JP6433046B2 - Oil absorbing material using long-fiber nonwoven fabric and method for producing the same - Google Patents
Oil absorbing material using long-fiber nonwoven fabric and method for producing the same Download PDFInfo
- Publication number
- JP6433046B2 JP6433046B2 JP2014101598A JP2014101598A JP6433046B2 JP 6433046 B2 JP6433046 B2 JP 6433046B2 JP 2014101598 A JP2014101598 A JP 2014101598A JP 2014101598 A JP2014101598 A JP 2014101598A JP 6433046 B2 JP6433046 B2 JP 6433046B2
- Authority
- JP
- Japan
- Prior art keywords
- long
- fiber
- oil
- nonwoven fabric
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 177
- 239000004745 nonwoven fabric Substances 0.000 title claims description 74
- 239000011358 absorbing material Substances 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- -1 polypropylene Polymers 0.000 claims description 27
- 229920000642 polymer Polymers 0.000 claims description 25
- 238000010521 absorption reaction Methods 0.000 claims description 22
- 239000004743 Polypropylene Substances 0.000 claims description 20
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 17
- 229920001155 polypropylene Polymers 0.000 claims description 14
- 229920000098 polyolefin Polymers 0.000 claims description 9
- 230000014759 maintenance of location Effects 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 239000003921 oil Substances 0.000 description 61
- 235000019198 oils Nutrition 0.000 description 58
- 230000000052 comparative effect Effects 0.000 description 24
- 239000000523 sample Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 229920000139 polyethylene terephthalate Polymers 0.000 description 12
- 239000005020 polyethylene terephthalate Substances 0.000 description 12
- 239000000155 melt Substances 0.000 description 9
- 238000009987 spinning Methods 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 238000007664 blowing Methods 0.000 description 5
- 229920001707 polybutylene terephthalate Polymers 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 4
- 238000001523 electrospinning Methods 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 235000019519 canola oil Nutrition 0.000 description 3
- 239000000828 canola oil Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006259 thermoplastic polyimide Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- 208000031968 Cadaver Diseases 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920003355 Novatec® Polymers 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-L isophthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC(C([O-])=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-L 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Nonwoven Fabrics (AREA)
Description
本発明は、長繊維不織布、これを用いた吸油材及び長繊維不織布の製造方法に関する。 The present invention relates to a long-fiber nonwoven fabric, an oil absorbing material using the same, and a method for producing the long-fiber nonwoven fabric.
従来からポリプロピレン繊維製オイルフェンスは知られている。例えば特許文献1には繊維径が10〜100μmのポリプロピレン製中空繊維を用いた油吸収用マットが提案されている。特許文献2にはエレベータ等のガイドレール下端の油受けに溜まった潤滑剤を吸収するために極細の化学繊維が提案されている。特許文献3にはメルトブローの極細繊維と開繊された短繊維を複合した不織ウェブが提案されている。 Conventionally, polypropylene fiber oil fences are known. For example, Patent Document 1 proposes an oil absorption mat using polypropylene hollow fibers having a fiber diameter of 10 to 100 μm. Patent Document 2 proposes an ultrafine chemical fiber for absorbing the lubricant accumulated in the oil receiver at the lower end of a guide rail such as an elevator. Patent Document 3 proposes a nonwoven web in which melt blown ultrafine fibers and opened short fibers are combined.
しかし、前記特許文献1〜2で提案されている従来品は、吸油性と嵩高性の両立が困難であった。また、特許文献3は短繊維を混合使用することから短繊維脱落の問題があり、いずれも改善が求められていた。 However, the conventional products proposed in Patent Documents 1 and 2 are difficult to achieve both oil absorption and bulkiness. Further, Patent Document 3 has a problem of short fiber dropping because it uses a mixture of short fibers, and all of them have been required to be improved.
本発明は、前記従来の問題を解決するため、吸油性と嵩高性を両立し、かつ短繊維の脱落問題もない長繊維不織布、これを用いた吸油材及び長繊維不織布の製造方法を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a long-fiber nonwoven fabric that is compatible with oil absorption and bulkiness, and has no problem of short fiber dropping, and an oil-absorbing material and a method for producing the long-fiber nonwoven fabric using the same. .
本発明は、長繊維で構成される不織布を用いた吸油材であって、前記長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、前記太い繊維の繊度分布中心は、前記細い繊維の繊度分布中心の2倍以上であり、前記細い繊維はポリオレフィン系繊維であり、前記太い繊維はポリエステルであり、前記細い繊維は表面積が大きく高吸油性であり、前記太い繊維は骨格となりへたりを防止して嵩高で保形性が高いことを特徴とする長繊維不織布を用いた吸油材である。
The present invention is an oil absorbing material using a non-woven fabric composed of long fibers, the long fibers include relatively thick fibers and relatively fine fibers, the fine fiber distribution center of the thick fibers is More than twice the fineness distribution center of the fine fibers, the fine fibers are polyolefin fibers, the thick fibers are polyester, the fine fibers have a large surface area and high oil absorption, and the thick fibers are An oil-absorbing material using a long-fiber non-woven fabric, which is bulky and has a high shape-retaining property by preventing sag.
本発明の長繊維不織布を用いた吸油材の製造方法は、融点の異なる少なくとも2種類のポリマーを紡糸口金から溶融押し出しし、圧力流体によって前記押し出された繊維を吹き飛ばし、前記吹き飛ばされた繊維をシート状に形成することを特徴とする。 The method for producing an oil-absorbing material using the long-fiber non-woven fabric of the present invention comprises melting and extruding at least two kinds of polymers having different melting points from a spinneret, blowing off the extruded fibers with a pressure fluid, and forming the blown fibers into a sheet. It is formed in the shape.
本発明は、長繊維で構成され、前記長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、前記太い繊維の繊度分布中心は前記細い繊維の繊度分布中心の2倍以上あり、前記細い繊維はポリオレフィン系繊維とすることにより、高い吸油性と嵩高性を有し、かつ短繊維の脱落問題もない長繊維不織布とこれを用いた吸油材及び長繊維不織布の製造方法を提供できる。すなわち、細い繊維は表面積が大きいので高い吸油性を有し、太い繊維は骨格となりへたりを防止して嵩高で保形性の高いシートが形成でき、太い繊維と細い繊維の交点が接着したり絡み合ったりすることで強度、嵩高さ、高い吸油性を発揮できる。 The present invention is composed of long fibers, the long fibers include relatively thick fibers and relatively fine fibers, and the fineness distribution center of the thick fibers is twice the fineness distribution center of the thin fibers. As described above, by making the thin fibers polyolefin-based fibers, a long fiber nonwoven fabric having high oil absorption and bulkiness and no problem of short fiber dropping, an oil absorbing material using the same, and a method for producing the long fiber nonwoven fabric Can provide. That is, thin fibers have a high surface area and high oil absorption, and thick fibers can be prevented from becoming a skeleton and form a bulky and highly shape-retaining sheet, and the intersections of thick fibers and thin fibers can be bonded. By entanglement, strength, bulkiness, and high oil absorption can be exhibited.
本発明は、長繊維で構成される不織布である。長繊維はメルトブロー法で製造できる。メルトブロー法にエレクトロスピンニング法を併用してもよい。 The present invention is a nonwoven fabric composed of long fibers. Long fibers can be produced by the melt blow method. An electrospinning method may be used in combination with the meltblowing method.
不織布を構成する長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、太い繊維の繊度分布中心は、細い繊維の繊度分布中心の2倍以上であり、より好ましくは4倍以上である。メルトブロー法及び/又はエレクトロスピンニング法で製造される繊維は、繊度は不均一であるが繊度分布中心で3.0μm以下が好ましく、より好ましくは1.0μm以下である。繊度分布中心は、走査型電子顕微鏡(SEM)による倍率3000倍の写真により観察し、測定数50個の計測による中心値である。 The long fibers constituting the non-woven fabric include relatively thick fibers and relatively fine fibers, and the fine fiber distribution center of the thick fibers is more than twice the fine fiber distribution center, more preferably 4 It is more than double. The fibers produced by the melt blowing method and / or the electrospinning method have non-uniform fineness but preferably have a fineness distribution center of 3.0 μm or less, more preferably 1.0 μm or less. The fineness distribution center is a central value obtained by measuring 50 measurements with a scanning electron microscope (SEM) at a magnification of 3000 times.
太い繊維及び細い繊維はいずれも非分割繊維であるのが好ましい。すなわち、メルトブロー法及び/又はエレクトロスピンニング法で製造される繊維の状態であり、分割処理などをしない繊維である。分割処理するとコストが高くなる問題がある。 Both thick and thin fibers are preferably undivided fibers. That is, it is a fiber that is produced by the melt-blowing method and / or the electrospinning method, and is a fiber that is not subjected to a splitting process or the like. There is a problem that the cost increases when the division processing is performed.
太い繊維と細い繊維は融点が異なり、太い繊維は相対的に融点が高いことが好ましい。不織布内で太い繊維は骨格となりへたりを防止して嵩高で保形性の高いシートを形成するためである。 Thick fibers and thin fibers have different melting points, and thick fibers preferably have a relatively high melting point. This is because the thick fibers in the nonwoven fabric become a skeleton to prevent sag and form a bulky and highly shape-retaining sheet.
不織布を構成する細い繊維は、例えば、ポリエステルまたはその共重合体もしくはこれらの混合物などの熱可塑性樹脂、具体的には、ポリエチレンテレフタレート( P E T ) 、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、またイソフタル酸やフタル酸等の重合物、ポリアミドまたはその共重合体もしくはこれらの混合物であってもよく、またポリオレフィンまたはその共重合体もしくはこれらの混合物であってもよい。例えば、ポリエチレン、ポリプロピレン、α − オレフィン、エチレンなどをランダム共重合したポリプロピレンなどであってもよい。またポリエステル系樹脂またはポリアミド系樹脂、オレフィン類の樹脂を混合した樹脂からなってもよい。耐熱性や難燃性を高めるためにポリカーボネート、ポリフェニレンサルファイドやポリアマイド、熱可塑性ポリイミドなど各種の重合体であってもよい。繊維形成性があれば2種以上の熱可塑性樹脂を混合したものであってもよい。前記のうち、ポリオレフィン系繊維が好ましい。ポリオレフィン系繊維は親油性が高いうえ比重も軽く、オイルフェンス等に好適である。ポリオレフィンとしては、ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体等がある。この中でもポリプロピレンがとくに好ましく、ポリマーの性質を損なわない範囲で他の成分が共重合されていてもよい。 The fine fibers constituting the nonwoven fabric include, for example, a thermoplastic resin such as polyester or a copolymer thereof or a mixture thereof, specifically, polyethylene terephthalate (PET), polybutylene terephthalate, polytrimethylene terephthalate, or isophthalate. Polymers such as acid and phthalic acid, polyamides or copolymers thereof, or a mixture thereof may be used, and polyolefins or copolymers thereof or a mixture thereof may be used. For example, polypropylene obtained by random copolymerization of polyethylene, polypropylene, α-olefin, ethylene, or the like may be used. Further, it may be made of a resin in which a polyester resin, a polyamide resin, or an olefin resin is mixed. In order to enhance heat resistance and flame retardancy, various polymers such as polycarbonate, polyphenylene sulfide, polyamide, and thermoplastic polyimide may be used. As long as it has fiber-forming properties, it may be a mixture of two or more thermoplastic resins. Of the above, polyolefin fibers are preferred. Polyolefin fibers are highly lipophilic and light in specific gravity, and are suitable for oil fences and the like. Examples of polyolefin include polypropylene, polyethylene, and ethylene-propylene copolymer. Among these, polypropylene is particularly preferable, and other components may be copolymerized as long as the properties of the polymer are not impaired.
太い繊維は、前記細い繊維の樹脂と相溶しない組み合わせとした、ポリエステルまたはその共重合体もしくはこれらの混合物などの熱可塑性樹脂、具体的には、ポリエチレンテレフタレート( P E T ) 、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、またイソフタル酸やフタル酸等の重合物、ポリアミドまたはその共重合体もしくはこれらの混合物であってもよく、またポリオレフィンまたはその共重合体もしくはこれらの混合物であってもよい。例えば、ポリエチレン、ポリプロピレン、α − オレフィン、エチレンなどをランダム共重合したポリプロピレンなどであってもよい。またポリエステル系樹脂またはポリアミド系樹脂、オレフィン類の樹脂を混合した樹脂からなってもよい。耐熱性や難燃性を高めるためにポリカーボネート、ポリフェニレンサルファイドやポリアマイド、熱可塑性ポリイミドなど各種の重合体であってもよい。繊維形成性があれば2種以上の熱可塑性樹脂を混合したものであってもよい。前記のうち、ポリエステルが好ましい。ポリエステルはポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTMT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等がある。この中でもPET,PBTが好ましい。 A thick fiber is a thermoplastic resin such as polyester or a copolymer thereof or a mixture thereof, specifically, a combination incompatible with the resin of the fine fiber, specifically, polyethylene terephthalate (PET), polybutylene terephthalate, Polytrimethylene terephthalate, a polymer such as isophthalic acid or phthalic acid, polyamide or a copolymer thereof or a mixture thereof may be used, and a polyolefin or a copolymer thereof or a mixture thereof may be used. For example, polypropylene obtained by random copolymerization of polyethylene, polypropylene, α-olefin, ethylene, or the like may be used. Further, it may be made of a resin in which a polyester resin, a polyamide resin, or an olefin resin is mixed. In order to enhance heat resistance and flame retardancy, various polymers such as polycarbonate, polyphenylene sulfide, polyamide, and thermoplastic polyimide may be used. As long as it has fiber-forming properties, it may be a mixture of two or more thermoplastic resins. Of these, polyester is preferred. Polyester includes polyethylene terephthalate (PET), polytrimethylene terephthalate (PTMT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and the like. Of these, PET and PBT are preferable.
本発明の長繊維不織布は、油−水混合液体からの選択的に吸油する性質が高い。不織布を構成する細い繊維はポリオレフィン系繊維であり、親油性が高いうえ、細い繊維は表面積が大きいので高い吸油性を発揮できる。 The long fiber nonwoven fabric of the present invention has a high property of selectively absorbing oil from an oil-water mixed liquid. The fine fibers constituting the non-woven fabric are polyolefin fibers, which have high lipophilicity, and the thin fibers have a large surface area and thus can exhibit high oil absorption.
長繊維不織布は、主面の少なくとも一面にスパンボンド不織布が積層され、厚さ方向の溶融孔で一体化されていてもよい。このようにすると表面繊維の毛羽立ちや引っかかりを防ぐことができ、取扱い性が良好となる。同様に、長繊維不織布は主面の少なくとも一面は毛焼きされていても良い。スパンボンド不織布の単位面積当たりの重量(目付)は5〜100g/m2が好ましく、さらに好ましくは10〜50g/m2である。また、厚さ方向の溶融孔は高周波ローラを用いたピンソニック加工により形成できる。 The long fiber nonwoven fabric may be formed by laminating a spunbond nonwoven fabric on at least one of the main surfaces and integrating them with melt holes in the thickness direction. In this way, surface fibers can be prevented from fuzzing and caught, and the handleability is improved. Similarly, at least one surface of the main surface of the long fiber nonwoven fabric may be burnt. The weight (unit weight) per unit area of the spunbonded nonwoven fabric is preferably 5 to 100 g / m 2 , more preferably 10 to 50 g / m 2 . The melt hole in the thickness direction can be formed by pin sonic processing using a high frequency roller.
本発明の長繊維不織布の目付は10〜10000g/m2が好ましく、さらに好ましくは100〜1000g/m2である。見掛け密度は0.005〜0.30g/cm3が好ましく、さらに好ましくは0.01〜0.10g/cm3である。 The basis weight of the long-fiber nonwoven fabric of the present invention is preferably 10 to 10,000 g / m 2 , more preferably 100 to 1000 g / m 2 . The apparent density is preferably 0.005 to 0.30 g / cm 3 , more preferably 0.01 to 0.10 g / cm 3 .
本発明の長繊維不織布はオイルフェンス、オイルブロック等の吸油材として有用である。他の用途としては衣服の芯地、衣服の中綿、寝具の布団綿、マットの中綿、枕の中綿、吸音材、防音材、気体・液体用のフィルターなどにも有効である。 The long fiber nonwoven fabric of the present invention is useful as an oil absorbing material for oil fences, oil blocks and the like. Other uses are also effective for clothes interlining, clothes padding, bedding duvet, mat padding, pillow padding, sound absorbing materials, soundproofing materials, and gas / liquid filters.
次に長繊維不織布の製造方法について説明する。本発明の長繊維不織布は、融点の異なる少なくとも2種類のポリマーを紡糸口金から溶融押し出しし、圧力流体によって前記押し出された繊維を吹き飛ばし、前記吹き飛ばされた繊維をシート状に形成することにより得られる。圧力流体によって押し出された繊維を吹き飛ばしてシート状に形成する方法をメルトブロー法という。シート形成箇所又は紡糸口金の近傍には電極を配置し、紡糸口金との間に電圧をかけてもよい。電圧をかける方法はエレクトロスピニング法という。電圧をかけると紡糸口金から押し出された溶融ポリマーは帯電し対応する電極方向に紡糸される。このとき圧空によって高速に紡糸することで本発明の長繊維が得られる。 Next, the manufacturing method of a long-fiber nonwoven fabric is demonstrated. The long-fiber nonwoven fabric of the present invention is obtained by melt-extruding at least two types of polymers having different melting points from a spinneret, blowing off the extruded fibers with a pressure fluid, and forming the blown-off fibers into a sheet shape. . A method of blowing a fiber extruded by a pressure fluid to form a sheet is called a melt blow method. An electrode may be disposed in the vicinity of the sheet forming portion or the spinneret, and a voltage may be applied between the electrode and the spinneret. The method of applying voltage is called electrospinning. When a voltage is applied, the molten polymer extruded from the spinneret is charged and spun in the corresponding electrode direction. At this time, the long fiber of the present invention can be obtained by spinning at high speed with compressed air.
溶融紡糸は、融点の異なり互いに相溶しない少なくとも2種類のポリマーを同一の紡糸口金から溶融押し出してもよい。これにより融点の高いポリマーは太い繊維となり、融点の低いポリマーは細い繊維となる。融点の異なる少なくとも2種類のポリマーをそれぞれ別の紡糸口金から溶融押し出しても良い。これにより同様に融点の高いポリマーは太い繊維となり、融点の低いポリマーは細い繊維となるが、2種類のポリマーの混合割合や押し出し量を変化させることで、細い繊維と太い繊維の割合をコントロールできる。細い繊維と太い繊維の割合は質量比で、細い繊維:太い繊維=90〜20:10〜80が好ましく、80〜30:20〜70がさらに好ましく、70〜50:30〜50がいっそう好ましい。細い繊維と太い繊維の割合は、細い繊維が多いほど油保持量が増加するが、へたりを防止して嵩高で保形性の高いシートの骨格となる太い繊維の割合が少なくなるので、嵩高性、形状の確保が難しくなる。 In melt spinning, at least two kinds of polymers having different melting points and incompatible with each other may be melt-extruded from the same spinneret. As a result, a polymer having a high melting point becomes a thick fiber, and a polymer having a low melting point becomes a thin fiber. At least two types of polymers having different melting points may be melt extruded from different spinnerets. Similarly, a polymer with a high melting point becomes a thick fiber, and a polymer with a low melting point becomes a thin fiber, but the ratio of the thin fiber and the thick fiber can be controlled by changing the mixing ratio of two types of polymers and the amount of extrusion. . The ratio of thin fibers to thick fibers is a mass ratio, preferably thin fibers: thick fibers = 90-20: 10-80, more preferably 80-30: 20-70, and even more preferably 70-50: 30-50. The ratio of thin fibers to thick fibers increases the oil retention as the number of thin fibers increases, but the ratio of thick fibers that prevent sag and become a bulky and highly shape-retaining sheet skeleton decreases. It is difficult to secure the properties and shape.
次に図面を用いて説明する。図2Aは本発明の一実施例で得られた長繊維不織布15の模式的断面図である。この長繊維不織布15は、繊度の太い繊維と細い繊維を含む長繊維層12と、少なくとも一面のスパンボンド不織布層13と高周波ローラを用いたピンソニック加工により厚さ方向の溶融孔14を有する。図2Bは別の実施例の長繊維不織布17の模式的断面図である。この長繊維不織布17は、繊度の太い繊維と細い繊維を含む長繊維層12の少なくとも一表面を毛焼き加工したもので、16は毛焼き層である。スパンボンド不織布層13又は毛焼き層16を設けると、表面繊維の毛羽立ちや引っかかりを防ぐことができ、取扱い性が良好となる。 Next, it demonstrates using drawing. FIG. 2A is a schematic cross-sectional view of the long fiber nonwoven fabric 15 obtained in one example of the present invention. This long-fiber nonwoven fabric 15 has a long-fiber layer 12 including thick and fine fibers, and a fusion hole 14 in the thickness direction by pin sonic processing using at least one surface of a spunbond nonwoven fabric layer 13 and a high-frequency roller. FIG. 2B is a schematic cross-sectional view of a long fiber nonwoven fabric 17 of another example. This long fiber nonwoven fabric 17 is obtained by subjecting at least one surface of a long fiber layer 12 containing thick fibers and fine fibers to a fried yarn, and 16 is a fried yarn layer. When the spunbond nonwoven fabric layer 13 or the fried layer 16 is provided, the surface fibers can be prevented from fuzzing and caught, and the handleability is improved.
