JP3596150B2 - Filter and manufacturing method thereof - Google Patents

Filter and manufacturing method thereof Download PDF

Info

Publication number
JP3596150B2
JP3596150B2 JP7123896A JP7123896A JP3596150B2 JP 3596150 B2 JP3596150 B2 JP 3596150B2 JP 7123896 A JP7123896 A JP 7123896A JP 7123896 A JP7123896 A JP 7123896A JP 3596150 B2 JP3596150 B2 JP 3596150B2
Authority
JP
Japan
Prior art keywords
fiber
filter
fibers
layer
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7123896A
Other languages
Japanese (ja)
Other versions
JPH09234318A (en
Inventor
重則 徳永
智 緒方
勝博 宍倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP7123896A priority Critical patent/JP3596150B2/en
Publication of JPH09234318A publication Critical patent/JPH09234318A/en
Application granted granted Critical
Publication of JP3596150B2 publication Critical patent/JP3596150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)

Description

【0010】
【発明の属する技術分野】
本発明は、フィルターに関するものであって、特に液体濾過に好適なフィルターに関するものである。
【0011】
【従来の技術】
液体濾過用フィルターとして、カートリッジフィルターがあるが、その中には繊維を用いたものがあり、一般的には紡績糸、または、カード法、エアーレイド法、ニードルパンチ法、メルトブロー法、スパンボンド法などにより形成された不織布が円筒状に巻かれており、さまざまな産業分野で広く使用されている。例としては、多孔管に紡績糸や紡毛糸を巻き付けたタイプのもの(実開昭61−12922号公報)や、多孔管にメルトブローにより製造した不織布を巻き付けたタイプのもの(特公平1−297113号公報)、あるいはカード機により熱接着性複合繊維を不織布にして円筒状に巻き上げ成形したもの(特公昭53−43709号公報)等が挙げられる。
【0012】
【発明が解決しようとする課題】
上記に示されるフィルターは、一定の繊維径や繊維密度では濾過ライフが短いために、外層側の空隙率を大きくすることで、大きい粒子を外層側で捕集し、細かい粒子を内層側で捕集するようにして、フィルターの濾過ライフを延長させるようにしているが、孔径の細かい層が目詰まりし易く、濾過ライフが短いという問題があり、改善が望まれていた。
【0013】
【課題を解決するための手段】
本発明者らは、上記課題を解決するべく鋭意研究を重ねた結果、以下の構成をとることにより、所期の目的が達成される見通しを得て、本発明を完成するに至った。
本発明は以下の構成を有する。
(1) 熱可塑性繊維を含む不織繊維集合体が積層された濾過層からなるフィルターにおいて、該不織繊維集合体の繊維接合点が融着接合され、かつ各層片面または両面が通水可能な凹凸部を有することを特徴とするフィルター。
(2) 濾過層の密度が、内層よりも外層が粗構造である(1)項に記載のフィルター。
(3) 凹凸部の数が、濾過体層の内層から外層につれて多くなる(1)項に記載のフィルター。
(4) 凹凸部の大きさが、濾過体層の内層より外層の方が大きい(1)項に記載のフィルター。
(5) 熱可塑性繊維が、ポリオレフィン系繊維、ポリエステル系繊維、ポリアミド系繊維の群から選ばれた少なくとも1種である(1)項に記載のフィルター。
(6) 熱可塑性繊維が、融点差10℃以上の高融点成分と低融点成分で形成される熱可塑性複合繊維である(1)項に記載のフィルター。
(7) 熱可塑性繊維が、メルトブロー法で得られた繊維である(1)項に記載のフィルター。
(8) 不織繊維集合体が、熱可塑性繊維と他の繊維の混繊および/または混綿である(1)項に記載のフィルター。
(9) 熱融着性繊維を含有する表面が凹凸のある不織繊維集合体を円筒状の物体に捲回させた後、それを加熱し、熱融着性繊維を融着させることを特徴とする中空で円筒状のフィルターの製造方法。
【0014】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明は、フィルターに使用される不織繊維集合体の片面または両面に通水可能な凹凸部を形成させ、この不織繊維集合体を複数層巻回したり、積層したり、ひだ折り加工することで濾過面積増加による捕集量の向上と濾過ライフの延命を狙いとしたフィルターを特徴としている。つまり、本発明のフィルターは凹凸部が形成されていることで、各層における不織繊維集合体の表面積が増加し、また、各層間に空間が形成されることで、各層が面で接しているフィルターより捕集される粒子量が増加するという作用効果の特徴を持っている。これらの作用効果により、濾過層に平担な不織繊維集合体を用いた通常のフィルターに対して、凹凸部を有することで同じ濾過精度を保ちながら、優れたロングライフを実現するものである。
【0015】
本発明における不織繊維集合体とは熱融着性繊維を含み、これを熱融着させることにより繊維の交点が接着している不織布状態のものである。接着強度を向上させるために必要によりバインダーを添加することもできる。
本発明における凹凸部とは、不織繊維集合体を構成している繊維が、不織繊維集合体の片面若しくは両面上に凹面、凸面若しくは両者を形成しているものであり、凹凸部は他の部分と同様に通水性を有するものである。凸部の形状は、例えば図1〜4に示すような半球形、円錐形、三角錐形、四角錐形などを挙げることができるが、これらの形状に限定されるものではない。これらのものでは半球形若しくは円錐形のものが好ましく、半球形のものがより好ましい。凸面先端部は鋭角、曲面、平面の形状をとることができ、斜面については直線的でも凸の曲率、凹の曲率をもつ面でもかまわない。
凹部の形状については特に限定されないが上述した凸部の形状を空間部と不織繊維集合体部を入れ替えた形状を例示することができる。両面に凹凸部を形成している場合には、凹凸部の形状は、両面で同じでも異なっていてもよい。凹凸部の位置も両面で同じ位置でもずれていてもかまわない。要は、濾過精度を有し捕集量の増大と優れたロングライフに寄与するものであればよい。
【0016】
片面側だけに凸部を形成している不織繊維集合体の反対面は、平面または凹凸面の何れの形状をもとることができるが、凹面が好ましい。凹面の位置については、凸部と対応する同じ位置が好ましく、特に不織繊維集合体の厚みが薄い場合は、凸部が形成されてる場所と同じ位置になり、凸部形状を反転させた形状で凹面を形成することが好ましい。また、図5に示すように不織繊維集合体の断面が波形状になるように凹凸を形成してもよい。
図6に示すように凸部1のサイズは、凸部高さ3が0.5mmから3mm程度ものが望ましく、凸部最大幅4は、凸部高さ3と同じ幅から凸部間隔(凸部と隣の凸部との間隔)の1/2までが望ましい。また、凸部1が無い平坦部厚み5は2mm以下が望ましい。図5に示すように不織繊維集合体断面が波形状をとるものは、表裏の凸先端を挟む距離が1mmから5mm程度のものが望ましい。凸部の数については、凸部のサイズによるが片側で1cm当たり5〜100個が適当である。この数は、あまり少ないと凸部による効果が薄れるため出来る限り多い方がよい。
【0017】
凹凸を形成する不織繊維集合体の一部を構成している熱可塑性繊維は、高融点成分と低融点成分からなる並列型もしくは低融点成分を外側に配した鞘芯型や偏芯型の複合繊維、または高融点成分からなる繊維と低融点繊維からなる繊維を混綿や混繊などの方法により混合したものからなり、通常の紡糸方法によって得られたものやメルトブロー法、スパンボンド法などにより得られたものである。特に繊維径の細い繊維を必要とするときは、メルトブロー法やスパンボンド法等の紡糸方法が好ましく、高融点成分と低融点成分をノズルより交互の位置から押し出される方法を行えば、混繊されたウェブを直接製造することができるため生産性に優れている。
高融点成分と低融点成分からなる繊維を使用する理由は、凹凸部を形成する際に加熱することで、低融点側を溶かし、繊維同士を熱接着させることで凹凸部の形状を保つことにある。更には、不織布強度が高い、繊維の脱落がないといった利点も挙げられる。
【0018】
繊維を形成している 高融点成分と低融点成分は、ポリプロピレン、ポリエチレン、ポリ−4−メチルペンテン、プロピレンと他のαオレフィンとの2元または3元共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリカーボネード等の熱可塑性成分が挙げられる。これらの中から高融点成分の方が低融点成分より高融点であり、かつ、その融点差が10℃以上、好ましくは15℃以上になるような組み合わせを適宜選択する。これらの樹脂の内ではポリオレフィン同士の組み合わせが耐薬品性の面で好ましい。
複合繊維の場合も、混繊の場合も高融点成分と低融点成分の重量比率は(複合比、混繊比)は80:20から20:80である。低融点成分が下限未満であると繊維同士の熱接着点が少なくなり、保形性が低下する。また、上限を超えると、加熱の際に繊維が溶けすぎて形状が崩れ易くなる。より好ましくは60:40から40:60である。
【0019】
本発明で用いられる熱可塑性繊維以外の繊維の例としては木綿、絹、羊毛、パルプ等の天然繊維、ガラス繊維、炭素繊維、金属繊維等の無機若しくは金属繊維、レーヨン等の再生繊維、アセテート等の半合成繊維等を挙げることができる。全繊維中にしめる熱可塑性繊維の比率は30重量%以上が好ましく、より好ましくは50重量%以上である。
【0020】
繊維径は、濾過精度に合わせて選ばれ、高精度のものは、メルトブロー法やスパンボンド法などよって製造された0.01〜3d/fのものが用いられ、それ以外は、3〜100d/f程度の繊維が用いられる。繊維断面の形状は円形でも異形断面でもよく、異形断面糸を用いれば、濾過精度の向上が計れる。また、混繊や混綿による低融点成分繊維と高融点成分繊維の繊維径は異なっていてもよい。
凹凸を形成する不織繊維集合体の目付は、通常20〜300g/mまでのものが用いられ、この値より目付が少ないと厚みが薄くなるため、凹凸を形成しにくくなったり、凹凸形状の保持力が弱くなってしまう。また、目付が多いと凹凸の形成は容易になるが、厚みが増すため、巻き取りずらくなり、更に巻き数が減るためにフィルター全体の凹凸数が減り、濾過ライフが短くなってしまう。
【0021】
凹凸部製法の一例としては、カード法、エアーレイド法、ニードルパンチ法、スパンボンド法、メルトブロー法などの方法により製造された不織繊維集合体を、図7に示すような凹部6のある加熱ロール7とシリンダーロール8の少なくとも一対(二対以上でも可)を装備して、両者の間に目的とする凹凸部形成に必要な間隙を設け、その間隔を通過させることで加熱ロール7の凹部6に接した不織繊維集合体の部分に凸部1が形成される。凹部を設けた平板でプレスしても製造可能であるが、ロール式の方が不織布集合体を連続して流せるので生産性に優れている。凹凸部を形成された不織繊維集合体は、遠赤外線ヒーターやエアースルー型ドライヤーに通すことで、不織繊維集合体内部の繊維まで充分に熱接着を行なわせることができ、不織繊維集合体の強度を高めると共に凹凸部の保形性を向上させることができる。下側のロールについては、フラットタイプのもの、上側と同じように凹部を持ったタイプのもの、上側の凹部に合わさるように凸部を持ったタイプのものが適宜用いられる。ロールは、鉄、アルミ、銅などを用いた金属製のものが一般的で、表面を鏡面加工したものやテフロンコート加工したものが用いられる。
【0022】
ロールの表面温度は、不織繊維集合体に用いられている低融点成分繊維の融点以上の温度に設定され、両ロール間の間隙長による不織繊維集合体の圧密状態やラインスピード等を適宜変更して調節される。特に大切なことは、加熱ロールの温度が高すぎると凹凸部が溶融し、表面がフィルム化して通水性を持たなくなるため注意を要する。つまり、ロール通過時にエンボス加工で形成されるような繊維が扁平化して通水性のないフィルム化した凹凸部の形成は避けなければならない。また、平坦部についてもフィルム化していないことが必要である。
本発明のフィルターにとって構成上重要なことは、凸部1を決してフィルム化させずに通水可能な多孔質構造に形成させることである。この凸部1によって濾過面積の増加と併せて、積層不織繊維集合体の場合に生じる凸部で各層の間に空間ができることで粒子の捕集量を増加させるのである。捕集量の増加は、濾過ライフの延命にもつながるものである。
【0023】
エアースルー型ドライヤーの加熱設定温度についても、低融点成分繊維の融点以上の温度から高融点成分繊維の融点以下の温度に設定し、形成された凹凸部が加熱されすぎることで変形しないようにすることが必要である。
メルトブロー法やスパンボンド法などにより製造される高精度濾過用の繊維径が細く、繊維密度の高い不織繊維集合体に対して凹凸を形成するには、図8に示すように紡糸後に繊維を吸引するサクションコンベアのネット9や網状物の表面に凸部10をもたせた構造にすることにより、紡糸の際にネット9上にウェブが形成される段階で凸部を形成させることができる。また、凸部を付けなくても、ネット9や網状物の形状を凹凸の大きいタイプにすることでも波形状の凸部を形成することができる。サクション部がドラム型のものについても、ネット表面を前記と同じ構造にすることで、凸部を持ったウェブを製造することができる。サクションコンベアで凸部を形成されたウェブについては、遠赤外線ヒーターやエアースルー型ドライヤーを通して加熱することで繊維間の熱接着を充分に行なわせた方が、凸部形状が崩れにくくなる。
【0024】
また、上記以外の方法として、多数の穴が開いたパンチング板を連結したコンベアーを用いたエアースルー型ドライヤーに不織繊維集合体を通すことで、熱風により柔らかくなった繊維がコンベアー側からサクションされることで、パンチング板の穴の開いた部分で凸部を形成させる方法もある。
上記のような方法で凹凸部を形成された不織布からフィルターを製造する方法としては、特公昭56−43139号公報で示されるような装置を用いて、該不織繊維集合体を遠赤外線ヒーターで熱接着成分が溶けるような温度で加熱した直後に、金属製の中芯に巻き付けることにより筒状フィルターを得ることができる。不織繊維集合体を溶融する装置は、遠赤外線ヒーターに限らず、エアースルー型ドライヤー等を用いてもかまわない。また、特公昭56−49605号公報で示される方法により、凹凸部が形成されていない通常の不織繊維集合体、もしくは凹凸部が形成されている不織繊維集合体を巻回しフィルターを成形している途中に、メディア層となる凹凸部が形成された不織繊維集合体を挿入するという方法もある。なお、濾過ライフを充分に延ばすためには、流体が流れてくる方向に対して凸部が向くように巻回すると効果が大きい。
【0025】
メルトブロー法において凹凸部をもつ不織繊維集合体を直接形成する場合は、該ウェブを前記と同様な方法で加熱して中芯に巻き付けている際に、フィルターの径が大きくなるに従いメルトブローの熱風や吐出量を変化させ、順次または段階的に繊維径をかえれば、密度勾配の付いたフィルターが製造できる。
また、特開平1−297113号公報で示されるように、多孔性コアに凸部を形成した不織繊維集合体を巻回することでフィルターを製造することができる。この際、外層に行く程孔径の大きい不織繊維集合体を巻回すれば深層濾過タイプのフィルターを製造することができる。
また、凹凸部を形成した不織繊維集合体を平板の状態で積層したり、ひだ折り加工するとこでもフィルターの濾材として使用でき、ひだ折り加工によるものは、濾過面積の増加に加えて、凹凸部による濾過面積の増加が加わり、より濾過ライフの長いフィルターが製造できる。
【0026】
本発明のフィルターは、凹凸部による濾過面積の増加により、平面的な不織繊維集合体を用いたフィルターと比較して濾過精度の優れた構造となっている。また、繊維形成成分を高収縮成分と低収縮成分で形成することで、凹凸部を含めた不織布繊維集合体の強度を向上させて、凹凸部が潰れずに適度な空間を安定して保つことができるので濾過ライフの長い構造となっている。
【0027】
【実施例】
以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、各例において用いた測定方法を以下に示す。
平均繊維径
溶融紡糸で得られた繊維については、繊維の光学顕微鏡画像を画像処理装置に取り込み、繊維径を50本測定し、その平均値を平均繊維径とした。
メルトブロー法により得られる細繊度のウェブは、ウェブを構成する繊維の電子顕微鏡画像を画像処理装置に取り込み、繊維径を50本測定し、その平均を平均繊維径とした。
【0028】
捕集効率(濾過精度)
循環式濾過試験機のハウジングにフィルターを取付け、毎分30リットルの流量で通水循環をしながら、ACファインテストダスト(ACFTD、中位径6.6〜8.6μm)またはACコーズテストダスト(ACCTD、中位径27〜31μm)を0.5g/minで添加し、5分後の原液とフィルター通過後の液をサンプリングする。それぞれの液の粒度分布を光遮断式粒度分布測定機で濾過精度を測定し、粒子がフィルターに捕集された割合を示す捕集効率を求めた。 濾過ライフ
前記、循環式濾過精度試験機において、ハウジングにフィルターを取付け、毎分30リットルの流量で通水循環をしながら、ACFTDまたはACCTDを0.5g/minで添加して、ハウジング入口側と出口側との差圧を測定する。差圧が2.0kg/cmを示すまでの時間を濾過ライフとした。
捕集量
濾過ライフ測定終了後のフィルターをオーブンで乾燥後、重量を測定し、濾過前のフィルター重量との差を捕集量とした。
【0029】
(実施例1)
高融点成分がポリプロピレン(MFR20g/10分(230℃)、mp.162℃)、低融点成分が高密度ポリエチレン(MFR16g/10分(190℃)、mp.135℃)からなる並列型複合繊維(複合比率50:50、クリンプ数13山/25mm、繊維径3デニール、カット長51mm)を、カード機にて目付100g/mのウェブと目付70g/mのウェブを製造した。次にそれぞれのウェブを上側のロールが半球形凹面をもち、下側のロールがフラットになった直径300mmのステンレス製ロールを両ロールの間隙を0.5mmにして、表面温度140℃に設定したものに通すことで、平坦部厚みが0.6mm、凸部高さ1.0mm、凸部の数25個/cmの不織布とした2種類を形成した。凸部は、図1に示すような半球形をしており、フィルム化されていない多孔質構造であった。目付100g/mの不織布を特公昭56−43139号公報で示されるような装置を用い、エアースルー型ドライアーで加熱して、凸部が外側になるようにステンレスパイプに巻き取り、外径が約50mmになった後、その外側に目付70g/mの不織布を同じように加熱し巻き取り、冷却後にステンレスパイプを抜き、切断して、内径30mm、外径70mm、長さ250mm、空隙率87%の円筒形フィルターを製造した。測定結果は表1に示した。
【0030】
(比較例1)
実施例1と同じ繊維を用いて、カード機にて目付100g/mと目付70g/mのウェブにした後、上側下側とも同じ直径300mmのフラットロールを両ロールの間隙0.5mm、表面温度140℃に設定したものに通すことで、不織布厚みを0.6mmにした不織布の2種類を形成した。目付100g/mの不織布を実施例1と同じ方法でステンレスパイプに巻き取り、外径が50mmになった後、その外側に目付70g/mの不織布を同じように加熱し巻き取り、内径30mm、外径70mm、長さ250mm、空隙率78%の円筒形フィルターを製造した。測定結果は表1に示した。
【0031】
(実施例2)
実施例1で用いたものと同じ並列型複合繊維を用いてカード機にて目付100g/mのウェブと目付70g/mのウェブ製造した後、上側のロールが半球形凹面をもち、下側のロールがフラットになった直径300mmのステンレス製ロール2種類を両ロールの間隙0.5mm、表面温度140℃に設定したものに通すことで、目付100g/mのウェブを平坦部厚みが0.6mm、凸部高さ1mm、凸部の数25個/cmの不織布とし、目付70g/mのウェブを平坦部厚みが0.6mm、凸部高さ1mm、凸部の数36個/cmの不織布とした2種類を形成した。凸部は、図1に示したような半球形をしており、フィルム化されていない多孔質構造であった。実施例1と同じ製造方法で、凸部が外側を向くように目付100g/mの不織布をステンレスパイプに巻き外径が約50mmになった後、目付70g/mの不織布をその外側に巻くことで、内径30mm、外径70mm、長さ250mm、空隙率83%の円筒形フィルターを製造した。測定結果は表1に示した。
【0032】
(実施例3)
実施例1で用いたものと同じ繊維を用いてカード機にて目付100g/mのウェブと目付70g/mのウェブ製造した後、上側のロールが半球形凹面をもち、下側のロールがフラットになった直径300mmのステンレス製ロール2種類を両ロールの間隙0.5mm、表面温度140℃に設定したものを通すことで目付100g/mのウェブを平坦部厚みが0.6mm、凸部高さ1mm、凸部の数25個/cmの不織布とし、目付70g/mのウェブを平坦部厚みが0.6mm、凸部高さ1.5mm、凸部の数25個/cmの不織布とした2種類を形成した。凸部は、図1に示したような半球形をしており、フィルム化されていない多孔質構造であった。実施例1と同じ製造方法で、凸部が外側を向くように目付100g/mの不織布をステンレスパイプに巻き取り、外径が約50mmになった後、目付70g/mの不織布をその外側に巻くことで、内径30mm、外径70mm、長さ250mm、空隙率89%の円筒形フィルターを製造した。測定結果は表1に示した。
【0033】
(実施例4)
孔径0.3mmの穴が1.0mmピッチで501個の1列に並んだメルトブロー用混繊紡糸口金を用い、紡糸温度320℃でポリプロピレン(MFR18g/10分(230℃)、mp.165℃)とポリプロピレンコポリマー(MFR20g/10分(230℃)、mp.145℃)とを混繊比率50:50(重量%)で紡糸孔の交互の位置から押し出し、圧力を1.4〜0.4kg/cmに順次変化させた360℃の加圧空気を用いて、吸引装置を装備したナイロン製コンベアネット上に吹き付け、目付50g/mのウェブを製造した。凸部はフィルム化されていない多孔質構造であった。コンベアネット表面には2mm間隔で高さ1mm、直径0.5mmの円柱状にナイロン繊維が立っており、このコンベアネットから得られるウェブは、凸部高さ1mm、凸部の数36個/cm の図2に示されるような円錐形の凸部が形成された。凸部はフィルム化されていない多孔質構造であった。また、ウェブの平均繊維径は、最も細いところで5μm、最も太いところで12μmであった。該ウェブをネットコンベアーで移送しながら、エアースルー型ドライヤーで熱処理し、外側にいくほど繊維径が太くなるようにステンレスパイプに巻き取った。冷却後、ステンレスパイプを抜き取り、切断をして内径30mm、外径68mm、長さ250mm、空隙率80%の円筒形フィルターを得た。測定結果は表1に示した。
【0034】
(比較例2)
実施例3と同じ原料と方法を用いて紡糸した。但し、コンベアネットはナイロンの凸面がついていないものを使用した。得られたウェブの平均繊維径は、最も細いところで5μm、最も太いところで12μmであった。該ウェブを実施例1と同じ加工機で熱処理し、外側にいくほど繊維径が太くなるようにステンレスパイプに巻き取った。冷却後、ステンレスパイプを抜き取り、切断して内径30mm、外径68mm、長さ250mm、空隙率72%の円筒形フィルターを得た。測定結果は表1に示した。
表1の結果より表面に凹凸部を形成した不織繊維集合体をフィルターにすることで、凹凸部のない不織繊維集合体を用いたフィルターと比べると、同等の捕集効率を示しているにも関わらず、濾過ライフが向上し、捕集量を著しく増大することが確認された。
【0035】
【表1】

Figure 0003596150
【0036】
【発明の効果】
本発明のフィルターは、不織繊維集合体の各層片面または両面に通水可能な凹凸部を有することにより、各層における濾過面積が増加し、また、凹凸部により各層の間に空間ができることで粒子の捕集量が増加する。そのために、凹凸部を有しないフィルターに比べ、同じ濾過精度で濾過ライフを増加させる効果を有する。
【図面の簡単な説明】
【図1】半球形凸部の斜視図である。
【図2】円錘形凸部の斜視図である。
【図3】三角錘形凸部の斜視図である。
【図4】四角錘形凸部の斜視図である。
【図5】波形状凸部の斜視図である。
【図6】半球形凸部の横断面図である。
【図7】凸部形成用ロールの横断面図である。
【図8】凸部形成用コンベアネットの斜視図である。
【符号の説明】
1 凸部
2 不織繊維集合体平担部
3 凸部高さ
4 凸部最大幅
5 平坦部厚み
6 凹部
7 加熱ロール
8 シリンダロール
9 ネット
10 凸部[0010]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filter, and particularly to a filter suitable for liquid filtration.
[0011]
[Prior art]
As a filter for liquid filtration, there is a cartridge filter. Among them, there is a filter using a fiber, and in general, a spun yarn, a card method, an air laid method, a needle punch method, a melt blow method, a spun bond method. Nonwoven fabrics formed by such methods are wound in a cylindrical shape and are widely used in various industrial fields. Examples thereof include a type in which a spun yarn or a woolen yarn is wound around a perforated tube (Japanese Utility Model Application Laid-Open No. 61-12922) and a type in which a nonwoven fabric produced by melt-blowing is wound around a perforated tube (Japanese Patent Publication No. 1-297113). JP-A-53-43709, or a non-woven fabric made of a heat-adhesive conjugate fiber by a card machine and rolled up into a cylindrical shape (Japanese Patent Publication No. 53-43709).
[0012]
[Problems to be solved by the invention]
The filter shown above has a short filtration life at a certain fiber diameter and fiber density.Therefore, by increasing the porosity on the outer layer side, large particles are collected on the outer layer side and fine particles are collected on the inner layer side. The collection life is increased by collecting the filter, but there is a problem that the layer having a small pore diameter is easily clogged and the filtration life is short, and improvement has been desired.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by adopting the following configuration, the prospect of achieving the intended object has been obtained, and the present invention has been completed.
The present invention has the following configuration.
(1) In a filter comprising a filtration layer on which a nonwoven fiber aggregate containing thermoplastic fibers is laminated, fiber bonding points of the nonwoven fiber aggregate are fusion-bonded, and one or both surfaces of each layer can pass water. A filter having an uneven portion.
(2) The filter according to (1), wherein the density of the filtration layer is such that the outer layer has a coarser structure than the inner layer.
(3) The filter according to (1), wherein the number of uneven portions increases from the inner layer to the outer layer of the filter layer.
(4) The filter according to (1), wherein the size of the uneven portion is larger in the outer layer than in the inner layer of the filter layer.
(5) The filter according to item (1), wherein the thermoplastic fiber is at least one selected from the group consisting of a polyolefin fiber, a polyester fiber, and a polyamide fiber.
(6) The filter according to (1), wherein the thermoplastic fiber is a thermoplastic conjugate fiber formed of a high melting point component and a low melting point component having a melting point difference of 10 ° C or more.
(7) The filter according to (1), wherein the thermoplastic fiber is a fiber obtained by a melt blow method.
(8) The filter according to (1), wherein the nonwoven fiber aggregate is a blend of thermoplastic fibers and other fibers and / or a blend of cotton.
(9) After winding a non-woven fiber aggregate having a surface having irregularities containing heat-fusible fibers onto a cylindrical object, the material is heated to fuse the heat-fusible fibers. A method for producing a hollow cylindrical filter.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention forms a water-permeable uneven portion on one or both sides of a nonwoven fiber assembly used for a filter, and winds, laminates, or folds the nonwoven fiber assembly in a plurality of layers. Thus, the filter is characterized by the aim of improving the collection amount by increasing the filtration area and extending the life of the filtration life. That is, in the filter of the present invention, since the uneven portion is formed, the surface area of the nonwoven fiber aggregate in each layer is increased, and each layer is in contact with each other by forming a space between each layer. It has the feature of the effect of increasing the amount of particles collected from the filter. By these functions and effects, it is possible to realize an excellent long life while maintaining the same filtration accuracy by having an uneven portion, with respect to a normal filter using a nonwoven fiber aggregate that is flat on the filtration layer. .
[0015]
The nonwoven fiber aggregate in the present invention is a nonwoven fabric in which heat-fusible fibers are included and the intersections of the fibers are bonded by heat-sealing the fibers. If necessary, a binder can be added to improve the adhesive strength.
The uneven portion in the present invention means that the fibers constituting the nonwoven fiber aggregate have a concave surface, a convex surface or both on one or both surfaces of the nonwoven fiber aggregate, It has water permeability like the part. Examples of the shape of the convex portion include a hemispherical shape, a conical shape, a triangular pyramid shape, and a quadrangular pyramid shape as shown in FIGS. 1 to 4, but are not limited to these shapes. Of these, a hemispherical or conical shape is preferable, and a hemispherical shape is more preferable. The tip of the convex surface can take the shape of an acute angle, a curved surface, or a flat surface, and the inclined surface may be linear or have a convex or concave curvature.
Although the shape of the concave portion is not particularly limited, a shape in which the space portion and the nonwoven fiber aggregate portion are replaced with the above-described shape of the convex portion can be exemplified. When the uneven portion is formed on both surfaces, the shape of the uneven portion may be the same or different on both surfaces. The positions of the concave and convex portions may be the same or shifted on both surfaces. In short, any material that has filtration accuracy and contributes to an increase in trapping amount and excellent long life can be used.
[0016]
The opposite surface of the nonwoven fiber aggregate having the convex portion formed only on one side can have any of a flat surface and an uneven surface, but a concave surface is preferable. Regarding the position of the concave surface, the same position corresponding to the convex portion is preferable, especially when the thickness of the nonwoven fiber aggregate is thin, the position is the same as the position where the convex portion is formed, and the shape of the convex portion is inverted. To form a concave surface. Further, as shown in FIG. 5, the unevenness may be formed so that the cross-section of the nonwoven fiber aggregate has a wavy shape.
As shown in FIG. 6, the size of the convex portion 1 is preferably such that the convex portion height 3 is about 0.5 mm to 3 mm. It is desirable that the distance be equal to or less than の of the distance between the portion and the adjacent convex portion. Further, the thickness 5 of the flat portion without the convex portion 1 is desirably 2 mm or less. As shown in FIG. 5, the cross-section of the nonwoven fiber aggregate having a corrugated shape desirably has a distance between the convex tips on the front and back sides of about 1 mm to 5 mm. The number of the projections depends on the size of the projections, but is suitably 5 to 100 per cm 2 on one side. If the number is too small, the effect of the projections is reduced, so it is better to increase the number as much as possible.
[0017]
The thermoplastic fibers that constitute a part of the nonwoven fiber aggregate that forms the irregularities are of a parallel-core type composed of a high-melting-point component and a low-melting-point component, or a sheath-core type or an eccentric type in which a low-melting-point component is arranged outside. Composite fiber, or a fiber composed of a fiber composed of a high melting point component and a fiber composed of a low melting point fiber, which is obtained by mixing by a method such as cotton blending or fiber blending, and obtained by a normal spinning method, melt blow method, spun bond method, etc. It is obtained. In particular, when a fiber having a small fiber diameter is required, a spinning method such as a melt blow method or a spun bond method is preferable, and if a method in which a high melting point component and a low melting point component are extruded from alternate positions from a nozzle is performed, the fibers are mixed. It is excellent in productivity because it is possible to directly manufacture a web.
The reason for using the fiber consisting of the high melting point component and the low melting point component is to maintain the shape of the uneven portion by heating when forming the uneven portion, melting the low melting point side, and thermally bonding the fibers to each other. is there. Furthermore, there are advantages that the strength of the nonwoven fabric is high and that the fibers do not fall off.
[0018]
The high melting point component and the low melting point component forming the fiber are polypropylene, polyethylene, poly-4-methylpentene, a binary or terpolymer of propylene and another α-olefin, polyethylene terephthalate, polybutylene terephthalate, Thermoplastic components such as polyamide and polycarbonate are exemplified. Among these, a combination is selected as appropriate so that the high melting point component has a higher melting point than the low melting point component and the difference in melting point is 10 ° C. or more, preferably 15 ° C. or more. Among these resins, a combination of polyolefins is preferable in terms of chemical resistance.
In the case of both the composite fiber and the mixed fiber, the weight ratio of the high melting point component and the low melting point component (composite ratio, mixed fiber ratio) is from 80:20 to 20:80. When the low-melting point component is less than the lower limit, the number of heat bonding points between fibers is reduced, and the shape retention is reduced. On the other hand, if it exceeds the upper limit, the fibers are excessively melted at the time of heating, and the shape is easily broken. More preferably, the ratio is from 60:40 to 40:60.
[0019]
Examples of fibers other than the thermoplastic fibers used in the present invention include natural fibers such as cotton, silk, wool, and pulp, inorganic or metal fibers such as glass fibers, carbon fibers, and metal fibers, and recycled fibers such as rayon, and acetate. And the like. The proportion of the thermoplastic fibers contained in all the fibers is preferably at least 30% by weight, more preferably at least 50% by weight.
[0020]
The fiber diameter is selected according to the filtration accuracy, and a high-precision fiber having a diameter of 0.01 to 3 d / f manufactured by a melt blow method or a spun bond method is used. About f fibers are used. The cross section of the fiber may have a circular or irregular cross section, and the use of the irregular cross section yarn improves the filtration accuracy. Further, the fiber diameter of the low-melting component fiber and the high-melting component fiber obtained by blending or blending may be different.
The basis weight of the nonwoven fiber aggregate forming the irregularities is usually from 20 to 300 g / m 2. If the basis weight is less than this value, the thickness becomes thin. Holding power is weakened. Also, if the basis weight is large, the formation of irregularities becomes easy, but the thickness increases, so that it becomes difficult to wind up, and furthermore, the number of windings is reduced, so that the number of irregularities of the whole filter is reduced, and the filtration life is shortened.
[0021]
As an example of the method for producing the uneven portion, a nonwoven fiber aggregate manufactured by a method such as a card method, an air laid method, a needle punch method, a spun bond method, or a melt blow method is heated with a concave portion 6 as shown in FIG. At least one pair (two or more pairs) of the roll 7 and the cylinder roll 8 is provided, and a gap necessary for forming a target uneven portion is provided between the two, and the gap of the heating roll 7 is passed through the gap. The convex portion 1 is formed at the portion of the nonwoven fiber aggregate that is in contact with 6. Although it can be manufactured by pressing with a flat plate provided with a concave portion, the roll type is superior in productivity because the nonwoven fabric aggregate can be continuously flowed. By passing the nonwoven fiber aggregate with the irregularities through a far-infrared heater or air-through dryer, the fibers inside the nonwoven fiber aggregate can be sufficiently thermally bonded to each other. The strength of the body can be increased, and the shape retention of the uneven portion can be improved. As the lower roll, a flat roll, a roll having a concave portion like the upper roll, and a roll having a convex portion so as to match the upper concave portion are appropriately used. The roll is generally made of metal using iron, aluminum, copper or the like, and a roll having a mirror-finished surface or a Teflon-coated surface is used.
[0022]
The surface temperature of the roll is set to a temperature equal to or higher than the melting point of the low-melting component fiber used in the nonwoven fiber aggregate, and the consolidation state and line speed of the nonwoven fiber aggregate due to the gap length between the two rolls are appropriately adjusted. Changed and adjusted. It is particularly important to note that if the temperature of the heating roll is too high, the irregularities are melted, and the surface is turned into a film, which has no water permeability. That is, it is necessary to avoid the formation of a film-shaped uneven portion having flattened fibers and no water permeability as formed by embossing when passing through a roll. Further, it is necessary that the flat portion is not formed into a film.
What is important for the configuration of the filter of the present invention is that the convex portion 1 is formed into a porous structure that allows water to pass therethrough without being formed into a film. The projections 1 increase the filtration area, and at the same time, increase the amount of particles collected by creating a space between the layers in the projections generated in the case of the laminated nonwoven fiber aggregate. The increase in the amount of trapping also extends the life of filtration.
[0023]
The heating setting temperature of the air-through dryer is also set from a temperature higher than the melting point of the low-melting component fiber to a temperature lower than the melting point of the high-melting component fiber so that the formed uneven portion is not deformed due to excessive heating. It is necessary.
As shown in FIG. 8, in order to form irregularities in a nonwoven fiber aggregate having a small fiber diameter and high fiber density for high-precision filtration manufactured by a melt blow method or a spun bond method, as shown in FIG. By adopting a structure in which the projections 10 are provided on the surface of the suction conveyor net 9 or net-like material, the projections can be formed at the stage when the web is formed on the net 9 during spinning. In addition, even if the convex portion is not provided, a corrugated convex portion can be formed by changing the shape of the net 9 or the net into a type having large irregularities. Even when the suction portion is of a drum type, a web having a convex portion can be manufactured by making the net surface the same structure as described above. As for the web on which the convex portion is formed by the suction conveyor, the shape of the convex portion is less likely to be broken when the thermal bonding between the fibers is sufficiently performed by heating through a far infrared heater or an air-through dryer.
[0024]
Further, as a method other than the above, by passing the nonwoven fiber aggregate through an air-through type dryer using a conveyor in which a number of holes are punched, a fiber softened by hot air is suctioned from the conveyor side. There is also a method in which a convex portion is formed at a portion of the punched plate where a hole is formed.
As a method for producing a filter from the nonwoven fabric having the uneven portions formed by the above method, using a device as shown in JP-B-56-43139, the nonwoven fiber aggregate is heated with a far-infrared heater. Immediately after heating at a temperature at which the heat-adhesive component is melted, a tubular filter can be obtained by winding around a metal core. The device for melting the nonwoven fiber aggregate is not limited to the far infrared heater, and may be an air-through dryer or the like. Further, according to the method disclosed in JP-B-56-49605, a normal non-woven fiber aggregate having no irregularities or a non-woven fiber aggregate having the irregularities is wound to form a filter. There is also a method of inserting a nonwoven fiber aggregate on which uneven portions serving as a media layer are formed during the operation. In order to sufficiently extend the filtration life, it is effective to wind the projection so that the projection is directed to the direction in which the fluid flows.
[0025]
In the case of directly forming a nonwoven fiber aggregate having an uneven portion in the melt blowing method, when the web is heated and wound around the core in the same manner as described above, the hot air of the melt blowing as the filter diameter increases becomes larger. If the fiber diameter is changed sequentially or stepwise by changing the flow rate or the discharge amount, a filter having a density gradient can be manufactured.
Further, as shown in JP-A-1-297113, a filter can be manufactured by winding a nonwoven fiber aggregate having a porous core having a convex portion formed thereon. At this time, a deep filtration type filter can be manufactured by winding a nonwoven fiber aggregate having a larger pore diameter toward the outer layer.
In addition, nonwoven fiber aggregates with irregularities can be used as a filter medium even when they are laminated in a flat plate or folded. The increase in the filtration area due to the part allows the production of a filter having a longer filtration life.
[0026]
The filter of the present invention has a structure that is more excellent in filtration accuracy than a filter using a planar nonwoven fiber aggregate due to an increase in the filtration area due to the uneven portion. In addition, by forming the fiber forming component with a high shrinkage component and a low shrinkage component, the strength of the nonwoven fabric fiber aggregate including the uneven portion is improved, and the appropriate space is stably maintained without the uneven portion being crushed. The structure has a long filtration life.
[0027]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The measurement method used in each example is shown below.
Average fiber diameter Regarding the fiber obtained by melt spinning, an optical microscope image of the fiber was taken into an image processing apparatus, 50 fiber diameters were measured, and the average value was defined as the average fiber diameter.
For a fine-fiber web obtained by the melt-blowing method, an electron microscope image of the fibers constituting the web was taken into an image processing apparatus, 50 fiber diameters were measured, and the average was taken as the average fiber diameter.
[0028]
Collection efficiency (filtration accuracy)
A filter is attached to the housing of the circulating filtration tester, and while circulating water at a flow rate of 30 liters per minute, AC fine test dust (ACFTD, median diameter 6.6 to 8.6 μm) or AC cause test dust (ACCTD) , A median diameter of 27 to 31 μm) at 0.5 g / min, and sample the undiluted solution after 5 minutes and the solution after passing through the filter. The particle size distribution of each liquid was measured for filtration accuracy with a light-blocking type particle size distribution analyzer, and the collection efficiency indicating the ratio of particles collected by the filter was determined. Filtration life In the circulation type filtration accuracy tester, a filter is attached to the housing, and ACTFTD or ACCTD is added at a rate of 0.5 g / min while circulating water at a flow rate of 30 liters per minute. Measure the differential pressure between the inlet and outlet. The time until the differential pressure showed 2.0 kg / cm 2 was defined as the filtration life.
Collection amount The filter after completion of the filtration life measurement was dried in an oven, and the weight was measured. The difference from the filter weight before filtration was defined as the collection amount.
[0029]
(Example 1)
Parallel type composite fiber composed of polypropylene (MFR 20 g / 10 min (230 ° C.), mp. 162 ° C.) and high density polyethylene (MFR 16 g / 10 min (190 ° C., mp. 135 ° C.) The composite ratio was 50:50, the number of crimps was 13 peaks / 25 mm, the fiber diameter was 3 denier, the cut length was 51 mm). A web having a basis weight of 100 g / m 2 and a web having a basis weight of 70 g / m 2 were produced by a carding machine. Next, a 300 mm diameter stainless steel roll in which the upper roll had a hemispherical concave surface and the lower roll became flat was set to a surface temperature of 140 ° C. with a 0.5 mm gap between both rolls. Two kinds of nonwoven fabrics having a flat part thickness of 0.6 mm, a convex part height of 1.0 mm, and the number of convex parts of 25 / cm 2 were formed by passing through a cloth. The convex portion had a hemispherical shape as shown in FIG. 1 and had a porous structure not formed into a film. A non-woven fabric having a basis weight of 100 g / m 2 was heated with an air-through dryer using an apparatus as shown in JP-B-56-43139, and wound around a stainless steel pipe so that the convex portion was on the outside. After being about 50 mm, a non-woven fabric having a basis weight of 70 g / m 2 was similarly heated and wound on the outside thereof, and after cooling, a stainless steel pipe was pulled out and cut to obtain an inner diameter of 30 mm, an outer diameter of 70 mm, a length of 250 mm, and a porosity. An 87% cylindrical filter was produced. The measurement results are shown in Table 1.
[0030]
(Comparative Example 1)
Using the same fibers as in Example 1, basis weight 100 g / m 2 and a basis weight 70 g / after the m 2 of the web, the upper lower with gap 0.5mm flat roll of two rolls of the same diameter 300mm in carding machine, Two types of non-woven fabrics having a non-woven fabric thickness of 0.6 mm were formed by passing through a cloth set at a surface temperature of 140 ° C. A non-woven fabric having a basis weight of 100 g / m 2 was wound around a stainless steel pipe in the same manner as in Example 1. After the outside diameter became 50 mm, a non-woven fabric having a basis weight of 70 g / m 2 was similarly heated and wound around the outside. A cylindrical filter having a diameter of 30 mm, an outer diameter of 70 mm, a length of 250 mm, and a porosity of 78% was produced. The measurement results are shown in Table 1.
[0031]
(Example 2)
After producing a web having a basis weight of 100 g / m 2 and a web having a basis weight of 70 g / m 2 using a carding machine using the same parallel type composite fiber as used in Example 1, the upper roll has a hemispherical concave surface, By passing two types of stainless steel rolls having a flat side roll of 300 mm in diameter and having a gap between both rolls of 0.5 mm and a surface temperature of 140 ° C., a web having a basis weight of 100 g / m 2 and a flat portion thickness is reduced. 0.6 mm, the convex height 1 mm, and the number of 25 / cm 2 nonwoven fabric of the projections, the basis weight 70 g / m 2 of the flat portion thickness of the web is 0.6 mm, the convex height 1 mm, the number of the projections 36 Two types of nonwoven fabrics each having a number of pieces / cm 2 were formed. The convex portion had a hemispherical shape as shown in FIG. 1 and had a porous structure not formed into a film. By the same manufacturing method as in Example 1, the basis weight 100 g / m 2 non-woven fabric so that the convex portion faces the outer After outer diameter around the stainless steel pipe was approximately 50 mm, a basis weight of 70 g / m 2 nonwoven fabric on the outside By winding, a cylindrical filter having an inner diameter of 30 mm, an outer diameter of 70 mm, a length of 250 mm, and a porosity of 83% was manufactured. The measurement results are shown in Table 1.
[0032]
(Example 3)
After producing a web having a basis weight of 100 g / m 2 and a web having a basis weight of 70 g / m 2 using a card machine using the same fibers as those used in Example 1, the upper roll has a hemispherical concave surface and the lower roll has The two flat stainless steel rolls having a diameter of 300 mm are passed through a roll having a gap between both rolls of 0.5 mm and a surface temperature of 140 ° C., so that a web having a basis weight of 100 g / m 2 has a flat portion thickness of 0.6 mm. A nonwoven fabric having a projection height of 1 mm and a number of projections of 25 / cm 2 was prepared. A web having a basis weight of 70 g / m 2 was formed with a flat portion having a thickness of 0.6 mm, a projection height of 1.5 mm, and a projection number of 25 / cm 2. Two types of non-woven fabric having a size of cm 2 were formed. The convex portion had a hemispherical shape as shown in FIG. 1 and had a porous structure not formed into a film. In the same manufacturing method as in Example 1, a non-woven fabric having a basis weight of 100 g / m 2 was wound around a stainless steel pipe such that the convex portions faced outward, and after the outer diameter became about 50 mm, a non-woven fabric having a basis weight of 70 g / m 2 was formed. By winding outside, a cylindrical filter having an inner diameter of 30 mm, an outer diameter of 70 mm, a length of 250 mm and a porosity of 89% was produced. The measurement results are shown in Table 1.
[0033]
(Example 4)
Polypropylene (MFR 18 g / 10 min (230 ° C), mp. 165 ° C) with a spinning temperature of 320 ° C using a melt-blown mixed fiber spinneret in which 501 holes having a hole diameter of 0.3 mm are arranged in a row at a pitch of 1.0 mm. And a polypropylene copolymer (MFR 20 g / 10 min (230 ° C.), mp. 145 ° C.) at a mixing ratio of 50:50 (% by weight) and extruded from alternate positions of the spinning holes, and a pressure of 1.4 to 0.4 kg /. Using pressurized air at 360 ° C., which was sequentially changed to cm 2 , it was sprayed onto a nylon conveyor net equipped with a suction device to produce a web having a basis weight of 50 g / m 2 . The projection had a porous structure that was not formed into a film. On the surface of the conveyor net, nylon fibers stand in a columnar shape having a height of 1 mm and a diameter of 0.5 mm at intervals of 2 mm, and the web obtained from this conveyor net has a height of a convex portion of 1 mm and a number of convex portions of 36 / cm. 2 , a conical projection as shown in FIG. 2 was formed. The projection had a porous structure that was not formed into a film. The average fiber diameter of the web was 5 μm at the thinnest point and 12 μm at the thickest point. The web was heat-treated with an air-through drier while being transported by a net conveyor, and wound around a stainless steel pipe so that the fiber diameter became larger toward the outside. After cooling, the stainless steel pipe was pulled out and cut to obtain a cylindrical filter having an inner diameter of 30 mm, an outer diameter of 68 mm, a length of 250 mm, and a porosity of 80%. The measurement results are shown in Table 1.
[0034]
(Comparative Example 2)
Spinning was performed using the same raw materials and method as in Example 3. However, a conveyor net having no convex surface of nylon was used. The average fiber diameter of the obtained web was 5 μm at the thinnest point and 12 μm at the thickest point. The web was heat-treated with the same processing machine as in Example 1, and wound around a stainless steel pipe so that the fiber diameter became larger toward the outside. After cooling, the stainless steel pipe was pulled out and cut to obtain a cylindrical filter having an inner diameter of 30 mm, an outer diameter of 68 mm, a length of 250 mm, and a porosity of 72%. The measurement results are shown in Table 1.
From the results in Table 1, it is shown that by using a nonwoven fiber aggregate having an uneven portion on the surface as a filter, the same collection efficiency is obtained as compared with a filter using a nonwoven fiber aggregate having no uneven portion. Nevertheless, it was confirmed that the filtration life was improved and the trapping amount was significantly increased.
[0035]
[Table 1]
Figure 0003596150
[0036]
【The invention's effect】
The filter of the present invention has an uneven portion that allows water to flow on one or both surfaces of each layer of the nonwoven fiber aggregate, thereby increasing the filtration area in each layer, and forming a space between the layers by the uneven portion. The trapping amount increases. For this reason, compared with a filter having no concave and convex portions, the filter life can be increased with the same filtration accuracy.
[Brief description of the drawings]
FIG. 1 is a perspective view of a hemispherical projection.
FIG. 2 is a perspective view of a conical convex portion.
FIG. 3 is a perspective view of a triangular pyramidal projection.
FIG. 4 is a perspective view of a quadrangular pyramidal projection.
FIG. 5 is a perspective view of a corrugated projection.
FIG. 6 is a cross-sectional view of a hemispherical projection.
FIG. 7 is a cross-sectional view of a roll for forming convex portions.
FIG. 8 is a perspective view of a convex portion forming conveyor net.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Convex part 2 Nonwoven fiber assembly flat part 3 Convex part height 4 Convex part maximum width 5 Flat part thickness 6 Concave part 7 Heating roll 8 Cylinder roll 9 Net 10 Convex part

Claims (9)

熱可塑性繊維を含む不織繊維集合体が積層された濾過層からなるフィルターにおいて、該不織繊維集合体の繊維接合点が融着接合され、かつ各層片面または両面が通水可能な凹凸部を有することを特徴とするフィルター。In a filter comprising a filtration layer in which a non-woven fiber assembly containing thermoplastic fibers is laminated, fiber joints of the non-woven fiber assembly are fusion-bonded, and one or both surfaces of each layer has an uneven portion through which water can pass. A filter comprising: 濾過層の密度が、内層よりも外層が粗構造である請求項1に記載のフィルター。The filter according to claim 1, wherein the density of the filtration layer is such that the outer layer has a coarser structure than the inner layer. 凹凸部の数が、濾過体層の内層から外層につれて多くなる請求項1に記載のフィルター。The filter according to claim 1, wherein the number of the uneven portions increases from the inner layer to the outer layer of the filter layer. 凹凸部の大きさが、濾過体層の内層より外層の方が大きい請求項1に記載のフィルター。The filter according to claim 1, wherein the size of the uneven portion is larger in the outer layer than in the inner layer of the filter layer. 熱可塑性繊維が、ポリオレフィン系繊維、ポリエステル系繊維、ポリアミド系繊維の群から選ばれた少なくとも1種である請求項1に記載のフィルター。The filter according to claim 1, wherein the thermoplastic fiber is at least one selected from the group consisting of a polyolefin fiber, a polyester fiber, and a polyamide fiber. 熱可塑性繊維が、融点差10℃以上の高融点成分と低融点成分で形成される熱可塑性複合繊維である請求項1に記載のフィルター。The filter according to claim 1, wherein the thermoplastic fiber is a thermoplastic conjugate fiber formed of a high melting point component and a low melting point component having a melting point difference of 10 ° C or more. 熱可塑性繊維が、メルトブロー法で得られた繊維である請求項1に記載のフィルター。The filter according to claim 1, wherein the thermoplastic fiber is a fiber obtained by a melt blow method. 不織繊維集合体が、熱可塑性繊維と他の繊維の混繊および/または混綿である請求項1に記載のフィルター。The filter according to claim 1, wherein the non-woven fiber aggregate is a blend and / or a blend of thermoplastic fibers and other fibers. 熱融着性繊維を含有する表面が凹凸のある不織繊維集合体を円筒状の物体に捲回させた後、それを加熱し、熱融着性繊維を融着させることを特徴とする中空で円筒状のフィルターの製造方法。After winding a nonwoven fiber aggregate having a surface having irregularities containing heat-fusible fibers around a cylindrical object, heating it, and fusing the heat-fusible fibers. And manufacturing method of cylindrical filter.
JP7123896A 1996-03-01 1996-03-01 Filter and manufacturing method thereof Expired - Lifetime JP3596150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7123896A JP3596150B2 (en) 1996-03-01 1996-03-01 Filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7123896A JP3596150B2 (en) 1996-03-01 1996-03-01 Filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09234318A JPH09234318A (en) 1997-09-09
JP3596150B2 true JP3596150B2 (en) 2004-12-02

Family

ID=13454928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7123896A Expired - Lifetime JP3596150B2 (en) 1996-03-01 1996-03-01 Filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3596150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033725A (en) * 2001-07-24 2003-02-04 Nagasawa Wire Cloth Co Wire net, wire net filter and vibration screening machine
JP6220242B2 (en) * 2013-11-18 2017-10-25 Jnc株式会社 filter
WO2016088487A1 (en) * 2014-12-01 2016-06-09 愛三工業株式会社 Fuel filter

Also Published As

Publication number Publication date
JPH09234318A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
KR101864057B1 (en) Nonwoven fabric, manufacturing method thereof and filters formed by it
JP6638722B2 (en) Spunbonded nonwoven fabric for filter and method for producing the same
JP2581994B2 (en) High precision cartridge filter and method of manufacturing the same
JP4236284B2 (en) Cylindrical filter
KR20160050059A (en) Melt-spinning process, melt-spun nonwoven fibrous webs and related filtration media
JPH1190135A (en) Pleated filter
JPH0929021A (en) Filter
JP2001149720A (en) Filter
CA3102518A1 (en) Spunbond nonwoven fabric for use in filters, and manufacturing method thereof
JP6278792B2 (en) Filter material for automobile engine and manufacturing method thereof
JP3326808B2 (en) filter
JP3702922B2 (en) Heat resistant filter
JP3596150B2 (en) Filter and manufacturing method thereof
CA2489263A1 (en) Self-supporting pleated electret filter media
JP2001252510A (en) Cylindrical filter
JP3233988B2 (en) Filter cloth and method for producing the same
JP2014184360A (en) Filter medium for pleat type air filter and pleat type air filter unit
JP3677385B2 (en) Filter material and filter using the same
JPH11293555A (en) Highly air-permeable nonwoven fabric and its production, and filter material made thereof
JP2001321620A (en) Cylindrical filter
JP4139141B2 (en) Cylindrical filter and manufacturing method thereof
JP4689185B2 (en) filter
JP2000271417A (en) Filter medium sheet and pleat filter using the same
JP3131217B2 (en) Cylindrical filter for microfiltration
JPH03249250A (en) Heat-resistant nonwoven fabric

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term