absorption: Measured according to the birec method described in JIS L 1096. That is, a sample piece (sample length: 20 cm, sample diameter: 15 mm) is immersed in oil in a water tank containing 20 ± 2 ° C. salad oil at the lower end of the sample piece. The raised height (mm) of the oil after being allowed to stand for 10 minutes was measured three times, and the oil absorbency was expressed by the average value of the three times.
[0053]
(J) Oil absorption: After a sample piece (sample length 5 cm, sample diameter 15 mm) is immersed in salad oil at 20 ° C. ± 2 ° C. for 10 minutes to absorb oil, then lifted and suspended for 10 minutes The weight was measured and the weight of oil absorbed per gram of the absolutely dry sample was measured to obtain the oil absorption (g / g).
[0054]
(K) Oil wiping property: 0.5 g of salad oil is hung on a 5 cm × 5 cm glass plate, and an oil film is formed on the glass surface with cottonnell. A sample piece (sample length: 20 cm, sample diameter: 12 mm) of the rod-like fiber molded body was held by hand, and whether or not the oil film could be wiped off at the tip of the rod-like fiber molded body was determined according to the following criteria.
○: Wipe off without leaving streaks on the glass surface.
Δ: There is a slight wiping residue on the glass surface.
X: Obviously not wiped off.
[0055]
(L) Shape stability: It was determined on the basis of the following criteria whether or not the rod-like fiber molded body was retained in the shape without being bent or distorted in the test conducted in (k).
○: No breakage due to stress at the time of wiping, no distortion, and good workability.
Δ: Slightly distorted due to stress during wiping, but workability is not significantly reduced.
X: The workability is poor due to breakage due to stress during wiping.
[0056]
(M) Degree of orientation: Cut parallel to the long axis of the rod-shaped fiber molded body, first divide the rod-shaped fiber molded body into two equal parts, and then perpendicular to the plane cut parallel to the long axis and the long axis Is cut into two equal parts, and the rod-like fiber molded body is divided into four equal parts. This cut surface is observed with an electron microscope, 50 fibers are arbitrarily selected, and an angle (0 to 90 degrees) with the major axis direction of the rod-shaped fiber molded body is obtained. The other three sections were measured in the same manner. The degree of orientation was represented by these average values.
[0057]
(N) Hydroentanglement treatment: A web was placed on a conveyor belt made of 80 mesh plain weave, passed through a nozzle having a nozzle diameter of 0.1 mm and a nozzle pitch of 1 mm at a conveyor net speed of 5 m / min, and a high-pressure water stream was jetted. . First, 4MPa was processed in 1 step and 4MPa in 4 steps. Here, the step is the number of times that the nozzle has passed directly under the nozzle.
[0058]
Example 1
Using polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as component A, high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as component B, and using a split composite fiber die, Spinning split-type composite fibers having a volume ratio of 50/50 and a cross-sectional structure as shown in FIG. 3, and in the take-up process, alkyl phosphate potassium salt is attached to the unstretched split-type composite fibers (undrawn yarn), The undrawn yarn had a single yarn fineness of 8 dtex. The obtained undrawn yarn was drawn 4 times at 90 ° C. to obtain a drawn yarn tow having a total of 50,000 dtex and a single yarn fineness of 2 dtex. The tow was opened with a spreader, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0059]
Example 2
The undrawn yarn produced in Example 1 was drawn at 90 ° C. and 4 times, and after mechanical crimping (15 peaks / 2.54 cm), it was cut into 51 mm to obtain 2 dtex short fibers. This short fiber was made into a web with a roller card machine, packed in a glass tube with a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0060]
Comparative Example 1
Using a polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 36 g / 10 min) as a core component and a high density polyethylene resin (melting point 131 ° C., MFR 26 g / 10 min) as a sheath component, using a sheath core type composite fiber die A sheath-core type composite fiber having a volume ratio of 50/50 was spun. In the take-up step, an alkyl phosphate potassium salt was attached to an unstretched sheath-core type composite fiber (unstretched yarn) to obtain an unstretched yarn having a single yarn fineness of 8 dtex. The obtained undrawn yarn was drawn at 90 ° C. and 4 times, applied with mechanical crimp (13 peaks / 2.54 cm), and then cut into 51 mm to obtain 2 dtex short fibers. This short fiber was made into a web with a roller card machine, packed in a glass tube with a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0061]
  Reference example 1
  Based on Example 2, 12 dtex short fibers having a cross-sectional structure as shown in FIG. 4 were produced. The obtained short fiber was made into a web with a roller card machine, subjected to hydroentanglement treatment to be divided into fine fibers and simultaneously made into a nonwoven fabric. The obtained nonwoven fabric was further dried at 90 ° C., then packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0062]
Comparative Example 2
Based on Example 2, 22 dtex short fibers having a cross-sectional structure as shown in FIG. 4 were produced, and a fiber molded body was produced from the short fibers.
[0063]
  Example 3
  Polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 36 g / 10 min) as core component, linear low density polyethylene resin (melting point 100 ° C., MFR 30 g / 10 min, density 0.910 g / cm3) Was used as a sheath component, and an unstretched sheath-core composite fiber (unstretched yarn) with a volume ratio of 50/50 was spun using a sheath-core composite fiber base. In the take-up step, an alkyl phosphate potassium salt was attached to the unstretched sheath-core type composite fiber to obtain an unstretched yarn having a single yarn fineness of 7 dtex. The obtained unstretched yarn was stretched at 90 ° C. and 3.5 times to give mechanical crimps (13 peaks / 2.54 cm), and then cut to 51 mm to obtain 2 dtex short fibers. The obtained short fiber (30% by weight) and the split-type composite fiber (70% by weight) produced in Example 2 were blended to form a web using a roller card machine, packed in a glass tube having a diameter of 15 mm, and at 125 ° C. for 15 minutes. After heating and cooling, it was taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0064]
  Example 4
  50% by weight of the split-type composite fiber prepared in Example 2 and 50% by weight of rayon (1.7 dtex, fiber length 44 mm) are mixed into a web using a roller card machine, packed in a glass tube having a diameter of 15 mm, and 125 ° C. For 15 minutes, cooled, and taken out of the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0065]
  Example 5
  Based on Example 2, a rod-like fiber molded body having a porosity of 40% was produced.
[0066]
  Reference example 2
  Using polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as component A, high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as component B, and using a split composite fiber die, Spinning split-type composite fibers having a volume ratio of 50/50 and a cross-sectional structure as shown in FIG. 3, and in the take-up process, alkyl phosphate potassium salt is attached to the unstretched split-type composite fibers (undrawn yarn), The undrawn yarn had a single yarn fineness of 35 dtex. The obtained unstretched yarn was stretched at 90 ° C. and 5 times to give mechanical crimps (15 peaks / 2.54 cm), and then cut to 51 mm to obtain 7 dtex short fibers. This short fiber was made into a web with a roller card machine, packed in a glass tube with a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0067]
  Example 6
  Polyethylene terephthalate having a relative viscosity of 0.60 (manufactured by Kanebo Co., Ltd., K101) is A component, and polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) is B component, volume ratio 50/50, FIG. Spinning a split-type composite fiber having a cross-sectional structure as shown in Fig. 3 and attaching an alkyl phosphate potassium salt to an unstretched split-type composite fiber (undrawn yarn) in the take-off process, and undrawing with a single yarn fineness of 7 dtex It was a thread. The obtained undrawn yarn was drawn at 90 ° C. and 3.5 times to give mechanical crimps (13 peaks / 2.54 cm), and then cut into 38 mm to obtain 2 dtex short fibers. The obtained short fiber was made into a web with a roller card machine, packed in a glass tube having a diameter of 15 mm, heated at 185 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0068]
  Example 7
  Polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as component A, high-density polyethylene resin (melting point 131 ° C., MFR 26 g / 10 min) and modified polyethylene (density 0.931 g / cm3A polymer having a maleic anhydride graft modification rate of 0.15 mol / kg using a linear low-density polyethylene as a backbone polymer. A split type composite fiber having a B-component resin blended with MFR 14 g / 10 min) at a weight ratio of 80/20 and having a cross-sectional structure as shown in FIG. 3 using a split type composite fiber die with a volume ratio of 50/50. In the take-off step, an alkyl phosphate potassium salt was attached to an unstretched split conjugate fiber (unstretched yarn) to obtain an unstretched yarn having a single yarn fineness of 7 dtex. The obtained undrawn yarn was drawn at 90 ° C. and 3.5 times to give mechanical crimps (15 peaks / 2.54 cm), and then cut into 51 mm to obtain 2 dtex short fibers. The short fibers were opened with a card machine to form a web, and hydroentangled to perform splitting and thinning, and at the same time, a nonwoven fabric was formed. The obtained non-woven fabric was further dried at 90 ° C., and then artificial zeolite having a weight of 1/3 of the fiber weight (average particle size of 10 to 30 μm, average pore size of 20 × 10-8~ 50x10-8cm, specific surface area 40-100m2/ G) was uniformly sprayed with a sieve, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body. Since this rod-shaped fiber molded body is composed of ultrafine fibers, the included artificial zeolite was very little dropped from the surface of the rod-shaped fiber molded body.
[0069]
  Reference example 3
  The undrawn yarn produced in Example 1 was drawn at 90 ° C. and 4 times, applied with mechanical crimps (15 ridges / 2.54 cm), and then cut into 5 mm to obtain 2 dtex short fibers. The short fibers were opened with an airlaid machine to form a web, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0070]
  Example 8
  The rod-shaped fiber molded body of Example 1 and Comparative Example 1 was used as a cleaning rod for removing oil stains on the tool. As a result, the rod-shaped fiber molded body of the example was excellent in removing dirt as compared with the rod-shaped fiber molded body of Comparative Example 1.
[0071]
  Reference example 4
  Reference example 3The rod-shaped fiber molded body (diameter 15 mm × length 5 cm) produced in step 1 is pushed into the vicinity of the center of the silicon tube (inner diameter 15 mm, length 15 cm) to produce a simple filtration filter. Mix 50g of salad oil and 50g of deionized water used in the oil absorption test, shake well, pour this oil / water mixture from the top of the silicon tube, naturally filter, and collect the liquid dropped from below. . Salad oil was adsorbed on the filter and the only liquid collected was water.
[0072]
  As described above, Examples 1 to8As can be seen from the above, the rod-like fiber molded body of the present invention is excellent in water absorption, oil absorption and wiping properties, and is therefore suitable for cleaning rods, ink tank fillings, and oil adsorbents.Also filtration functionIt is also suitable as a filter.
[0073]
[Table 1]
Figure 0004207485
[0074]
【The invention's effect】
In the rod-shaped fiber molded body of the present invention, a part of the split-type composite fiber is divided and refined to increase the surface area, and a void layer is formed between the split and refined fibers. Excellent water absorption and oil absorption. For this reason, it can be used suitably for a cleaning stick and a filling for an ink tank. Furthermore, since various functional agents can be included in the void layer of the divided fine fiber, various functions can be imparted. Further, since the voids are not uniform, the divided fine fiber can be suitably used as an oil adsorbent or a filter.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a cross section of a split type composite fiber used in the present invention.
FIG. 2 is a schematic diagram of a cross section of a split type composite fiber used in the present invention.
FIG. 3 is a schematic diagram of a cross section of a split type composite fiber used in the present invention.
FIG. 4 is a schematic diagram of a cross section of a split type composite fiber used in the present invention.
FIG. 5 is a schematic diagram of a cross section of a split type composite fiber used in the present invention.
FIG. 6 is a schematic diagram of a cross section of a split type composite fiber used in the present invention.
FIG. 7 is a schematic diagram of a cross section of a split type composite fiber used in the present invention.
[Explanation of sign]
1: Hollow part

Claims (7)

熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した棒状繊維成形体であって、棒状繊維成形体の長軸方向と、該棒状繊維成形体を構成する繊維の繊維軸方向との配向度が36度以下であり、該分割型複合繊維の一部分が分割し、該棒状繊維成形体中に未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満であることを特徴とする棒状繊維成形体。A rod-shaped fiber molded body in which a part of a contact point of a fiber including a split-type composite fiber made of a thermoplastic resin is fused or welded , the long axis direction of the rod-shaped fiber molded body, and the fibers constituting the rod-shaped fiber molded body The degree of orientation with respect to the fiber axis direction is 36 degrees or less, a part of the split-type composite fiber is split, and the split-type composite fiber in an unsplit state and the split fine fibers are divided into the rod-shaped fiber molded body. A rod-like fiber molded body, characterized in that the fineness of a split-type composite fiber that is included and in an undivided state is 0.5 to 20 dtex, and the fineness of the split-fine fiber is less than 0.5 dtex. 棒状繊維成形体が、45〜95%の空隙率である請求項1記載の棒状繊維成形体。The rod-shaped fiber molded body according to claim 1 , wherein the rod-shaped fiber molded body has a porosity of 45 to 95%. 棒状繊維成形体に機能剤が付着または包含されている請求項1〜のいずれか1項記載の棒状繊維成形体。Rod-shaped fiber molded body according to any one of claims 1-2 which functional agent into bars fiber molding is attached or included. 請求項1〜のいずれか1項記載の棒状繊維成形体を用いた掃除用棒。A cleaning rod using the rod-shaped fiber molded body according to any one of claims 1 to 3 . 請求項1〜のいずれか1項記載の棒状繊維成形体を用いたインクタンク用詰物。The filling for ink tanks using the rod-shaped fiber molded object of any one of Claims 1-3 . 請求項1〜のいずれか1項記載の棒状繊維成形体を用いた油吸着材。The oil adsorbent using the rod-shaped fiber molded object of any one of Claims 1-3 . 請求項1〜のいずれか1項記載の棒状繊維成形体を用いたフィルター。The filter using the rod-shaped fiber molded object of any one of Claims 1-3 .
JP2002221891A 2002-07-30 2002-07-30 Rod-like fiber molded body Expired - Fee Related JP4207485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221891A JP4207485B2 (en) 2002-07-30 2002-07-30 Rod-like fiber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221891A JP4207485B2 (en) 2002-07-30 2002-07-30 Rod-like fiber molded body

Publications (2)

Publication Number Publication Date
JP2004060115A JP2004060115A (en) 2004-02-26
JP4207485B2 true JP4207485B2 (en) 2009-01-14

Family

ID=31942081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221891A Expired - Fee Related JP4207485B2 (en) 2002-07-30 2002-07-30 Rod-like fiber molded body

Country Status (1)

Country Link
JP (1) JP4207485B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344465B2 (en) * 2006-10-30 2013-11-20 金星製紙株式会社 Air filter with high rigidity
JP5164805B2 (en) * 2008-11-12 2013-03-21 三井化学株式会社 Oil adsorbent
JP5438615B2 (en) * 2010-07-20 2014-03-12 株式会社クレハ Oil collection material containing polyglycolic acid
JP5844595B2 (en) * 2010-10-04 2016-01-20 水ing株式会社 Manufacturing method of fiber filter media
JP2012143541A (en) * 2010-12-24 2012-08-02 St Corp Deodrant composition and deodrizing method
US20140183125A1 (en) * 2012-12-27 2014-07-03 Seiko Epson Corporation Liquid absorber, liquid absorption tank, and electrical machine
JP6433046B2 (en) * 2013-05-17 2018-12-05 アンビック株式会社 Oil absorbing material using long-fiber nonwoven fabric and method for producing the same
JP6173184B2 (en) * 2013-11-19 2017-08-02 株式会社大貴 Water absorption treatment material
JP6654866B2 (en) * 2014-11-13 2020-02-26 ダイワボウホールディングス株式会社 Nonwoven fabric, method for producing the same, and sheet for absorbent article

Also Published As

Publication number Publication date
JP2004060115A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CN101617072B (en) An improved composite filter media with high surface area fibers
JP5866338B2 (en) Nonwoven fiber web containing chemically active particulates and methods of making and using the same
KR101800034B1 (en) Apparatus, system, and method for forming nanofibers and nanofiber webs
US7888275B2 (en) Porous composite materials comprising a plurality of bonded fiber component structures
JP2013076182A (en) Polyester filament nonwoven fabric and method for manufacturing the same
JP2016536486A (en) Bicomponent fiber, product formed therefrom and method of making the same
JP4207485B2 (en) Rod-like fiber molded body
KR100739587B1 (en) Manufacturing method of a complex filter having high performance and a complex filter formed therefrom
JPH06316851A (en) Preparation of absorptive article
JP2007152216A (en) Nonwoven fabric for filter
JP2009007705A (en) Extrafine two-layer structured yarn and wiping cloth made thereof
JP4281474B2 (en) Nonwoven fabric and method for producing the same
JP4158499B2 (en) Nonwoven fabric and wiping material using the same
JP4839709B2 (en) Filter and manufacturing method thereof
JPH05220313A (en) Filter
JP3567480B2 (en) Filter medium and method for producing the same
KR101723335B1 (en) Splittable conjugate fiber and manufacturing method thereof, and nonwoven fabrics and manufacturing method thereof
JP2622744B2 (en) Water-retaining nonwoven
JP2021004431A (en) Sea-island fiber
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP2007237167A (en) Nonwoven fabric for filter
JP4464433B2 (en) Cylindrical filter
JP7452621B2 (en) Wet nonwoven sheet
JPH11279922A (en) Fiber formed product and its production
JP4476724B2 (en) Method for producing drawn extracted fiber, drawn extracted fiber, and nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees