JPH05220313A - Filter - Google Patents

Filter

Info

Publication number
JPH05220313A
JPH05220313A JP5889492A JP5889492A JPH05220313A JP H05220313 A JPH05220313 A JP H05220313A JP 5889492 A JP5889492 A JP 5889492A JP 5889492 A JP5889492 A JP 5889492A JP H05220313 A JPH05220313 A JP H05220313A
Authority
JP
Japan
Prior art keywords
filter
fibers
filtration
fiber
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5889492A
Other languages
Japanese (ja)
Other versions
JP3326808B2 (en
Inventor
Satoshi Ogata
智 緒方
Kazuyuki Nagae
和幸 永柄
Kazue Yamamoto
和枝 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13097501&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05220313(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP5889492A priority Critical patent/JP3326808B2/en
Publication of JPH05220313A publication Critical patent/JPH05220313A/en
Application granted granted Critical
Publication of JP3326808B2 publication Critical patent/JP3326808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To prolong the filtration life and to improve the filtration accuracy and shape holding property by laminating extra fine composite fibers obtained by melt spinning in a density-gradient type, thermally bonding the nodes of fibers, roughing the filtration surface and further reinforcing the filter with a reinforcing material. CONSTITUTION:Two or more kinds of thermoplastic resins having >=20 deg.Cm.p. difference are melt-spun, this filter consists of the obtained extrafine composite fiber having <=10mum average fiber diameter, and the fibers are thermally bonded. At least one surface is roughed, and the density is graded in the thickness direction of the filter. The extra fine composite fibers are laminated while changing the density gradient in the thickness direction of the filter, when the filter is formed. A reinforcing material is provided on one or both surfaces of the filter or in the filter. Accordingly, microfiltration can be performed by this filter, the filtration life is prolonged, the strength is increased, and the shape is satisfactorily held.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合メルトブロ−紡糸法
により得られた極細複合繊維からなり、濾過面が凹凸状
に成形された濾過ライフの長い精密濾過用フイルタ−に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter for microfiltration having a long filtering life, which is composed of ultrafine composite fibers obtained by a composite melt-blow spinning method and has a filtering surface formed in an uneven shape.

【0002】[0002]

【従来の技術】メルトブロ−法により得られた極細繊維
を用いたフイルタ−は、濾過精度が良いので医薬品や電
子機器の製造時に用いられる液体のプレフイルタ−とし
て、或はクリ−ンル−ム用エアフイルタ−等として採用
されている。特開昭58−89924号公報にはメルト
ブロ−法により製造した繊維径の異なる複数枚のウエブ
を、スパンレース法あるいは熱カレンダー法により一旦
不織布とし、この不織布を繊維径の順に積層した密度勾
配型のフイルタ−が開示されている。このフイルタ−は
密度勾配型であるので濾過精度が良いという長所があ
る。反面、濾過材として用いられている不織布がスパン
レース法によるものでは繊維同士は単に絡合しているの
みなので、濾過の過程で繊維が脱落したり、あるいは強
度不足、形状保持性不足等の課題があり、また熱カレン
ダー法によるものでは熱圧着過程での繊維の溶融による
膜状化、細孔径の不均一化等が発生するので濾過ライフ
が短く、濾過精度の安定性が劣るという課題がある。
2. Description of the Related Art A filter using ultrafine fibers obtained by a melt blow method has a high filtering accuracy, so that it can be used as a liquid prefilter used in the manufacture of pharmaceuticals and electronic devices, or as an air filter for clean rooms. -Adopted as such. Japanese Patent Laid-Open No. 58-89924 discloses a density gradient type in which a plurality of webs having different fiber diameters produced by a melt blow method are once made into a nonwoven fabric by a spunlace method or a thermal calendering method, and the nonwoven fabrics are laminated in the order of the fiber diameters. Is disclosed. Since this filter is of the density gradient type, it has the advantage of good filtration accuracy. On the other hand, when the non-woven fabric used as the filtering material is made by the spunlace method, the fibers are simply entangled with each other, so that the fibers may fall off during the filtration process, or the strength and shape retention may be insufficient. In addition, there is a problem that the thermal calendering method causes short film life due to film formation due to melting of fibers in the thermocompression bonding process, nonuniform pore size, etc., resulting in short filtration life and poor stability of filtration accuracy. ..

【0003】特開昭59−80313号公報には、細繊
度繊維、太繊度繊維、及び熱融着性繊維からなる混合繊
維の混合比を順次変化させて密度勾配型とし、かつ繊維
同士を熱融着繊維により接着させたフィルターが開示さ
れている。しかし、このフイルタ−に用いられている細
繊度繊維の繊維は、通常の紡糸法により得られた単糸繊
度1デニール程度のステ−プルであり、濾過精度もせい
ぜい20μm程度と劣るので精密濾過用フイルタ−とし
ては使用できない。特開昭53−114976号公報に
は通常の複合紡糸法により得られた熱融着性複合繊維か
らなる不織布を、また特開平1−224021号公報に
は通常のメルトブロ−法により得られた極細繊維からな
る不織布を、それぞれ波状に成型したフイルタ−が開示
されている。又、特開昭60−99057号公報には、
融点の異なる2種の熱可塑性樹脂を用いた複合メルトブ
ロ−紡糸法により得られた極細複合繊維からなり、繊維
の交点が熱融着された不織布を顔面に沿うように成型し
たマスクが開示されている。しかし前記各号公報に開示
されたフイルタ−やマスク等は、通常の太繊度ステ−プ
ルを用いたものであつたり、メルトブロ−法極細繊維を
用いたものであつても、熱圧着時の単繊維の溶融による
膜状化や細孔径の不均一化等の欠点が存在したり、或は
密度勾配型ではない、等の理由で濾過ライフや濾過精度
が劣るという課題がある。
Japanese Patent Laid-Open No. 59-80313 discloses a density gradient type in which the mixing ratio of a mixed fiber composed of a fine-fineness fiber, a large-fineness fiber, and a heat-fusible fiber is sequentially changed, and the fibers are heated to each other. A filter bonded by fusing fibers is disclosed. However, the fine fiber used in this filter is a staple having a single yarn fineness of about 1 denier obtained by an ordinary spinning method, and the filtration accuracy is inferior at most about 20 μm. It cannot be used as a filter. Japanese Unexamined Patent Publication (Kokai) No. 53-114976 discloses a non-woven fabric composed of heat-fusible conjugate fibers obtained by a normal composite spinning method, and Japanese Unexamined Patent Publication (Kokai) 1-224021 discloses an ultrafine fiber obtained by an ordinary melt-blowing method. A filter is disclosed in which a nonwoven fabric made of fibers is formed into a wavy shape. Further, Japanese Patent Application Laid-Open No. 60-99057 discloses that
Disclosed is a mask formed of a non-woven composite fiber obtained by a composite melt-blow spinning method using two kinds of thermoplastic resins having different melting points, and a non-woven fabric in which the intersections of the fibers are heat-sealed is formed along the face. There is. However, the filters, masks, and the like disclosed in the above-mentioned publications, whether they use ordinary thick fineness staples or melt-blown ultrafine fibers, are not suitable for thermocompression bonding. There is a problem that the filtration life and the filtration accuracy are inferior due to the fact that there are drawbacks such as the formation of a film due to the melting of the fibers and the non-uniformity of the pore size, or that the fiber is not a density gradient type.

【0004】[0004]

【発明が解決しようとする課題】本発明は濾過ライフが
長く、濾過精度がよくしかも形状保持性のよい精密濾過
用フイルタ−を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a microfiltration filter having a long filtration life, good filtration accuracy and good shape retention.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記の課題
を解決すべく鋭意研究の結果、複合メルトブロ−紡糸法
により得られた極細複合繊維ウェブを使用し、フイルタ
−の厚み方向に繊維充填密度勾配をつけ、濾過面を凹凸
状に成型して表面積を増加させ、且つ繊維の交点を熱融
着することにより所期の目的が達成されることを知り本
発明を完成するに至った。 即ち、(1)本願第1の発
明は、融点差が20℃以上ある2種以上の熱可塑性樹脂
を複合メルトブロ−法により紡糸して得られた極細複合
繊維からなり、繊維間が熱融着されたフイルタ−におい
て、少なくとも一方の面が凹凸状であり、且つ、フイル
タ−の厚み方向へ密度勾配があることを特徴とするフイ
ルタ−であり,(2)本願第2の発明は、極細複合繊維
の平均繊維径が10μm以下である上記(1)記載のフ
イルタ−であり、(3)本願第3の発明は、密度勾配
が、極細複合繊維の繊維径をフイルタ−の厚み方向に順
次変えながら積層して形成されたものである上記(1)
又は(2)の何れかに記載のフイルタ−であり、(4)
本願第4の発明は、フィルターが補強材で補強されたも
のである上記(1)から(3)の何れかに記載のフイル
タ−である。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have used an ultrafine composite fiber web obtained by a composite melt-blow spinning method, and have a fiber in the thickness direction of a filter. It was found that the intended purpose can be achieved by providing a packing density gradient, increasing the surface area by molding the filtering surface in an uneven shape, and heat-sealing the intersections of the fibers, and completed the present invention. .. That is, (1) the first invention of the present application comprises ultrafine composite fibers obtained by spinning two or more kinds of thermoplastic resins having a melting point difference of 20 ° C. or more by a composite melt-blowing method, and heat fusion between fibers is performed. The present invention is a filter characterized in that at least one surface thereof is uneven and has a density gradient in the thickness direction of the filter. The filter according to (1) above, wherein the average fiber diameter of the fibers is 10 μm or less, and (3) the third invention of the present application has a density gradient in which the fiber diameter of the ultrafine composite fibers is changed in the thickness direction of the filter. While being laminated, the above (1)
Or the filter according to any one of (2), (4)
A fourth invention of the present application is the filter according to any one of the above (1) to (3), wherein the filter is reinforced with a reinforcing material.

【0006】以下本発明を詳細に説明する。本発明のフ
イルタ−に用いる極細複合繊維には、ポリオレフイン、
ポリエステル、ポリアミド等の繊維形成が可能な熱可塑
性樹脂の中から、融点が20℃以上異なる2種の樹脂を
選び複合メルトブロ−紡糸したものが用いられる。その
ような樹脂の組み合わせの例として、ポリエチレン/ポ
リプロピレン、ポリプロピレン/ポリエチレンテレフタ
レ−ト、ポリアミド/ポリエチレンテレフタレ−ト等の
組合せを示すことができる。複合形式としては、両樹脂
を並列型、或は低融点樹脂を鞘側に、高融点樹脂を芯側
に配した鞘芯型、もしくは低融点樹脂を海側に、高融点
樹脂を島側に配した海島型が例示できる。繊維同士の接
点を低融点の樹脂で接着させる目的でウェブを熱処理す
る際、高融点の樹脂まで軟化ないし溶融すると繊維が膜
状化し易く、フィルターの細孔径の不均一や濾過抵抗の
増加を招くので、高融点成分を溶融ないし軟化させるこ
となく、低融点成分による強固な融着を発生させるため
には両樹脂の融点差が20℃以上である異が望ましい。
又、低融点樹脂と高融点樹脂の複合比は、繊維間の接着
を十分な強度のものとするために、重量比で20/80
から80/20好ましくは30/70から70/30で
ある。このような繊維を複合メルトブロ−紡糸法で紡糸
する方法としては、特開昭60−99057号公報、特
開平2−289107号公報に開示されたような複合紡
糸口金を用い、複数の熱可塑性樹脂をそれぞれの押出機
から紡糸口金に供給し、紡糸口金から押し出された溶融
樹脂を高速の熱風で吹き飛ばし、捕集コンベア−上に極
細の複合繊維ウエブとして堆積させる方法が利用でき
る。複合メルトブロ−法では繊維径が樹脂の押出量を増
やせば太くなり、熱風の流速を増やせば細くなるので、
これらの条件のいずれか一方、或は両方を変化させるこ
とにより繊維径が変化したウェブを得ることが出来る。
フィルターを構成する繊維は、平均繊維径が10μm以
下であることが好ましい。平均繊維径が10μmを超え
ると濾過精度が10μmより悪くなるので好ましくな
い。
The present invention will be described in detail below. The ultrafine composite fibers used in the filter of the present invention include polyolefin,
Among the thermoplastic resins capable of forming fibers, such as polyester and polyamide, two kinds of resins having different melting points of 20 ° C. or more are selected and composite melt-spun is used. Examples of such resin combinations include polyethylene / polypropylene, polypropylene / polyethylene terephthalate, polyamide / polyethylene terephthalate and the like. As a composite type, both resins are arranged in parallel, or a low melting point resin is placed on the sheath side, a high melting point resin is placed on the core side, or a sheath core type, or the low melting point resin is placed on the sea side and the high melting point resin is placed on the island side. An example is a sea-island type. When heat treating the web for the purpose of adhering the contact points between fibers with a resin with a low melting point, if the resin with a high melting point is softened or melted, the fibers tend to form a film, which leads to an uneven pore size of the filter and an increase in filtration resistance. Therefore, it is desirable that the difference between the melting points of the two resins is 20 ° C. or more in order to cause strong fusion by the low melting point component without melting or softening the high melting point component.
In addition, the composite ratio of the low melting point resin and the high melting point resin is 20/80 in terms of weight ratio in order to secure sufficient adhesion between the fibers.
To 80/20, preferably 30/70 to 70/30. As a method for spinning such fibers by a composite melt-blow spinning method, a plurality of thermoplastic resins are prepared by using a composite spinneret as disclosed in JP-A-60-99057 and JP-A-2-289107. Can be used from each extruder to the spinneret, and the molten resin extruded from the spinneret is blown off with high-speed hot air and deposited on the collecting conveyor as an ultrafine composite fiber web. In the composite melt-blowing method, the fiber diameter becomes thicker when the extrusion amount of resin is increased, and becomes thinner when the flow velocity of hot air is increased.
By changing either one or both of these conditions, a web having a changed fiber diameter can be obtained.
The fibers constituting the filter preferably have an average fiber diameter of 10 μm or less. If the average fiber diameter exceeds 10 μm, the filtration accuracy becomes worse than 10 μm, which is not preferable.

【0007】本発明のフイルタ−は、濾過面が凹凸状に
成形されており、且つ厚み方向に密度勾配があり、しか
も繊維間の交点が熱融着されたものである。本発明でい
う凹凸状とは、フィルターの濾過面をマクロ的に観た場
合平滑でなく、凹部の底点と凸部の頂点との差が約1m
m以上ある何等かの凹凸状を形成した状態をいう。具体
的な形状としては、鋭角あるいはU字形に折り曲げた直
線状あるいは波状の襞付けされたもの、点状や溝状の独
立した凹部が散在したもの等の形が例示できる。このよ
うな凹凸構造をとることにより濾材の表面積を増加さ
せ、濾過ライフを長くする。濾過は、凹凸状側を濾過す
べき流体の導入側として行う。密度勾配型とは、フイル
タ−の厚み方向における繊維充填密度が段階的に、又は
連続的に変化した状態をいう。繊維充填密度は下記式1
で表わされ、5個の試料の平均値で示す。 繊維充填密度(g/cm3)=W/(V×ρ) 式1 W:ウエブ・不織布・フィルターの目付(g/m2) V:1m2当りの体積(cm3/m2) ρ:繊維の比重(g/cm3) 繊維充填密度はフィルター全体で約0.01−0.35
の範囲であつて、密部では0.02−0.35、粗部で
は0.01−0.25の範囲にあるものが好ましい。密
部の繊維充填密度が0.01未満の場合には精密濾過は
不可能であり、0.35を越える場合、濾過すべき流体
の通過抵抗が大きくなり過ぎるので何れも好ましくな
い。
In the filter of the present invention, the filtering surface is formed in a concavo-convex shape, has a density gradient in the thickness direction, and the intersections between the fibers are heat-sealed. The unevenness referred to in the present invention means that the filtering surface of the filter is not smooth when viewed macroscopically, and the difference between the bottom point of the concave portion and the apex of the convex portion is about 1 m.
It means a state in which some unevenness of m or more is formed. Examples of the specific shape include linear or corrugated folds bent into an acute angle or a U shape, and shapes such as dotted or groove-like independent recesses scattered. By taking such a concavo-convex structure, the surface area of the filter medium is increased and the filtration life is lengthened. Filtration is performed with the uneven side as the introduction side of the fluid to be filtered. The density gradient type means a state in which the fiber packing density in the thickness direction of the filter changes stepwise or continuously. The fiber packing density is the following formula 1
The average value of 5 samples is shown. Fiber packing density (g / cm 3 ) = W / (V × ρ) Formula 1 W: Web / nonwoven fabric / filter weight (g / m 2 ) V: Volume per 1 m 2 (cm 3 / m 2 ) ρ: Specific gravity of fiber (g / cm 3 ) The fiber packing density is about 0.01-0.35 for the entire filter.
In the range of 0.02 to 0.35 in the dense part and in the range of 0.01 to 0.25 in the rough part, it is preferable. If the fiber packing density in the dense portion is less than 0.01, microfiltration is impossible, and if it exceeds 0.35, the passage resistance of the fluid to be filtered becomes too large, which is not preferable.

【0008】本発明のフイルタ−は種々の方法で製造す
ることができる。例えば、融点差が20℃以上あるよう
な2種の熱可塑性樹脂を、複合メルトブロ−法により紡
糸して平均繊維径が一定の極細繊維ウェブを得、このウ
ェブを温度や圧力、時間等の加熱条件を変えて繊維充填
密度の異なる何種かの熱融着型不織布とした後、この不
織布を密度の順に積層し金型や襞付け加工機を用いて表
面を凹凸状に成形する方法がある。また、紡糸時の押出
量や噴出気体圧力等の紡糸条件を順次変えて平均繊維径
の異なる複数の極細繊維ウェブを得、これらを平均繊維
径の順に積層し、加熱、成形する方法がある。極細繊維
ウェブを捕集コンベア−上に配置された多孔質で凹凸状
の成型材上に直接吹き付け堆積させた後、表面側と裏面
側の温度条件を変えて加熱して密度勾配をつけ加熱成形
する方法、あるいは、捕集コンベア−に吹き付けられた
気体を捕集コンベア−下部より吸引排気する際にできる
ウェブの表面側と裏面側の吸引力の差を利用し、裏面側
が密、表面側が粗である繊維ウエブを得て加熱成形する
方法もある。更に、平均繊維径が順次異なる極細繊維ウ
ェブを紡出し、これを平坦な捕集材上に、または多孔質
で凹凸の成型基材上に、繊維径の順に堆積し、その後加
熱条件や成型条件を変え成型する方法等がある。又、本
発明のフイルタ−において、強度や形状保持性を一層改
善する目的でフィルターの何れか一方の表面、又は両
面、もしくは内部に補強材を設けることができる。その
ような補強材として、スパンボンド法不織布、熱融着型
複合繊維製不織布、熱融着型複合モノフイラメント製ネ
ツト、金網等が例示できる。該補強材は繊維径が極細繊
維よりも太く且つ通気性のあるものであればよい。該補
強材で補強されたものは、低目付フイルタ−であつても
成型後の形状保持性が一層良くなり、さらに強度も高い
ものとなる。
The filter of the present invention can be manufactured by various methods. For example, two kinds of thermoplastic resins having a melting point difference of 20 ° C. or more are spun by a composite melt blow method to obtain an ultrafine fiber web having a constant average fiber diameter, and the web is heated at temperature, pressure, time and the like. There is a method in which after changing the conditions to make several types of heat-fusion type nonwoven fabrics with different fiber packing densities, this nonwoven fabric is laminated in order of density and the surface is made uneven by using a die or fold processing machine. .. Further, there is a method in which a plurality of ultrafine fiber webs having different average fiber diameters are obtained by sequentially changing spinning conditions such as an extrusion amount and a jet gas pressure at the time of spinning, and these are laminated in the order of average fiber diameter, and heated and molded. The ultrafine fiber web is directly sprayed and deposited on a porous and uneven molding material placed on the collection conveyor, and then heated by changing the temperature conditions on the front surface side and the back surface side to form a density gradient and heat molding. Method, or by utilizing the difference in suction force between the front side and the back side of the web, which is created when the gas blown to the collection conveyor is sucked and exhausted from the bottom of the collection conveyor-the back side is dense and the front side is rough. There is also a method of obtaining a fibrous web which is and heat-molding. Furthermore, ultrafine fiber webs with different average fiber diameters are spun on, and are deposited on a flat collecting material or on a porous and uneven molding base material in the order of the fiber diameters, and then heating conditions and molding conditions are applied. There is a method of changing and molding. Further, in the filter of the present invention, a reinforcing material may be provided on the surface of one side, both sides or inside of the filter for the purpose of further improving the strength and shape retention. Examples of such a reinforcing material include spunbonded non-woven fabric, heat-fusion type composite fiber non-woven fabric, heat-fusion type composite monofilament net, and wire netting. The reinforcing material may be one having a fiber diameter thicker than the ultrafine fibers and having air permeability. A product reinforced with the reinforcing material has even better shape retention after molding even with a low basis weight filter, and also has high strength.

【0009】以下に本発明を実施例で説明する。なを各
例において用いた濾過性能等の測定法を以下に記載す
る。 濾過精度:30リツトルの水を入れた水槽、ポンプ、及
び濾過器からなる循環式濾過試験装置を用いる。濾液排
出側にハニカム形金属製補強材を備えた25cm×22
cmの大きさの濾過器のハウジングに試料フイルタ−一
個を取付、水を毎分10リツトルの流量で循環させなが
ら、水槽にケ−キ(カ−ボランダム#4000)を5グ
ラム添加する。ケ−キ添加より3分後に採取した濾過水
100ミリリツトルを、0.6ミクロン以上の粒子を捕
集できるメンブレンフイルタ−で濾過する。メンブレン
フイルタ−上に捕集された粒子のサイズを粒度分布測定
機で測定し、最も大きな粒子のサイズ(最大流出径、ミ
クロン)を試料フイルタ−の濾過精度とする。 濾過ライフ:前記濾過試験装置に試料フイルタ−一個を
取付、水を毎分30リツトルの流量で循環させる。水槽
に火山灰土壌下層土粉末(平均粒径12.9ミクロン、
粒径が1.0−30ミクロンの範囲ものが99重量%以
上)を20グラム添加して循環濾過を続け、水槽内の水
が透明になった時点でフイルタ−前後の差圧を測定す
る。この粉末の添加と差圧の測定の操作を差圧が3kg
/cm2になるまで繰り返す。1回目の粉末添加から差
圧が3kg/cm2になるまでまでの時間を濾過ライフ
とした。 平均繊維径:ウェブ、不織布、或はフイルタ−から切取
った試料片の走査型電子顕微鏡写真を用いて測定した1
00本の繊維径の平均値。
The present invention will be described below with reference to examples. The methods for measuring filtration performance and the like used in each example are described below. Filtration accuracy: A circulation type filtration test device consisting of a water tank containing 30 liters of water, a pump, and a filter is used. 25 cm x 22 with honeycomb-shaped metal reinforcement on the filtrate discharge side
A sample filter is attached to the housing of a filter having a size of cm, and 5 g of a cake (Carborundum # 4000) is added to the water tank while circulating water at a flow rate of 10 liters per minute. 100 milliliters of filtered water collected 3 minutes after the addition of the cake is filtered with a membrane filter capable of collecting particles of 0.6 micron or more. The size of the particles collected on the membrane filter is measured by a particle size distribution analyzer, and the size of the largest particle (maximum outflow diameter, micron) is used as the filtration accuracy of the sample filter. Filtration life: A sample filter is attached to the filtration test device, and water is circulated at a flow rate of 30 liters per minute. Volcanic ash soil lower layer soil powder (average particle size 12.9 microns,
20 g of 99% by weight or more in a particle size range of 1.0 to 30 μm) is added and circulation filtration is continued, and when the water in the water tank becomes transparent, the differential pressure across the filter is measured. The operation of adding this powder and measuring the differential pressure is 3 kg
Repeat until / cm 2 is reached. The time from the first powder addition until the differential pressure reaches 3 kg / cm 2 was defined as the filtration life. Average fiber diameter: measured using a scanning electron microscope photograph of a sample piece cut from a web, a non-woven fabric, or a filter 1.
The average value of 00 fiber diameters.

【0010】(実施例1、比較例1)メルトフロレ−ト
120(g/10分:230℃、2160g)、融点1
63℃のポリプロピレンを第1成分とし、メルトフロレ
−ト124(g/10分:190℃、2160g)、融
点122℃の線状低密度ポリエチレンを第2成分とし、
孔径0.3mm、孔数501の並列型メルトブロ−紡糸
口金を用い、複合比1/1(重量比)、紡糸温度を第1
成分260℃、第2成分260℃、総吐出量120g/
分の条件で複合紡糸し、温度330℃の空気を圧力2.
1kg/cm2で導入し金網コンベア−上に吹き付け、
目付け130g/m2、平均繊維径1.8μmのウェブ
を得た。このウェブをカレンダ−ロ−ルを用い温度10
5℃で熱圧着し、厚み1.17mm、繊維密度0.12
の不織布(不織布a)を得た。この不織布とは別に、前
記ウェブをフラツトなステンレス板と、山の高さ4m
m、山間ピツチ5mmの鋭角の波型のステンレス製コル
ゲート板にはさみ、温度130℃で4分間加熱処理し、
表面が凹凸状で裏面がフラツトな不織布(不織布b)を
得た。成型後の不織布は山の高さ4mm、谷部の厚さ
1.2mm、繊維密度0.044であつた。不織布aを
不織布bのフラツトな面に接するように積層し、熱風型
加熱機を用いて温度128℃で1分間加熱して2層が熱
融着したフイルタ−を得た。このフイルタ−の凹凸状側
の表面積は1.89m2であつた。この凹凸状側を液体
の導入側として濾過性能試験を行ったところ、濾過精度
は1.0μmで、濾過ライフは14分であつた(実施例
1)。一方、比較例として不織布aのみで濾過性能試験
を行ったところ、濾過精度は1.1μmであったが濾過
ライフは3分であり、濾過ライフが短いものであった
(比較例1)。以上の結果より、密度勾配型で且つ濾過
面が凹凸状に成形された本願発明のフィルターは、従来
のメルトブロー法によるフィルターより濾過精度が良く
且つ濾過ライフも長いことが分かる。
(Example 1, Comparative Example 1) Melt flow rate 120 (g / 10 minutes: 230 ° C., 2160 g), melting point 1
63 ° C. polypropylene as the first component, melt floret 124 (g / 10 min: 190 ° C., 2160 g), melting point 122 ° C. linear low density polyethylene as the second component,
Using a parallel melt-blow spinneret with a hole diameter of 0.3 mm and a number of holes of 501, the composite ratio was 1/1 (weight ratio) and the spinning temperature was first.
Ingredient 260 ° C, 2nd ingredient 260 ° C, total discharge amount 120g /
1. The composite spinning was carried out under the condition of minutes, and the air at a temperature of 330 ° C. was pressured.
Introduced at 1 kg / cm 2 and sprayed on the wire mesh conveyor,
A web having a basis weight of 130 g / m 2 and an average fiber diameter of 1.8 μm was obtained. This web was heated at a temperature of 10 using a calendar roll.
Thermocompression bonded at 5 ° C, thickness 1.17 mm, fiber density 0.12
A non-woven fabric (non-woven fabric a) was obtained. Apart from this non-woven fabric, the web is flat stainless steel plate and the height of the mountain is 4 m.
m, mountain pitch 5 mm, sandwiched between corrugated corrugated stainless steel plates with an acute angle, and heat-treated at a temperature of 130 ° C. for 4 minutes,
A non-woven fabric (non-woven fabric b) having an uneven surface and a flat back surface was obtained. The non-woven fabric after molding had a peak height of 4 mm, a valley thickness of 1.2 mm, and a fiber density of 0.044. Nonwoven fabric a was laminated so as to be in contact with the flat surface of nonwoven fabric b, and heated for 1 minute at a temperature of 128 ° C. using a hot air heater to obtain a filter in which two layers were heat-sealed. The surface area on the irregular side of this filter was 1.89 m 2 . When a filtration performance test was conducted using this uneven side as the liquid introduction side, the filtration accuracy was 1.0 μm and the filtration life was 14 minutes (Example 1). On the other hand, as a comparative example, when the filtration performance test was performed using only the nonwoven fabric a, the filtration accuracy was 1.1 μm, but the filtration life was 3 minutes, and the filtration life was short (Comparative Example 1). From the above results, it is understood that the filter of the present invention, which is a density gradient type and the filtering surface of which is formed in a concavo-convex shape, has better filtration accuracy and longer filtration life than the filter by the conventional melt blow method.

【0011】(実施例2、比較例2)固有粘度0.5
9、融点252℃のポリエチレンテレフタレ−トを第1
成分とし、メルトフロレ−ト380(g/10分:23
0℃、2160g)、融点163℃のポリプロピレンを
第2成分として用い、実施例1と同じ紡糸装置を用い、
複合比1/1(重量比)、紡糸温度を第1成分320
℃、第2成分240℃、総吐出量120g/分の条件で
並列型に複合紡糸し、温度370℃の空気を圧力0.8
kg/cm2で導入して金網コンベア−上に吹き付け、
目付け90g/m2、繊維径8.6μmのウェブ(A)
を得た。その後空気圧を1.4kg/cm2に上げ、目
付け90g/m2 、繊維径4.1μmのウェブ(B)を
得た。更に空気圧を1.9kg/cm2に上げ、目付け
190g/m2 、繊維径1.2μmのウェブ(C)を得
た。ウェブ(C)をカレンダ−ロ−ルを用い温度155
℃で熱圧着し、厚み0.85mm、繊維密度0.19の
不織布を得た(不織布C)。つぎに、前記ウェブ(B)
とウェブ(A)とを積層し、この積層ウェブをフラツト
なステンレス板と山の高さ4mm、山間ピツチ5mmの
鋭角の波型のステンレス製コルゲート板にはさみ、温度
165℃で5分間加熱処理し、表面(ウエブ(A)側)
が凹凸状で裏面(ウェブ(B)側)がフラツトな不織布
(不織布D)を得た。成型後の不織布は山の高さ4m
m、谷部の厚さ1.3mm、繊維密度0.047であつ
た。不織布Dの裏面側に不織布Cを積層し、熱風型加熱
機を用いて温度172℃で3分間加熱し、繊維径が表面
側から裏面側へ太いものから細いものへ3層に順次変化
し、且つ繊維同士の接点が熱融着したフイルタ−を得
た。このフイルタ−の凹凸状側の表面積は1.89m2
であつた。この凹凸状側を液体の導入側とし、濾過性能
試験を行ったところ、濾過精度は0.9μm、濾過ライ
フは11分であつた(実施例2)。一方、比較例として
不織布Cのみで濾過性能試験を行ったところ濾過精度は
1.1μmであったが、濾過ライフは2分であり、濾過
ライフが短いものであった(比較例2)。
(Example 2, Comparative Example 2) Intrinsic viscosity 0.5
9. Polyethylene terephthalate with a melting point of 252 ° C
As an ingredient, melt florate 380 (g / 10 minutes: 23
0 ° C., 2160 g) and a melting point of 163 ° C. polypropylene was used as the second component, and the same spinning device as in Example 1 was used.
The compounding ratio is 1/1 (weight ratio) and the spinning temperature is the first component 320.
C., second component 240.degree. C., total discharge rate 120 g / min.
Introduced in kg / cm 2 and sprayed on the wire mesh conveyor,
Web (A) having a basis weight of 90 g / m 2 and a fiber diameter of 8.6 μm
Got Then, the air pressure was increased to 1.4 kg / cm 2 , and a web (B) having a basis weight of 90 g / m 2 and a fiber diameter of 4.1 μm was obtained. Further, the air pressure was raised to 1.9 kg / cm 2 , and a web (C) having a basis weight of 190 g / m 2 and a fiber diameter of 1.2 μm was obtained. The web (C) was heated to 155 using a calendar roll.
Thermocompression bonding was performed at 0 ° C. to obtain a nonwoven fabric having a thickness of 0.85 mm and a fiber density of 0.19 (nonwoven fabric C). Next, the web (B)
And the web (A) are laminated, and the laminated web is sandwiched between a flat stainless steel plate and a corrugated stainless corrugated plate having an acute angle with a mountain height of 4 mm and a mountain pitch of 5 mm, and heat-treated at a temperature of 165 ° C. for 5 minutes. , Surface (web (A) side)
A non-woven fabric (non-woven fabric D) having an uneven surface and a flat back surface (web (B) side) was obtained. Non-woven fabric after molding has a mountain height of 4 m
m, the valley thickness was 1.3 mm, and the fiber density was 0.047. The non-woven fabric C is laminated on the back side of the non-woven fabric D, and heated for 3 minutes at a temperature of 172 ° C. using a hot air heater to change the fiber diameter from the front side to the back side in three layers from thick to thin. A filter was also obtained in which the contact points of the fibers were heat-sealed. The surface area on the uneven side of this filter is 1.89 m 2.
It was. When the filtration performance test was conducted using this uneven side as the liquid introduction side, the filtration accuracy was 0.9 μm and the filtration life was 11 minutes (Example 2). On the other hand, as a comparative example, when the filtration performance test was conducted using only the nonwoven fabric C, the filtration accuracy was 1.1 μm, but the filtration life was 2 minutes and the filtration life was short (Comparative Example 2).

【0012】(実施例3、比較例3)実施例2で使用し
たメルトフロレ−ト380のポリプロピレンを第1成分
とし、実施例1で使用したメルトフロレ−ト124の線
状低密度ポリエチレンを第2成分とし、実施例1と同じ
紡糸装置を用い、複合比1/1(重量比)、紡糸温度を
第1成分240℃、第2成分240℃、総吐出量120
g/分の条件で紡糸し、温度330℃の空気を1.8k
g/cm2で導入し金網コンベア−上に配置された成型
基材上に吹き付け、目付け420g/m2、平均繊維径
2.4μmのウェブを得た。 なお成型基材としては、
ポリエチレンテレフタレ−トを芯とし、高密度ポリエチ
レンを鞘とする単糸繊度800d/fの複合モノフイラ
メントを、経糸緯糸が共に12本/25mmの密度の平
織りし、この織布を山の高さ2.5cm、山間ピツチ
2.5cmの波形に加熱成型すると共に繊維間を熱融着
させた襞付き網を用いた。なお成型基材に吹き付けられ
た気流はコンベア−下部の吸引装置により、通常のメル
トブロー紡糸より5割吸引量を増して除去した。ウェブ
が成型基材上に堆積するにつれ。、ウェブの下部は吸引
作用により繊維密度が大きく、ウェブの上部は吸引作用
が弱く作用するので繊維密度が小さく、全体として密度
勾配型のウエブとなった。このウエブを熱風型加熱機を
用いて、成型基材ごと温度130℃で5分間加熱処理
し、極細繊維の交点及び極細繊維と成型基材の接点が十
分に熱融着したフイルタ−を得た。このフイルタ−は平
均厚みが1.4cm(モノフイラメントを除く)、山間
ピツチ2.5cm、平均繊維充填密度が0.014、山
頂部の表面側の繊維密度が0.010、山頂部裏面側の
繊維密度が0.021の密度勾配型であつた。このフイ
ルタ−は凹凸部側の表面積が2.24m2であつた。こ
の該フイルタ−の粗密度側を液体の導入側として濾過性
能試験を行ったところ、濾過精度は4.0μm、濾過ラ
イフは19分であつた(実施例3)。一方、比較例とし
て成型基材を用いずに、直接金網コンベア−上にウェブ
を堆積させ、吹き付けた気流はコンベア−下部の吸引装
置により通常より吸引力を弱めて吸引除去した。得られ
たウェブは、目付け420g/m2、繊維径2.4μm
であつた。このウエブを熱風型乾燥機を用いて130℃
で5分間加熱処理し、極細繊維の交点が十分に熱融着し
たフイルタ−を得た。このフイルタ−は平均繊維充填密
度、表面及び裏面側の繊維充填密度が共に0.014で
あり、密度勾配のないものであつた。このフイルタ−の
濾過性能試験を行ったところ、濾過精度は7.9μm、
濾過ライフは13分であり、濾過ライフの短いものであ
った(比較例3)。
(Example 3, Comparative Example 3) The polypropylene of the melt flow rate 380 used in Example 2 was used as the first component, and the linear low density polyethylene of the melt flow rate 124 used in Example 1 was used as the second component. Using the same spinning device as in Example 1, the composite ratio was 1/1 (weight ratio), the spinning temperature was 240 ° C. for the first component, 240 ° C. for the second component, and the total discharge amount was 120.
Spinning under the condition of g / min and air of temperature 330 ° C for 1.8k
It was introduced at a rate of g / cm 2 and sprayed onto a molding substrate placed on a wire mesh conveyor to obtain a web having a basis weight of 420 g / m 2 and an average fiber diameter of 2.4 μm. As a molding substrate,
A composite monofilament with a single yarn fineness of 800 d / f with polyethylene terephthalate as the core and high-density polyethylene as the sheath is plain woven with a warp and weft thread density of 12 threads / 25 mm, and this woven cloth has a mountain height. A crimped net was used in which the fibers were heat-molded into a waveform of 2.5 cm and the pitch between the mountains was 2.5 cm, and the fibers were heat-sealed. The air flow blown onto the molding substrate was removed by a suction device at the lower part of the conveyor by increasing the suction amount by 50% compared with the usual melt blow spinning. As the web deposits on the molded substrate. The lower part of the web has a high fiber density due to the suction action, and the upper part of the web has a weak suction action, so that the fiber density is low, and the web has a density gradient type as a whole. This web was heat-treated together with the molding substrate at a temperature of 130 ° C. for 5 minutes using a hot air heater to obtain a filter in which the intersections of the ultrafine fibers and the contact points between the ultrafine fibers and the molding substrate were sufficiently heat-sealed. .. This filter has an average thickness of 1.4 cm (excluding monofilament), a mountain pitch of 2.5 cm, an average fiber packing density of 0.014, a fiber density of 0.010 on the surface side of the mountain peak, and a back surface of the mountain peak. It was a density gradient type having a fiber density of 0.021. This filter had a surface area of 2.24 m 2 on the uneven portion side. When a filtration performance test was conducted with the coarse density side of the filter as the liquid introduction side, the filtration accuracy was 4.0 μm and the filtration life was 19 minutes (Example 3). On the other hand, as a comparative example, the web was directly deposited on the wire mesh conveyor without using the molding substrate, and the blown airflow was removed by suction with a suction device below the conveyor with a weaker suction force than usual. The obtained web has a basis weight of 420 g / m 2 and a fiber diameter of 2.4 μm.
It was. This web is heated to 130 ° C using a hot air dryer.
And heat-treated for 5 minutes to obtain a filter in which the intersections of the ultrafine fibers were sufficiently heat-sealed. This filter had an average fiber packing density and a fiber packing density on the front and back sides of 0.014, and had no density gradient. When the filtration performance test of this filter was conducted, the filtration accuracy was 7.9 μm,
The filtration life was 13 minutes, and the filtration life was short (Comparative Example 3).

【0013】[0013]

【発明の効果】本発明のフイルタ−は、複合メルトブロ
−紡糸法により得られた熱融着型で極細の複合繊維で構
成され、フィルターの厚み方向に繊維充填密度が変化し
た密度勾配型であり、且つ繊維同士がその接点で強固に
融着されている。しかもこのフイルタ−は濾過すべき流
体の導入側が凹凸状に成型されて、濾過面積が増大され
ている。従つてこのフイルタ−は精密濾過が可能な上に
濾過ライフが長い。又モノフイラメントネツト、金網、
太繊度糸で構成された不織布、等の補強材で補強された
ものは上記効果にプラスし、強度が大である、形状保持
性がよい等の効果を併わせ持つ。
The filter of the present invention is a heat-fusion type ultrafine composite fiber obtained by the composite melt-blow spinning method, and is a density gradient type in which the fiber packing density changes in the thickness direction of the filter. Moreover, the fibers are firmly fused at their contact points. In addition, the filter has a filtering area increased by molding the introduction side of the fluid to be filtered into an uneven shape. Therefore, this filter is capable of microfiltration and has a long filtration life. Monofilament net, wire mesh,
A material reinforced with a reinforcing material such as a non-woven fabric composed of high-definition yarn has the effects described above, as well as high strength and good shape retention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 融点差が20℃以上ある2種以上の熱可
塑性樹脂を複合メルトブロ−法により紡糸して得られた
極細複合繊維からなり、繊維間が熱融着されたフイルタ
−において、少なくとも一方の面が凹凸状であり、且
つ、フイルタ−の厚み方向へ密度勾配があることを特徴
とするフイルタ−。
1. A filter comprising ultrafine composite fibers obtained by spinning two or more kinds of thermoplastic resins having a melting point difference of 20 ° C. or more by a composite melt-blowing method, wherein the fibers are heat-sealed to each other. A filter characterized in that one surface thereof is uneven and has a density gradient in the thickness direction of the filter.
【請求項2】 極細複合繊維の平均繊維径が10μm以
下である請求項1記載のフイルタ−。
2. The filter according to claim 1, wherein the ultrafine composite fiber has an average fiber diameter of 10 μm or less.
【請求項3】 密度勾配が、極細複合繊維の繊維径をフ
イルタ−の厚み方向に順次変えながら積層して形成され
たものである請求項1又は2項の何れかに記載のフイル
タ−。
3. The filter according to claim 1, wherein the density gradient is formed by laminating the ultrafine composite fibers while sequentially changing the fiber diameter in the thickness direction of the filter.
【請求項4】 フィルターが補強材で補強されたもので
ある請求項1から3項の何れかに記載のフイルタ−。
4. The filter according to claim 1, wherein the filter is reinforced with a reinforcing material.
JP5889492A 1992-02-12 1992-02-12 filter Expired - Lifetime JP3326808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5889492A JP3326808B2 (en) 1992-02-12 1992-02-12 filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5889492A JP3326808B2 (en) 1992-02-12 1992-02-12 filter

Publications (2)

Publication Number Publication Date
JPH05220313A true JPH05220313A (en) 1993-08-31
JP3326808B2 JP3326808B2 (en) 2002-09-24

Family

ID=13097501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5889492A Expired - Lifetime JP3326808B2 (en) 1992-02-12 1992-02-12 filter

Country Status (1)

Country Link
JP (1) JP3326808B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069930B2 (en) 1995-03-09 2006-07-04 3M Innovative Properties Company Flat-folded personal respiratory protection devices and processes for preparing same
JP2009263811A (en) * 2008-04-24 2009-11-12 Kuraray Kuraflex Co Ltd Composite fiber sheet composed of nonwoven fabric
JP2011005398A (en) * 2009-06-24 2011-01-13 Toyobo Co Ltd Triboelectrified filter medium
JP2013522002A (en) * 2010-03-12 2013-06-13 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング Filter medium of filter element, filter element, and method of manufacturing filter medium
JP2013535582A (en) * 2010-07-07 2013-09-12 スリーエム イノベイティブ プロパティズ カンパニー Airlaid non-woven electret fiber web with pattern, and method for making and using the same
JP2013538297A (en) * 2010-07-07 2013-10-10 スリーエム イノベイティブ プロパティズ カンパニー Patterned airlaid nonwoven fibrous webs and methods for making and using them
JP2014205943A (en) * 2013-03-15 2014-10-30 プロダクツ・アンリミテッド・インコーポレイテッドProducts Unlimited, Inc. Fiber structure of filtering medium and method for manufacturing the same
US9993761B2 (en) 2013-03-15 2018-06-12 LMS Technologies, Inc. Filtration media fiber structure and method of making same
WO2020174951A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Filter for liquids, and method for manufacturing filter for liquids

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069930B2 (en) 1995-03-09 2006-07-04 3M Innovative Properties Company Flat-folded personal respiratory protection devices and processes for preparing same
JP2009263811A (en) * 2008-04-24 2009-11-12 Kuraray Kuraflex Co Ltd Composite fiber sheet composed of nonwoven fabric
JP2011005398A (en) * 2009-06-24 2011-01-13 Toyobo Co Ltd Triboelectrified filter medium
US9895637B2 (en) 2010-03-12 2018-02-20 Mann+Hummel Gmbh Filter medium of a filter element, filter element and method for producing a filter medium
JP2013522002A (en) * 2010-03-12 2013-06-13 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング Filter medium of filter element, filter element, and method of manufacturing filter medium
JP2013535582A (en) * 2010-07-07 2013-09-12 スリーエム イノベイティブ プロパティズ カンパニー Airlaid non-woven electret fiber web with pattern, and method for making and using the same
JP2013538297A (en) * 2010-07-07 2013-10-10 スリーエム イノベイティブ プロパティズ カンパニー Patterned airlaid nonwoven fibrous webs and methods for making and using them
US9771675B2 (en) 2010-07-07 2017-09-26 3M Innovative Properties Company Patterned air-laid nonwoven fibrous webs and methods of making and using same
JP2014205943A (en) * 2013-03-15 2014-10-30 プロダクツ・アンリミテッド・インコーポレイテッドProducts Unlimited, Inc. Fiber structure of filtering medium and method for manufacturing the same
US9993761B2 (en) 2013-03-15 2018-06-12 LMS Technologies, Inc. Filtration media fiber structure and method of making same
WO2020174951A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Filter for liquids, and method for manufacturing filter for liquids
CN113453780A (en) * 2019-02-28 2021-09-28 富士胶片株式会社 Liquid filter and method for manufacturing liquid filter
JPWO2020174951A1 (en) * 2019-02-28 2021-12-23 富士フイルム株式会社 Liquid filter and manufacturing method of liquid filter

Also Published As

Publication number Publication date
JP3326808B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
KR100323320B1 (en) Filter media and preparation method thereof
US4714647A (en) Melt-blown material with depth fiber size gradient
JP2581994B2 (en) High precision cartridge filter and method of manufacturing the same
JP4236284B2 (en) Cylindrical filter
US8308833B2 (en) Nonwoven fabric for filters
KR20160050059A (en) Melt-spinning process, melt-spun nonwoven fibrous webs and related filtration media
KR19990087272A (en) Electrostatic fibrous filter web
JPH1190135A (en) Pleated filter
JP5179939B2 (en) Composite fiber sheet composed of non-woven fabric
JP3326808B2 (en) filter
JP6669315B1 (en) Spunbonded nonwoven fabric for filter and method for producing the same
KR100367542B1 (en) Cylindrical molded article and its manufacturing method
JP2001149720A (en) Filter
JP3233988B2 (en) Filter cloth and method for producing the same
JP3567480B2 (en) Filter medium and method for producing the same
JP3677385B2 (en) Filter material and filter using the same
JPH11293555A (en) Highly air-permeable nonwoven fabric and its production, and filter material made thereof
EP0864682A1 (en) Bulky nonwoven fabric
JP2000271417A (en) Filter medium sheet and pleat filter using the same
JP3131217B2 (en) Cylindrical filter for microfiltration
JP3404796B2 (en) Filter media
JP3596150B2 (en) Filter and manufacturing method thereof
US6749753B1 (en) Filter of high accuracy
JP3713924B2 (en) Pleated filter
JP3309320B2 (en) Filter and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080712

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110712

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110712

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350