図3Aは本発明の一実施例で使用する紡糸機11の模式的説明図、図3B-Dは同紡糸機の紡糸口金の部分の模式的説明図である。基台1の上に溶融押し出し機2が据え付けられており、ホッパー3からポリマーチップを矢印4の方向に供給する。押し出し機2で溶融押し出しされたポリマーはダイノーズ(紡糸口金)5から押し出され、ダイノーズ(紡糸口金)5の近傍に形成されているガスロット6からの放射状に放出した圧空によって前方に吹き飛ばされ、次に空気抵抗によりカルマン渦状に繊維が絡み合って繊維束を形成し、繊維集合体8になる。図3Aにおける矢印7はルーツブロアからの圧空供給方向を示す。前方に吹き飛ばされた繊維集合体8は巻き取りローラ9上でシート状になり巻き取られる。10は巻き取られた長繊維不織布である。巻き取りローラ9の代わりに金属ネットを配置しても良い。ダイノーズ(紡糸口金)5と巻き取りローラ9又は金属ネットには10〜100kV程度の電圧をかけてもよい。圧空供給方向は、ポリマーの性状によって、ダイノズルの前方だけではなく、直行、斜め前方45度など紡糸に最適な角度を設定する。一例として図3B-Dに示すように、ガスロット6a,6b,6c,6dは1個もしくは複数個配置してもよい。 FIG. 3A is a schematic explanatory view of a spinning machine 11 used in an embodiment of the present invention, and FIGS. 3B-D are schematic explanatory views of a spinneret portion of the spinning machine. A melt extruder 2 is installed on the base 1, and polymer chips are supplied from the hopper 3 in the direction of arrow 4. The polymer melt-extruded by the extruder 2 is extruded from a die nose (spinneret) 5 and blown forward by compressed air discharged radially from a gas slot 6 formed in the vicinity of the dienose (spinneret) 5. Fibers are entangled in a Karman vortex by air resistance to form a fiber bundle, thereby forming a fiber assembly 8. An arrow 7 in FIG. 3A indicates the direction of pressure air supply from the roots blower. The fiber assembly 8 blown forward is turned into a sheet on the take-up roller 9 and taken up. Reference numeral 10 denotes a wound long fiber nonwoven fabric. A metal net may be disposed in place of the take-up roller 9. A voltage of about 10 to 100 kV may be applied to the dynose (spinneret) 5 and the take-up roller 9 or the metal net. The pressure supply direction is set not only to the front of the die nozzle but also to an optimum angle for spinning such as straight and 45 degrees obliquely forward depending on the properties of the polymer. As an example, as shown in FIGS. 3B-D, one or a plurality of gas slots 6a, 6b, 6c, 6d may be arranged.
以下、実施例を用いてさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
<測定方法>
1.厚さ
尾崎製作所製大型スナップゲージK−7型、測定子直径100mm、加重2.5g/cm2で10点測定し、その表示範囲とした。
2.吸油量及びサンプル1g当たりの油保持量
(1)200mlのビーカーに油を150ml入れ、そこに表1に記載した重量のサンプルを浸し、5分間放置した。油は食用なたね油として味の素社製"さらさらキャノーラ油"、及び日本潤滑油社製"YX No.300油"を使用した。
(2)5分後サンプルを取り出し、金網に乗せ、さらに5分間放置した。
(3)サンプルの重量を測定し、吸油量とサンプル1g当たりの油保持量を算出した。
3.油の吸い上げ高さ
(1)縦20cm、横2.5cmの試験試料を採取し、油温20℃の味の素社製"さらさらキャノーラ油"を入れた容器上の一定に高さに支えた水平棒上に粘着テープで固定した。
(2)試験試料の下端を一線に並べて水平棒を降ろして、下端がちょうど油に漬かるようにした。
(3)鋼製のスケールを水平棒に試験試料と一緒につるし、1、2、3、4、5分後の毛細管現象による油の上昇した高さ(mm)を測定した。
Hereinafter, more specific description will be made using examples. In addition, this invention is not limited to the following Example.
<Measurement method>
1. Thickness Ten points were measured with a large snap gauge K-7 manufactured by Ozaki Seisakusho, a probe diameter of 100 mm, and a weight of 2.5 g / cm 2 , and the display range was obtained.
2. Oil absorption and oil retention per gram of sample
(1) 150 ml of oil was put into a 200 ml beaker, and a sample having a weight described in Table 1 was immersed therein and left for 5 minutes. As the edible rapeseed oil, “Sarasara Canola Oil” manufactured by Ajinomoto Co., Inc. and “YX No. 300 Oil” manufactured by Nippon Lubricating Oil Co., Ltd. were used.
(2) After 5 minutes, the sample was taken out, placed on a wire mesh, and left for another 5 minutes.
(3) The weight of the sample was measured, and the oil absorption and the amount of oil retained per gram of sample were calculated.
3. Oil suction height
(1) Take a test sample 20cm in length and 2.5cm in width, and stick it on a horizontal rod supported at a constant height on a container containing "Sarasara Canola Oil" manufactured by Ajinomoto Co., Inc. with an oil temperature of 20 ° C. Fixed.
(2) The lower end of the test sample was aligned and the horizontal bar was lowered so that the lower end was just immersed in oil.
(3) A steel scale was hung on a horizontal bar together with the test sample, and the height (mm) at which the oil rose due to capillary action after 1, 2, 3, 4, 5 minutes was measured.
(実施例1、比較例1〜4)
ポリプロピレン(日本ポリプロ株式会社製、商品名“ノバテック”,PP)とポリエチレンテレフタレート(東洋紡株式会社製、商品名“バイオペレットEMC307”,PET)のそれぞれのチップをブレンド(重量比でPP:PET=70:30)し、図3に示す溶融紡糸装置のホッパー4から供給し、溶融押し出し機2から溶融押し出しし紡糸した。紡糸温度は320℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は5g/分、0.5Mpaの圧搾空気を直径1mmの細孔からダイノーズに噴射し、巻き取りローラ9で長繊維不織布10を巻き取った。得られた不織布の太い繊維の繊度分布中心は4.3μmであり、細い繊維の繊度分布中心は0.9μmであった。
(Example 1, Comparative Examples 1-4)
Blended chips of polypropylene (made by Nippon Polypro Co., Ltd., trade name “Novatec”, PP) and polyethylene terephthalate (trade name “Biopellet EMC307”, PET made by Toyobo Co., Ltd.) (PP: PET = 70 by weight) 30), and supplied from the hopper 4 of the melt spinning apparatus shown in FIG. 3, melt extruded from the melt extruder 2, and spun. The spinning temperature is 320 ° C., the extrusion amount of the polymer from the die nose (spinneret) 5 is 5 g / min, 0.5 Mpa of compressed air is sprayed from the pores having a diameter of 1 mm to the die nose, and the long-fiber nonwoven fabric 10 is wound by the winding roller 9 Rolled up. The fine fiber has a fineness distribution center of 4.3 μm and a fine fiber has a fineness distribution center of 0.9 μm.
得られた長繊維不織布の目付は320g/m2、厚さは11〜12mmであった。得られた実施例1の長繊維不織布と比較例1品(市販のPP不織布製オイルキャッチャー:旭化成ホームプロダクツ株式会社製グリーストラップ用油吸着シート)、比較例2品(市販の紙パルプ製オイルキャッチャー;大三株式会社製油吸わせ隊)、比較例3品(市販のPP不織布製オイルキャッチャー:日本製紙クレシア株式会社製PP100)、比較例4品(市販のPP不織布製オイルキャッチャー:三井化学株式会社製ハイパータフネルオイルブロッターHP−50)を用いて、下記の試験をした。 The obtained long fiber nonwoven fabric had a basis weight of 320 g / m 2 and a thickness of 11 to 12 mm. The obtained long-fiber nonwoven fabric of Example 1 and one comparative example (commercially available PP nonwoven oil catcher: oil-absorbing sheet for grease trap manufactured by Asahi Kasei Home Products Co., Ltd.), two comparative examples (commercially available pulp and paper oil catcher) ; Osan Co., Ltd. Oil Absorbing Corps), Comparative Example 3 (commercially available PP nonwoven oil catcher: PP100 manufactured by Nippon Paper Crecia Co., Ltd.), Comparative Example 4 (commercially available PP nonwoven oil catcher: Mitsui Chemicals, Inc.) The following tests were conducted using Hyper Tafnel Oil Blotter HP-50).
(1)各サンプル1g当たりの油保持量(g)
実施例1、比較例1〜2の吸油量とサンプル1g当たりの油保持量を測定した。結果を表1に示す。
(1) Oil retention per gram of each sample (g)
The oil absorption amount of Example 1 and Comparative Examples 1 and 2 and the oil retention amount per 1 g of the sample were measured. The results are shown in Table 1.
表1、図4のグラフに示すように本実施例の長繊維不織布は比較例1〜2品に比べて、3倍以上油保持量が多かった。 As shown in the graphs of Table 1 and FIG. 4, the long fiber nonwoven fabric of this example had three times or more oil retention amount as compared with Comparative Examples 1 and 2.
(2)水−油混合液からの選択的吸油性
水100gになたね油(味の素社製"さらさらキャノーラ油")10gを加え、この混合液に実施例1、比較例1〜2品の各サンプル10gを、水−油混合液に漬けたときの選択的油吸収性を測定した。結果は図5のグラフに示す通りであり、本実施例の長繊維不織布は比較例1〜2品に比べて選択的吸油性が高かった。
(2) Selective oil absorption from water-oil mixture 10 g of rapeseed oil (“Sarasara Canola Oil” manufactured by Ajinomoto Co., Inc.) is added to 100 g of water, and 10 g of each sample of Example 1 and Comparative Examples 1 and 2 is added to this mixture. Was measured for the selective oil absorption when immersed in a water-oil mixture. A result is as showing in the graph of FIG. 5, and the long-fiber nonwoven fabric of a present Example had high selective oil absorption compared with the Comparative Examples 1-2 products.
(3)実施例1、比較例3〜4品の各サンプルの油の吸い上げ高さ
実施例1、比較例3〜4品の各サンプルの油の吸い上げ高さを測定した。結果は、表2に示す。
(3) Oil suction height of each sample of Example 1 and Comparative Examples 3 to 4 The oil suction height of each sample of Example 1 and Comparative Examples 3 to 4 was measured. The results are shown in Table 2.
表2に示すように本実施例の長繊維不織布は比較例3〜4品に比べて油の吸い上げ速度が速く且つ、上昇した高さも高かった。長繊維不織布は、油を速く大量に吸着する性能に優れていることがわかる。 As shown in Table 2, the long-fiber nonwoven fabric of this example had a higher oil suction speed and a higher height as compared with Comparative Examples 3 to 4. It can be seen that the long fiber nonwoven fabric is excellent in the ability to adsorb oil quickly and in large quantities.
(実施例2〜3)
表3に示す以外は実施例1と同様に長繊維不織布を作成した。得られた長繊維不織布を平らにし、この不織布の表裏両面に目付20g/m2、厚さ0.18mmのポリプロピレンスパンボンド不織布を積層し、高周波ローラを用いたピンソニック加工により厚さ方向の溶融孔で前記長繊維不織布スパンボンド不織布を一体化した。厚さ方向の溶融孔のピッチ間隔は25mmとした。但し、表3に示すPET(低粘度)は、ポリマーチップを100℃、60分間オルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した固有粘度が0.58であり、PET(高粘度)は前記固有粘度が0.70のポリマーを示す。吸油量の測定方法は、前記と同様にした。
(Examples 2-3)
A long-fiber nonwoven fabric was prepared in the same manner as in Example 1 except that it was shown in Table 3. The obtained long fiber nonwoven fabric is flattened, and a polypropylene spunbond nonwoven fabric having a basis weight of 20 g / m 2 and a thickness of 0.18 mm is laminated on both sides of the nonwoven fabric, and melted in the thickness direction by pin sonic processing using a high frequency roller. The long fiber nonwoven fabric spunbond nonwoven fabric was integrated with the holes. The pitch interval of the melt holes in the thickness direction was 25 mm. However, PET (low viscosity) shown in Table 3 has an intrinsic viscosity of 0.58 when a dilute solution obtained by dissolving a polymer chip in orthochlorophenol at 100 ° C. for 60 minutes at 35 ° C. using an Ubbelohde viscometer is used. PET (high viscosity) indicates a polymer having an intrinsic viscosity of 0.70. The method for measuring the oil absorption was the same as described above.
比較として、前記比較例3品及び前記比較例4品を用いた。比較例3品は市販のPP不織布製オイルキャッチャー:日本製紙クレシア株式会社製PP100、比較例4品は市販のPP不織布製オイルキャッチャー:三井化学株式会社製ハイパータフネルオイルブロッターHP−50)である。吸油量の測定方法は、前記と同様にした。サンプル作成条件と結果を表3に示す。 For comparison, the three comparative examples and the four comparative examples were used. Comparative Example 3 product is a commercially available PP nonwoven oil catcher: PP100 manufactured by Nippon Paper Crecia Co., Ltd., and Comparative Example 4 product is a commercially available PP nonwoven oil catcher: Hyper Tufnel Oil Blotter HP-50 manufactured by Mitsui Chemicals. . The method for measuring the oil absorption was the same as described above. Table 3 shows sample preparation conditions and results.
表3、図6のグラフに示すように実施例2〜3品の長繊維不織布は、比較例3〜4品に比べて吸油量もサンプル1g当たりの油保持量も多かった。 As shown in the graphs of Table 3 and FIG. 6, the long-fiber nonwoven fabrics of Examples 2 to 3 had a larger amount of oil absorption and an amount of oil retained per 1 g of sample than those of Comparative Examples 3 to 4.
(嵩高性の比較試験)
実施例1のポリプロピレンチップのみを用いて実施例1と同様に長繊維不織布を作成し、比較例5とした。比較例5、実施例1〜3の長繊維不織布を平らにし、この不織布の表裏両面に目付20g/m2、厚さ0.18mmのポリプロピレンスパンボンド不織布を積層し、高周波ローラを用いたピンソニック加工により厚さ方向の溶融孔で前記長繊維不織布スパンボンド不織布を一体化した。厚さ方向の溶融孔のピッチ間隔は25mmとした。実施例1〜3、比較例5の嵩高性を比較した。サンプル作成条件と嵩高性の結果を表4に示す。
(Bulkness comparison test)
A long fiber nonwoven fabric was prepared in the same manner as in Example 1 using only the polypropylene chip of Example 1, and this was designated as Comparative Example 5. The long fiber nonwoven fabrics of Comparative Example 5 and Examples 1 to 3 were flattened, and a polypropylene spunbond nonwoven fabric having a basis weight of 20 g / m 2 and a thickness of 0.18 mm was laminated on both front and back surfaces of the nonwoven fabric, and a pin sonic using a high frequency roller. The long fiber nonwoven fabric spunbonded nonwoven fabric was integrated with the melt holes in the thickness direction by processing. The pitch interval of the melt holes in the thickness direction was 25 mm. The bulkiness of Examples 1 to 3 and Comparative Example 5 was compared. Table 4 shows sample preparation conditions and bulkiness results.
表4から次のことがわかる。
(1)細い繊維のみの比較例5と比較して、実施例1〜3では、嵩高で保形性の高いシートの骨格となる太い繊維があるので、長繊維不織布の厚さが厚く嵩高である。
(2)ピンソニック加工に時の高周波ローラによる、厚さへたりも少なく、高い嵩高性を有している。
(3)一方、細い繊維と太い繊維の割合では、太い繊維が多いほど厚く、ピンソニック加工に時の高周波ローラによる厚さへたりも少なく、高い嵩高性を有している。
(4)細い繊維は表面積が大きいので高い吸油性を有し、太い繊維は骨格となりへたりを防止して嵩高で保形性の高いシートが形成でき、太い繊維と細い繊維の交点が接着したり絡み合ったりすることで強度、嵩高さと高い吸油性を発揮できる。
Table 4 shows the following.
(1) Compared with Comparative Example 5 in which only thin fibers are used, in Examples 1 to 3, since there are thick fibers that serve as a skeleton of a bulky and highly shape-retaining sheet, the long-fiber nonwoven fabric is thick and bulky. is there.
(2) Thickness is small due to the high frequency roller used for pin sonic processing, and it has high bulkiness.
(3) On the other hand, in the ratio of thin fibers to thick fibers, the thicker the thick fibers, the thicker the fibers are, and the less the thickness of the high frequency roller during pin sonic processing, the higher the bulkiness.
(4) Since thin fibers have a large surface area, they have high oil absorption, and thick fibers can form a skeleton and form a bulky and highly shape-retaining sheet, and the intersections of thick fibers and thin fibers adhere to each other. Or entanglement can exert strength, bulkiness and high oil absorption.
1 基台
2 溶融押し出し機
3 ホッパー
4 ポリマーチップ供給方向
5 紡糸口金
6,6a〜6d ガスロット
7 圧空供給方向
8 繊維集合体
9 巻き取りローラ
10 巻き取られた長繊維不織布
11 紡糸機
12 長繊維層
13 スパンボンド不織布層
14 溶融孔
15,17 長繊維不織布
16 毛焼き層
DESCRIPTION OF SYMBOLS 1 Base 2 Melt extrusion machine 3 Hopper 4 Polymer chip supply direction 5 Spinneret 6, 6a-6d Gas slot 7 Pressure air supply direction 8 Fiber assembly 9 Winding roller 10 Winded long fiber nonwoven fabric 11 Spinning machine 12 Long fiber layer 13 Spunbond non-woven fabric layer 14 Melting hole 15, 17 Long fiber non-woven fabric 16
Claims (10)
前記太い繊維の繊度分布中心は、前記細い繊維の繊度分布中心の2倍以上であり、
前記細い繊維はポリオレフィン系繊維であり、前記太い繊維はポリエステルであり、
前記細い繊維は表面積が大きく高吸油性であり、前記太い繊維は骨格となりへたりを防止して嵩高で保形性が高いことを特徴とする長繊維不織布を用いた吸油材。 Oil absorbing material using a nonwoven fabric composed of long fibers, the long fibers include relatively thick fibers and relatively fine fibers,
The fineness distribution center of the thick fiber is at least twice the fineness distribution center of the thin fiber,
The thin fiber is a polyolefin-based fiber, the thick fiber is polyester,
An oil-absorbing material using a long-fiber non-woven fabric , characterized in that the thin fibers have a large surface area and are highly oil-absorbing, and the thick fibers become a skeleton and are bulky and have high shape retention.
融点の異なる少なくとも2種類のポリマーを紡糸口金から溶融押し出しし、圧力流体によって前記押し出された繊維を吹き飛ばし、前記吹き飛ばされた繊維をシート状に形成することを特徴とする長繊維不織布を用いた吸油材の製造方法。 It is a manufacturing method of the oil-absorbing material using the long-fiber nonwoven fabric according to any one of claims 1 to 7,
Oil absorption using a long-fiber nonwoven fabric characterized in that at least two types of polymers having different melting points are melt-extruded from a spinneret, the extruded fibers are blown off by a pressure fluid, and the blown fibers are formed into a sheet shape. A method of manufacturing the material .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014101598A JP6433046B2 (en) | 2013-05-17 | 2014-05-15 | Oil absorbing material using long-fiber nonwoven fabric and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013105480 | 2013-05-17 | ||
JP2013105480 | 2013-05-17 | ||
JP2014101598A JP6433046B2 (en) | 2013-05-17 | 2014-05-15 | Oil absorbing material using long-fiber nonwoven fabric and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014240537A JP2014240537A (en) | 2014-12-25 |
JP6433046B2 true JP6433046B2 (en) | 2018-12-05 |
Family
ID=52139917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014101598A Active JP6433046B2 (en) | 2013-05-17 | 2014-05-15 | Oil absorbing material using long-fiber nonwoven fabric and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6433046B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201805063A (en) * | 2016-03-04 | 2018-02-16 | 艾姆特克斯股份有限公司 | Grease adsorption mat and method for producing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0798131B2 (en) * | 1991-03-15 | 1995-10-25 | チッソ株式会社 | Cylindrical filter and manufacturing method thereof |
JP3666828B2 (en) * | 1996-03-27 | 2005-06-29 | ユニチカ株式会社 | Non-woven fabric having strip-like splitting area and method for producing the same |
JP4207485B2 (en) * | 2002-07-30 | 2009-01-14 | チッソ株式会社 | Rod-like fiber molded body |
US20050227563A1 (en) * | 2004-01-30 | 2005-10-13 | Bond Eric B | Shaped fiber fabrics |
JP4433295B2 (en) * | 2004-07-05 | 2010-03-17 | 東洋紡績株式会社 | Spunbond nonwoven fabric and sound deadening material suitable for sound-absorbing material base fabric |
JP5489084B2 (en) * | 2011-08-12 | 2014-05-14 | Jnc株式会社 | Mixed fiber non-woven fabric |
JP2013136856A (en) * | 2011-12-28 | 2013-07-11 | Teijin Ltd | Oil absorbing sheet and oil absorbing composite sheet |
JP2013177703A (en) * | 2012-02-28 | 2013-09-09 | Toray Ind Inc | Mixed fiber nonwoven fabric |
-
2014
- 2014-05-15 JP JP2014101598A patent/JP6433046B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014240537A (en) | 2014-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10633774B2 (en) | Hybrid non-woven web and an apparatus and method for forming said web | |
KR101210973B1 (en) | Mixed fibers and nonwoven fabrics made from the same | |
KR101349262B1 (en) | Melt blown fiber web with enhanced elasticity and cohesive strength | |
CN103933785B (en) | Nonwoven fabric for filter and manufacture method thereof | |
US10525665B2 (en) | Method of preparing a meltblown fiber web | |
US20130216829A1 (en) | Method and apparatus for making an improved high surface area fiber | |
JP5272229B2 (en) | Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber | |
JP2004501287A (en) | Melt blown web | |
JP2012514142A (en) | Elastic nonwoven fibrous web and methods of making and using | |
KR100713760B1 (en) | Meltblown Web | |
JP6353715B2 (en) | Non-woven sound absorbing material | |
JP6433046B2 (en) | Oil absorbing material using long-fiber nonwoven fabric and method for producing the same | |
JP4185748B2 (en) | Nonwoven fabric and separator for lithium ion secondary battery | |
JP2010185154A (en) | Extra fine fiber non-woven fabric | |
Fedorova | Investigation of the utility of islands-in-the-sea bicomponent fiber technology in the spunbond process | |
CN113906176A (en) | Melt-blown nonwoven fabric, filter, and method for producing melt-blown nonwoven fabric | |
KR101282784B1 (en) | Supplying equipment of staple fiber using perpendicular air current | |
KR101282785B1 (en) | Manufacturing method of melt blown nonwoven fabric having high bulkiness | |
JP6158117B2 (en) | Nonwoven insulation | |
JP2007237167A (en) | Nonwoven fabric for filter | |
Pourdeyhimi et al. | Micro and nanofibers | |
TWI766304B (en) | Irregularly shaped polymer fibers | |
JPH08109567A (en) | Laminated nonwoven structure and its production | |
JP4464434B2 (en) | Cylindrical filter | |
EP1517788A1 (en) | Improved abrasion resistance of nonwovens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180313 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180823 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6433046 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |