JP2004060115A - Rod-shaped fiber formed material - Google Patents

Rod-shaped fiber formed material Download PDF

Info

Publication number
JP2004060115A
JP2004060115A JP2002221891A JP2002221891A JP2004060115A JP 2004060115 A JP2004060115 A JP 2004060115A JP 2002221891 A JP2002221891 A JP 2002221891A JP 2002221891 A JP2002221891 A JP 2002221891A JP 2004060115 A JP2004060115 A JP 2004060115A
Authority
JP
Japan
Prior art keywords
rod
fiber
shaped fiber
fiber molded
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002221891A
Other languages
Japanese (ja)
Other versions
JP4207485B2 (en
Inventor
Satohiko Tsutsui
筒井 聡彦
Akinori Maekawa
前川 明範
Kazuyuki Sakamoto
坂本 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2002221891A priority Critical patent/JP4207485B2/en
Publication of JP2004060115A publication Critical patent/JP2004060115A/en
Application granted granted Critical
Publication of JP4207485B2 publication Critical patent/JP4207485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rod-shaped fiber formed material having excellent shape stability and wiping property of stain, etc., as well as high water-absorption and oil absorption and useful for a cleaning stick and a padding for an ink tank. <P>SOLUTION: The rod-shaped fiber formed material is formed by the fusion or solvent welding of a part of fibers containing a splittable conjugate fiber composed of a thermoplastic resin. A part of the splittable conjugate fibers are split, the rod-shaped fiber formed material contains unsplit splittable conjugate fibers and split and fibrillated fibers, the fineness of the unsplit splittable conjugate fiber is 0.5-20 dtex and that of the split and fibrillated fiber is <0.5 dtex. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、棒状繊維成形体に関する。更に詳しくは掃除用棒、インクタンク用詰物、油吸着材、フィルター等に好適に使用することのできる棒状繊維成形体に関する。
【0002】
【従来の技術】
従来から棒状の繊維成形体はマジックペンのインクタンク用詰物やタバコ用のフィルター等に使用されている。このような棒状の繊維成形体を製造する方法としては、繊維を熱接着して棒状繊維成形体とする方法が知られている。例えば特公昭53−47730号公報には、ポリエチレン成分とポリプロピレン成分とからなるポリオレフィン系複合繊維の繊維束を加熱処理し、ポリエチレン成分により熱融着させて繊維束の外周面を固着すると共に、繊維束内部の熱融着の度合いを少なくしたインクタンク用詰物が開示されている。また特公昭55−40231号公報には、融点の異なる2種類以上の成分を複合紡糸し、これを前記両成分の融点間の温度で熱処理したタバコフィルターが開示されている。更に特開2001−214388公報には、芯鞘比率が50/50〜90/10wt%の複合繊維トウを収束した後、芯鞘両成分の融点間の温度で加熱処理した成形棒の製造法が開示されている。
【0003】
また、特許第3227388号公報には、直方体以外の形状を有する繊維塊の表面を熱処理したインクジェット用インクタンクが開示され、特開平11−192246号公報には、歯牙の平滑面と隣接面に付着したヤニやステイン、歯垢等を除去する歯牙清掃具が開示されている。
【0004】
しかしこれらの棒状繊維成形体を構成する繊維は、比較的太い繊度であり、タバコフィルター等の比較的高い通気性が求められる用途では好ましく用いられるものの、ワイピング用途では、汚れの掻き取り効果が弱く、またインクの保液性を高める上でも繊維表面積は多いことが好ましく、これまで満足できる性能を有する棒状繊維成形体は得られていなかった。
【0005】
【発明が解決しようとする課題】
本発明は、汚れ等の払拭性の他、吸水性、吸油性に優れ、掃除用棒、インクタンク用詰物に好適に使用できる、形成安定性に優れた棒状繊維成形体を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは前記課題を解決するために鋭意検討した。その結果、熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した棒状繊維成形体であって、該分割型複合繊維の一部分が分割し、該棒状繊維成形体中に未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満である棒状繊維成形体とすることにより、前記課題を解決できることを知り、これらの知見に基づき本発明を完成するに至った。
【0007】
本発明は、以下の構成からなる。
(1)熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した棒状繊維成形体であって、該分割型複合繊維の一部分が分割し、該棒状繊維成形体中に未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満であることを特徴とする棒状繊維成形体。
【0008】
(2)棒状繊維成形体の長軸方向と、該棒状繊維成形体を構成する繊維の繊維軸方向との配向度が45度以下であることを特徴とする前記(1)項記載の棒状繊維成形体。
【0009】
(3)棒状繊維成形体が、45〜95%の空隙率である前記(1)項または前記(2)項記載の棒状繊維成形体。
【0010】
(4)棒状繊維成形体に機能剤が付着または包含されていることを特徴とする前記(1)〜(3)のいずれか1項に記載の棒状繊維成形体。
【0011】
(5)前記(1)〜(4)のいずれか1項記載の棒状繊維成形体を用いた掃除用棒。
【0012】
(6)前記(1)〜(4)のいずれか1項記載の棒状繊維成形体を用いたインクタンク用詰物。
【0013】
(7)前記(1)〜(4)のいずれか1項記載の棒状繊維成形体を用いた油吸着材。
【0014】
(8)前記(1)〜(4)のいずれか1項記載の棒状繊維成形体を用いたフィルター。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の棒状繊維成形体は、熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した繊維集合体からなる棒状繊維成形体である。この棒状繊維成形体中には、分割型複合繊維の一部分が分割し、未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満である。
【0016】
本発明の棒状繊維成形体に用いる繊維を形成する熱可塑性樹脂は、溶融紡糸工程で繊維成形性を有するものであれば特に限定されない。例えばポリプロピレン(プロピレン単独重合体)、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、プロピレンとエチレンの共重合体、プロピレンと他のαオレフィンとの2〜3元共重合体等をはじめとするチーグラーナッタ触媒やメタロセン触媒を用いて重合されたポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、酸成分をテレフタル酸以外にイソフタル酸を併用して共重合した低融点ポリエステル等のポリエステル系樹脂、ナイロン−6、ナイロン−66等のポリアミド系樹脂、アタクチックポリスチレン、シンジオタクチックポリスチレン等のポリスチレン系樹脂、ポリウレタンエラストマー、ポリエステルエラストマー等のエラストマー系樹脂、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートテレフタレート、ポリブチレンテレフタレートアジペート等の生分解性樹脂、ポリフッ化ビニリデン等のフッ素系樹脂、ポリフェニレンスルフィド、ポリケトン等の樹脂が挙げられる。また前記以外の熱可塑性樹脂としては、例えばビニル系重合体が挙げられ、具体的には、エチレンビニルアルコール共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、エチレン酢酸ビニル共重合体、エチレン無水マレイン酸グラフト共重合体も使用することができる。
【0017】
本発明に使用する熱可塑性樹脂には、本発明の効果を妨げない範囲内で更に、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤、親水剤等の添加剤を適宜必要に応じて添加しても良い。
【0018】
本発明の棒状繊維成形体を構成する分割型複合繊維について説明する。前記分割型複合繊維の断面構造は、図1〜7に例示したような、前記熱可塑性樹脂の異なる二成分が交互に配列された断面構造をとる。便宜的に、異なる二成分の一方をA成分とし、もう一方をB成分として表すと、図1〜図7の分割型複合繊維は、−A−(B−A)n−B−で表すことができ、両末端は連結していても、していなくてもどちらでもよい(nは正の整数)。具体的には、図1及び図2に例示したような各成分が交互に配列された放射状分割型断面、図3及び図4に例示したような各成分が交互に配置された中空状分割型断面、図5及び図6に例示したような各成分が交互に層状に配置された層状分割型断面、図7に例示したような各成分が交互に配列されて繊維断面が屈曲、湾曲または扁平形状となった分割型断面形状を挙げることができる。もちろん、多成分の樹脂から構成される分割型複合繊維にあっては、同成分が隣り合うことなく多成分が配列した断面構造を形成する。尚、図1〜7に例示した分割型複合繊維の断面構造及び形状はモデル図であり、実際の繊維製造時には、該複合繊維は種々の外部応力を受け断面形状に変形が生じている場合があるが実用上、特に問題はない
【0019】
前記分割型複合繊維の樹脂成分の組合せとしては、ポリエステル系樹脂/ポリアミド系樹脂、ポリエステル系樹脂/ポリオレフィン系樹脂、ポリオレフィン系樹脂/ポリオレフィン系樹脂を例示することができる。これらの組合せは、目的、用途に応じて適宜選択すればよいが、例えば高温条件下で使用する場合には、ポリエチレンテレフタレート樹脂/ナイロン66樹脂の組合せが好ましく、またインクジェット用インクタンクや、耐薬品性が要求される分野、油等の吸着、掃除用途には、特にポリプロピレン樹脂/ポリエチレン樹脂の組合せが好ましい。
【0020】
ポリオレフィン系樹脂/ポリオレフィン系樹脂の樹脂成分の組合せにおいて、ポリエチレン系樹脂/ポリプロピレン樹脂の組合せを用いた分割型複合繊維にあっては、ポリプロピレン樹脂の融点よりも低いポリエチレン樹脂が低融点樹脂となり、ポリプロピレン樹脂が高融点樹脂となる。ポリエチレン樹脂としては、具体的には、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンを例示することができる。またポリエチレン樹脂は、これら2種以上の混合物であっても良い。前記分割型複合繊維において、2成分の熱可塑性樹脂より構成される複合繊維の複合比は、容量比で10/90〜90/10の範囲で、より好ましくは30/70〜70/30である。
【0021】
本発明において重要なことは、前記分割型複合繊維の一部分が分割していることである。本発明では、分割細繊化した繊維の繊度が0.5dtex未満となることが必要であり、0.3dtex未満であることが更に好ましい。該分割型複合繊維の分割セグメント数は、分割細繊化した繊維の平均繊度が0.5dtex未満となるように適宜設定すれば良い。なお、分割型複合繊維のセグメント数が多ければ分割後の繊度を小さくすることができるが、繊維製造上の容易さから実際にはセグメント数を4〜32にすることが好ましい。また個々のセグメントの繊度は、同一である必要はなく、複数の異なった繊度の繊維が混在していても良い。これは、分割型複合繊維が完全に分割されずに、未分割状態の分割型複合繊維と分割細繊化した繊維とが混合された状態となっている。
【0022】
細繊化した繊維を製造する方法としては、メルトブロー法が一般に知られている。しかし、メルトブロー法で作製した極細繊維ウェブ(細繊化した繊維ウェブ)を用い、これを棒状に成形した成形体は、繊維間が狭く油のような高粘性液の吸収を阻害し、またインクタンク用詰物に用いた場合には、毛細管現象による吸液性が高く、インクタンク内にインクを保持してしまい、インクタンク寿命を短くしてしまう不具合がある。これに対して本発明の分割型複合繊維を使用して製造された棒状繊維成形体には、棒状繊維成形体に、0.5dtex未満の分割細繊化した繊維と0.5〜20dtexの繊維とが含まれることで、油等の高粘性液の吸収性、掻き取り効果、毛細管現象、機能剤の包含等に適度に優れた効果を発揮する。このことから、掃除棒、インクタンク用詰物、油吸着材、フィルターの素材として好ましく使用することができる。特にインクタンク用詰物や油吸着剤に使用する場合には、分割型複合繊維が部分的に分割していることが好ましい。分割型複合繊維が部分的に分割細繊化していることで、繊維間に狭い所と広い所がランダムに存在し、前記メルトブロー極細繊維ような弊害は生じない。なお、分割細繊化は、分割型複合繊維の分割率で調整しても良いし、他の繊維の混綿で調整しても良い。
【0023】
本発明において前記分割型複合繊維の分割前の単糸繊度は、0.5〜20dtexであり、好ましくは1dtex〜10dtexである。分割前の単糸繊度が0.5dtex未満であると溶融紡糸工程での曳糸性が低下する傾向にある。更に分割前の単糸繊度が0.5dtexを大きく下回ると繊維間隔のコントロールが難しくなる。また20dtexを大幅に超えると、得られた棒状繊維性形体の空隙率をコントロールすることが難しく、また分割細繊化した繊維(分割後)の単糸繊度を0.5dtex未満にするために分割数を多くする必要があり、製造が難しくなる。なお、本発明では、吸水性、吸油性の点から、棒状繊維成形体中に、0.5dtex未満の分割細繊化した繊維が10〜95重量%含まれていることが好ましく、15〜75重量%含まれていることがより好ましい。
【0024】
前記分割型複合繊維の分割細繊化する方法は特に限定されないが、例えば捲縮加工時に、クリンプエッジ部を捲縮付与時の応力により部分的に分割させても良い。また、カード機でウェブを作製する際に、捲縮付与した短繊維をカード機のシリンダー回転の応力により一部分を分割させても良い。更にニードルパンチや水流交絡法によりウェブを分割させた後、棒状繊維成形体に加工しても良い。また棒状繊維成形体とした後に応力を加えて分割させたい部分のみを分割細繊化させることもできる。特に細かい部分や凹凸部分の掃除用に使用する場合には、本発明の棒状繊維成形体が好適に使用でき、汚れを掻き取る時に、応力が掛かるため分割が更に進行し、汚れを掻き取るほど分割するので、結果として掻き取り性能は更に向上する。
【0025】
本発明の棒状繊維成形体は、分割型複合繊維と、前記熱可塑性樹脂からなる繊維とから、混綿または混繊により構成されていても良い。これらは、2種類以上併用しても良い。混綿される熱可塑性樹脂からなる繊維としては、特に制限がなく、例えば成分単一型、複合型の繊維を利用できる。前記熱可塑性樹脂からなる繊維の断面形状は、円形、異形のいずれであっても良い。また、複合型(複合繊維)の断面構造は、鞘芯型、偏心鞘芯型、並列型、多層型、海島型、放射状型、中空放射状型等のいずれであっても良い。接着成分または溶着成分として繊維を混綿する場合には、分割型複合繊維を接着し棒状繊維成形体とするために、熱可塑性樹脂からなる繊維が分割型複合繊維を構成している熱可塑性樹脂と同種類の樹脂を含む繊維であることが好ましい。また混綿した繊維を熱処理により溶融し、接着加工する場合には、分割型複合繊維の低融点樹脂よりも低い温度で溶融する樹脂を接着成分とすることで、該分割型複合繊維を構成する成分樹脂を溶融することなく、棒状繊維成形体を成形でき、更に分割細繊化も進み易くなるために好ましい。また接着繊維として複合型の繊維を用いることで、繊維成形体の強度を更に高くすることができる。なお、混綿、混繊の量は、最終的に得られる棒状繊維成形体中に、0.5dtex未満の分割細繊化した繊維が少なくとも10、好ましくは少なくとも15重量%含まれるように調整を行う必要がある。
【0026】
棒状繊維成形体に親水性を付与する場合には、親水性繊維を混綿または混繊するとよい。ここで親水性繊維は、親水性を示す繊維であれば限定されることはなく、例えば、レーヨン、キュブラに代表される再生繊維、アセテート、トリアセテートに代表される半合成繊維、ポリアミド、アクリル等の合成繊維、綿、羊毛、麻等の天然繊維が利用できる。また、棒状繊維成形体に親水性の薬剤を含浸することでも、棒状繊維成形体に親水性を付与することができる。
【0027】
本発明の棒状繊維成形体は、短繊維の分割型複合繊維、または長繊維の分割型複合繊維のいずれから構成されていても良く、また、該分割型複合繊維からなる不織布で構成されていても良い。分割型複合繊維からなる長繊維ウェブは、スパンボンド法、トウ開繊法、メルトブロー法等で製造することができる。また分割型複合繊維からなる短繊維ウェブは、カーディング、エアレイド、湿式積層等の方法で製造することができる。これらのウェブを用いて、熱処理や溶剤処理により繊維交点を接着することで棒状繊維成形体にすることができる。なお、不織布とは分割型複合繊維からなるウェブが、交絡、融着、接着され、繊維間が結合された成形体をさす。繊維間を結合する接着の方法としては、熱的接着、機械的接着、または化学的接着等が例示できる。熱的接着法は従来公知の方法を採用することができ、具体的には熱風循環法(スルーエアー法)、ポイントボンド法、カレンダー法等を例示できる。ここでウェブや不織布は前記繊維を混綿したものでも良いし、積層したものでも良い。
【0028】
本発明の棒状繊維成形体の空隙率を製造時にコントロールし易くするためには、分割型複合繊維に捲縮を付与することが好ましい。捲縮を付与することにより均一な空隙を持つ棒状繊維成形体に成形することができる。また機能剤を棒状繊維成形体に包含させる場合は、より空隙率が高いほうが機能材の充填率を高めることができ、かつ捲縮により3次元的に繊維のネットワークができるので、充填した機能材の脱落を抑えることができる。
【0029】
次に本発明の棒状繊維成形体の成形方法について説明する。成形方法は従来公知の方法が利用できる。分割型複合繊維を含む布帛(ウェブまたは不織布)を棒状に成形し、熱処理または溶剤処理により繊維成形体に成形する。前記布帛を棒状に成形する方法としては、布帛の機械方向と直交するように布帛を巻く方法、布帛の機械方向と直交するように布帛を収束する方法、布帛の機械方向に平行に布帛を巻く方法、布帛の機械方向と直交するように布帛を収束する方法が例示できる。布帛の機械方向と直交するように布帛を巻く方法は、棒状繊維成形体の長軸方向に繊維を配向させ難いが、機械方向に平行に布帛を収束する方法では、棒状繊維成形体の長軸方向に繊維方向が略一致するため好ましい。その他の方法として、一旦任意の形に成形した後、それを任意の棒状の形状に切断し、製造しても良い。
【0030】
本発明の棒状繊維成形体は、該棒状繊維成形体の長軸方向と、それを構成する繊維の繊維軸方向との配向度が45度以下であることが好ましい。これにより繊維成形体の長軸方向の引張り強力を高くでき、更に折れ難くすることができる。配向度が45度であれば掃除用棒として使用する際の形態安定性が得られ易く、高温で長時間の加熱成形が不要となる。配向度を45度以下にした棒状繊維成形体の製造方法としては、トウやスライバー状のウェブを加熱成形する方法が例示できる。
【0031】
本発明の棒状繊維成形体を構成する分割型複合繊維の製造方法の一例として、以下に、ポリプロピレン樹脂と高密度ポリエチレン樹脂との2成分を組み合わせた分割型複合繊維の製造方法を例示する。前記2成分を通常の溶融紡糸機で紡糸し、長繊維として紡出する。紡糸に際し、紡糸温度は180〜300℃の範囲とすることが良く、引き取り速度は40m/分〜1500m/分程度とすることが良い。延伸は必要に応じて多段延伸を行っても良く、延伸倍率は通常3〜9倍程度とするのが良い。更に得られたトウは必要に応じて捲縮を付与した後、所定長に切断して短繊維として利用する。以上は短繊維の製造工程を開示したが、トウを切断せず、長繊維トウを分繊ガイド等によりウェブとすることもできる。その後は必要に応じて公知公用の高次加工工程を経て、種々の用途に応じた棒状繊維成形体に成形される。また単繊維とせずマルチフィラメント糸としても良い。
【0032】
かかる工程において、繊維を紡出後、繊維の静電気発生防止、繊維成形体への加工性向上、平滑性付与、親水性の付与等を目的として、界面活性剤や親水化剤を用いることができる。界面活性剤の種類、濃度は用途に合わせて適宜調整する。界面活性剤は、繊維表面に適量付着されることで利用でき、その付着の方法は、ローラ法、浸漬法等を用いることができる。付着は、紡糸工程、延伸工程、捲縮工程のいずれで付着させても差し支えない。更に短繊維、長繊維を問わず、紡糸工程、延伸工程、捲縮工程以外に、例えば繊維成形体に成形後に界面活性剤を付着させることもできる。
【0033】
次に棒状繊維成形体の製造方法の一例を示す。前記分割型複合繊維の短繊維を用いて、カード法で必要な目付のウェブを作製する。カード機で作製したウェブを、公知の方法で任意の径のスライバーとし、分割型複合繊維を構成する低融点樹脂が溶融する温度で熱処理を行い、棒状繊維成形体を作製する。なお、この時にウェブに予めウェブを構成する繊維よりも低融点で融解する樹脂パウダーを混ぜておき、スライバーにした後、筒状容器内でこれを該パウダーが融解する温度で熱処理を行い、棒状繊維成形体に成形した後、取り出すことで製造することもできる。
【0034】
溶着には前記熱可塑性樹脂を溶解する溶剤を必要に応じて適宜選択し利用すれば良く、該繊維を溶解して繊維間を溶着することにより棒状繊維成形体に成形することができる。例えばポリオレフィン系繊維の場合は、トリクロルエチレン、トルエン、シクロヘキサン、キシレン、石油エーテル等を使用して繊維間を融着し棒状繊維成形体に成形することができる。
【0035】
本発明の繊維成形体の空隙率は、特に限定されるものではないが、45〜95%の範囲が好ましい。空隙率が45%以上であれば、例えば油吸着材、掃除用棒に使用する場合、隙間が充分になり、油やゴミを収集保持する空間が確保でき、空隙率が95%以下であれば棒状繊維成形体の剛性が強く、例えば掃除用として使用する際、折れにくくなる。また均一な空隙を作ることが容易である
【0036】
本発明の棒状繊維成形体を掃除用に用いる場合は、先端部を円錐状に研磨しても良いし、棒状繊維成形体の先端部を該棒状繊維成形体の長軸方向に対して30〜150度の範囲で鋭角に切り落としても良い。先端部を鋭角にすることで細かな部分の汚れを取り易くすることができる。
【0037】
更に本発明の棒状繊維成形体に機能剤を付着または包含させることにより、他の繊維の混繊、混綿では付与しにくい機能を付与することができる。機能剤としては従来公知のものを使用することがきる。例えば抗菌防臭剤、防カビ剤、消臭剤、吸着剤、研磨剤、イオン交換樹脂、高分子吸水ポリマー等を挙げることができる。前記機能剤が溶液の場合は、多孔質基材に含浸して使用しても良い。多孔質基材としては、アロフェン、イモゴライト、人工ゼオライト、天然ゼオライト、合成ゼオライト、活性炭等が例示できる。また吸着剤としては、前記多孔性基材を用いることができる。棒状繊維成形体に機能剤を包含させる方法としては、機能剤がゼオライト等の粉末の場合、ウェブに加工した分割型複合繊維を水流交絡処理により分割細繊化と不織布化させ、これを熱風等で乾燥した後、機能剤を篩等で不織布上に均一になるように散布し、その後、不織布をガラス管に詰め、適当な温度で加熱、冷却する方法が例にできる。このとき、機能剤表面に空隙が生ずるように機能剤を包含させて棒状繊維成形体を製造することで、機能剤の性能を充分に発揮させることができる。
【0038】
抗菌防臭剤、防カビ剤としては、銀、銅、亜鉛に代表される無機系抗菌剤、塩化ベンザルコニウム、有機シリコン系第4級アンモニウム塩、ポリヘキサメチレンビグアニジン塩酸塩、グルコン酸クロルヘキシジンに代表される有機系抗菌剤、キチン、キトサン、ポリリジン、ヒバ油、ユーカリ、カテキン、アロエ等の天然系抗菌剤が例示できる。消臭剤としては、ベタイン系両面活性剤、カルボニル系化合物、二酸化チタンに代表される光触媒、活性炭、ゼオライト、カテキン、無機系消臭剤、銅−フタロシアニン、鉄−フタロシアニン、金属イオン等が例示できる。
【0039】
研磨剤としては、ガーネット、エメリー、溶融アルミナ、炭化ケイ素等が例示できる。
【0040】
機能剤を包含させる場合は、機能剤との親和性に優れる熱可塑性樹脂からなる繊維を併用することにより、機能剤の脱落を更に抑えることができる。このような熱可塑性樹脂としては、エチレンビニルアルコール共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、エチレン酢酸ビニル共重合体、エチレン無水マレイン酸グラフト共重合体が例示できる。
【0041】
本発明の棒状繊維成形体は、油吸着剤やろ過用フィルターに好適に使用することができるが、機能剤を付着または包含させることにより、更に性能を上げることができる。例えば人工ゼオライトを包含させた棒状繊維成形体は吸油量を大幅に向上させることができ、また陽イオン吸着能にも優れ、特定の物質を選択的に吸着できるフィルターとしても好適に用いることができる。
【0042】
以上、本発明の棒状繊維成形体は、分割型複合繊維の一部分が分割細繊化しているため掃除用棒やインクタンクにも好適に使用できる。またインクタンク用詰物に使用する場合、特に水溶液系のインクを使用する場合は、棒状繊維成形体を親水性にすることが好ましい。その方法としては、親水性繊維の混繊、混綿、界面活性剤の付着、親水化剤の練り込み等が例示できる。また繊維加工用に塗布した界面活性剤が不都合な場合には、棒状繊維成形体に加工する前後で洗い落としておけば良く、水流交絡処理を使用して分割細繊化する場合は、その処理時点で、該界面活性剤が殆ど洗い落とされるため、別途、洗い落とす処理は不要となる。
【0043】
【実施例】
以下、本発明を実施例、比較例によって説明を行うが、本発明はこれらにより限定されるものではない。尚、実施例、比較例における用語と物性の測定方法は以下の通りである。
【0044】
(a)融点:デュポン社製熱分析装置DSC10(商品名)を用い、JIS K7122に準拠して測定を行った。
【0045】
(b)メルトフローレート(MFR):JIS K 7210に準拠して測定した。
原料ポリプロピレン樹脂:表1の条件14
原料ポリエチレン樹脂:表1の条件4
【0046】
(c)密度:JIS K 6760に準拠して密度勾配管による測定を行った。
【0047】
(d)ポリエチレンテレフタレートの固有粘度:フェノールと四塩化エタンの等重量混合溶媒を用い、濃度0.5g/100ml、温度20℃で測定した。
【0048】
(e)分割後繊度:以下の式より算出した。
分割後繊度(dtex)=分割前繊度/分割数
【0049】
(f)分割率:棒状繊維成形体の長軸に対して垂直にかみそりで棒状繊維成形体を切断し、その断面を電子顕微鏡で撮影した。得られた写真から、任意に50本の分割型複合繊維を選び、その平均繊度から以下の式を用いて算出した。
分割率(%)=(分割後繊度/平均繊度)×100
【0050】
(g)吸水性(mm):JIS L 1096記載のバイレック法に準じて測定した。即ち、試料片(試料長20cm、試料径15mm)を、20±2℃の水を入れた水槽に試料片の下端の1cmがちょうど水に浸かるようにする。10分間放置後の水の上昇した高さ(mm)を3回測定し、3点の平均値で吸水性を表した。なお、イオン交換樹脂に通して脱イオンした水を使用した。
【0051】
(h)吸水量:試料片(試料長5cm、試料径15mm)を、20±2℃の水に10分間浸漬して吸水させ、その後引き上げて吊り下げ、10分間水切りを行った後、重量を測定し絶乾試料1g当りに吸収された水の重量を測定し吸液量(g/g)とした。なお、イオン交換樹脂に通して脱イオンした水を使用した。
【0052】
(i)吸油性:JIS L 1096記載のバイレック法に準じて測定した。即ち、試料片(試料長20cm、試料径15mm)を、20±2℃のサラダオイルを入れた水槽に試料片の下端の1cmが油にちょうど浸かるようにする。10分間放置後の油の上昇した高さ(mm)を3回測定し、3回の平均値で吸油性を表した。
【0053】
(j)吸油量:試料片(試料長5cm、試料径15mm)を、20℃±2℃のサラダオイルに10分間浸漬して吸油させ、その後引き上げて吊り下げ、10分間油切りを行った後、重量を測定し絶乾試料1g当りに吸収された油の重量を測定し吸油量(g/g)とした。
【0054】
(k)油拭取性:5cm×5cmのガラス板上に0.5gのサラダオイルを垂らし、コットンネルでガラス表面に油膜を作る。棒状繊維成形体の試料片(試料長20cm、試料径12mm)を手で持ち、棒状繊維成形体の先端で油膜を拭き取ることができるかを以下の基準で判定した。
○:ガラス表面に筋を残さず拭き取れる。
△:ガラス表面に僅かに拭き残りがある。
×:明らかに拭き取れない。
【0055】
(l)形態安定性:(k)で行った試験で棒状繊維成形体が折れたり、歪んだりせず形態を保持したかどうかについて以下の基準で判定した。
○:拭取り時の応力で折れず、更に歪みがなく作業性が良い。
△:拭取り時の応力で僅かに歪むが作業性は大幅に低下しない。
×:拭取り時の応力で折れて作業性が悪い。
【0056】
(m)配向度:棒状繊維成形体の長軸に対して平行に切断して、棒状繊維成形体をまず2等分し、更に該長軸に対して平行に切断した面に垂直かつ長軸に対して平行に切断して2等分とし、棒状繊維成形体を計4等分する。この切断面を電子顕微鏡で観察し、任意に繊維を50本選び、棒状繊維成形体の長軸方向となす角度(0〜90度)を求める。他の3切片も同様に測定した。これらの平均値で配向度を表した。
【0057】
(n)水流交絡処理:ウェブを80メッシュの平織りからなるコンベアーベルト上に載せ、コンベアネット速度5m/分で、ノズル径0.1mm、ノズルピッチ1mmのノズル直下を通過させ、高圧水流を噴射した。まず、4MPaを1段、8MPaを4段処理した。ここで段とは、ノズル直下を通過した回数のことである。
【0058】
実施例1
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度8dtexの未延伸糸とした。得られた未延伸糸を90℃、4倍で延伸し、トータル5万dtex、単糸繊度2dtexの延伸糸トウとした。このトウを開繊機で開繊して、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0059】
実施例2
実施例1で作製した未延伸糸を90℃、4倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。この短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0060】
比較例1
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR36g/10分)を芯成分、高密度ポリエチレン樹脂(融点131℃、MFR26g/10分)を鞘成分とし、鞘芯型複合繊維用口金を用いて、容積比率50/50の鞘芯型複合繊維を紡糸した。引き取り工程において、未延伸の鞘芯型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度8dtexの未延伸糸とした。得られた未延伸糸を90℃、4倍で延伸し、機械捲縮(13山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。この短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0061】
実施例3
実施例2に準拠して、図4のような断面構造をした、12dtexの短繊維を作製した。得られた短繊維をローラカード機でウェブにし、水流交絡処理を行って分割細繊化するのと同時に不織布化を行った。得られた不織布を更に90℃で乾燥した後、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0062】
比較例2
実施例2に準拠して、図4のような断面構造をした、22dtexの短繊維を作製し、この短繊維から繊維成形体を作製した。
【0063】
実施例4
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR36g/10分)を芯成分、直鎖状低密度ポリエチレン樹脂(融点100℃、MFR30g/10分、密度0.910g/cm)を鞘成分とし、鞘芯型複合繊維用口金を用いて、容積比率50/50の未延伸の鞘芯型複合繊維(未延伸糸)を紡糸した。引き取り工程において、未延伸の鞘芯型複合繊維にアルキルフォスフェートカリウム塩を付着し、単糸繊度7dtexの未延伸糸とした。得られた未延伸糸を90℃、3.5倍で延伸し、機械捲縮(13山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。得られた短繊維(30重量%)と実施例2で作製した分割型複合繊維(70重量%)を混綿してローラカード機でウェブにし、直径15mmのガラス管に詰め、125℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0064】
実施例5
実施例2で作製した分割型複合繊維50重量%とレーヨン(1.7dtex、繊維長44mm)50重量%とを混綿して、ローラカード機でウェブにし、直径15mmのガラス管に詰め、125℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0065】
実施例6
実施例2に準拠して空隙率40%の棒状繊維成形体を作製した。
【0066】
実施例7
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度35dtexの未延伸糸とした。得られた未延伸糸を90℃、5倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、51mmに切断して、7dtexの短繊維とした。この短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0067】
実施例8
相対粘度0.60のポリエチレンテレフタレート(鐘紡(株)製、K101)をA成分、ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をB成分とし、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度7dtexの未延伸糸とした。得られた未延伸糸を90℃、3.5倍で延伸し、機械捲縮(13山/2.54cm)を付与した後、38mmに切断して、2dtexの短繊維とした。得られた短繊維をローラカード機でウェブにし、直径15mmのガラス管に詰め、185℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0068】
実施例9
ポリプロピレン樹脂(プロピレン単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR26g/10分)と変性ポリエチレン(密度0.931g/cmの直鎖状低密度ポリエチレンを幹ポリマーとした無水マレイン酸グラフト変性率0.15モル/kgのポリマー。MFR14g/10分)を重量比80/20でブレンドした樹脂をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、図3のような断面構造をした、分割型複合繊維を紡糸し、引き取り工程において、未延伸の分割型複合繊維(未延伸糸)にアルキルフォスフェートカリウム塩を付着し、単糸繊度7dtexの未延伸糸とした。得られた未延伸糸を90℃、3.5倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、51mmに切断して、2dtexの短繊維とした。この短繊維をカード機で開繊してウェブにし、水流交絡処理を行って分割細繊化するのと同時に不織布化を行った。得られた不織布を更に90℃で乾燥した後、繊維重量の1/3の重量の人工ゼオライト(平均粒子径10〜30μm、平均細孔径20×10−8〜50×10−8cm、比表面積40〜100m/g)を篩で均一に散布し、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。この棒状繊維成形体は、極細繊維から構成されているため、棒状繊維成形体表面から、包含した人工ゼオライトの脱落が非常に少なかった。
【0069】
実施例10
実施例1で作製した未延伸糸を90℃、4倍で延伸し、機械捲縮(15山/2.54cm)を付与した後、5mmに切断して、2dtexの短繊維とした。この短繊維をエアレイド機で開繊してウェブにし、直径15mmのガラス管に詰め、155℃で15分間加熱し、冷却後、ガラス管から取り出した。得られた棒状繊維成形体の性能を表1に示す。
【0070】
実施例11
実施例1と比較例1の棒状繊維成形体を掃除棒として、工具の油汚れ落しに使用した。その結果、実施例の棒状繊維成形体は比較例1の棒状繊維成形体と比較して汚れ除去に優れていた。
【0071】
実施例12
実施例10で作製した棒状繊維成形体(直径15mm×長さ5cm)をシリコンチューブ(内径15mm、長さ15cm)の中心付近まで押し込め、簡易ろ過フィルターを作製する。前記吸油性試験で使用したサラダオイル50gと脱イオン水50gを混合して良く振とうし、この油水混合液をシリコンチューブの上部から注ぎ、自然ろ過して、下方から滴下した液体を捕集する。サラダオイルはフィルターに吸着されており、捕集された液体は水のみであった。
【0072】
以上、実施例1〜11からわかるように本発明の棒状繊維成形体は、吸水性、吸油性及び拭き取り性に優れるので、掃除棒、インクタンク用詰物、油吸着材に適している。また実施例12のようにろ過機能にも優れているのでフィルターとしても適している。
【0073】
【表1】

Figure 2004060115
【0074】
【発明の効果】
本発明の棒状繊維成形体は、分割型複合繊維の一部分が分割細繊化されて表面積が大きくなり、かつ分割細繊化した繊維間に空隙層を形成するので、汚れ等の払拭性の他、吸水性、吸油性に優れる。このため、掃除用棒、インクタンク用詰物に好適に使用できる。更に分割細繊化繊維の空隙層に、種々の機能剤を包含できるため、種々の機能付与ができる。また空隙が均一でないことから、分割細繊化繊維は油吸着材やフィルターとしても好適に使用することができる。
【図面の簡単な説明】
【図1】本発明で使用する分割型複合繊維の断面の1模式図である。
【図2】本発明で使用する分割型複合繊維の断面の1模式図である。
【図3】本発明で使用する分割型複合繊維の断面の1模式図である。
【図4】本発明で使用する分割型複合繊維の断面の1模式図である。
【図5】本発明で使用する分割型複合繊維の断面の1模式図である。
【図6】本発明で使用する分割型複合繊維の断面の1模式図である。
【図7】本発明で使用する分割型複合繊維の断面の1模式図である。
【符合の説明】
1:中空部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rod-shaped fiber molded article. More particularly, the present invention relates to a rod-shaped fiber molded article that can be suitably used for a cleaning rod, an ink tank filling, an oil absorbent, a filter, and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, rod-shaped fiber molded bodies have been used for filling ink tanks for magic pens, filters for cigarettes, and the like. As a method of manufacturing such a rod-shaped fiber molded body, there is known a method in which fibers are thermally bonded to form a rod-shaped fiber molded body. For example, Japanese Patent Publication No. 53-47730 discloses that a fiber bundle of a polyolefin-based composite fiber composed of a polyethylene component and a polypropylene component is subjected to heat treatment, and is heat-sealed with the polyethylene component to fix the outer peripheral surface of the fiber bundle, A filling for an ink tank in which the degree of heat fusion inside the bundle is reduced is disclosed. Japanese Patent Publication No. 55-40231 discloses a cigarette filter in which two or more components having different melting points are subjected to composite spinning and then heat-treated at a temperature between the melting points of the two components. Further, Japanese Patent Application Laid-Open No. 2001-214388 discloses a method for producing a molded rod in which a composite fiber tow having a core / sheath ratio of 50/50 to 90/10 wt% is converged and then heat-treated at a temperature between the melting points of the core and sheath components. It has been disclosed.
[0003]
Further, Japanese Patent No. 3227388 discloses an ink jet ink tank in which the surface of a fiber mass having a shape other than a rectangular parallelepiped is heat-treated, and Japanese Patent Application Laid-Open No. H11-192246 discloses a method of adhering to a smooth surface and an adjacent surface of a tooth. There is disclosed a tooth cleaning tool for removing stains, stains, plaque and the like.
[0004]
However, the fibers constituting these rod-shaped fiber molded bodies have relatively large fineness, and are preferably used in applications requiring relatively high air permeability such as cigarette filters, but in wiping applications, the effect of scraping dirt is weak. In addition, the surface area of the fiber is preferably large in order to enhance the liquid retaining property of the ink, and a rod-shaped fiber molded body having satisfactory performance has not been obtained so far.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a rod-shaped fiber molded article having excellent formation stability, which is excellent in water absorption and oil absorption in addition to wiping properties such as dirt, and can be suitably used for cleaning rods and ink tank fillings. And
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems. As a result, a rod-shaped fiber molded body in which a part of the contact points of the fibers containing the splittable conjugate fiber made of a thermoplastic resin is fused or welded, a part of the splittable conjugate fiber is split, The undivided splittable conjugate fiber and the split finely divided fiber are contained therein, and the fineness of the splittable splittable conjugate fiber in the undivided state is 0.5 to 20 dtex. It has been found that the above problem can be solved by using a rod-shaped fiber molded body having a fineness of less than 0.5 dtex, and the present invention has been completed based on these findings.
[0007]
The present invention has the following configurations.
(1) A rod-shaped fiber molded product in which a part of a contact point of a fiber including a splittable conjugate fiber made of a thermoplastic resin is fused or welded, and a part of the splittable conjugate fiber is split to form the rod-shaped fiber formed product The undivided splittable conjugate fiber and the split finely divided fiber are contained therein, and the fineness of the splittable splittable conjugate fiber in the undivided state is 0.5 to 20 dtex. A rod-shaped fiber molded product having a fineness of less than 0.5 dtex.
[0008]
(2) The rod-shaped fiber according to (1), wherein the degree of orientation between the major axis direction of the rod-shaped fiber molded body and the fiber axis direction of the fibers constituting the rod-shaped fiber molded body is 45 degrees or less. Molded body.
[0009]
(3) The rod-shaped fiber molded article according to the above (1) or (2), wherein the rod-shaped fiber molded article has a porosity of 45 to 95%.
[0010]
(4) The rod-shaped fiber molded article according to any one of the above (1) to (3), wherein a functional agent is attached to or contained in the rod-shaped fiber molded article.
[0011]
(5) A cleaning rod using the rod-shaped fiber molded product according to any one of (1) to (4).
[0012]
(6) An ink tank filling using the rod-shaped fiber molded product according to any one of (1) to (4).
[0013]
(7) An oil adsorbent using the rod-shaped fiber molded product according to any one of (1) to (4).
[0014]
(8) A filter using the rod-shaped fiber molded article according to any one of (1) to (4).
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The rod-shaped fiber molded article of the present invention is a rod-shaped fiber molded article made of a fiber aggregate in which a part of the contact points of fibers including splittable conjugate fibers made of a thermoplastic resin is fused or welded. In the rod-shaped fiber molded body, a part of the splittable conjugate fiber is split, and the splittable conjugate fiber in the unsplit state and the split fine fiber are included. The fineness is 0.5 to 20 dtex, and the fineness of the divided and finely divided fibers is less than 0.5 dtex.
[0016]
The thermoplastic resin forming the fiber used in the rod-shaped fiber molded article of the present invention is not particularly limited as long as it has fiber moldability in the melt spinning step. For example, polypropylene (propylene homopolymer), low-density polyethylene, high-density polyethylene, linear low-density polyethylene, a copolymer of propylene and ethylene, a terpolymer of propylene and another α-olefin, and the like. Polyolefin resins polymerized using Ziegler-Natta catalysts or metallocene catalysts, polyethylene terephthalate, polybutylene terephthalate, polyester resins such as low-melting polyesters in which the acid component is copolymerized with isophthalic acid in addition to terephthalic acid, nylon -6, polyamide resins such as nylon-66, polystyrene resins such as atactic polystyrene and syndiotactic polystyrene, elastomer resins such as polyurethane elastomer and polyester elastomer, polylactic acid, polybutylenesa Shineto, polybutylene succinate adipate, polybutylene succinate terephthalate, polybutylene terephthalate adipate biodegradable resins, fluorine-based resins such as polyvinylidene fluoride, polyphenylene sulfide, and a resin polyketone like. Examples of the thermoplastic resin other than those described above include, for example, vinyl polymers, and specifically, ethylene vinyl alcohol copolymer, polyvinyl acetate, polyacrylate, ethylene vinyl acetate copolymer, ethylene anhydride maleic anhydride. Acid graft copolymers can also be used.
[0017]
The thermoplastic resin used in the present invention further includes an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizing agent, a nucleating agent, an epoxy stabilizer, a lubricant, and an antibacterial agent as long as the effects of the present invention are not impaired. Additives such as agents, flame retardants, antistatic agents, pigments, plasticizers, and hydrophilic agents may be added as needed.
[0018]
The splittable conjugate fiber constituting the rod-shaped fiber molded article of the present invention will be described. The sectional structure of the splittable conjugate fiber has a sectional structure in which two different components of the thermoplastic resin are alternately arranged as illustrated in FIGS. For convenience, when one of the two different components is represented as an A component and the other is represented as a B component, the splittable conjugate fiber of FIGS. 1 to 7 is represented by -A- (BA) nB-. And both terminals may or may not be linked (n is a positive integer). More specifically, a radial split type cross section in which the components illustrated in FIGS. 1 and 2 are alternately arranged, and a hollow split type cross in which the components illustrated in FIGS. 3 and 4 are alternately arranged. Cross-section, a layered split cross-section in which each component as illustrated in FIGS. 5 and 6 is alternately arranged in layers, and a cross-section of a fiber in which each component as illustrated in FIG. A divided sectional shape having a shape can be given. Of course, in the case of a splittable conjugate fiber composed of a multi-component resin, a cross-sectional structure in which the same components are arranged without being adjacent to each other is formed. The sectional structure and shape of the splittable conjugate fiber illustrated in FIGS. 1 to 7 are model diagrams. During actual fiber production, the conjugate fiber may be subjected to various external stresses and may have a deformed cross-sectional shape. Yes, but no practical problem
[0019]
Examples of the combination of the resin components of the splittable conjugate fiber include polyester resin / polyamide resin, polyester resin / polyolefin resin, and polyolefin resin / polyolefin resin. These combinations may be appropriately selected depending on the purpose and application. For example, when used under high-temperature conditions, a combination of polyethylene terephthalate resin / nylon 66 resin is preferable. In particular, a combination of polypropylene resin / polyethylene resin is preferable for the field where the property is required, the adsorption of oil and the like, and the cleaning use.
[0020]
In the case of a splittable conjugate fiber using a combination of a polyolefin-based resin / polyolefin-based resin and a combination of a polyethylene-based resin / polypropylene resin, a polyethylene resin having a melting point lower than the melting point of the polypropylene resin becomes a low-melting-point resin. The resin becomes a high melting point resin. Specific examples of the polyethylene resin include high-density polyethylene, linear low-density polyethylene, and low-density polyethylene. Further, the polyethylene resin may be a mixture of two or more of these. In the splittable conjugate fiber, the conjugate ratio of the conjugate fiber composed of the two-component thermoplastic resin is in the range of 10/90 to 90/10 by volume ratio, and more preferably 30/70 to 70/30. .
[0021]
What is important in the present invention is that a part of the splittable conjugate fiber is split. In the present invention, the fineness of the divided and finely divided fibers needs to be less than 0.5 dtex, and more preferably less than 0.3 dtex. The number of divided segments of the splittable conjugate fiber may be appropriately set so that the average fineness of the divided and finely divided fibers is less than 0.5 dtex. In addition, if the number of segments of the splittable conjugate fiber is large, the fineness after splitting can be reduced, but it is preferable to actually set the number of segments to 4 to 32 from the viewpoint of ease of fiber production. The fineness of each segment does not need to be the same, and a plurality of fibers of different fineness may be mixed. This is a state in which the splittable conjugate fiber is not completely split, and the unsplit splittable conjugate fiber and the split finely divided fiber are mixed.
[0022]
As a method for producing fine fibers, a melt blow method is generally known. However, using a microfiber web (fine fibrous web) produced by the melt blow method and forming it into a rod shape, the interstices between the fibers are so narrow that the absorption of highly viscous liquid such as oil is inhibited, and ink When used as a filling material for a tank, there is a problem that the liquid absorption property is high due to the capillary phenomenon, the ink is held in the ink tank, and the life of the ink tank is shortened. On the other hand, in the rod-shaped fiber molded article produced using the splittable conjugate fiber of the present invention, the rod-shaped fiber molded article is divided into finely divided fibers of less than 0.5 dtex and fibers of 0.5 to 20 dtex. When contained, they exhibit moderately excellent effects in absorbing high-viscosity liquids such as oil, scraping effects, capillary action, inclusion of functional agents, and the like. For this reason, it can be preferably used as a material for a cleaning rod, an ink tank filling, an oil adsorbent, and a filter. In particular, when used as an ink tank filling or an oil adsorbent, the splittable conjugate fiber is preferably partially split. Since the splittable conjugate fibers are partially split and finely divided, narrow portions and wide portions are randomly present between the fibers, and the adverse effects of the melt-blown ultrafine fibers do not occur. In addition, division | segmentation fineness may be adjusted by the division | segmentation rate of division | segmentation type composite fiber, and may be adjusted by the cotton blend of another fiber.
[0023]
In the present invention, the single-fiber fineness of the splittable conjugate fiber before splitting is from 0.5 to 20 dtex, preferably from 1 dtex to 10 dtex. If the single yarn fineness before splitting is less than 0.5 dtex, the spinnability in the melt spinning step tends to decrease. Further, if the single yarn fineness before splitting is significantly lower than 0.5 dtex, it becomes difficult to control the fiber spacing. Further, when the dextrose significantly exceeds 20 dtex, it is difficult to control the porosity of the obtained rod-shaped fibrous form, and the fiber is divided so that the single fiber fineness of the divided and finely divided fibers (after division) is less than 0.5 dtex. It is necessary to increase the number, and it becomes difficult to manufacture. In the present invention, from the viewpoint of water absorption and oil absorption, the rod-shaped fiber molded body preferably contains 10 to 95% by weight of the finely divided fibers of less than 0.5 dtex. More preferably, it is contained by weight.
[0024]
There is no particular limitation on the method for dividing the splittable conjugate fiber into fine fibers. For example, at the time of crimping, the crimp edge portion may be partially split by stress at the time of applying crimp. When producing a web with a card machine, a part of the crimped short fiber may be divided by the stress of rotation of the cylinder of the card machine. Further, after the web is divided by a needle punch or a hydroentanglement method, the web may be processed into a rod-shaped fiber molded body. Further, after forming the rod-shaped fiber molded body, it is also possible to apply a stress to make only the portion to be divided finer. In particular, when used for cleaning fine parts and uneven parts, the rod-shaped fiber molded article of the present invention can be suitably used, and when scraping dirt, the division further progresses because stress is applied, so that the dirt is scraped. As a result, the scraping performance is further improved.
[0025]
The rod-shaped fiber molded article of the present invention may be constituted by a cotton blend or a fiber mixture from the splittable conjugate fiber and the fiber made of the thermoplastic resin. These may be used in combination of two or more. The fibers made of the thermoplastic resin to be mixed are not particularly limited, and for example, single component type or composite type fibers can be used. The cross-sectional shape of the fiber made of the thermoplastic resin may be circular or irregular. The cross-sectional structure of the composite type (composite fiber) may be any of a sheath-core type, an eccentric sheath-core type, a side-by-side type, a multilayer type, a sea-island type, a radial type, a hollow radial type, and the like. In the case of mixing fibers as an adhesive component or a welding component, in order to bond the splittable conjugate fibers to form a rod-shaped fiber molded body, the thermoplastic resin fiber is a thermoplastic resin constituting the splittable conjugate fibers. Fibers containing the same type of resin are preferred. In addition, when the mixed fiber is melted by heat treatment and bonded, a resin that is melted at a lower temperature than the low melting point resin of the splittable conjugate fiber is used as an adhesive component, thereby forming a component constituting the splittable conjugate fiber. This is preferable because the rod-shaped fiber molded body can be formed without melting the resin, and further the division and fineness can be easily promoted. Further, by using a composite fiber as the adhesive fiber, the strength of the fiber molded body can be further increased. The amounts of the cotton blend and the fiber blend are adjusted so that the rod-shaped fiber molded product finally obtained contains at least 10, preferably at least 15% by weight of the finely divided fibers of less than 0.5 dtex. There is a need.
[0026]
When imparting hydrophilicity to the rod-shaped fiber molded body, it is preferable to mix or mix hydrophilic fibers. Here, the hydrophilic fiber is not limited as long as it is a fiber showing hydrophilicity.For example, rayon, regenerated fiber typified by Cubra, acetate, semi-synthetic fiber typified by triacetate, polyamide, acrylic, etc. Natural fibers such as synthetic fibers, cotton, wool, and hemp can be used. Also, the rod-like fiber molded body can be made hydrophilic by impregnating the rod-shaped fiber molded body with a hydrophilic agent.
[0027]
The rod-shaped fiber molded article of the present invention may be composed of any of split fibers of short fibers or split fibers of long fibers, and may be composed of a nonwoven fabric made of the split fibers. Is also good. The long fiber web composed of the splittable conjugate fibers can be produced by a spunbond method, a tow opening method, a melt blow method, or the like. The short fiber web composed of splittable conjugate fibers can be manufactured by a method such as carding, air laid, or wet lamination. By using these webs and bonding the fiber intersections by heat treatment or solvent treatment, a rod-shaped fiber molded body can be obtained. In addition, the nonwoven fabric refers to a formed body in which a web composed of splittable conjugate fibers is entangled, fused, adhered, and bonded between fibers. Examples of the bonding method for bonding the fibers include thermal bonding, mechanical bonding, and chemical bonding. As the thermal bonding method, a conventionally known method can be employed, and specific examples thereof include a hot air circulation method (through air method), a point bonding method, and a calendar method. Here, the web or nonwoven fabric may be a mixture of the above fibers or a laminate thereof.
[0028]
In order to easily control the porosity of the rod-shaped fiber molded article of the present invention at the time of production, it is preferable to impart crimp to the splittable conjugate fiber. By applying crimp, it can be formed into a rod-shaped fiber molded body having uniform voids. When the functional agent is included in the rod-shaped fiber molded body, the higher the porosity, the higher the filling rate of the functional material, and the three-dimensional fiber network can be formed by crimping. Can be prevented from falling off.
[0029]
Next, a method for forming a rod-shaped fiber molded article of the present invention will be described. As a molding method, a conventionally known method can be used. A cloth (web or nonwoven fabric) containing the splittable conjugate fiber is formed into a rod shape, and is formed into a fiber molded body by heat treatment or solvent treatment. The method of forming the cloth into a rod shape includes a method of winding the cloth so as to be orthogonal to the machine direction of the cloth, a method of converging the cloth so as to be orthogonal to the machine direction of the cloth, and a method of winding the cloth parallel to the machine direction of the cloth. Examples include a method and a method of converging the fabric so as to be orthogonal to the machine direction of the fabric. In the method of winding the cloth so as to be orthogonal to the machine direction of the cloth, it is difficult to orient the fibers in the long axis direction of the rod-shaped fiber molded body, but in the method of converging the cloth in parallel to the machine direction, the long axis of the rod-shaped fiber molded body is used. This is preferable because the fiber direction substantially matches the direction. As another method, after once forming into an arbitrary shape, it may be cut into an arbitrary rod shape and manufactured.
[0030]
In the rod-shaped fiber molded article of the present invention, it is preferable that the degree of orientation between the major axis direction of the rod-shaped fiber molded article and the fiber axis direction of the fibers constituting the rod-shaped fiber molded article is 45 degrees or less. Thereby, the tensile strength in the major axis direction of the fiber molded body can be increased, and the fiber molded body can be hardly broken. When the degree of orientation is 45 degrees, morphological stability when used as a cleaning rod is easily obtained, and long-time heat molding at a high temperature becomes unnecessary. Examples of a method for producing a rod-shaped fiber molded body having an orientation degree of 45 degrees or less include a method of heat-forming a tow or sliver-like web.
[0031]
As an example of a method for producing a splittable conjugate fiber constituting the rod-shaped fiber molded article of the present invention, a method for producing a splittable conjugate fiber combining two components of a polypropylene resin and a high-density polyethylene resin will be described below. The two components are spun by a conventional melt spinning machine and spun out as long fibers. In spinning, the spinning temperature is preferably in the range of 180 to 300 ° C, and the take-up speed is preferably in the range of about 40 m / min to 1500 m / min. Stretching may be performed in multiple stages as necessary, and the stretching ratio is usually preferably about 3 to 9 times. Further, the obtained tow is crimped as required and then cut to a predetermined length to be used as short fibers. Although the above has been a description of the manufacturing process of the short fiber, the web may be formed by using a fiber separating guide or the like without cutting the tow. After that, if necessary, it is formed into a rod-shaped fiber molded body according to various uses through a known and used high-order processing step. Also, a multifilament yarn may be used instead of a single fiber.
[0032]
In this step, after spinning the fiber, a surfactant or a hydrophilizing agent can be used for the purpose of preventing generation of static electricity of the fiber, improving processability into a fiber molded body, imparting smoothness, imparting hydrophilicity, and the like. . The type and concentration of the surfactant are appropriately adjusted according to the application. The surfactant can be used by being attached to the fiber surface in an appropriate amount, and the adhesion method can be a roller method, a dipping method, or the like. The attachment may be performed in any of the spinning step, the stretching step, and the crimping step. In addition to the spinning step, the drawing step, and the crimping step, a surfactant may be attached to a fiber molded article after molding, for example, regardless of whether the fiber is a short fiber or a long fiber.
[0033]
Next, an example of a method for producing a rod-shaped fiber molded article will be described. Using the short fibers of the splittable composite fibers, a web having a required basis weight is produced by a card method. The web produced by the card machine is converted into a sliver having an arbitrary diameter by a known method, and is subjected to a heat treatment at a temperature at which the low melting point resin constituting the splittable conjugate fiber is melted to produce a rod-shaped fiber molded body. In addition, at this time, a resin powder that melts at a lower melting point than the fibers constituting the web is mixed with the web in advance, and the web is made into a sliver, and then heat-treated in a cylindrical container at a temperature at which the powder melts, and a rod-like shape is formed. It can also be manufactured by taking out after forming into a fiber molded body.
[0034]
For the welding, a solvent capable of dissolving the thermoplastic resin may be appropriately selected and used as needed. The rod can be formed into a rod-shaped fiber molded body by dissolving the fibers and welding between the fibers. For example, in the case of polyolefin fibers, the fibers can be fused to each other using trichloroethylene, toluene, cyclohexane, xylene, petroleum ether, or the like, and formed into a rod-shaped fiber molded body.
[0035]
The porosity of the fiber molded article of the present invention is not particularly limited, but is preferably in the range of 45 to 95%. When the porosity is 45% or more, for example, when used for an oil adsorbent or a cleaning rod, a gap is sufficient, a space for collecting and holding oil or dust can be secured, and when the porosity is 95% or less. The rigidity of the rod-shaped fiber molded body is high, and when used for cleaning, for example, it becomes difficult to break. In addition, it is easy to create uniform voids
[0036]
When the rod-shaped fiber molded article of the present invention is used for cleaning, the tip may be polished in a conical shape, or the tip of the rod-shaped fiber molded article may be 30 to 30 mm in the longitudinal direction of the rod-shaped fiber molded article. It may be cut off at an acute angle in the range of 150 degrees. By making the tip portion an acute angle, it is possible to easily remove dirt from a fine portion.
[0037]
Further, by attaching or including the functional agent to the rod-shaped fiber molded article of the present invention, it is possible to impart a function which is difficult to be imparted by blending or blending other fibers. Conventionally known functional agents can be used. For example, antibacterial deodorants, fungicides, deodorants, adsorbents, abrasives, ion exchange resins, high-molecular water-absorbing polymers, and the like can be used. When the functional agent is a solution, it may be used by impregnating a porous substrate. Examples of the porous substrate include allophane, imogolite, artificial zeolite, natural zeolite, synthetic zeolite, activated carbon, and the like. The porous substrate can be used as the adsorbent. As a method of including the functional agent in the rod-shaped fiber molded body, when the functional agent is a powder such as zeolite, the splittable conjugate fiber processed into the web is divided into fine fibers and nonwoven fabric by a hydroentanglement treatment, and this is heated with hot air or the like. After drying, the functional agent is evenly sprayed on the nonwoven fabric with a sieve or the like, and then the nonwoven fabric is packed in a glass tube, and heated and cooled at an appropriate temperature. At this time, the performance of the functional agent can be sufficiently exhibited by producing the rod-shaped fiber molded article by incorporating the functional agent so that voids are generated on the surface of the functional agent.
[0038]
Examples of antibacterial deodorants and fungicides include inorganic antibacterial agents such as silver, copper, and zinc, benzalkonium chloride, organic silicon-based quaternary ammonium salts, polyhexamethylene biguanidine hydrochloride, and chlorhexidine gluconate. Typical examples include organic antibacterial agents and natural antibacterial agents such as chitin, chitosan, polylysine, hiba oil, eucalyptus, catechin, and aloe. Examples of the deodorant include a betaine-based surfactant, a carbonyl compound, a photocatalyst represented by titanium dioxide, activated carbon, zeolite, catechin, an inorganic deodorant, copper-phthalocyanine, iron-phthalocyanine, and metal ions. .
[0039]
Examples of the abrasive include garnet, emery, fused alumina, silicon carbide and the like.
[0040]
When a functional agent is included, the loss of the functional agent can be further suppressed by using fibers made of a thermoplastic resin having excellent affinity with the functional agent. Examples of such a thermoplastic resin include an ethylene-vinyl alcohol copolymer, polyvinyl acetate, a polyacrylate, an ethylene-vinyl acetate copolymer, and an ethylene-maleic anhydride graft copolymer.
[0041]
The rod-shaped fiber molded article of the present invention can be suitably used for an oil adsorbent and a filter for filtration, but the performance can be further improved by attaching or including a functional agent. For example, a rod-shaped fiber molded article containing an artificial zeolite can greatly improve the oil absorption, has excellent cation adsorption ability, and can be suitably used as a filter capable of selectively adsorbing a specific substance. .
[0042]
As described above, the rod-shaped fiber molded article of the present invention can be suitably used for a cleaning rod or an ink tank because a part of the splittable conjugate fiber is divided into fine fibers. Further, when used for filling in ink tanks, particularly when using aqueous inks, it is preferable to make the rod-shaped fiber molded body hydrophilic. Examples of the method include fiber mixing of hydrophilic fibers, cotton mixing, attachment of a surfactant, kneading of a hydrophilic agent, and the like. In addition, if the surfactant applied for fiber processing is inconvenient, it may be washed off before and after processing into a rod-shaped fiber molded body. Then, since the surfactant is almost completely washed off, a separate washing-off process is not required.
[0043]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The terms used in the examples and comparative examples and methods for measuring physical properties are as follows.
[0044]
(A) Melting point: Measured according to JIS K7122 using a thermal analyzer DSC10 (trade name) manufactured by DuPont.
[0045]
(B) Melt flow rate (MFR): Measured according to JIS K7210.
Raw material polypropylene resin: Condition 14 in Table 1
Raw material polyethylene resin: Condition 4 in Table 1
[0046]
(C) Density: Measurement was performed using a density gradient tube according to JIS K 6760.
[0047]
(D) Intrinsic viscosity of polyethylene terephthalate: Measured at a concentration of 0.5 g / 100 ml and a temperature of 20 ° C. using an equal weight mixed solvent of phenol and ethane tetrachloride.
[0048]
(E) Fineness after division: Calculated by the following formula.
Fineness after division (dtex) = Fineness before division / number of divisions
[0049]
(F) Division ratio: The rod-shaped fiber molded product was cut with a razor perpendicular to the long axis of the rod-shaped fiber molded product, and the cross section was photographed with an electron microscope. From the obtained photographs, 50 splittable conjugate fibers were arbitrarily selected, and calculated from the average fineness using the following equation.
Division ratio (%) = (fineness after division / average fineness) × 100
[0050]
(G) Water absorption (mm): Measured according to the BIREC method described in JIS L 1096. That is, a sample piece (sample length 20 cm, sample diameter 15 mm) is placed in a water tank filled with water at 20 ± 2 ° C. so that 1 cm at the lower end of the sample piece is just immersed in water. The height (mm) at which the water rose after standing for 10 minutes was measured three times, and the average of the three points was used to represent the water absorption. Note that water deionized by passing through an ion exchange resin was used.
[0051]
(H) Amount of water absorption: A sample piece (sample length 5 cm, sample diameter 15 mm) was immersed in water at 20 ± 2 ° C. for 10 minutes to absorb water, then pulled up and suspended, drained for 10 minutes, and weighed. The weight of water absorbed per 1 g of the absolutely dried sample was measured, and the weight was taken as the liquid absorption (g / g). Note that water deionized by passing through an ion exchange resin was used.
[0052]
(I) Oil absorption: Measured according to the Bilek method described in JIS L 1096. That is, a sample piece (sample length 20 cm, sample diameter 15 mm) is placed in a water tank containing salad oil at 20 ± 2 ° C. so that the lower end 1 cm of the sample piece is just immersed in the oil. The height (mm) at which the oil rose after standing for 10 minutes was measured three times, and the oil absorption was represented by the average value of the three measurements.
[0053]
(J) Oil absorption: A sample piece (sample length: 5 cm, sample diameter: 15 mm) was immersed in salad oil at 20 ° C. ± 2 ° C. for 10 minutes to absorb oil, then lifted up and suspended, and then drained for 10 minutes. And the weight was measured, and the weight of the oil absorbed per gram of the absolutely dried sample was measured to determine the oil absorption (g / g).
[0054]
(K) Oil wiping property: 0.5 g of salad oil is dropped on a 5 cm × 5 cm glass plate, and an oil film is formed on the glass surface with cotton flannel. A sample piece (sample length 20 cm, sample diameter 12 mm) of the rod-shaped fiber molded product was held by hand, and it was determined whether or not the oil film could be wiped off at the tip of the rod-shaped fiber molded product according to the following criteria.
:: Can be wiped off without leaving any streaks on the glass surface.
Δ: There is a slight wiping residue on the glass surface.
X: It cannot be wiped off clearly.
[0055]
(L) Morphological stability: In the test performed in (k), the following criteria were used to judge whether or not the rod-shaped fiber molded body retained its shape without breaking or distorting.
:: Good workability without breakage due to stress at wiping, no further distortion.
Δ: Slight distortion due to stress during wiping, but workability is not significantly reduced.
X: The workability was poor due to breakage due to the stress at the time of wiping.
[0056]
(M) Orientation degree: The rod-shaped fiber molded body is cut in parallel to the long axis, the rod-shaped fiber molded body is first divided into two equal parts, and further perpendicular to the plane cut parallel to the long axis and the long axis. , And cut into two equal parts, and the rod-shaped fiber molded body is divided into four equal parts. The cut surface is observed with an electron microscope, 50 fibers are arbitrarily selected, and the angle (0 to 90 degrees) formed with the long axis direction of the rod-shaped fiber molded body is obtained. The other three sections were measured similarly. The average was used to represent the degree of orientation.
[0057]
(N) Water entanglement treatment: The web was placed on a conveyor belt made of 80-mesh plain weave, and passed under a nozzle having a nozzle diameter of 0.1 mm and a nozzle pitch of 1 mm at a conveyor net speed of 5 m / min. . First, 1 stage was processed at 4 MPa, and 4 stages were processed at 8 MPa. Here, the stage refers to the number of times that the ink has passed just below the nozzle.
[0058]
Example 1
Using a polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as an A component, a high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as a B component, and using a splittable composite fiber die, Spinning a splittable conjugate fiber having a volume ratio of 50/50 and a cross-sectional structure as shown in FIG. 3, and attaching an alkyl phosphate potassium salt to an undrawn splittable conjugate fiber (undrawn yarn) in a take-off step; An undrawn yarn having a single yarn fineness of 8 dtex was used. The obtained undrawn yarn was drawn at 90 ° C., 4 times, to give a drawn yarn tow having a total yarn density of 50,000 dtex and a single yarn fineness of 2 dtex. The tow was opened with a fiber opening machine, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, and taken out from the glass tube after cooling. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0059]
Example 2
The undrawn yarn produced in Example 1 was drawn at 90 ° C., 4 times, applied mechanical crimp (15 ridges / 2.54 cm), and then cut into 51 mm to obtain 2dtex short fibers. The short fibers were formed into a web by a roller card machine, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, and taken out from the glass tube after cooling. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0060]
Comparative Example 1
Using a polypropylene resin (propylene homopolymer, melting point: 163 ° C., MFR: 36 g / 10 min) as a core component and a high-density polyethylene resin (melting point: 131 ° C., MFR: 26 g / 10 min) as a sheath component, using a sheath-core type composite fiber base A sheath / core composite fiber having a volume ratio of 50/50 was spun. In the take-off step, an alkyl phosphate potassium salt was attached to the undrawn sheath-core conjugate fiber (undrawn yarn) to obtain an undrawn yarn having a single yarn fineness of 8 dtex. The obtained undrawn yarn was drawn at 90 ° C., 4 times, applied mechanical crimp (13 ridges / 2.54 cm), and then cut into 51 mm to obtain 2dtex short fibers. The short fibers were formed into a web by a roller card machine, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, and taken out from the glass tube after cooling. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0061]
Example 3
According to Example 2, short fibers of 12 dtex having a cross-sectional structure as shown in FIG. 4 were produced. The obtained short fibers were formed into a web with a roller card machine, subjected to a hydroentanglement treatment to be divided into fine fibers, and simultaneously formed into a nonwoven fabric. The obtained nonwoven fabric was further dried at 90 ° C., packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0062]
Comparative Example 2
According to Example 2, short fibers of 22 dtex having a cross-sectional structure as shown in FIG. 4 were produced, and a fiber molded body was produced from the short fibers.
[0063]
Example 4
Core component: polypropylene resin (propylene homopolymer, melting point: 163 ° C., MFR: 36 g / 10 min), linear low density polyethylene resin (melting point: 100 ° C., MFR: 30 g / 10 min, density: 0.910 g / cm) 3 ) Was used as a sheath component, and an undrawn sheath-core conjugate fiber (undrawn yarn) having a volume ratio of 50/50 was spun using a die for a sheath-core conjugate fiber. In the take-off step, an alkyl phosphate potassium salt was attached to the undrawn sheath-core conjugate fiber to obtain an undrawn yarn having a single yarn fineness of 7 dtex. The obtained undrawn yarn was drawn at 90 ° C. and 3.5 times, and after giving a mechanical crimp (13 peaks / 2.54 cm), it was cut into 51 mm to obtain a 2dtex short fiber. The obtained short fibers (30% by weight) and the splittable conjugate fibers (70% by weight) produced in Example 2 are mixed to form a web with a roller card machine, packed in a glass tube having a diameter of 15 mm, and placed at 125 ° C. for 15 minutes. After heating and cooling, it was taken out of the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0064]
Example 5
50% by weight of the splittable conjugate fiber prepared in Example 2 and 50% by weight of rayon (1.7 dtex, fiber length: 44 mm) were mixed, made into a web by a roller card machine, packed in a glass tube having a diameter of 15 mm, and placed at 125 ° C. For 15 minutes, and then taken out of the glass tube after cooling. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0065]
Example 6
According to Example 2, a rod-shaped fiber molded product having a porosity of 40% was produced.
[0066]
Example 7
Using a polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as an A component, a high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as a B component, and using a splittable composite fiber die, Spinning a splittable conjugate fiber having a volume ratio of 50/50 and a cross-sectional structure as shown in FIG. 3, and attaching an alkyl phosphate potassium salt to an undrawn splittable conjugate fiber (undrawn yarn) in a take-off step; An undrawn yarn having a single yarn fineness of 35 dtex was used. The obtained undrawn yarn was drawn at 90 ° C., 5 times, applied mechanical crimp (15 ridges / 2.54 cm), and then cut to 51 mm to obtain short fibers of 7 dtex. The short fibers were formed into a web by a roller card machine, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, and taken out from the glass tube after cooling. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0067]
Example 8
Polyethylene terephthalate (K101, manufactured by Kanebo Co., Ltd.) having a relative viscosity of 0.60 was used as an A component, and a polypropylene resin (propylene homopolymer, melting point 163 ° C., MFR 16 g / 10 minutes) was used as a B component, and the volume ratio was 50/50. A split type conjugate fiber having a cross-sectional structure as shown in Fig. 3 is spun, and in a take-off step, an alkyl phosphate potassium salt is attached to an undrawn split type conjugate fiber (undrawn yarn), and the undrawn yarn having a single fiber fineness of 7 dtex is drawn. Thread. The obtained undrawn yarn was drawn at 90 ° C. and 3.5 times, and after giving a mechanical crimp (13 peaks / 2.54 cm), it was cut into 38 mm to obtain a 2dtex short fiber. The obtained short fibers were formed into a web by a roller card machine, packed in a glass tube having a diameter of 15 mm, heated at 185 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0068]
Example 9
Component A is a polypropylene resin (propylene homopolymer, melting point: 163 ° C., MFR: 16 g / 10 min), and high-density polyethylene resin (melting point: 131 ° C., MFR: 26 g / 10 min) and modified polyethylene (density: 0.931 g / cm) 3 Having a maleic anhydride graft modification rate of 0.15 mol / kg, wherein the linear low-density polyethylene is a trunk polymer. MFR (14 g / 10 min) in a weight ratio of 80/20 is used as the B component, and a split type composite fiber having a volume ratio of 50/50 and a sectional structure as shown in FIG. Was spun, and in a take-off step, an alkyl phosphate potassium salt was attached to an undrawn splittable conjugate fiber (undrawn yarn) to obtain an undrawn yarn having a single yarn fineness of 7 dtex. The obtained undrawn yarn was drawn at 90 ° C., 3.5 times, applied with a mechanical crimp (15 ridges / 2.54 cm), and then cut into 51 mm to obtain a 2dtex short fiber. The short fibers were opened with a carding machine to form a web, subjected to a hydroentanglement treatment to be divided into fine fibers, and simultaneously formed into a nonwoven fabric. After further drying the obtained nonwoven fabric at 90 ° C., an artificial zeolite (average particle diameter of 10 to 30 μm, average pore diameter of 20 × 10 3) of 1/3 of the fiber weight was used. -8 ~ 50 × 10 -8 cm, specific surface area 40-100m 2 / G) was evenly sprayed through a sieve, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C for 15 minutes, and taken out from the glass tube after cooling. Table 1 shows the performance of the obtained rod-shaped fiber molded body. Since this rod-shaped fiber molded product was composed of ultrafine fibers, the included artificial zeolite fell off the surface of the rod-shaped fiber molded product very little.
[0069]
Example 10
The undrawn yarn produced in Example 1 was drawn at 90 ° C., 4 times, applied with a mechanical crimp (15 ridges / 2.54 cm), and then cut into 5 mm to obtain a 2dtex short fiber. The short fibers were opened into a web by an air laid machine, packed in a glass tube having a diameter of 15 mm, heated at 155 ° C. for 15 minutes, cooled, and taken out from the glass tube. Table 1 shows the performance of the obtained rod-shaped fiber molded body.
[0070]
Example 11
The rod-shaped fiber molded bodies of Example 1 and Comparative Example 1 were used as cleaning rods for removing oil stains on tools. As a result, the rod-shaped fiber molded article of the example was superior to the rod-shaped fiber molded article of Comparative Example 1 in removing dirt.
[0071]
Example 12
The rod-shaped fiber molded body (diameter 15 mm × length 5 cm) produced in Example 10 is pushed into the vicinity of the center of a silicon tube (inner diameter 15 mm, length 15 cm) to produce a simple filtration filter. Mix 50 g of the salad oil used in the oil absorption test and 50 g of deionized water and shake well, pour the oil-water mixture from the top of the silicon tube, perform natural filtration, and collect the liquid dropped from below. . The salad oil was adsorbed on the filter and the only liquid collected was water.
[0072]
As described above, as can be seen from Examples 1 to 11, the rod-shaped fiber molded article of the present invention is excellent in water absorption, oil absorption and wiping properties, and thus is suitable for cleaning rods, filling for ink tanks, and oil absorbing materials. Further, since it has an excellent filtering function as in Embodiment 12, it is also suitable as a filter.
[0073]
[Table 1]
Figure 2004060115
[0074]
【The invention's effect】
In the rod-shaped fiber molded article of the present invention, a part of the splittable conjugate fiber is divided into fine fibers to increase the surface area, and a void layer is formed between the divided fine fibers. Excellent in water absorption and oil absorption. For this reason, it can be suitably used for cleaning sticks and filling for ink tanks. Furthermore, since various functional agents can be included in the void layer of the divided fine fibers, various functions can be imparted. In addition, since the voids are not uniform, the finely divided fibers can be suitably used as an oil adsorbent or a filter.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 2 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 3 is a schematic view of a section of a splittable conjugate fiber used in the present invention.
FIG. 4 is a schematic view of a section of a splittable conjugate fiber used in the present invention.
FIG. 5 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 6 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 7 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
[Description of sign]
1: hollow

Claims (8)

熱可塑性樹脂からなる分割型複合繊維を含む繊維の接点の一部が融着または溶着した棒状繊維成形体であって、該分割型複合繊維の一部分が分割し、該棒状繊維成形体中に未分割状態の分割型複合繊維と分割細繊化した繊維とが含まれており、未分割状態の分割型複合繊維の繊度は0.5〜20dtexであり、分割細繊化した繊維の繊度は0.5dtex未満であることを特徴とする棒状繊維成形体。A rod-shaped fiber molded product in which a part of the contact point of the fiber containing the splittable conjugate fiber made of a thermoplastic resin is fused or welded, and a part of the splittable conjugate fiber is split, and the rod-shaped fiber shaped product is left unprocessed. The split type composite fiber in the split state and the split fine fiber are included, and the fineness of the split type composite fiber in the undivided state is 0.5 to 20 dtex, and the fineness of the split fine fiber is 0. A rod-shaped fiber molded article having a particle diameter of less than 5 dtex. 棒状繊維成形体の長軸方向と、該棒状繊維成形体を構成する繊維の繊維軸方向との配向度が45度以下であることを特徴とする請求項1記載の棒状繊維成形体。The rod-shaped fiber molded product according to claim 1, wherein the degree of orientation between the major axis direction of the rod-shaped fiber molded product and the fiber axis direction of the fibers constituting the rod-shaped fiber molded product is 45 degrees or less. 棒状繊維成形体が、45〜95%の空隙率である請求項1または請求項2記載の棒状繊維成形体。The rod-shaped fiber molded article according to claim 1 or 2, wherein the rod-shaped fiber molded article has a porosity of 45 to 95%. 棒状繊維成形体に機能剤が付着または包含されている請求項1〜3のいずれか1項記載の棒状繊維成形体。The rod-shaped fiber molded article according to any one of claims 1 to 3, wherein the functional agent is attached to or contained in the rod-shaped fiber molded article. 請求項1〜4のいずれか1項記載の棒状繊維成形体を用いた掃除用棒。A cleaning rod using the rod-shaped fiber molded product according to claim 1. 請求項1〜4のいずれか1項記載の棒状繊維成形体を用いたインクタンク用詰物。An ink tank filling using the rod-shaped fiber molded product according to any one of claims 1 to 4. 請求項1〜4のいずれか1項記載の棒状繊維成形体を用いた油吸着材。An oil adsorbent using the rod-shaped fiber molded product according to any one of claims 1 to 4. 請求項1〜4のいずれか1項記載の棒状繊維成形体を用いたフィルター。A filter using the rod-shaped fiber molded product according to any one of claims 1 to 4.
JP2002221891A 2002-07-30 2002-07-30 Rod-like fiber molded body Expired - Fee Related JP4207485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221891A JP4207485B2 (en) 2002-07-30 2002-07-30 Rod-like fiber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221891A JP4207485B2 (en) 2002-07-30 2002-07-30 Rod-like fiber molded body

Publications (2)

Publication Number Publication Date
JP2004060115A true JP2004060115A (en) 2004-02-26
JP4207485B2 JP4207485B2 (en) 2009-01-14

Family

ID=31942081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221891A Expired - Fee Related JP4207485B2 (en) 2002-07-30 2002-07-30 Rod-like fiber molded body

Country Status (1)

Country Link
JP (1) JP4207485B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053741A1 (en) * 2006-10-30 2008-05-08 Kinsei Seishi Co., Ltd. Highly rigid air filters
JP2010115585A (en) * 2008-11-12 2010-05-27 Mitsui Chemicals Inc Oil adsorbing material
JP2012024655A (en) * 2010-07-20 2012-02-09 Kureha Corp Oil collecting material containing polyglycolic acid
JP2012096223A (en) * 2010-10-04 2012-05-24 Swing Corp Method for producing fiber filter medium, and fiber filter medium
JP2012143541A (en) * 2010-12-24 2012-08-02 St Corp Deodrant composition and deodrizing method
JP2014240537A (en) * 2013-05-17 2014-12-25 アンビック株式会社 Filament nonwoven fabric, oil absorber obtained by using the same, and method for producing filament nonwoven fabric
JP2015097996A (en) * 2013-11-19 2015-05-28 株式会社大貴 Material for water absorption treatment
JP2016102286A (en) * 2014-11-13 2016-06-02 ダイワボウホールディングス株式会社 Nonwoven fabric, manufacturing method thereof, and sheet for absorbent article
CN108481913A (en) * 2012-12-27 2018-09-04 精工爱普生株式会社 Printing ink absorbing means, ink-jet printer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053741A1 (en) * 2006-10-30 2008-05-08 Kinsei Seishi Co., Ltd. Highly rigid air filters
JP5344465B2 (en) * 2006-10-30 2013-11-20 金星製紙株式会社 Air filter with high rigidity
JP2010115585A (en) * 2008-11-12 2010-05-27 Mitsui Chemicals Inc Oil adsorbing material
JP2012024655A (en) * 2010-07-20 2012-02-09 Kureha Corp Oil collecting material containing polyglycolic acid
JP2012096223A (en) * 2010-10-04 2012-05-24 Swing Corp Method for producing fiber filter medium, and fiber filter medium
JP2012143541A (en) * 2010-12-24 2012-08-02 St Corp Deodrant composition and deodrizing method
CN108481913A (en) * 2012-12-27 2018-09-04 精工爱普生株式会社 Printing ink absorbing means, ink-jet printer
JP2014240537A (en) * 2013-05-17 2014-12-25 アンビック株式会社 Filament nonwoven fabric, oil absorber obtained by using the same, and method for producing filament nonwoven fabric
JP2015097996A (en) * 2013-11-19 2015-05-28 株式会社大貴 Material for water absorption treatment
JP2016102286A (en) * 2014-11-13 2016-06-02 ダイワボウホールディングス株式会社 Nonwoven fabric, manufacturing method thereof, and sheet for absorbent article
JP2020076195A (en) * 2014-11-13 2020-05-21 ダイワボウホールディングス株式会社 Nonwoven fabric, manufacturing method thereof, and sheet for absorbent article
JP7021418B2 (en) 2014-11-13 2022-02-17 大和紡績株式会社 Nonwoven fabric and its manufacturing method, as well as sheets for absorbent articles

Also Published As

Publication number Publication date
JP4207485B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
CN101617072B (en) An improved composite filter media with high surface area fibers
US7888275B2 (en) Porous composite materials comprising a plurality of bonded fiber component structures
JP5579870B2 (en) High-performance spunbond fabric produced from particle-containing fibers and method for producing the same
KR101800034B1 (en) Apparatus, system, and method for forming nanofibers and nanofiber webs
JP5866338B2 (en) Nonwoven fiber web containing chemically active particulates and methods of making and using the same
JP5854458B2 (en) Method for producing polyester long fiber nonwoven fabric
JP6390612B2 (en) Mixed fiber nonwoven fabric and method for producing the same
JP2016536486A (en) Bicomponent fiber, product formed therefrom and method of making the same
JPH06316851A (en) Preparation of absorptive article
JP4207485B2 (en) Rod-like fiber molded body
JP2011214217A (en) Method for producing bulky nonwoven fabric
WO2008097821A1 (en) Porous reservoirs formed from side-by- side bicomponent fibers
EP0565720A1 (en) Porous fiber and method of making thereof
JP4281474B2 (en) Nonwoven fabric and method for producing the same
JPH0593350A (en) Nonwoven fabric for wiping
KR101723335B1 (en) Splittable conjugate fiber and manufacturing method thereof, and nonwoven fabrics and manufacturing method thereof
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP4839709B2 (en) Filter and manufacturing method thereof
JPH02221448A (en) Moisture-retentive nonwoven fabric
JP2007237167A (en) Nonwoven fabric for filter
JP3615262B2 (en) Wiping material
JP4663897B2 (en) FIBER STRUCTURE FOR COATING TOOL AND METHOD FOR PRODUCING THE SAME
JP3134964B2 (en) Ultrafine fiber nonwoven fabric and method for producing same
JP2001348725A (en) Water-repellent fiber and water-repellent fiber sheet prepared by using the same
JP2021004431A (en) Sea-island fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees