JP6158117B2 - Nonwoven insulation - Google Patents
Nonwoven insulation Download PDFInfo
- Publication number
- JP6158117B2 JP6158117B2 JP2014038217A JP2014038217A JP6158117B2 JP 6158117 B2 JP6158117 B2 JP 6158117B2 JP 2014038217 A JP2014038217 A JP 2014038217A JP 2014038217 A JP2014038217 A JP 2014038217A JP 6158117 B2 JP6158117 B2 JP 6158117B2
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- fibers
- fiber
- heat insulating
- insulating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009413 insulation Methods 0.000 title description 17
- 239000000835 fiber Substances 0.000 claims description 158
- 239000004745 nonwoven fabric Substances 0.000 claims description 62
- 239000011810 insulating material Substances 0.000 claims description 24
- 229920000642 polymer Polymers 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 239000002023 wood Substances 0.000 claims 1
- -1 polypropylene Polymers 0.000 description 17
- 238000009987 spinning Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 239000004743 Polypropylene Substances 0.000 description 11
- 239000000155 melt Substances 0.000 description 11
- 229920001155 polypropylene Polymers 0.000 description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000002074 melt spinning Methods 0.000 description 5
- 229920001707 polybutylene terephthalate Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 238000001523 electrospinning Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920006328 Styrofoam Polymers 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000008261 styrofoam Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
Description
本発明は、不織布断熱材に関する。さらに詳しくは、長繊維で構成される不織布断熱材に関する。 The present invention relates to a nonwoven fabric heat insulating material. In more detail, it is related with the nonwoven fabric heat insulating material comprised with a long fiber.
断熱材は、衣料材料、建築材料、土木材料、乗り物材料など様々な分野で使用されている。従来からポリエステル繊維、ポリプロピレン繊維などを用いた断熱材は知られている。例えば特許文献1には長繊維と短繊維を組み合わせた不織布シートが提案されている。 Thermal insulation materials are used in various fields such as clothing materials, building materials, civil engineering materials, and vehicle materials. Conventionally, heat insulating materials using polyester fibers, polypropylene fibers, and the like are known. For example, Patent Document 1 proposes a nonwoven fabric sheet in which long fibers and short fibers are combined.
しかし、前記特許文献1で提案されている従来品は、断熱性に問題があり、さらに単繊維を使用していることから脱落繊維が発生しやすいという問題があり、これらの改善が求められていた。 However, the conventional product proposed in Patent Document 1 has a problem in heat insulation, and further, since single fibers are used, there is a problem that falling fibers are easily generated, and these improvements are demanded. It was.
本発明は、前記従来の問題を解決するため、断熱性が高く、脱落繊維が発生しにくい断熱材を提供する。 In order to solve the above-described conventional problems, the present invention provides a heat insulating material that has high heat insulating properties and is less likely to cause dropped fibers.
本発明の不織布断熱材は、長繊維で構成される不織布断熱材であって、前記長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、前記太い繊維の繊度分布中心は、前記細い繊維の繊度分布中心の2倍以上あり、前記相対的に繊度の太い繊維と相対的に繊度の細い繊維は螺旋状に絡み合った繊維束であり、前記太い繊維と前記細い繊維は融点が異なり、太い繊維は相対的に融点が高く、不織布内で太い繊維は骨格となりへたりを防止して嵩高で保形性を有することを特徴とする。
本発明の不織布断熱材の製造方法は、前記の不織布断熱材の製造方法であって、融点の異なる少なくとも2種類のポリマーを紡糸口金から溶融押し出しし、前記紡糸口金の近傍に位置するガスロットからの放射状に放出した圧空によって前記紡糸口金の前方に吹き飛ばし、空気抵抗によりカルマン渦状に繊維が絡み合うことにより繊維束を形成し、繊維集合体にし、これをシート状にすることを特徴とする。
The non-woven fabric heat insulating material of the present invention is a non-woven heat insulating material composed of long fibers, wherein the long fibers include relatively thick fibers and relatively fine fibers, and the fineness distribution center of the thick fibers. It is located more than 2 times the fineness distribution center of the fine fibers, the relatively fineness of thick fibers with relatively fineness thin fibers Ri fiber bundle der entangled helically thin the said thick fibers fibers Have different melting points, thick fibers have a relatively high melting point, and thick fibers form a skeleton in the nonwoven fabric, and are bulky and have shape retention .
The method for producing a nonwoven fabric heat insulating material according to the present invention is a method for producing the above nonwoven fabric heat insulating material, wherein at least two types of polymers having different melting points are melt extruded from a spinneret, and from a gas slot located in the vicinity of the spinneret. It is characterized in that it is blown away forward of the spinneret by compressed air discharged radially, and fiber bundles are formed by intertwining fibers in a Karman vortex shape by air resistance to form a fiber assembly, which is formed into a sheet.
本発明は、長繊維で構成され、前記長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、前記太い繊維の繊度分布中心は、前記細い繊維の繊度分布中心の2倍以上あり、前記相対的に繊度の太い繊維と相対的に繊度の細い繊維を螺旋状に絡み合った繊維束とすることにより、高い断熱性と嵩高性を有し、かつ短繊維の脱落問題もなく、コストも安い。すなわち、相対的に繊度の太い繊維と相対的に繊度の細い繊維が形成する繊維束は圧力が加わっても潰れない微小空間が多いので高い断熱性を有し、太い繊維は骨格となりへたりを防止して嵩高で保形性の高いシートが形成でき、太い繊維と細い繊維の交点が接着したり絡み合ったりすることで強度、嵩高さ及び高い断熱性を発揮できる。 The present invention is composed of long fibers, the long fibers include relatively thick fibers and relatively thin fibers, and the fine fiber distribution center is 2 of the fine fiber distribution centers. By having a fiber bundle in which the relatively fine fibers and the relatively fine fibers are spirally entangled with each other, it has high heat insulation and bulkiness, and there is a problem of short fibers falling off. There is no cost. That is, the fiber bundle formed by the relatively fine fibers and the relatively fine fibers has a lot of minute space that cannot be crushed even when pressure is applied, and thus has high heat insulating properties. Therefore, a bulky and highly shape-retaining sheet can be formed, and the intersections of thick fibers and thin fibers can be bonded or entangled to exhibit strength, bulkiness, and high heat insulation.
本発明は、長繊維で構成される不織布である。長繊維はメルトブロー法で製造できる。メルトブロー法の製造コストは安い。メルトブロー法にエレクトロスピンニング法を併用してもよい。長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、太い繊維の繊度分布中心は、細い繊維の繊度分布中心の2倍以上である。メルトブロー法及び/又はエレクトロスピンニング法で製造される繊維は繊度は不均一であるが、細い繊維は繊度分布中心で10μm以下が好ましい。より好ましくは、5.0μm以下であり、とくに好ましくは、3.0μm以下である。繊度分布中心は、走査型電子顕微鏡(SEM)による倍率300〜3000倍の写真により観察し、測定数50個の計測による中心値である。 The present invention is a nonwoven fabric composed of long fibers. Long fibers can be produced by the melt blow method. The manufacturing cost of the melt blow method is low. An electrospinning method may be used in combination with the meltblowing method. The long fibers include fibers having relatively large fineness and fibers having relatively fineness, and the fineness distribution center of the thick fibers is more than twice the fineness distribution center of the thin fibers. Fibers produced by the melt-blowing method and / or electrospinning method have non-uniform fineness, but thin fibers preferably have a fineness distribution center of 10 μm or less. More preferably, it is 5.0 μm or less, and particularly preferably 3.0 μm or less. The fineness distribution center is observed by a photograph with a magnification of 300 to 3000 using a scanning electron microscope (SEM), and is a central value obtained by measuring 50 measurements.
細い繊維は、非分割繊維であるのが好ましい。すなわち、メルトブロー法及び/又はエレクトロスピンニング法で製造される繊維の状態であり、分割処理などをしない繊維である。分割繊維を分割処理しても、繊維が束状となった繊維束となるが、繊維の長手方向に平行な繊維から形成されており、繊維同士の絡み合いはない。また、コストが高くなる問題がある。 The fine fibers are preferably non-divided fibers. That is, it is a fiber that is produced by the melt-blowing method and / or the electrospinning method, and is a fiber that is not subjected to a splitting process or the like. Even if the split fiber is split, it becomes a fiber bundle in which the fibers are bundled. However, the split fiber is formed of fibers parallel to the longitudinal direction of the fiber, and there is no entanglement between the fibers. In addition, there is a problem that costs increase.
太い繊維と細い繊維は融点が異なり、太い繊維は相対的に融点が高いことが好ましい。不織布内で太い繊維は骨格となりへたりを防止して嵩高で保形性の高いシートを形成するためである。 Thick fibers and thin fibers have different melting points, and thick fibers preferably have a relatively high melting point. This is because the thick fibers in the nonwoven fabric become a skeleton to prevent sag and form a bulky and highly shape-retaining sheet.
不織布を構成する繊維の材料は熱可塑性であれば特に制限はなく、一般的な樹脂が用いられる。例えば、ポリエステルまたはその共重合体もしくはこれらの混合物などの熱可塑性樹脂、具体的にはポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTMT)、またイソフタル酸やフタル酸等の重合物、ポリアミドまたはその共重合体もしくはこれらの混合物であってもよく、またポリオレフィンまたはその共重合体もしくはこれらの混合物であってもよい。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、α−オレフィン、エチレンなどをランダム共重合したポリプロピレンなどであってもよい。また、ポリエステル系樹脂またはポリアミド系樹脂、オレフィン系樹脂を混合した樹脂からなってもよい。また、ポリ塩化ビニル、ポリスチレン、ポリウレタン、ポリ乳酸、ポリフェニレンサルファイド、ポリアミドイミド、ポリアセタールなどの熱可塑性樹脂からなってもよい。 If the material of the fiber which comprises a nonwoven fabric is thermoplastic, there will be no restriction | limiting in particular, General resin will be used. For example, a thermoplastic resin such as polyester or a copolymer thereof or a mixture thereof, specifically polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTMT), isophthalic acid, phthalic acid, etc. May be a polymer, a polyamide or a copolymer thereof, or a mixture thereof, or a polyolefin, a copolymer thereof, or a mixture thereof. For example, polypropylene obtained by random copolymerization of polyethylene (PE), polypropylene (PP), α-olefin, ethylene, or the like may be used. Moreover, you may consist of resin which mixed the polyester-type resin or the polyamide-type resin, and the olefin resin. Further, it may be made of a thermoplastic resin such as polyvinyl chloride, polystyrene, polyurethane, polylactic acid, polyphenylene sulfide, polyamideimide, or polyacetal.
太い繊維はポリエステルが好ましい。ポリエステルはポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTMT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等がある。この中でもPET,PBTが好ましい。 The thick fiber is preferably polyester. Polyester includes polyethylene terephthalate (PET), polytrimethylene terephthalate (PTMT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and the like. Of these, PET and PBT are preferable.
本発明の長繊維不織布の少なくとも一表面には、毛羽立ち防止層が形成されているのが好ましい。このようにすると表面繊維の毛羽立ちや引っかかりを防ぐことができ、取扱い性が良好となる。毛羽立ち防止層は、熱圧着層、毛焼き層、樹脂層など表面加工によるものや、織物、編み物、スパンボンド不織布などを表面に置き一体化させた、いかなる層であっても良い。長繊維不織布と毛羽立ち防止層との一体化は、厚さ方向の溶融孔、熱ラミネート加工、フレームラミネート加工、接着材による加工、水流交絡等がある。スパンボンド不織布を採用する場合は、厚さ方向の溶融孔で一体化するのが好ましい。スパンボンド不織布の単位面積当たりの重量(目付)は5〜100g/m2が好ましく、さらに好ましくは10〜50g/m2である。また、厚さ方向の溶融孔は高周波ローラを用いたピンソニック加工により形成できる。 A fuzz preventing layer is preferably formed on at least one surface of the long-fiber nonwoven fabric of the present invention. In this way, surface fibers can be prevented from fuzzing and caught, and the handleability is improved. The fuzz-preventing layer may be any layer formed by surface processing such as a thermocompression bonding layer, a fried layer, or a resin layer, or a woven fabric, knitted fabric, spunbonded nonwoven fabric or the like placed on the surface and integrated. The integration of the long fiber nonwoven fabric and the fuzz preventing layer includes melt holes in the thickness direction, heat laminating, frame laminating, processing with an adhesive, and hydroentanglement. When using a spunbonded nonwoven fabric, it is preferable to integrate with a melt hole in the thickness direction. The weight (unit weight) per unit area of the spunbonded nonwoven fabric is preferably 5 to 100 g / m 2 , more preferably 10 to 50 g / m 2 . The melt hole in the thickness direction can be formed by pin sonic processing using a high frequency roller.
本発明の長繊維不織布の目付は10〜10000g/m2が好ましく、さらに好ましくは50〜5000g/m2、とくに好ましくは100〜1000g/m2である。見掛け密度は0.001〜0.30g/cm3が好ましく、さらに好ましくは0.005〜0.20g/cm3、とくに好ましくは0.01〜0.10g/cm3である。 Basis weight of the long fiber nonwoven fabric of the present invention is preferably 10~10000g / m 2, more preferably 50~5000g / m 2, particularly preferably from 100 to 1000 g / m 2. Apparent density is preferably 0.001~0.30g / cm 3, more preferably 0.005~0.20g / cm 3, particularly preferably 0.01~0.10g / cm 3.
次に本発明の長繊維不織布の製造方法について説明する。長繊維不織布は、融点の異なる少なくとも2種類のポリマーを紡糸口金から溶融押し出しし、圧力流体によって前記押し出された繊維を吹き飛ばし、前記吹き飛ばされた繊維をシート状に形成することにより得られる。圧力流体によって押し出された繊維を吹き飛ばしてシート状に形成する方法をメルトブロー法という。シート形成箇所又は紡糸口金の近傍には電極を配置し、紡糸口金との間に電圧をかけてもよい。電圧をかける方法はエレクトロスピニング法という。電圧をかけると紡糸口金から押し出された溶融ポリマーは帯電し対応する電極方向に紡糸される。このとき圧空によって高速に紡糸することで本発明の螺旋状に絡み合った繊維束状の長繊維が得られる。 Next, the manufacturing method of the long fiber nonwoven fabric of this invention is demonstrated. The long fiber nonwoven fabric is obtained by melt-extruding at least two types of polymers having different melting points from a spinneret, blowing the extruded fibers with a pressure fluid, and forming the blown fibers into a sheet. A method of blowing a fiber extruded by a pressure fluid to form a sheet is called a melt blow method. An electrode may be disposed in the vicinity of the sheet forming portion or the spinneret, and a voltage may be applied between the electrode and the spinneret. The method of applying voltage is called electrospinning. When a voltage is applied, the molten polymer extruded from the spinneret is charged and spun in the corresponding electrode direction. At this time, by spinning at high speed with compressed air, the fiber bundle-like long fibers intertwined in a spiral shape of the present invention can be obtained.
溶融紡糸は、融点が異なり互いに相溶しない少なくとも2種類のポリマーを同一の紡糸口金から溶融押し出してもよい。これにより融点の高いポリマーは太い繊維となり、融点の低いポリマーは細い繊維となる。融点の異なる少なくとも2種類のポリマーをそれぞれ別の紡糸口金から溶融押し出しても良い。これにより同様に融点の高いポリマーは太い繊維となり、融点の低いポリマーは細い繊維となるが、押し出し量を制御できるので、細い繊維と太い繊維の割合をコントロールできる。細い繊維と太い繊維の割合は質量比で90〜10:10〜90が好ましく、80〜40:20〜60がさらに好ましい。 In melt spinning, at least two kinds of polymers having different melting points and incompatible with each other may be melt-extruded from the same spinneret. As a result, a polymer having a high melting point becomes a thick fiber, and a polymer having a low melting point becomes a thin fiber. At least two types of polymers having different melting points may be melt extruded from different spinnerets. Similarly, a polymer having a high melting point becomes a thick fiber and a polymer having a low melting point becomes a thin fiber. However, since the amount of extrusion can be controlled, the ratio between the thin fiber and the thick fiber can be controlled. The ratio of thin fibers to thick fibers is preferably 90 to 10:10 to 90, and more preferably 80 to 40:20 to 60, by mass ratio.
次に図面を用いて説明する。図3Aは本発明の一実施例で得られた長繊維不織布15の模式的断面図である。この長繊維不織布15は、繊度の太い繊維と細い繊維を含む長繊維層12と、少なくとも一面のスパンボンド不織布層13と高周波ローラを用いたピンソニック加工により厚さ方向の溶融孔14を有する。図3Bは別の実施例の長繊維不織布17の模式的断面図である。この長繊維不織布17は、繊度の太い繊維と細い繊維を含む長繊維層12の少なくとも一表面を毛焼き加工したもので、16は毛焼き層である。スパンボンド不織布層13又は毛焼き層16を設けると、表面繊維の毛羽立ちや引っかかりを防ぐことができ、取扱い性が良好となる。 Next, it demonstrates using drawing. FIG. 3A is a schematic cross-sectional view of the long fiber nonwoven fabric 15 obtained in one example of the present invention. This long-fiber nonwoven fabric 15 has a long-fiber layer 12 including thick and fine fibers, and a fusion hole 14 in the thickness direction by pin sonic processing using at least one surface of a spunbond nonwoven fabric layer 13 and a high-frequency roller. FIG. 3B is a schematic cross-sectional view of a long fiber nonwoven fabric 17 of another example. This long fiber nonwoven fabric 17 is obtained by subjecting at least one surface of a long fiber layer 12 containing thick fibers and fine fibers to a fried yarn, and 16 is a fried yarn layer. When the spunbond nonwoven fabric layer 13 or the fried layer 16 is provided, the surface fibers can be prevented from fuzzing and caught, and the handleability is improved.
図4Aは本発明の一実施例で使用する紡糸機11の模式的説明図、図4B-Dは同紡糸機の紡糸口金の部分の模式的説明図である。基台1の上に溶融押し出し機2が据え付けられており、ホッパー3からポリマーチップを矢印4の方向に供給する。押し出し機2で溶融押し出しされたポリマーはダイノーズ(紡糸口金)5から押し出され、ダイノーズ(紡糸口金)5の近傍に形成されているガスロット6からの放射状に放出した圧空によって前方に吹き飛ばされ、次に空気抵抗によりカルマン渦状に繊維が絡み合って繊維束を形成し、繊維集合体8になる。図2は、絡み合って螺旋状に空気中を飛翔する繊維束の高速度カメラ(米国製Vision Research社製Phantom MiroeX4)の静止写真である。図4Aにおける矢印7はルーツブロアからの圧空供給方向を示す。前方に吹き飛ばされた繊維集合体8は巻き取りローラ9上でシート状になり巻き取られる。10は巻き取られた長繊維不織布である。巻き取りローラ9の代わりに金属ネットを配置しても良い。ダイノーズ(紡糸口金)5と巻き取りローラ9又は金属ネットには10〜100kV程度の電圧をかけてもよい。圧空供給方向は、ポリマーの性状によって、ダイノズルの前方だけではなく、直行、斜め前方45度など紡糸に最適な角度を設定する。一例として図4B-Dに示すように、ガスロット6a,6b,6c,6dは1個もしくは複数個配置してもよい。 4A is a schematic explanatory view of the spinning machine 11 used in one embodiment of the present invention, and FIGS. 4B-D are schematic explanatory views of a spinneret portion of the spinning machine. A melt extruder 2 is installed on the base 1, and polymer chips are supplied from the hopper 3 in the direction of arrow 4. The polymer melt-extruded by the extruder 2 is extruded from a die nose (spinneret) 5 and blown forward by pressurized air discharged radially from a gas slot 6 formed in the vicinity of the dienose (spinneret) 5. Fibers are entangled in a Karman vortex by air resistance to form a fiber bundle, thereby forming a fiber assembly 8. FIG. 2 is a still picture of a high-speed camera (Pantom MiraeX4 manufactured by Vision Research, Inc.) of a fiber bundle that entangles and flies in the air in a spiral shape. An arrow 7 in FIG. 4A indicates the direction of compressed air supply from the roots blower. The fiber assembly 8 blown forward is turned into a sheet on the take-up roller 9 and taken up. Reference numeral 10 denotes a wound long fiber nonwoven fabric. A metal net may be disposed in place of the take-up roller 9. A voltage of about 10 to 100 kV may be applied to the dynose (spinneret) 5 and the take-up roller 9 or the metal net. The pressure supply direction is set not only to the front of the die nozzle but also to an optimum angle for spinning such as straight and 45 degrees obliquely forward depending on the properties of the polymer. As an example, as shown in FIGS. 4B-D, one or more gas slots 6a, 6b, 6c, 6d may be arranged.
以下、実施例を用いてさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 Hereinafter, more specific description will be made using examples. In addition, this invention is not limited to the following Example.
<厚さ測定>
尾崎製作所製大型スナップゲージK−7型、測定子直径100mm、加重2.5g/cm2で10点測定し、その表示範囲とした。
<断熱性試験>
図5に示す断熱性試験装置20を20±0.2℃で温調した恒温槽27内にいれ、ヒータ21の温度を80±0.1℃に温調した。ヒータ21の上にはアルミ板22を置き、その上に断熱材試験試料23を乗せ、アルミ板22の周囲と断熱材試験試料23に発泡スチロール断熱材24a,24b,24cを置き、アルミ板22と断熱材試験試料23との間にヒータ側温度センサー25を挿入し、断熱材試験試料23と発泡スチロール断熱材24cとの間に断熱材表面センサー26を挿入した。実施例、比較例の断熱材試験試料23の厚みを15mmと10mmに押さえて、表面温度を10秒毎に測定した。表面温度がほとんど変化しなくなってから60分間連続して測定して、その平均値により、断熱性能を比較評価した。
<Thickness measurement>
Ten points were measured with a large snap gauge K-7 manufactured by Ozaki Seisakusho, a probe diameter of 100 mm, and a weight of 2.5 g / cm 2 , and the display range was obtained.
<Insulation test>
The thermal insulation test apparatus 20 shown in FIG. 5 was placed in a thermostatic chamber 27 whose temperature was controlled at 20 ± 0.2 ° C., and the temperature of the heater 21 was adjusted to 80 ± 0.1 ° C. An aluminum plate 22 is placed on the heater 21, and a heat insulating material test sample 23 is placed thereon. Styrofoam heat insulating materials 24 a, 24 b and 24 c are placed around the aluminum plate 22 and the heat insulating material test sample 23. A heater-side temperature sensor 25 was inserted between the heat insulating material test sample 23 and a heat insulating material surface sensor 26 was inserted between the heat insulating material test sample 23 and the styrene foam heat insulating material 24c. The thickness of the heat insulating material test sample 23 of Examples and Comparative Examples was suppressed to 15 mm and 10 mm, and the surface temperature was measured every 10 seconds. Measurements were made continuously for 60 minutes after the surface temperature hardly changed, and the heat insulation performance was comparatively evaluated based on the average value.
(実施例1)
ポリプロピレン(サンアロマ株式会社製、商品名“PWH00N;以下PWHと省略する。”、MFR1750、230℃、2.1kg、JISK6921−2)とポリエチレンテレフタレート(東洋紡株式会社製、商品名“バイオペレットEMC307”,PET)のそれぞれのチップをブレンド(重量比でPP:PET=70:30)し、図4Aに示す溶融紡糸装置のホッパー4から供給し、溶融押し出し機2から溶融押し出しし紡糸した。紡糸温度は320℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は500g/分、0.4Mpaの圧搾空気を直径1mmの細孔からダイノーズに噴射し、巻き取りローラ9で長繊維不織布10を巻き取った。得られた不織布の太い繊維の繊度分布中心は25μmであり、細い繊維の繊度分布中心は1.2μmであった。得られた長繊維不織布の目付は440g/m2、厚さは24〜26mmであった。
Example 1
Polypropylene (manufactured by Sun Aroma Co., Ltd., trade name “PWH00N; hereinafter abbreviated as PWH”), MFR1750, 230 ° C., 2.1 kg, JISK6921-2) and polyethylene terephthalate (trade name “Biopellet EMC307” produced by Toyobo Co., Ltd.) , PET) were blended (PP: PET = 70: 30 by weight), supplied from the hopper 4 of the melt spinning apparatus shown in FIG. 4A, melt extruded from the melt extruder 2, and spun. The spinning temperature is 320 ° C., the extrusion amount of the polymer from the die nose (spinneret) 5 is 500 g / min, and 0.4 Mpa of compressed air is sprayed from the pores having a diameter of 1 mm to the die nose. Rolled up. The fine fiber has a fineness distribution center of 25 μm and a fine fiber has a fineness distribution center of 1.2 μm. The basis weight of the obtained long fiber nonwoven fabric was 440 g / m 2 and the thickness was 24 to 26 mm.
得られた長繊維不織布を平らにし、この不織布の表裏両面に目付15g/m2のスパンボンド不織布を積層し、高周波ローラを用いたピンソニック加工により厚さ方向の溶融孔で前記長繊維不織布スパンボンド不織布を一体化した。厚さ方向の溶融孔のピッチ間隔は25mmとした。得られた長繊維不織布の目付は450g/m2、厚さは20〜22mmであった。 The obtained long fiber nonwoven fabric is flattened, and a spunbond nonwoven fabric with a basis weight of 15 g / m 2 is laminated on both the front and back surfaces of the nonwoven fabric, and the long fiber nonwoven fabric span is formed by melt holes in the thickness direction by pin sonic processing using a high frequency roller. Bonded nonwoven fabric was integrated. The pitch interval of the melt holes in the thickness direction was 25 mm. The basis weight of the obtained long fiber nonwoven fabric was 450 g / m 2 and the thickness was 20 to 22 mm.
図1A-Bは得られた長繊維不織布の構成繊維の状態を示す走査型電子顕微鏡(SEM,倍率300倍)の写真である。太い繊維はポリエチレンテレフタレート(PET)であり、細い繊維はポリプロピレン(PP)である。図3Aはピンソニック加工した長繊維不織布15の模式的断面図である。 1A-B are photographs of a scanning electron microscope (SEM, 300 times magnification) showing the state of the constituent fibers of the obtained long-fiber nonwoven fabric. The thick fiber is polyethylene terephthalate (PET), and the thin fiber is polypropylene (PP). FIG. 3A is a schematic cross-sectional view of the long fiber nonwoven fabric 15 subjected to pin sonic processing.
(実施例2)
ポリプロピレン(PLB)と(サンアロマ株式会社製、商品名“PWH00N;以下PWHと省略する。”、MFR1750、230℃、2.1kg、JISK6921−2)をそれぞれ別の溶融紡糸装置(図4A)のホッパー4から供給し、溶融押し出し機2から溶融押し出しし紡糸した。このとき、紡糸されたPLBとPWHを30度の角度で交差複合して、巻き取りロール9で長繊維不織布10を巻き取った。PLBの紡糸温度は320℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は250g/分、圧空の吹き出し圧力は0.2Mpa、とし、PWHの紡糸温度は330℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は500g/分、圧空の吹き出し圧力は0.3Mpaとした。得られた不織布の太い繊維(PLB)の繊度分布中心は50μmであり、細い繊維(PWH)の繊度分布中心は2.0μmであった。得られた長繊維不織布の目付は455g/m2、厚さは24〜26mmであった。
(Example 2)
Polypropylene (PLB) (manufactured by Sun Aroma Co., Ltd., trade name “PWH00N; hereinafter abbreviated as PWH”), MFR1750, 230 ° C., 2.1 kg, JISK6921-2) of different melt spinning apparatuses (FIG. 4A). Supplied from the hopper 4, melt extruded from the melt extruder 2, and spun. At this time, the spun PLB and PWH were cross-combined at an angle of 30 degrees, and the long fiber nonwoven fabric 10 was wound up by the winding roll 9. The spinning temperature of PLB is 320 ° C., the amount of extrusion from the polymer die nose (spinner) 5 is 250 g / min, the pressure of blown air is 0.2 MPa, the spinning temperature of PWH is 330 ° C., and the polymer die nose (spinner cap). ) The extrusion amount from 5 was 500 g / min, and the blowout pressure of compressed air was 0.3 Mpa. The fine fiber distribution center of the resulting non-woven fabric (PLB) was 50 μm, and the fine fiber distribution center of the thin fiber (PWH) was 2.0 μm. The obtained long fiber nonwoven fabric had a basis weight of 455 g / m 2 and a thickness of 24 to 26 mm.
(実施例3)
ポリプロピレン、PLBとPWHをそれぞれ別の溶融紡糸装置(図4A)のホッパー4から供給し、溶融押し出し機2から溶融押し出しし紡糸した。このとき、紡糸されたPLBとPWHを30度の角度で交差複合して、巻き取りロール9で長繊維不織布10を巻き取った。PLBの紡糸温度は320℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は250g/分、圧空の吹き出し圧力は0.2Mpa、とし、PWHの紡糸温度は330℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は500g/分、圧空の吹き出し圧力は0.2Mpaとした。得られた不織布の太い繊維(PLB)の繊度分布中心は50μmであり、細い繊維(PWH)の繊度分布中心は3.0μmであった。得られた長繊維不織布の目付は440g/m2、厚さは23〜25mmであった。
(Example 3)
Polypropylene, PLB, and PWH were supplied from the hopper 4 of a separate melt spinning apparatus (FIG. 4A), melt extruded from the melt extruder 2, and spun. At this time, the spun PLB and PWH were cross-combined at an angle of 30 degrees, and the long fiber nonwoven fabric 10 was wound up by the winding roll 9. The spinning temperature of PLB is 320 ° C., the amount of extrusion from the polymer die nose (spinner) 5 is 250 g / min, the pressure of blown air is 0.2 MPa, the spinning temperature of PWH is 330 ° C., and the polymer die nose (spinner cap). ) The extrusion amount from 5 was 500 g / min, and the blowout pressure of compressed air was 0.2 MPa. The fine fiber distribution center of the obtained non-woven fabric thick fiber (PLB) was 50 μm, and the fine fiber distribution center of the thin fiber (PWH) was 3.0 μm. The basis weight of the obtained long fiber nonwoven fabric was 440 g / m 2 and the thickness was 23 to 25 mm.
(実施例4)
ポリプロピレン、PLBとPWHをそれぞれ別の溶融紡糸装置(図4A)のホッパー4から供給し、溶融押し出し機2から溶融押し出しし紡糸した。このとき、紡糸されたPLBとPWHを30度の角度で交差複合して、巻き取りロール9で長繊維不織布10を巻き取った。PLBの紡糸温度は320℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は250g/分、圧空の吹き出し圧力は0.3Mpa、とし、PWHの紡糸温度は330℃、ポリマーのダイノーズ(紡糸口金)5からの押し出し量は500g/分、圧空の吹き出し圧力は0.4Mpaとした。得られた不織布の太い繊維(PLB)の繊度分布中心は25μmであり、細い繊維(PWH)の繊度分布中心は1.0μmであった。得られた長繊維不織布の目付は460g/m2、厚さは23〜25mmであった。
Example 4
Polypropylene, PLB, and PWH were supplied from the hopper 4 of a separate melt spinning apparatus (FIG. 4A), melt extruded from the melt extruder 2, and spun. At this time, the spun PLB and PWH were cross-combined at an angle of 30 degrees, and the long fiber nonwoven fabric 10 was wound up by the winding roll 9. The spinning temperature of PLB is 320 ° C., the amount of extrusion from the polymer die nose (spinner) 5 is 250 g / min, the pressure pressure of the compressed air is 0.3 Mpa, the spinning temperature of PWH is 330 ° C., the polymer die nose (spinning die) ) The extrusion amount from 5 was 500 g / min, and the blowout pressure of the compressed air was 0.4 Mpa. The fine fiber distribution center of the obtained non-woven fabric thick fiber (PLB) was 25 μm, and the fine fiber distribution center of the thin fiber (PWH) was 1.0 μm. The basis weight of the obtained long fiber nonwoven fabric was 460 g / m 2 and the thickness was 23 to 25 mm.
得られた長繊維不織布の断熱性試験をした。比較例1品として、市販の3M社製、商品名“シンサレート”,TAI-4047, 目付450g/m2、厚さ21〜23mm)を用いた。実施例1〜4品と比較例1品の内容を表1に示す。 The heat insulation test of the obtained long fiber nonwoven fabric was conducted. As a product of Comparative Example 1, a commercially available product manufactured by 3M, trade name “Synsalate”, TAI-4047, basis weight 450 g / m 2 , thickness 21 to 23 mm) was used. The contents of Examples 1 to 4 and Comparative Example 1 are shown in Table 1.
図6、図7に実施例1〜4品と比較例1品の断熱性グラフを示す。図6、図7は温度が低いほうが断熱性は良好であることを示す。実施例1〜4品は比較例1品に比べて断熱性が高かった。 6 and 7 show thermal insulation graphs of the products of Examples 1 to 4 and the product of Comparative Example 1. 6 and 7 show that the lower the temperature, the better the heat insulation. The products of Examples 1 to 4 were higher in heat insulation than the product of Comparative Example 1.
1 基台
2 溶融押し出し機
3 ホッパー
4 ポリマーチップ供給方向
5 ダイノーズ(紡糸口金)
6,6a,6b,6c,6d ガスロット
7 圧空供給方向
8 繊維集合体
9 巻き取りロール
10 巻き取られた長繊維不織布
11 紡糸機
12 長繊維層
13 スパンボンド不織布層
14 溶融孔
15,17 長繊維不織布
16 毛焼き層
20 断熱性試験装置
21 ヒータ
22 アルミ板
23 断熱材試験試料
24a,24b,24c 発泡スチロール断熱材
25 ヒータ側温度センサー
26 断熱材表面センサー
27 恒温槽
DESCRIPTION OF SYMBOLS 1 Base 2 Melt extruder 3 Hopper 4 Polymer chip supply direction 5 Dye nose (spinneret)
6, 6a, 6b, 6c, 6d Gas slot 7 Pressure supply direction 8 Fiber assembly 9 Winding roll 10 Winded long fiber nonwoven fabric 11 Spinning machine 12 Long fiber layer 13 Spunbond nonwoven fabric layer 14 Melting hole 15, 17 Long fiber Non-woven fabric 16 Hair burning layer 20 Insulation test device 21 Heater 22 Aluminum plate 23 Insulation test sample 24a, 24b, 24c Styrofoam insulation 25 Heater side temperature sensor 26 Insulation material surface sensor 27 Constant temperature bath
Claims (7)
前記長繊維は相対的に繊度の太い繊維と相対的に繊度の細い繊維を含み、
前記太い繊維の繊度分布中心は、前記細い繊維の繊度分布中心の2倍以上あり、
前記相対的に繊度の太い繊維と相対的に繊度の細い繊維は螺旋状に絡み合った繊維束であり、
前記太い繊維と前記細い繊維は融点が異なり、太い繊維は相対的に融点が高く、不織布内で太い繊維は骨格となりへたりを防止して嵩高で保形性を有することを特徴とする不織布断熱材。 A non-woven heat insulating material composed of long fibers,
The long fibers include relatively thick fibers and relatively fine fibers,
The fineness distribution center of the thick fiber is more than twice the fineness distribution center of the thin fiber,
Thin fibers thick fibers and relatively fineness of said relatively fineness Ri fiber bundle der entangled helically,
The thick fiber and the thin fiber have different melting points, the thick fiber has a relatively high melting point, and the thick fiber in the nonwoven fabric is prevented from becoming a skeleton and is bulky and has shape retention. Wood.
融点の異なる少なくとも2種類のポリマーを紡糸口金から溶融押し出しし、前記紡糸口金の近傍に位置するガスロットからの放射状に放出した圧空によって前記紡糸口金の前方に吹き飛ばし、空気抵抗によりカルマン渦状に繊維が絡み合うことにより繊維束を形成し、繊維集合体にし、これをシート状にすることを特徴とする不織布断熱材の製造方法。At least two types of polymers having different melting points are melt-extruded from the spinneret, blown off in front of the spinneret by compressed air discharged radially from the gas slot located in the vicinity of the spinneret, and fibers are entangled in a Karman vortex by air resistance. A method for producing a non-woven fabric heat insulating material, characterized in that a fiber bundle is formed into a fiber aggregate and formed into a sheet shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014038217A JP6158117B2 (en) | 2014-02-28 | 2014-02-28 | Nonwoven insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014038217A JP6158117B2 (en) | 2014-02-28 | 2014-02-28 | Nonwoven insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015161049A JP2015161049A (en) | 2015-09-07 |
JP6158117B2 true JP6158117B2 (en) | 2017-07-05 |
Family
ID=54184351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014038217A Active JP6158117B2 (en) | 2014-02-28 | 2014-02-28 | Nonwoven insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6158117B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6779718B2 (en) * | 2016-09-05 | 2020-11-04 | アンビック株式会社 | Non-woven fabric holding functional powder and its manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001288667A (en) * | 2000-03-31 | 2001-10-19 | Polymer Processing Res Inst | Spirally accumulated nonwoven fabric of centrifugally spun filament, method of producing the spirally accumulated fabric, latitudinally paralleled filament nonwoven fabric, and method of producing the latitudinally paralleled fabric |
JP4414084B2 (en) * | 2000-11-13 | 2010-02-10 | 新日本石油化学株式会社 | Composite nonwoven fabric and method for producing the same |
JP3970624B2 (en) * | 2002-02-06 | 2007-09-05 | ユニチカ株式会社 | Differentiating sheet and manufacturing method thereof |
US20050106982A1 (en) * | 2003-11-17 | 2005-05-19 | 3M Innovative Properties Company | Nonwoven elastic fibrous webs and methods for making them |
JP4611921B2 (en) * | 2006-03-27 | 2011-01-12 | 中尾フイルター工業株式会社 | Filter cloth for wet forming of inorganic powder and method for producing the same |
JP5654356B2 (en) * | 2007-12-28 | 2015-01-14 | スリーエム イノベイティブ プロパティズ カンパニー | Composite nonwoven web and method for making and using the same |
JP5961972B2 (en) * | 2011-10-12 | 2016-08-03 | Jnc株式会社 | Elastic bulky nonwoven fabric and method for producing the same |
JP2013177703A (en) * | 2012-02-28 | 2013-09-09 | Toray Ind Inc | Mixed fiber nonwoven fabric |
US20150233030A1 (en) * | 2012-08-23 | 2015-08-20 | Mitsui Chemicals, Inc. | Meltblown nonwoven fabric and uses thereof |
-
2014
- 2014-02-28 JP JP2014038217A patent/JP6158117B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015161049A (en) | 2015-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101349262B1 (en) | Melt blown fiber web with enhanced elasticity and cohesive strength | |
US20170254005A1 (en) | Forcespinning of fibers and filaments | |
KR102242725B1 (en) | Spunbond nonwoven fabric and its manufacturing method | |
JP5643466B2 (en) | Nonwoven structure and manufacturing method thereof | |
JPWO2016143857A1 (en) | Laminated nonwoven fabric | |
KR20010051790A (en) | Cross laminated nonwoven fabric having intermediate layer | |
JP5613095B2 (en) | Thermally expandable nonwoven fabric and method for producing bulky nonwoven fabric using the same | |
US20150314559A1 (en) | Waved meltblown fiber web and preparation method therefor | |
JP6856888B2 (en) | Laminated sound absorbing material containing ultrafine fibers | |
JP2009280920A (en) | Conjugated fiber for producing air-laid nonwoven fabric and method for producing high-density air-laid nonwoven fabric | |
JP6353715B2 (en) | Non-woven sound absorbing material | |
JP7247884B2 (en) | spunbond nonwoven fabric | |
JP2018178337A (en) | Polyphenylene sulfide nonwoven fabric | |
US20170298548A1 (en) | Bulk fill material | |
JP6158117B2 (en) | Nonwoven insulation | |
JP2019001012A (en) | Laminate sound absorber containing ultra-fine fiber | |
JP2018146942A (en) | Laminated sound absorption material including ultrafine fiber | |
JP6433046B2 (en) | Oil absorbing material using long-fiber nonwoven fabric and method for producing the same | |
JPH01201567A (en) | Production of bulky spun-bond nonwoven fabric | |
JP5074271B2 (en) | Long fiber nonwoven fabric | |
JP2019210591A (en) | Non-woven fabric for sash and manufacturing method thereof | |
JPH07207566A (en) | Laminated nonwoven fabric and its production | |
EP0162564A2 (en) | Fiber for insulating material, non-woven fabric, wadding structure and net-like fiber sheet | |
CN112236060A (en) | Nonwoven fabric for curtain and method for producing same | |
WO2017068811A1 (en) | Nanofiber nonwoven cloth and sound-absorbing member using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6158117 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |