JP3404796B2 - Filter media - Google Patents

Filter media

Info

Publication number
JP3404796B2
JP3404796B2 JP07755293A JP7755293A JP3404796B2 JP 3404796 B2 JP3404796 B2 JP 3404796B2 JP 07755293 A JP07755293 A JP 07755293A JP 7755293 A JP7755293 A JP 7755293A JP 3404796 B2 JP3404796 B2 JP 3404796B2
Authority
JP
Japan
Prior art keywords
filter medium
heat
net
composite
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07755293A
Other languages
Japanese (ja)
Other versions
JPH06262013A (en
Inventor
智 緒方
和幸 永柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP07755293A priority Critical patent/JP3404796B2/en
Publication of JPH06262013A publication Critical patent/JPH06262013A/en
Application granted granted Critical
Publication of JP3404796B2 publication Critical patent/JP3404796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クリ−ンル−ム用エア
フイルタ−、電子機器の洗浄に用いられる液体のプレフ
イルタ−、あるいは医薬の製造に用いられる液体や気体
のプレフイルタ−等として使用される精密濾過用の濾材
に関する。更に詳しくは、極細複合繊維の交点が熱融着
した不織布と、複合モノフイラメントネツトが熱融着
し、加熱による孔径変化がなく、ひだ折り等のぶ形性の
良い精密濾過用濾材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as an air filter for clean rooms, a liquid prefilter used for cleaning electronic equipment, a liquid or gas prefilter used for the manufacture of pharmaceuticals, and the like. The present invention relates to a filter material for microfiltration. More specifically, the present invention relates to a non-woven fabric in which the intersections of ultrafine composite fibers are heat-sealed, and a composite monofilament net is heat-sealed so that the pore diameter does not change due to heating, and the filter material for microfiltration has good fold shape such as folds.

【0002】[0002]

【従来の技術】近年、エレクトロニクスやバイオケミカ
ル等に関連する産業が発展し、気体や液体を清浄化して
用いられる機会が多くなつている。従来このような精密
濾過用の濾材として、極細のガラス繊維不織布や合成繊
維不織布等が使用されていた。しかし前記ガラス繊維不
織布は、耐アルカリに弱いとか、濾過時の濾過表面積を
多く取る目的で加工されるひだ折りや、種々な立体形状
等へ加工する際、いわゆるぶ形性が悪い等の課題があ
る。一方前記合成繊維不織布は、ガラス繊維不織布に較
べ比重が小さいので軽量である、ぶ形性がガラス繊維不
織布に較べて良い、安価である、ガラスの微粉が飛散せ
ず取り扱い易い等の利点があり、該合成繊維不織布濾材
が急速に利用されるようになつてきた。該合成繊維不織
布濾材は、ポリエステルスパンボンド不織布やポリプロ
ピレンメルトブロ−不織布等が使用されているが、加熱
や摩擦、振動等により目開し細孔径が大きくなる現象、
即ち孔径安定性が劣るという課題がある。
2. Description of the Related Art In recent years, industries related to electronics, biochemicals, etc. have been developed, and there are many opportunities to use gas and liquid after cleaning them. Conventionally, ultrafine glass fiber nonwoven fabrics, synthetic fiber nonwoven fabrics, etc. have been used as filter media for such microfiltration. However, the glass fiber non-woven fabric is weak in alkali resistance, folds that are processed for the purpose of taking a large filtering surface area during filtration, and when processed into various three-dimensional shapes, there are problems such as so-called poor shapeability. is there. On the other hand, the synthetic fiber non-woven fabric has the advantages that it is lighter in weight because it has a smaller specific gravity than the glass fiber non-woven fabric, has a good shape compared to the glass fiber non-woven fabric, is inexpensive, and is easy to handle without scattering fine glass powder. The synthetic fiber non-woven fabric filter material has been rapidly used. As the synthetic fiber nonwoven fabric filter material, polyester spunbonded nonwoven fabric, polypropylene meltblown nonwoven fabric or the like is used, but the phenomenon that the pore size increases due to opening due to heating, friction, vibration, etc.,
That is, there is a problem that the pore size stability is poor.

【0003】不織布濾材のぶ形性を改良した物として、
不織布とネツト状シ−トを融着した濾材が知られてい
る。特開平1−194912号公報にはエレクトレツト
化された極細繊維不織布と網状物が熱融着したフイルタ
−が、特開平4−346805号公報には極細繊維不織
布に熱融着性モノフイラメントと金属細線を併用したネ
ツトを融着した濾材が開示されている。前記不織布にネ
ツト状シ−トを融着した物は、何れも不織布を構成する
極細繊維として、メルトブロ−法ポリプロピレンやメル
トブロ−法ポリエステル等のレギュラ−繊維が使用され
ている。該極細繊維ウェブをその繊維の交点が熱融着の
無い状態で、又は該ウェブをエンボスロ−ルやカレンダ
−ロ−ル等を使用し、繊維の交点を部分的に熱融着させ
たもの、あるいはネツトを該ウェブ又は熱圧着不織布に
積層し、カレンダ−ロ−ルやドライヤ−等の加熱手段を
用い、前記不織布とネツトを融着させたものである。
As an improved non-woven fabric filter material,
A filter medium is known in which a non-woven fabric and a net-like sheet are fused together. Japanese Unexamined Patent Publication (Kokai) No. 1-194912 discloses a filter in which an electretized ultrafine fiber nonwoven fabric and a net-like material are heat-sealed, and Japanese Unexamined Patent Publication No. 4-346805 discloses a heat-fusible monofilament and metal. A filter medium is disclosed in which a net is fused with a thin wire. In each of the above-mentioned non-woven fabrics fused with a net-like sheet, regular fibers such as melt-blown polypropylene and melt-blown polyester are used as ultrafine fibers constituting the non-woven fabrics. The ultrafine fiber web in which the intersections of the fibers are not heat-sealed, or the web is partially heat-sealed at the intersections of the fibers by using an embossing roll or a calendar roll. Alternatively, the net is laminated on the web or the thermocompression bonded non-woven fabric, and the non-woven fabric and the net are fused by using a heating means such as a calendar roll or a drier.

【0004】ところで、不織布の熱融着状態をミクロ的
に観た場合、このような不織布濾材は、濾材の通気抵抗
を損なわない状態で、加熱による繊維の交点を十分に熱
融着させる事が困難である。例えばエンボスロ−ル法に
よる物は熱圧着部以外の部分は融着していず、カレンダ
−ロ−ル法による物は不織布の表面及び裏面側は多く融
着しているがその中央部分が融着部分が少ないか、多く
あつても融着状態が不均一な物となつている。このよう
な繊維の融着状態が不均一な状態の物は、不織布をひだ
折り加工しさらに筒状にし、その両側の端面を合成樹脂
製端面部材でヒ−トシ−ルしたり、該端面部材をバイン
ダ−等で接着したりする際の加熱や、濾材を加熱滅菌す
る際の熱、高温濾過時の熱や、濾過時におけるハウジン
グの振動、等で不織布に目開きが起き、最大孔径が著し
く大きくなるという欠点、いわゆる孔径安定性が劣ると
いう欠点がある。特に目付けが約25g/m2 以上の高
目付けの物は、繊維の交差点部での熱融着が不十分とな
り易く、孔径安定性が劣り、時には加熱による最大孔径
の変化率が25%以上もある物であつた。また、カレン
ダ−ロ−ル法等で高温かつ高圧で熱圧着した濾材は、孔
径安定性が幾分改良されるが、繊維全体が溶融し膜状に
変化するので通気抵抗が著しく高くなるという欠点があ
る。
By the way, when microscopically observing the heat fusion state of the non-woven fabric, such a non-woven fabric filter medium may sufficiently heat-bond the intersections of the fibers by heating without impairing the ventilation resistance of the filter medium. Have difficulty. For example, in the case of the embossing roll method, the parts other than the thermocompression bonding portion are not fused, and in the case of the calendar roll method, a large amount of the non-woven fabric is fused on the front and back sides, but the central part is fused. Even if there are few or many parts, the fusion state is not uniform. In the case where the fusion state of the fibers is not uniform, the non-woven fabric is pleated and further tubular, and the end faces on both sides thereof are heat-sealed with synthetic resin end face members, or the end face members. When bonding with a binder, heat when sterilizing the filter medium with heat, heat during high-temperature filtration, vibration of the housing during filtration, etc. There is a drawback that it becomes large, that is, the so-called pore size stability is poor. In particular, those with a high basis weight of about 25 g / m 2 or more are likely to have insufficient heat fusion at the intersections of the fibers, resulting in poor pore size stability, and sometimes the maximum pore size change rate of 25% or more due to heating. It was a certain thing. In addition, the filter medium thermocompression-bonded at a high temperature and a high pressure by a calendar roll method or the like has some improvement in the pore size stability, but the whole fiber is melted and changed into a film shape, so that the ventilation resistance becomes extremely high. There is.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題である加熱や振動等により最大孔径が変化せ
ず、しかも高強力でかつ山谷状に、或は他の複雑な形状
等に容易に加工出来る精密濾過用の濾材を提供すること
を目的としたものである。
DISCLOSURE OF THE INVENTION The present invention has a problem that the maximum hole diameter does not change due to heating, vibration, etc., which is a problem of the above-mentioned prior art, and yet it has high strength and is in the shape of valleys or other complicated shapes. The object is to provide a filter material for microfiltration that can be easily processed.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、以下の構成を
とることにより所期の目的が達成される事を知り、本発
明を完成するに至った。即ち本発明の構成は以下の通り
である。 (1) 繊維径10μm以下の熱融着性極細複合繊維不
織布と、熱融着性複合モノフィラメント製ネットとを熱
融着して得られる最大孔径が120μm以下の濾材であ
って該極細複合繊維と該複合モノフィラメントの低融
点成分の融点差が15℃以下であり、且つ繊維の交点部
でお互いの低融点樹脂が相互侵入構造をとっている
材。 (2) 極細複合繊維の融点差が15℃以上であり、複
合モノフィラメントの融点差が15℃以上である上記の
濾材。 (3) メルトブロー法熱融着性極細複合繊維を熱融着
した不織布と、繊維径が約30〜4000d/f、織り
密度約0.5〜25本/25mmの熱融着性複合モノフ
イラメントを用いたネツトとを積層し、次いで熱融着し
た上記の濾材。 (4) 加熱後の最大孔径変化率が20%以下である上
記の濾材。 (5) 通気度が0.1〜100cc/cm2.se
c、引張強力が2〜100kg/5cmである上記の濾
材をひだ折り加工した濾材。 (6) 不織布がエレクトレツト化されたものである上
記何れかに記載の濾材。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the intended purpose can be achieved by the following constitution, Has been completed. That is, the structure of the present invention is as follows. (1) A filter medium having a maximum pore diameter of 120 μm or less obtained by heat-sealing a heat-fusible ultrafine composite fiber nonwoven fabric having a fiber diameter of 10 μm or less and a heat-fusible composite monofilament net.
I, low-melting of the ultrafine composite fiber and the composite monofilament
The melting point difference of the point components is 15 ° C or less, and the intersection point of the fibers
The filter material in which the low melting point resins of each other have an interpenetrating structure . (2) The melting point difference of the ultrafine composite fiber is 15 ° C or more,
The melting point difference of the composite monofilament is 15 ° C. or more.
Filter media. (3) A melt-blown non-woven fabric obtained by heat-sealing heat-fusible ultrafine composite fibers and a heat-fusible composite monofilament having a fiber diameter of about 30 to 4000 d / f and a weaving density of about 0.5 to 25 fibers / 25 mm. The above-mentioned filter medium obtained by laminating the used net and then heat-sealing. (4) The filter medium as described above, wherein the maximum pore diameter change rate after heating is 20% or less. (5) Air permeability of 0.1 to 100 cc / cm 2 . se
c, a filter medium obtained by pleating the above filter medium having a tensile strength of 2 to 100 kg / 5 cm. (6) The filter medium according to any one of the above, wherein the nonwoven fabric is electretized.

【0007】本発明において、繊維径10μm以下の熱
融着性極細複合繊維不織布とは、融点差が15℃以上あ
る少なくとも2種以上の熱可塑性樹脂を複合紡糸法によ
り紡糸し、得られた平均繊維径10μm以下のウェブを
熱融着温度以上で加熱し、繊維の交点を融着した物をい
う。複合紡糸法に使用できる熱可塑性樹脂には、ポリプ
ロピレン、ポリエチレン、ポリ−4−メチルペンテン、
プロピレンと他のαオレフインとの2元又は3元共重合
体、ポリエチレンテレフタレ−ト、ポリアミド、ポリカ
−ボネ−ト等の樹脂がある。該複合紡糸法には、並列
型、鞘芯型、多分割型、海島型、等の複合紡糸用の口金
を用いた、複合メルトブロ−法、複合スパンボンド法、
通常の複合紡糸法等がある。とりわけ複合メルトブロ−
法は極細繊維が得られるので好ましい。本発明では、そ
の用途が精密用濾過の濾材であるので繊維径が10μm
以下の繊維を使用する。繊維径は好ましくは、0.1〜
10μm、更に好ましくは0.2〜7μmである。該樹
脂を融点差が15℃以上あるような種々の組合せで複合
紡糸する。この組合せとしては、ポリプロピレン/ポリ
エチレン、ポリプロピレン/プロピレン−エチレン−ブ
テン−1共重合体、ポレエチレンテレフテレ−ト/低融
点ポリエステル、ポリエチレンテレフタレ−ト/ポリア
ミド等が例示できる。
In the present invention, the heat fusible ultrafine composite fiber nonwoven fabric having a fiber diameter of 10 μm or less is obtained by spinning at least two kinds of thermoplastic resins having a melting point difference of 15 ° C. or more by a composite spinning method. It refers to a product obtained by heating a web having an average fiber diameter of 10 μm or less at a heat fusion temperature or higher to fuse the intersections of the fibers. Thermoplastic resins that can be used in the composite spinning method include polypropylene, polyethylene, poly-4-methylpentene,
There are resins such as binary or ternary copolymers of propylene and other α-olefins, polyethylene terephthalate, polyamides and polycarbonates. In the composite spinning method, a composite melt blow method, a composite spun bond method, which uses a spinneret for composite spinning such as a parallel type, a sheath core type, a multi-divided type, and a sea-island type,
There are usual composite spinning methods and the like. Especially composite melt blow
The method is preferable because it gives ultrafine fibers. In the present invention, the fiber diameter is 10 μm because its use is a filter material for precision filtration.
The following fibers are used. The fiber diameter is preferably 0.1 to
The thickness is 10 μm, more preferably 0.2 to 7 μm. The resin is subjected to composite spinning in various combinations having a melting point difference of 15 ° C. or more. Examples of this combination include polypropylene / polyethylene, polypropylene / propylene-ethylene-butene-1 copolymer, polyethylene terephthalate / low melting point polyester, polyethylene terephthalate / polyamide and the like.

【0008】複合メルトブロ−法等で熱融着性極細複合
繊維を紡糸し、得られたウェブを複合繊維の低融点樹脂
が融着するような温度以上で加熱し、繊維の交点が熱融
着した不織布とする。加熱は低融点樹脂の軟化点以上、
高融点樹脂の融点以下の温度で行う。加熱は、乾熱循環
型ドライヤ−、スル−エア−型ドライヤ−、カレンダ−
ロ−ル、エンボスロ−ル等の加熱装置を用いて行う。前
記加熱装置のうち、スル−エア−型ドライヤ−等のよう
な、不織布にほとんど圧力が掛からない状態で熱融着出
来る装置を用いて熱融着処理した物は通気度が大きい不
織布が得られる。又、カレンダ−ロ−ル等のような、熱
圧着型の加熱装置を用いて熱圧着した物は最大孔径の小
さい不織布が得られる。本発明の濾材に使用する不織布
は、極細で且つ熱融着性の複合繊維が使用され、しかも
繊維の交点が熱融着された物である。従って、加熱温度
を複合繊維の低融点樹脂の軟化点以上、高融点樹脂の融
点以下の温度で行う事により、該高融点樹脂が溶融せず
に繊維の形状を保持し、繊維の交点が該低融点樹脂の融
着により不織布化されている。従って後工程での滅菌加
熱や濾過時の高温濾過、或は振動等で目開せず、孔径が
安定したものとなる。又、繊維の完全溶融による一種の
膜状化が起きていず、起きていたとしてもきわめて少な
い。従って通気度が大でしかも孔径も小さいものが得ら
れる。一方、従来のメルトブロ−法等により得られたレ
ギュラ−極細繊維を使用した熱融着不織布は、未融着繊
維が多量に発生していたり、融着部の結合がきわめて弱
い不織布であるため、後記のネツトを不織布に融着後の
物を、加熱滅菌処理、高温濾過等の加熱、端面シ−ル時
の加熱、あるいはハウジングの振動等により目開きす
る。又、カレンダ−ロ−ル等で高温加熱した物は、繊維
が完全溶融し、繊維の形状が消失し膜状化が起きていた
り、スル−エア−型加熱機で高温で加熱した物は、繊維
が溶融し玉状に凝集したりする。従って通気度が小でし
かも孔径も大きいものとなる。特にこの傾向は繊維径が
細いもの程大である。
The heat-fusible ultrafine composite fibers are spun by a composite melt-blowing method or the like, and the obtained web is heated at a temperature higher than the temperature at which the low melting point resin of the composite fibers is melted, and the intersection of the fibers is heat-bonded. It is a non-woven fabric. Heating is above the softening point of the low melting point resin,
The temperature is lower than the melting point of the high melting point resin. For heating, dry heat circulation type dryer, through-air type dryer, calendar
It is performed by using a heating device such as a roll or an embossing roll. Among the above heating devices, a non-woven fabric having a high air permeability can be obtained by heat-sealing using a device such as a through-air type dryer which can heat-bond the non-woven fabric with almost no pressure. . Moreover, a non-woven fabric having a maximum maximum pore size can be obtained by thermo-compression bonding using a thermo-compression-type heating device such as a calendar roll. The non-woven fabric used in the filter medium of the present invention is a product in which ultrafine and heat-fusible composite fibers are used and the intersections of the fibers are heat-bonded. Therefore, by performing the heating temperature at a temperature not lower than the softening point of the low melting point resin of the composite fiber and not higher than the melting point of the high melting point resin, the high melting point resin retains the shape of the fiber without melting and the intersection point of the fibers is It is made into a non-woven fabric by fusing low melting point resin. Therefore, the pore size becomes stable without being opened by sterilization heating in a later step, high temperature filtration at the time of filtration, or vibration. Moreover, a kind of film formation due to complete melting of the fibers does not occur, and even if it occurs, it is extremely small. Therefore, it is possible to obtain a material having a high air permeability and a small pore size. On the other hand, a heat-bonded nonwoven fabric using regular ultrafine fibers obtained by a conventional melt blow method or the like has a large amount of unfused fibers, or because the bonding of the fused parts is extremely weak, The material after fusion of the nets described below to the non-woven fabric is opened by heat sterilization, heating such as high temperature filtration, heating during end face sealing, or vibration of the housing. Further, in the product heated at a high temperature with a calendar roll or the like, the fiber is completely melted, the shape of the fiber disappears and film formation occurs, or the product heated at a high temperature by a through air type heater is The fibers melt and aggregate into beads. Therefore, the air permeability is small and the hole diameter is large. In particular, this tendency is greater as the fiber diameter is smaller.

【0009】本発明の濾材に使用される不織布は、目付
け約3〜1000g/m2 、さらに好ましくは4〜70
0g/m2 の物が使用できる。又、該不織布は、不織布
目付け、加熱温度、カレンダ−ロ−ルの線圧、処理時
間、等の加工条件等を変えることにより、不織布の孔径
を変化させることができる。不織布の繊度が小、目付け
が大、カレンダ−ロ−ルの線圧が大の条件で製造された
もの程、孔径が小の不織布が得られる。又本発明の濾材
に使用する不織布は、80℃で20分間加熱前後の最大
孔径の変化率が20%以下のもを使用すると、精密濾過
用の濾材として、目開きせず、長期安定な濾材として好
ましい。
The nonwoven fabric used in the filter medium of the present invention has a basis weight of about 3 to 1000 g / m 2 , more preferably 4 to 70.
0 g / m 2 can be used. Further, the pore size of the non-woven fabric can be changed by changing the processing conditions such as the unit weight of the non-woven fabric, the heating temperature, the linear pressure of the calendar roll, the processing time and the like. The smaller the fineness of the nonwoven fabric, the larger the basis weight, and the larger the linear pressure of the calendar roll, the smaller the pore size of the nonwoven fabric obtained. When the nonwoven fabric used in the filter medium of the present invention has a rate of change in maximum pore size of 20% or less before and after heating at 80 ° C. for 20 minutes, it is a filter medium for microfiltration, which does not open and is stable for a long period of time. Is preferred as

【0010】本発明において、濾材は上記不織布に熱融
着性複合モノフイラメント製ネツトが熱融着された物で
ある。該ネツトは、融点差が15℃以上ある少なくとも
2種以上の熱可塑性樹脂を複合紡糸法により紡糸し、得
られた熱融着性複合モノフイラメントを織編等をしネツ
ト状のシ−トとしたもの、あるいはこのネツトを熱融着
温度以上で加熱し、繊維の交点を融着したシ−ト状の物
を使用する。該モノフイラメントの複合形態や、該フイ
ラメントに使用できる樹脂や、樹脂の組合せ等は前記不
織布に使用された物と同じような複合形態、樹脂の組合
せ等であればよい。とりわけ極細繊維の低融点樹脂とモ
ノフイラメントの低融点樹脂の融点の差が15℃以下の
場合、後記の加熱処理により、繊維の交点部でお互いの
低融点樹脂が相互侵入構造をとるので、不織布とネツト
が強く熱融着し、その境界面で剥離しにくいので好まし
い。とりわけ、極細繊維の低融点樹脂とモノフイラメン
トの低融点樹脂が、同種系の物、例えばポリオレフイン
/ポレオレフイン、ポリエステル/ポリエステル等の物
が好ましい。又該ネツトは繊度が約30〜4000d/
fの物を、織り密度約0.5〜25本/25mmで織製
した物が好ましい。上記不織布とネツトを、不織布/ネ
ツト、ネツト/不織布/ネツト等のように積層し、或は
前記積層物を更に2段に積層した物等を前記のような公
知の加熱方法で加熱し、不織布とネツトが熱融着した濾
材とする。もちろん、該積層物に比較的太い繊度のスパ
ンボンド不織布やステ−プルの熱融着不織布等を積層し
てもよい。
In the present invention, the filter medium is the above-mentioned non-woven fabric to which the heat-fusible composite monofilament net is heat-sealed. The net is obtained by spinning at least two kinds of thermoplastic resins having a melting point difference of 15 ° C. or more by a composite spinning method, and woven or knitting the obtained heat-fusible composite monofilament to obtain a net-like sheet. Or a sheet-like material obtained by heating the net at a temperature higher than the heat fusion temperature and fusing the intersections of the fibers. The composite form of the monofilament, the resin that can be used in the filament, the combination of resins, and the like may be the same composite form and the combination of resins as those used for the nonwoven fabric. In particular, when the difference in melting point between the ultra-fine fiber low-melting point resin and the monofilament low-melting point resin is 15 ° C. or less, the low-melting point resin has an interpenetrating structure at the crossing points of the fibers due to the heat treatment described later. The net is strongly heat-sealed and is not easily peeled off at the interface, which is preferable. In particular, the low melting point resin of ultrafine fibers and the low melting point resin of monofilament are preferably the same type, for example, polyolefin / polyolein, polyester / polyester and the like. The net has a fineness of about 30 to 4000 d /
It is preferable that the product of f is woven with a weaving density of about 0.5 to 25 yarns / 25 mm. The above-mentioned non-woven fabric and net are laminated as non-woven fabric / net, net / non-woven fabric / net, etc., or the above-mentioned laminate is further laminated in two stages and heated by the above-mentioned known heating method to obtain non-woven fabric. And the net is a heat-sealed filter medium. Of course, a spunbonded non-woven fabric having a relatively large fineness, a heat-bonded non-woven fabric of staple, or the like may be laminated on the laminate.

【0011】本発明の濾材は、下記の条件のものが通気
抵抗性、精密濾過の点で好ましい。不織布の最大孔径が
約0.1〜120μmの物、好ましくは約0.2〜10
0μm、更に好ましくは約0.3〜90μmである。最
大孔径が0.1μm以下の場合、濾過時の通気抵抗が大
となり、最大孔径が120μm以上の物は精密濾過用に
は適さない。又、通気度は約0.1〜200cc/cm
2.sec、 好ましくは0.2〜150cc/cm2
sec、更に好ましくは0.2〜100cc/cm2
sec の物である。なお上記不織布の、最大孔径、通
気度等の物性は後記で説明する、不織布とネツトが熱融
着された濾材についての物性であることは言うまでもな
い。
The filter medium of the present invention preferably has the following conditions in terms of ventilation resistance and microfiltration. Nonwoven fabric having a maximum pore size of about 0.1 to 120 μm, preferably about 0.2 to 10
It is 0 μm, more preferably about 0.3 to 90 μm. When the maximum pore size is 0.1 μm or less, the ventilation resistance at the time of filtration becomes large, and a product having a maximum pore size of 120 μm or more is not suitable for microfiltration. Moreover, the air permeability is about 0.1 to 200 cc / cm.
2 . sec, preferably 0.2 to 150 cc / cm 2 .
sec, more preferably 0.2 to 100 cc / cm 2 .
It is a sec thing. Needless to say, the physical properties of the nonwoven fabric, such as the maximum pore size and the air permeability, are those of the filter material in which the nonwoven fabric and the net are heat-sealed, which will be described later.

【0012】本発明の濾材はひだ折り等をせずにハウジ
ング等に取り付けて使用できる。又、該濾材をひだ折機
や成型機等を使用し、鋭角な山谷状に、U状に、凹凸状
等、任意の形状にぶ形し、ハウジングに取付て使用でき
る。又、前記種々の形状にぶ形後の濾材を、更に円筒状
にしたり、渦巻状等にすることもできる。円筒状にした
場合、左右の端部は融着あるいはバインダ−等で接着す
る。該ハウジングは濾過すべき用途に応じ、種々の形状
の物が使用できる。例えば、その側面に多数の開孔を有
する円筒状の芯材、多孔性円筒状の外枠材、及び両端面
シ−ル部材を主構成部材とする円筒状のハウジング、四
角形の枠状のハウジング、及び金属ネツト等を主構成部
材とする四角形のハウジング、或は、箱型で濾材を多層
状に装着する、箱型多層状のハウジング、その他濾過す
べき場所に装着できる任意の形状のハウジングが使用で
きる。
The filter material of the present invention can be used by being attached to a housing or the like without folds or the like. Further, the filter medium can be used by attaching it to a housing by using a pleat folding machine, a molding machine or the like to form an arbitrary shape such as a sharp angled valley shape, a U shape, an uneven shape. Further, the filter medium after being shaped into the above various shapes can be further made into a cylindrical shape or a spiral shape. In the case of a cylindrical shape, the left and right ends are fused or bonded with a binder or the like. The housing may be of various shapes depending on the application to be filtered. For example, a cylindrical core member having a large number of openings on its side surface, a porous cylindrical outer frame member, and a cylindrical housing whose main constituent members are seal members at both end surfaces, and a rectangular frame-shaped housing. , And a rectangular housing mainly composed of a metal net or the like, or a box-shaped multi-layered housing in which a filter medium is mounted in multiple layers in a box shape, or any other shaped housing that can be mounted in a place to be filtered. Can be used.

【0013】又、本発明の濾材は、エレクトレツト化し
た物であつてもよい。エレクトレツト化の方法として
は、紡糸時、繊維を捕集しながら、口金と捕集面間でエ
レクトレツト化する方法、紡糸した後ウェブ等を巻取る
までの間にエレクトレツト化する方法等がある。又、不
織布、不織布とネツトが熱融着された不織布、ひだ折り
された濾材、ハウジングに装着された濾材等をエレクト
レツト化する方法等がある。該エレクトレツト化は、電
圧約1〜30キロボルトの直流コロナ放電等で処理す
る。又、該不織布は約10〜45ク−ロン/cm2 の表
面電化密度であるものが好ましい。又、本発明の濾材
は、不織布の熱融着性極細複合繊維が密度勾配になって
もよい。また本発明の濾材は、繊維の素材、繊維径等の
違う他の不織布やシート等が積層されたものであっても
よい。他の不織布などが積層されたものである場合、他
の不織布として繊維径0.1〜20μmのレギュラー繊
維メルトブロー法不織布、繊維径11〜100μmのレ
ギュラー繊維または熱融着性極細複合繊維不織布あるい
は該不織布と、複合モノフイラメントとの積層シート等
が例示できる。
The filter medium of the present invention may be an electretized one. Examples of the method of electretization include a method of electretizing between a spinneret and a collecting surface while collecting fibers at the time of spinning, a method of electretizing before spinning the web or the like after spinning. is there. Further, there is a method of making a non-woven fabric, a non-woven fabric in which a non-woven fabric and a net are heat-sealed, a pleated filter medium, a filter medium attached to a housing, etc. into an electret. The electretization is performed by direct current corona discharge having a voltage of about 1 to 30 kilovolts. Further, it is preferable that the non-woven fabric has a surface electrification density of about 10 to 45 cron / cm 2 . In the filter material of the present invention, the heat-fusible ultrafine composite fibers of the non-woven fabric may have a density gradient. Further, the filter medium of the present invention may be a laminate of other non-woven fabrics or sheets having different fiber materials, fiber diameters and the like. When the other nonwoven fabric is laminated, the other nonwoven fabric is a regular fiber melt blown nonwoven fabric having a fiber diameter of 0.1 to 20 μm, a regular fiber having a fiber diameter of 11 to 100 μm, or a heat-fusible ultrafine composite fiber nonwoven fabric, or the like. A laminated sheet of a non-woven fabric and a composite monofilament can be exemplified.

【0014】[0014]

【実施例】以下実施例、比較例により本発明を更に詳細
に説明する。なを、各例において、濾材の物性や濾過性
能等の評価は、以下に記載する方法で行った。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. In each example, the physical properties of the filter medium, the filtration performance, and the like were evaluated by the methods described below.

【0015】不織布の繊維径:ウェブ、不織布、或は濾
材から小片を10個切取り、その走査型電子顕微鏡によ
る倍率100〜5000倍の写真を用い、計100本の
繊維径の直径を測定しその平均値(μm)を示す。
Fiber diameter of non-woven fabric: 10 small pieces were cut from a web, a non-woven fabric or a filter material, and a photograph of the scanning electron microscope at a magnification of 100 to 5000 times was used to measure the diameter of a total of 100 fiber diameters. The average value (μm) is shown.

【0016】引張強力:引張強度試験機を用い、5cm
幅の破断強力(kg/5cm)を示す。
Tensile strength: 5 cm using a tensile strength tester
The breaking strength (kg / 5 cm) of the width is shown.

【0017】通気度:フラジ−ル型通気度試験機を用
い、JIS−L1006Aに定める方法で通気度を求め
た。単位cc/cm2 .sec。
Air permeability: Using a Frazier type air permeability tester, air permeability was determined by the method specified in JIS-L1006A. Unit cc / cm 2 . sec.

【0018】最大孔径:バブルポイントテスタ−を使用
し、ASTM−F−316−86に定める方法で最大孔
径(μm)を求めた。
Maximum pore size: The maximum pore size (μm) was determined by a method specified in ASTM-F-316-86 using a bubble point tester.

【0019】加熱後の最大孔径変化率:前記バブルポイ
ントテスタ−を用い、前記同様の方法で、80℃、10
分加熱処理後の最大孔径の変化率(%)を求めた。
Maximum pore diameter change rate after heating: Using the above bubble point tester and in the same manner as above, at 80 ° C., 10
The change rate (%) of the maximum pore size after the partial heat treatment was determined.

【0020】濾過精度:50リツトルの水を入れた水
槽、ポンプ、及び濾過器(ハウジング)からなる循環式
濾過試験機を用いた。該濾過機のハウジングに濾材1本
を取付、水を毎分30リツトルの流量で循環させなが
ら、水槽にケ−キ(カ−ボランダム#4000)を5g
添加する。ケ−キ添加より1分後に採取した濾過水10
0ccをメンブレンフイルタ−で濾過する。メンブレン
フイルタ−上に捕集された粒子のサイズを粒度分布測定
機で測定し、最も大きな粒子のサイズ(最大流出径、単
位μm)を濾材の濾過精度とした。
Filtration accuracy: A circulating filtration tester comprising a water tank containing 50 liters of water, a pump, and a filter (housing) was used. One filter material was attached to the housing of the filter, and 5 g of cake (Carborundum # 4000) was placed in the water tank while circulating water at a flow rate of 30 liters per minute.
Added. Filtered water collected 1 minute after addition of cake
0 cc is filtered with a membrane filter. The size of the particles collected on the membrane filter was measured by a particle size distribution analyzer, and the size of the largest particle (maximum outflow diameter, unit: μm) was taken as the filtration accuracy of the filter medium.

【0021】圧力損失:前記、循環式濾過精度試験にお
いて、ケ−キを添加せず、水のみ毎分30リツトルの流
量で循環させる。循環開始1分後、圧力損失(kg/c
2)を測定する。
Pressure loss: In the above circulation type filtration accuracy test, only the water was circulated at a flow rate of 30 liters per minute without adding a cake. 1 minute after the start of circulation, pressure loss (kg / c
m 2 ) is measured.

【0022】実施例1 第1成分としてメルトフロレ−ト120(MFR、g/
10分、230℃)、融点164℃のポリプロピレン
を、第2成分としてメルトフロレ−ト120(MFR、
g/10分、190℃)、融点121℃の線状低密度ポ
リエチレンとを用い、孔径0.3mm、孔数501の並
列型複合メルトブロ−口金から複合メルトブロ−紡糸を
した。紡糸条件は、複合比が50重量%対50重量%、
紡糸温度がポリプロピレンが280℃で、線状低密度ポ
リエチレンが260℃で、総吐出量120g/分の条件
で押出し、紡糸孔から吐出された繊維を、温度365℃
の空気を圧力1.2kg/cm2 Gで導入し、噴出気体
吸引装置付きのコンベア−ネツト上に吹き付けた。該熱
融着性極細複合繊維ウェブは、繊維径が2.7μmであ
つた。このウェブをスル−エア−型加熱機を用い、温度
140℃で10秒間加熱し、繊維の交点が熱融着した目
付け99g/m2 の不織布を得た。
Example 1 As the first component, melt flow rate 120 (MFR, g / g)
Polypropylene having a melting point of 164 ° C for 10 minutes at 230 ° C) was used as a second component, and a melt flow rate of 120 (MFR,
g / 10 minutes, 190 ° C.), and a linear low-density polyethylene having a melting point of 121 ° C. were used to perform composite melt-blow spinning from a parallel type composite melt-blow spinneret having a hole diameter of 0.3 mm and a number of holes of 501. The spinning conditions are such that the composite ratio is 50% by weight to 50% by weight,
The spinning temperature was 280 ° C. for polypropylene and 260 ° C. for linear low-density polyethylene, and the fiber discharged from the spinning hole was extruded at a total discharge rate of 120 g / min.
Was introduced at a pressure of 1.2 kg / cm 2 G and was blown onto a conveyor net equipped with a jet gas suction device. The heat-fusible ultrafine composite fiber web had a fiber diameter of 2.7 μm. This web was heated at a temperature of 140 ° C. for 10 seconds using a through-air type heater to obtain a nonwoven fabric having a basis weight of 99 g / m 2 in which the intersections of the fibers were heat-sealed.

【0023】MFR18(g/10分、190℃)、融
点124℃の線状低密度ポリエチレンが鞘成分で、MF
R8(g/10分、230℃)、融点164℃のポリプ
ロピレンが芯成分で、複合比50/50(重量比)、繊
度250d/fの熱融着性複合モノフイラメントを使用
し、経緯共17×17本/25mmの織り密度で平織布
を織製し、その後該ネツトをテンタ−型加熱機を用い温
度135℃で加熱し、繊維の交点が熱融着したネツトを
得た。
MFR18 (g / 10 minutes, 190 ° C), linear low density polyethylene having a melting point of 124 ° C is a sheath component, and MF
R8 (g / 10 minutes, 230 ° C), polypropylene having a melting point of 164 ° C is the core component, and a heat-meltable composite monofilament with a composite ratio of 50/50 (weight ratio) and a fineness of 250 d / f is used. A plain woven fabric was woven at a weave density of × 17/25 mm, and then the net was heated at a temperature of 135 ° C. using a tenter-type heater to obtain a net in which the intersections of the fibers were heat-sealed.

【0024】前記の物を、ネツト/不織布/ネツトの三
層に積層し、スル−エア−型加熱機を用い、温度140
℃で10秒間加熱後、直ちに温度30℃のカレンダ−ロ
−ルで処理し、不織布とネツトが熱融着した濾材を得
た。この濾材を80℃20分間加熱放置しその前後の最
大孔径の変化率を求めた。
The above materials were laminated in three layers of net / nonwoven fabric / net, and a temperature of 140 was applied using a through air type heater.
After heating at 10 ° C for 10 seconds, it was immediately treated with a calendar roll at a temperature of 30 ° C to obtain a filter medium in which the non-woven fabric and the net were heat-sealed. This filter medium was heated and left at 80 ° C. for 20 minutes, and the change rate of the maximum pore size before and after the heating was determined.

【0025】前記濾材をひだ折り加工機を用い、ひだの
高さ20mm、ひだの形状がW状の濾材を得た。該ひだ
折りされた濾材を、その側面に多数の孔がある外径30
mm、高さ250mmの中空状金属中芯に巻き付け、内
径約30mm、外形70mmの濾材を得た。なお該濾材
の左右の端部は熱融着した。更に、上下両端部を、直径
30mmの開口部がある金属製端面シ−ル部材を、バイ
ンダ−で接着し円筒状の濾材を得た。この濾材は外形7
0mmのひだ折りなしの物に較べ、表面積が約9.1倍
増加した。表1に、加熱前の濾材の最大孔径や、加熱後
の濾材の最大孔径変化率や、通気度、引張強力等を、及
びひだ折りされ且つ中空円筒状に加工された濾材の濾過
性能等の試験結果を示した。表1より、本発明の濾材
は、加熱後の最大孔径変化率が4%であり加熱に対する
孔径安定性が良く、しかもひだ折り加工後の物は濾過精
度が4μmとよい事が判る。
A fold-folding machine was used to obtain a filter medium having a pleat height of 20 mm and a pleat shape of W. The pleated filter medium has an outer diameter 30 having a large number of holes on its side surface.
It was wound around a hollow metal core having a height of 250 mm and a height of 250 mm to obtain a filter medium having an inner diameter of about 30 mm and an outer diameter of 70 mm. The left and right ends of the filter medium were heat-sealed. Furthermore, metal end face seal members having openings with a diameter of 30 mm were adhered to the upper and lower ends with a binder to obtain a cylindrical filter medium. This filter material has an outer shape 7
The surface area was increased by about 9.1 times as compared with the 0 mm unfolded product. Table 1 shows the maximum pore size of the filter medium before heating, the maximum pore size change rate of the filter medium after heating, the air permeability, the tensile strength, etc., and the filtration performance of the filter medium folded and processed into a hollow cylindrical shape. The test results are shown. It can be seen from Table 1 that the filter medium of the present invention has a maximum rate of change in pore size after heating of 4% and is excellent in stability of pore size upon heating, and that the product after pleating has a filtration accuracy of 4 μm.

【0026】実施例2 前記実施例(1)記載の方法と同じ方法で、複合メルト
ブロ−紡糸をし熱融着性極細繊維が熱融着された不織布
を得た。但し実施例(1)において、複合成分の組合せ
を、実施例(1)に同じポリプロピレン(第1成分)/
融点137℃、MFR40(g/10分、230℃)
の、プロピレン.エチレン.ブテン−1ランダムコポリ
マ−(第2成分)とし、紡糸条件を、ポリプロピレンが
290℃で、コポリマ−が300℃とし、紡糸孔から吐
出された繊維を、温度390℃の加熱空気を圧力1.4
kg/cm2 の条件で吹き付けた。又、スル−エア−型
加熱機による加熱条件温度145℃とした。該熱融着性
極細複合繊維ウェブは、繊維径が1.3μmであつた。
熱融着処理後の不織布は目付けが102g/m2であつ
た。
Example 2 By the same method as described in Example (1) above, a composite melt-blow spinning process was performed to obtain a non-woven fabric having heat-fusible ultrafine fibers heat-fused. However, in Example (1), the combination of the composite components is the same as in Example (1) polypropylene (first component) /
Melting point 137 ° C, MFR40 (g / 10 minutes, 230 ° C)
Of propylene. ethylene. Butene-1 random copolymer (second component), the spinning conditions were polypropylene at 290 ° C. and copolymer at 300 ° C., and the fibers discharged from the spinning holes were heated to a temperature of 390 ° C. with a pressure of 1.4.
It was sprayed under the condition of kg / cm 2 . Further, the heating condition temperature by the through air type heater was 145 ° C. The heat-fusible ultrafine composite fiber web had a fiber diameter of 1.3 μm.
The non-woven fabric after the heat fusion treatment had a basis weight of 102 g / m 2 .

【0027】前記実施例(1)記載のネツトに替え、複
合成分が、該実施例(2)の極細繊維不織布に使用した
物に同じランダムコポリマ−(鞘)/前記実施例(1)
のネツトの芯成分に使用した物に同じポリプロピレン
(芯)で、複合比が鞘40/芯60(重量比)で、繊度
や経緯の繊維密度が前記実施例(1)に同じである物を
使用した。但しテンタ−型加熱機による加熱温度を14
5℃とした。
Instead of the net described in the above Example (1), the composite component is the same as that used in the ultrafine fiber nonwoven fabric of the above Example (2): random copolymer (sheath) / the above Example (1).
The same polypropylene (core) as the one used as the core component of the net, the composite ratio of the sheath 40 / core 60 (weight ratio), and the fiber density of the fineness and the weft are the same as those in the above Example (1). used. However, the heating temperature by the tenter type heater is 14
The temperature was 5 ° C.

【0028】ネツト/不織布/ネツトの三層に積層し、
前記実施例(1)同様に、スル−エア−型加熱機を用い
温度145℃で10秒間加熱後、直ちに温度30℃のカ
レンダ−ロ−ルで処理し、不織布とネツトが熱融着した
濾材を得た。
Laminated in three layers of net / nonwoven / net,
As in the above Example (1), a filter material in which a nonwoven fabric and a net were heat-sealed by heating with a through-air type heater at a temperature of 145 ° C. for 10 seconds and then immediately treated with a calendar roll at a temperature of 30 ° C. Got

【0029】この濾材を、前記実施例(1)同様に、ひ
だ折り加工し、更に円筒状の濾材に加工した。ひだ折り
加工前の濾材、及び円筒状濾材の物性、濾過性能等を表
1に示す。この濾材は外形70mmのひだ折りなしの物
に較べ、表面積が約9.1倍増加した。表1より、本発
明の濾材は、加熱後の最大孔径変化率が0%であり加熱
に対する孔径安定性がよく、しかもひだ折り加工後の物
は濾過精度が1.0μmとよい事が判る。
This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). Table 1 shows the physical properties, filtration performance and the like of the filter medium before the pleating process and the cylindrical filter medium. The surface area of this filter medium was increased by about 9.1 times as compared with the filter material having an outer diameter of 70 mm and not having a fold. From Table 1, it can be seen that the filter medium of the present invention has a maximum pore size change rate after heating of 0% and has good pore size stability against heating, and the filter material after pleating has a filtration accuracy of 1.0 μm.

【0030】実施例3 MFR43(g/10分、190℃)の高密度ポリエチ
レンを鞘成分とし、固有粘度0.60、融点253℃の
ポリエチレンテレフタレ−トを芯成分とし、孔径0.3
mm、孔数501の鞘芯型メルトブロ−口金より複合メ
ルトブロ−紡糸した。紡糸条件は、複合比が40(鞘)
/60(芯)(重量比)、紡糸温度が高密度ポリエチレ
ンを260℃、ポリエチレンテレフタレ−トを280℃
とし、総吐出量120g/分の条件で押出し、紡糸孔か
ら吐出された繊維を、温度385℃の空気を圧力1.6
kg/cm2 Gで導入し、噴出気体吸引装置付きのコン
ベア−ネツト上に吹き付けた。該熱融着性極細複合繊維
ウェブは、繊維径が3.8μmであつた。このウェブを
スル−エア−型加熱機を用い、温度145℃で10秒間
加熱し、繊維の交点が熱融着した目付け100g/m2
の不織布を得た。
Example 3 MFR43 (g / 10 minutes, 190 ° C.) high density polyethylene as a sheath component, polyethylene terephthalate having an intrinsic viscosity of 0.60 and a melting point of 253 ° C. as a core component, and a pore size of 0.3.
mm and the number of holes was 501, and the composite melt-blow was spun from a sheath-core type melt-blow spinneret. The spinning condition is a composite ratio of 40 (sheath).
/ 60 (core) (weight ratio), spinning temperature is 260 ° C for high density polyethylene, 280 ° C for polyethylene terephthalate
The fiber discharged from the spinning hole was extruded under the condition that the total discharge amount was 120 g / min.
It was introduced at a rate of kg / cm 2 G and sprayed onto a conveyor net equipped with a jet gas suction device. The heat-fusible ultrafine composite fiber web had a fiber diameter of 3.8 μm. This web was heated for 10 seconds at a temperature of 145 ° C. using a through-air type heater, and a fiber basis weight 100 g / m 2 where the intersections of the fibers were heat-sealed
A non-woven fabric was obtained.

【0031】前記実施例(1)記載のネツトに替え、複
合成分が、該実施例(3)の極細繊維不織布に使用した
物に同じ高密度ポリエチレン(鞘)/前記実施例(1)
のネツトの芯成分に使用した物に同じポリプロピレン
(芯)で、複合比が60(鞘)/40(芯)(重量比)
で、繊度500d/fの熱融着性複合モノフイラメント
を、経緯共11×11本/25mmの織り密度で平織布
を織製し、テンタ−型加熱機を用い温度145℃で加熱
し、繊維の交点が熱融着したネツトを用いた。
In place of the net described in Example (1) above, the composite component is the same high density polyethylene (sheath) as that used in the microfiber nonwoven fabric of Example (3) / Example (1) above.
The same polypropylene (core) as the one used as the core component of the net, the composite ratio is 60 (sheath) / 40 (core) (weight ratio)
Then, a heat-fusible composite monofilament having a fineness of 500 d / f was woven into a plain woven cloth with a weaving density of 11 × 11 pieces / 25 mm in both directions, and heated at a temperature of 145 ° C. using a tenter-type heater. A net was used in which the intersections of the fibers were heat-sealed.

【0032】ネツト/不織布/ネツトの三層の物を、前
記実施例(1)同様に、スル−エア−型加熱機を用い温
度145℃で10秒間加熱後、直ちに温度30℃のカレ
ンダ−ロ−ルで処理し処理し、不織布とネツトが熱融着
した濾材を得た。
The net / nonwoven fabric / net three-layered product was heated at a temperature of 145 ° C. for 10 seconds using a through-air type heater in the same manner as in Example (1), and immediately thereafter, a calender roll at a temperature of 30 ° C. was used. To obtain a filter material in which the non-woven fabric and the net are heat-sealed.

【0033】この濾材を、前記実施例(1)同様に、ひ
だ折り加工し、更に円筒状の濾材に加工した。この濾材
の物性、濾過性能等を表1に示す。この濾材は外形70
mmのひだ折りなしの物に較べ、表面積が約9.1倍増
加した。表1より、本発明の濾材は、加熱後の最大孔径
変化率が1.8%であり加熱に対する孔径安定性が良
く、しかもひだ折り加工後の物は濾過精度が8.3μm
とよい物である事が判る。
This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). Table 1 shows the physical properties and filtration performance of this filter medium. This filter medium is 70
The surface area was increased by about 9.1 times as compared with the non-folded product of mm. From Table 1, the filter medium of the present invention has a maximum rate of change in pore size after heating of 1.8% and has good pore size stability against heating, and the filter material after pleating has a filtration accuracy of 8.3 μm.
It turns out that it is a good one.

【0034】比較例1 MFR120(g/10分、230℃)、融点163℃
のポリプロピレンを、孔径0.3mm、孔数501のレ
ギュラ−繊維用メルトブロ−用紡糸口金より、メルトブ
ロ−紡糸した。紡糸条件は、紡糸温度が280℃で、吐
出量が120g/分の条件で押出し、紡糸孔から吐出さ
れた繊維を、温度360℃の空気を圧力1.3kg/c
2 Gで導入し、実施例(1)に同じ噴出気体吸引装置
付きのコンベア−ネツト上に吹き付けた。該極細レギュ
ラ−繊維ウェブは、繊維径が2.6μmであつた。この
ウェブを実施例(1)に同じスル−エア−型加熱機を用
い、温度145℃で10秒間加熱し、目付け101g/
2 の不織布を得た。
Comparative Example 1 MFR120 (g / 10 minutes, 230 ° C.), melting point 163 ° C.
The polypropylene of (1) was melt-blown from a spinneret for a regular fiber meltblown having a pore size of 0.3 mm and a number of pores of 501. The spinning conditions are as follows: the spinning temperature is 280 ° C., the discharge rate is 120 g / min, the fibers discharged from the spinning holes are air at a temperature of 360 ° C., and the pressure is 1.3 kg / c.
It was introduced at m 2 G and sprayed onto a conveyor-net equipped with the same jet gas suction device as in Example (1). The ultrafine regular fiber web had a fiber diameter of 2.6 μm. This web was heated for 10 seconds at a temperature of 145 ° C. using the same through-air type heater as in Example (1) to give a basis weight of 101 g /
A m 2 non-woven fabric was obtained.

【0035】前記実施例(1)で使用したネツトと上記
不織布とを、ネツト/不織布/ネツトの三層状に積層
し、スル−エア−型加熱機を用い、温度145℃で10
秒間処理し、不織布とネツトが熱融着した濾材を得た。
この濾材を、前記実施例(1)同様に、ひだ折り加工
後、更に円筒状の濾材に加工した。この濾材の物性、濾
過性能等を表1に示す。この濾材は外形70mmのひだ
折りなしの物に較べ、表面積が約9.1倍増加した。表
1より、比較例(1)の濾材は、極細繊維の径が実施例
(1)の物より細いが、加熱後の最大孔径変化率が20
%以上であり加熱により目開きし孔径安定性が劣る事が
判る。しかもひだ折り加工後の物は濾過精度が13.5
μmであり、実施例(1)の物より、加熱に対する孔径
安定性及び濾過精度の何れも悪い濾材である事が判る。
The net used in Example (1) and the above non-woven fabric were laminated in three layers of net / non-woven fabric / net, and the mixture was heated at a temperature of 145 ° C. for 10 hours using a through air type heater.
It was treated for 2 seconds to obtain a filter medium in which the nonwoven fabric and the net were heat-sealed.
This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). Table 1 shows the physical properties and filtration performance of this filter medium. The surface area of this filter medium was increased by about 9.1 times as compared with the filter material having an outer diameter of 70 mm and not having a fold. From Table 1, the filter medium of Comparative Example (1) has a finer fiber diameter smaller than that of Example (1), but the maximum pore diameter change rate after heating is 20.
% Or more, and it can be seen that the pore size stability deteriorates due to the opening due to heating. Moreover, the filtration accuracy of the fold-folded product is 13.5.
Since it is μm, it can be seen from the product of Example (1) that the pore size stability against heating and the filtration accuracy are both poor.

【0036】比較例2 前記比較例(1)と同じ不織布及び前記実施例(1)と
同じネツトを用い、ネツト/不織布/ネツトの三層状に
積層した。該積層物を、スル−エア−型加熱機を用い、
温度145℃で10秒間処理し、その後直ちに温度30
℃のカレンダ−ロ−ルで処理し、不織布とネツトが熱融
着した濾材を得た。この濾材を、前記実施例(1)同様
に、ひだ折り加工後、更に円筒状の濾材に加工した。こ
の濾材は外形70mmのひだ折りなしの物に較べ、表面
積が約9.1倍増加した。表1より、比較例(2)の濾
材は、極細繊維の径が実施例(1)の物より細いが、加
熱後の最大孔径変化率が20%以上であり加熱により目
開きし孔径安定性が悪く、しかもひだ折り加工後の物は
濾過精度が11.6μmであり、実施例(1)の物より
悪い濾材である事が判る。
Comparative Example 2 Using the same non-woven fabric as in Comparative Example (1) and the same net as in Example (1), three layers of net / nonwoven fabric / net were laminated. Using a sul-air-type heater,
Treat at a temperature of 145 ° C for 10 seconds and immediately
It was treated with a calender roll at .degree. C. to obtain a filter material in which the non-woven fabric and the net were heat-sealed. This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). The surface area of this filter medium was increased by about 9.1 times as compared with the filter material having an outer diameter of 70 mm and not having a fold. From Table 1, the filter medium of Comparative Example (2) has finer fiber diameters smaller than that of Example (1), but the maximum rate of change in pore size after heating is 20% or more, and the pore size is stable by heating. In addition, the product after the pleating process has a filtration accuracy of 11.6 μm, which means that the product is worse than the product of Example (1).

【0037】比較例3 前記比較例(1)において、極細繊維ウェブを、スル−
エア型加熱機で、温度145℃で10秒間加熱後直ちに
温度140℃のカレンダ−ロ−ルで処理して得た、目付
け103g/m2 の不織布と、前記実施例(1)と同じ
ネツトを用い、ネツト/不織布/ネツトの三層状に積層
した。該積層物を、スル−エア−型加熱機を用い、温度
145℃で10秒間処理し、その後直ちに温度140℃
のカレンダ−ロ−ルで処理し、不織布とネツトが熱融着
した濾材を得た。この濾材を、前記実施例(1)同様
に、ひだ折り加工後、更に円筒状の濾材に加工した。こ
の濾材は外形70mmのひだ折りなしの物に較べ、表面
積が約9.1倍増加した。表1より、比較例(3)の濾
材は、極細繊維の径が実施例(1)の物より細いが、加
熱後の最大孔径変化率が20%以上であり加熱により目
開きし孔径安定性が悪く、しかもひだ折り加工後の物は
濾過精度が8.3μmであり、実施例(1)の物より悪
い濾材である事が判る。
Comparative Example 3 In Comparative Example (1), the ultrafine fiber web was
A non-woven fabric having a basis weight of 103 g / m 2 obtained by heating with an air-type heater for 10 seconds at a temperature of 145 ° C. and immediately after being treated with a calendar roll at a temperature of 140 ° C. and the same net as in Example (1) above. It was used and laminated in three layers of net / nonwoven fabric / net. The laminate was treated with a through-air type heater at a temperature of 145 ° C. for 10 seconds and immediately thereafter at a temperature of 140 ° C.
Was treated with a calendar roll to obtain a filter material in which the non-woven fabric and the net were heat-sealed. This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). The surface area of this filter medium was increased by about 9.1 times as compared with the filter material having an outer diameter of 70 mm and not having a fold. From Table 1, the filter medium of Comparative Example (3) has finer fiber diameters smaller than those of Example (1), but the maximum rate of change in pore size after heating is 20% or more, and the pore size is stable by heating. In addition, the product after the pleating process had a filtration accuracy of 8.3 μm, which indicates that the product was worse than the product of Example (1).

【0038】比較例4 前記比較例(1)において、極細繊維ウェブを、凸部面
積12%のエンボスロ−ルとフラツトロ−ルとを用い温
度145℃で処理して得た、目付け101g/m2 の不
織布と、前記実施例(1)と同じネツトを用い、ネツト
/不織布/ネツトの三層状に積層した。該積層物を、カ
レンダ−ロ−ルを用い温度145℃で処理し、不織布と
ネツトが熱融着した濾材を得た。この濾材を、前記実施
例(1)同様に、ひだ折り加工後、更に円筒状の濾材に
加工した。この濾材は外形70mmのひだ折りなしの物
に較べ、表面積が約9.1倍増加した。表1より、比較
例(3)の濾材は、極細繊維の径が実施例(1)の物よ
り細いが、加熱後の最大孔径変化率が20%以上であり
加熱により目開きし孔径安定性が悪く、しかもひだ折り
加工後の物は濾過精度が10.1μmであり、実施例
(1)の物より悪い濾材である事が判る。
COMPARATIVE EXAMPLE 4 In Comparative Example (1), the ultrafine fiber web was treated at a temperature of 145 ° C. with an embossing roll having a convex area of 12% and a flat roll to obtain a basis weight of 101 g / m 2. Using the non-woven fabric of Example 1 and the same net as in Example (1), three layers of net / non-woven fabric / net were laminated. The laminate was treated with a calender roll at a temperature of 145 ° C. to obtain a filter medium in which the nonwoven fabric and the net were heat-sealed. This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). The surface area of this filter medium was increased by about 9.1 times as compared with the filter material having an outer diameter of 70 mm and not having a fold. From Table 1, the filter medium of Comparative Example (3) has finer fiber diameters smaller than those of Example (1), but the maximum rate of change in pore size after heating is 20% or more, and the pore size is stable by heating. In addition, the product after the pleating process has a filtration accuracy of 10.1 μm, which means that the product is worse than the product of Example (1).

【0039】実施例4 前記実施例(2)で得た複合メルトブロ−法極細繊維ウ
ェブを、スル−エア−型加熱機を用い、温度145℃で
10秒間処理し、その後直ちに温度140℃のカレンダ
−ロ−ルで処理し繊維の交点が熱融着した目付け104
g/m2 の不織布と、前記実施例(2)のネツトとを用
い、ネツト/不織布/ネツトの三層状に積層した。該積
層物を、カレンダ−ロ−ルを用い温度138℃で処理
し、不織布とネツトが熱融着した濾材を得た。この濾材
を、前記実施例(1)同様に、ひだ折り加工後、更に円
筒状の濾材に加工した。この濾材は外形70mmのひだ
折りなしの物に較べ、表面積が約9.1倍増加した。表
1より、実施例(4)の濾材は、加熱後の最大孔径変化
率が0%であり孔径安定性が良く、ひだ折り加工後の物
は濾過精度が0.8μmとよい物である事が判る。
Example 4 The composite melt-blow ultrafine fiber web obtained in the above Example (2) was treated for 10 seconds at a temperature of 145 ° C. using a through air type heater, and immediately thereafter, a calender at a temperature of 140 ° C. -Fabrication 104 in which the intersection points of the fibers are heat-bonded by the roll treatment.
Using a non-woven fabric of g / m 2 and the net of Example (2) above, they were laminated in three layers of net / non-woven fabric / net. The laminate was treated with a calender roll at a temperature of 138 ° C. to obtain a filter medium in which the nonwoven fabric and the net were heat-sealed. This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). The surface area of this filter medium was increased by about 9.1 times as compared with the filter material having an outer diameter of 70 mm and not having a fold. From Table 1, it is found that the filter medium of Example (4) has a maximum pore size change rate after heating of 0% and good pore size stability, and the pleat-folded product has good filtration accuracy of 0.8 μm. I understand.

【0040】実施例5 前記実施例(1)で得た目付け99g/m2 の熱融着し
た不織布と、前記実施例(3)で得たネツトとを用い、
ネツト/不織布/ネツトの三層状に積層した。該積層物
を、スル−エア−型加熱機を用い、温度140℃で10
秒間処理し、ネツトと不織布が熱融着した濾材を得た。
この濾材を、前記実施例(1)同様に、ひだ折り加工
後、更に円筒状の濾材に加工した。この濾材は外形70
mmのひだ折りなしの物に較べ、表面積が約9.1倍増
加した。表1より、実施例(5)の濾材は、加熱後の最
大孔径変化率が0%であり良く、しかもひだ折り加工後
の物は濾過精度が5.6μmとよい物である事が判る。
Example 5 Using the heat-bonded nonwoven fabric having a basis weight of 99 g / m 2 obtained in Example (1) and the net obtained in Example (3),
It was laminated in three layers of net / nonwoven fabric / net. The laminate is heated at 140 ° C. for 10 hours using a through air type heater.
It was treated for 2 seconds to obtain a filter medium in which the net and the non-woven fabric were heat-sealed.
This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). This filter medium is 70
The surface area was increased by about 9.1 times as compared with the non-folded product of mm. From Table 1, it can be seen that the filter medium of Example (5) has a maximum rate of change in pore diameter of 0% after heating, and the filter material after pleating has a good filtration accuracy of 5.6 μm.

【0041】実施例6 前記実施例(1)で得た複合メルトブロ−法極細繊維ウ
ェブを、温度130℃のカレンダ−ロ−ルで処理し、目
付け103g/m2の熱融着不織布を得た。該不織布と
前記実施例(1)で得たネツトとを用い、ネツト/不織
布/ネツトの三層状に積層した。該積層物を、カレンダ
−ロ−ルを用い、温度120℃で処理し、ネツトと不織
布が熱融着した濾材を得た。この濾材を、前記実施例
(1)同様に、ひだ折り加工後、更に円筒状の濾材に加
工した。この濾材は外形70mmのひだ折りなしの物に
較べ、表面積が約9.1倍増加した。表1より、実施例
(6)の濾材は、加熱後の最大孔径変化率が20%以下
であり孔径安定性が良く、しかもひだ折り加工後の物は
濾過精度が6.8μmと良い物である事が判る。
Example 6 The composite melt-blown ultrafine fiber web obtained in the above Example (1) was treated with a calendar roll at a temperature of 130 ° C. to obtain a heat-bonded nonwoven fabric having a basis weight of 103 g / m 2 . . The non-woven fabric and the net obtained in Example (1) were laminated in three layers of net / non-woven fabric / net. The laminate was treated with a calender roll at a temperature of 120 ° C. to obtain a filter medium in which the net and the non-woven fabric were heat-sealed. This filter medium was pleated and then processed into a cylindrical filter medium in the same manner as in Example (1). The surface area of this filter medium was increased by about 9.1 times as compared with the filter material having an outer diameter of 70 mm and not having a fold. From Table 1, it can be seen that the filter medium of Example (6) has a maximum pore size change rate after heating of 20% or less and has a good pore size stability, and the product after pleating has a good filtration accuracy of 6.8 μm. I know there is something.

【0042】実施例7 前記実施例(1)で得た、不織布とネツトが熱融着した
濾材を、ア−ス電極上に直接載せ、その上部の放電電極
から14kv/cmの直流電圧を印加した高電界中で2
0秒間処理し、エレクトレツト化した濾材を得た。該濾
材を30cm×30cmの大きさに切取り、人の出入の
多い事務所のテ−ブル上に置き浮遊塵を該濾材に自然吸
着させた、2箇月後、濾材表面の汚れ具合いを、JIS
−L0805規定の汚染用グレ−スケ−ル(1級:汚染
が大、5級:汚染が小)で判定したところ2.5級であ
つた。一方エレクトレツト化しない前記実施例(1)で
得た濾材も同時に汚れ具合いを観察したところ、4.5
級であつた。
Example 7 The filter medium obtained by the above Example (1), in which the nonwoven fabric and the net were heat-sealed, was placed directly on the ground electrode, and a DC voltage of 14 kv / cm was applied from the discharge electrode on the ground electrode. In a high electric field
It was treated for 0 seconds to obtain an electretized filter medium. The filter medium was cut into a size of 30 cm × 30 cm, placed on a table in an office where many people come and go, and floating dust was naturally adsorbed to the filter medium. Two months later, the condition of dirt on the filter medium was measured according to JIS.
The grade was 2.5 when judged by the gray scale for contamination specified by -L0805 (1st grade: large contamination, 5th grade: small contamination). On the other hand, when the filter material obtained in the above-mentioned Example (1) which was not electretized was observed at the same time for the stain condition, it was found to be 4.5.
It was in class.

【0043】[0043]

【発明の効果】本発明の濾材は、極細繊維不織布と、モ
ノフイラメント製ネツトのそれぞれの複合繊維を熱融着
しているので、加熱しても孔径変化率が小さい。このた
め加熱滅菌や、高温濾過、モーター振動近接部で使用し
ても、高精度の濾過を安定して行うことができ、長時間
安定して使用することができた。又、この濾材は、ひだ
折りや凹凸状等の加工ができた。又、該ひだ折り加工さ
れた濾材は、前記効果に加え、更に表面積が多いので濾
過ライフが長いという効果があった。又、不織布のウェ
ブとして、複合メルトブロ−法ウェブを用いた物は繊維
に帯電防止剤等の仕上げ剤が付着していないので、食品
分野の精密濾過用の濾材等としても使用出来た。
Since the filter medium of the present invention heat-bonds the ultrafine fiber nonwoven fabric and the respective composite fibers of the monofilament net, the rate of change in pore diameter is small even when heated. Therefore, even when used for heat sterilization, high-temperature filtration, or a portion vibrating near a motor, high-precision filtration can be stably performed, and stable use can be achieved for a long time. Further, this filter material was able to be processed into pleats, unevenness and the like. In addition to the above-mentioned effect, the pleated filter medium has the effect of having a long filtration life because it has a larger surface area. Further, as the non-woven fabric web, the one using the composite melt-blowing web does not have a finishing agent such as an antistatic agent attached to the fibers, so that it can be used as a filter material for microfiltration in the food field.

【0044】[0044]

【表1】 [Table 1]

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維径10μm以下の熱融着性極細複合
繊維不織布と、熱融着性複合モノフィラメント製ネット
とを熱融着して得られる最大孔径が120μm以下の濾
材であって該極細複合繊維と該複合モノフィラメント
の低融点成分の融点差が15℃以下であり、且つ繊維の
交点部でお互いの低融点樹脂が相互侵入構造をとってい
濾材。
1. A filter having a maximum pore size of 120 μm or less obtained by heat-sealing a heat-fusible ultrafine composite fiber nonwoven fabric having a fiber diameter of 10 μm or less and a heat-fusible composite monofilament net.
Material, said ultrafine composite fiber and said composite monofilament
The melting point difference of the low melting point component of 15 ° C or less, and
The low melting point resins of each other have an interpenetrating structure at the intersection.
Filter material.
【請求項2】 極細複合繊維の融点差が15℃以上であ
り、複合モノフィラメントの融点差が15℃以上である
請求項1に記載の濾材。
2. The melting point difference of the ultrafine composite fibers is 15 ° C. or more.
And the melting point difference of the composite monofilament is 15 ° C or more.
The filter medium according to claim 1.
【請求項3】 メルトブロー法熱融着性極細複合繊維を
熱融着した不織布と、繊維径が約30〜4000d/
f、織り密度約0.5〜25本/25mmの熱融着性複
合モノフイラメントを用いたネツトとを積層し、次いで
熱融着した請求項1の濾材。
3. A non-woven fabric obtained by heat-melting a melt-blown heat-fusible ultrafine composite fiber, and having a fiber diameter of about 30 to 4000 d /
The filter medium according to claim 1, wherein f, a net using a heat-fusible composite monofilament having a weaving density of about 0.5 to 25 fibers / 25 mm are laminated and then heat-sealed.
【請求項4】 加熱後の最大孔径変化率が20%以下で
ある請求項1〜3の濾材。
4. The filter medium according to claim 1, wherein the maximum pore diameter change rate after heating is 20% or less.
【請求項5】 通気度が0.1〜100cc/cm2
sec、引張強力が2〜100kg/5cmである請求
項1〜4の濾材をひだ折り加工した濾材。
5. An air permeability of 0.1 to 100 cc / cm 2 .
The filter medium obtained by pleating the filter medium according to claims 1 to 4 having a sec and a tensile strength of 2 to 100 kg / 5 cm.
【請求項6】 不織布がエレクトレツト化されたもので
ある請求項1〜5何れかに記載の濾材。
6. The filter medium according to claim 1, wherein the non-woven fabric is electretized.
JP07755293A 1993-03-10 1993-03-10 Filter media Expired - Lifetime JP3404796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07755293A JP3404796B2 (en) 1993-03-10 1993-03-10 Filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07755293A JP3404796B2 (en) 1993-03-10 1993-03-10 Filter media

Publications (2)

Publication Number Publication Date
JPH06262013A JPH06262013A (en) 1994-09-20
JP3404796B2 true JP3404796B2 (en) 2003-05-12

Family

ID=13637187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07755293A Expired - Lifetime JP3404796B2 (en) 1993-03-10 1993-03-10 Filter media

Country Status (1)

Country Link
JP (1) JP3404796B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10084425T1 (en) 1999-03-30 2002-06-20 Chisso Corp filter cartridge
JP4982100B2 (en) * 2005-03-31 2012-07-25 東レ株式会社 Adsorption carrier and extracorporeal circulation column
JP2009066531A (en) * 2007-09-13 2009-04-02 Anlet Co Ltd Demister device

Also Published As

Publication number Publication date
JPH06262013A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
KR100323320B1 (en) Filter media and preparation method thereof
US6183536B1 (en) Enhanced performance vacuum cleaner bag and method of operation
AU753631B2 (en) Vacuum cleaner bag and improved vacuum cleaner bag
KR950000806B1 (en) Disposable filter for vacuum cleaner
KR101281864B1 (en) Filtration media for filtering particulate material from gas streams
KR101752019B1 (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
US7094270B2 (en) Composite filter and method of making the same
WO1998013123A1 (en) High-precision filter
JPH1190135A (en) Pleated filter
US20140197095A1 (en) Multi-layer filter material and filter element produced therefrom
JP5080041B2 (en) Air filter medium, streamer filter using the same, and method for producing air filter medium
JP4905661B2 (en) Fiber laminate for filter
JP2022530806A (en) Filtration medium containing a polyamide nanofiber layer
EP1258277A1 (en) Vacuum cleaner bag
JP3567480B2 (en) Filter medium and method for producing the same
JP3326808B2 (en) filter
JP3404796B2 (en) Filter media
WO2020066767A1 (en) Depth filter
JP3677385B2 (en) Filter material and filter using the same
JP2018199253A (en) Laminate sound absorber containing ultra-fine fiber
JP2019001012A (en) Laminate sound absorber containing ultra-fine fiber
JP2000271417A (en) Filter medium sheet and pleat filter using the same
WO2024111577A1 (en) Fiber structure, three-dimensional filter, and filtration filter
JPH11179121A (en) Substrate for filter and filter comprising substrate for filter
JP4906675B2 (en) Non-woven fabric for air filter and air cleaning filter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term