JP5344465B2 - Air filter with high rigidity - Google Patents
Air filter with high rigidity Download PDFInfo
- Publication number
- JP5344465B2 JP5344465B2 JP2008542053A JP2008542053A JP5344465B2 JP 5344465 B2 JP5344465 B2 JP 5344465B2 JP 2008542053 A JP2008542053 A JP 2008542053A JP 2008542053 A JP2008542053 A JP 2008542053A JP 5344465 B2 JP5344465 B2 JP 5344465B2
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- air
- fiber
- rigidity
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 claims description 120
- 239000004745 nonwoven fabric Substances 0.000 claims description 110
- 239000002131 composite material Substances 0.000 claims description 55
- 238000002844 melting Methods 0.000 claims description 50
- 230000008018 melting Effects 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 41
- 239000004744 fabric Substances 0.000 claims description 39
- 239000004750 melt-blown nonwoven Substances 0.000 claims description 38
- 229920002994 synthetic fiber Polymers 0.000 claims description 37
- 239000012209 synthetic fiber Substances 0.000 claims description 37
- -1 polypropylene Polymers 0.000 claims description 31
- 239000000853 adhesive Substances 0.000 claims description 24
- 239000000306 component Substances 0.000 claims description 24
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 18
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 18
- 239000004743 Polypropylene Substances 0.000 claims description 16
- 230000001070 adhesive effect Effects 0.000 claims description 10
- 230000001788 irregular Effects 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 239000004698 Polyethylene Substances 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 229920000728 polyester Polymers 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 5
- 239000008358 core component Substances 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 3
- 229920001634 Copolyester Polymers 0.000 claims description 2
- 238000003490 calendering Methods 0.000 claims 1
- 238000007731 hot pressing Methods 0.000 claims 1
- 239000000428 dust Substances 0.000 description 33
- 230000035699 permeability Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000012943 hotmelt Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000009960 carding Methods 0.000 description 2
- 239000002781 deodorant agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 239000012760 heat stabilizer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 239000000642 acaricide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/52—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
- B01D46/521—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0636—Two or more types of fibres present in the filter material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Materials (AREA)
- Nonwoven Fabrics (AREA)
Description
本発明は、空気中に存在する粒子状の物質を捕捉し清浄にするためのエアフィルターに関し、例えば工場、自動車、事務所などの空気清浄機器用濾材としても有効であるが、特にプリーツ加工されて、自動車のエンジン用あるいはキャビン用の空気清浄機器用濾材に適用するのが好適なエアレイド不織布からなる高剛性を有するエアフィルターに関する。 The present invention relates to an air filter for trapping and cleaning particulate matter present in the air, and is effective as a filter medium for air cleaning equipment such as factories, automobiles, offices, etc. In particular, the present invention relates to an air filter having high rigidity made of an airlaid nonwoven fabric that is suitable for use as a filter medium for an air cleaning device for an automobile engine or cabin.
一般に、上記の用途に使用される不織布エアフィルターの製法は、比較的長い繊維(例えば、繊維長30mm〜105mm)を使用してカーディング法によるウェブを形成したのち、繊維間結合の方法としてニードルパンチまたはウォータージェットにより機械的に繊維交絡を付与する方法、合成樹脂などのケミカル系接着剤で繊維間を結合する方法、あるいはバインダー繊維を混綿して熱接着する方法などが知られている。 In general, the non-woven air filter used for the above-mentioned application is formed by using a relatively long fiber (for example, a fiber length of 30 mm to 105 mm) to form a web by a carding method, and then using a needle as a fiber bonding method. A method of mechanically imparting fiber entanglement with a punch or water jet, a method of bonding fibers with a chemical adhesive such as a synthetic resin, or a method of heat bonding by mixing binder fibers are known.
ところで、これらの用途に使用される不織布エアフィルター材は、一般的にプリーツ形状を付与されたものが使用され、しかもフィルターの見掛け密度が低い。プリーツ形状を維持するために、バインダー繊維を使用したエアフィルターが、種々提案されている(例えば、特許文献1〜2)。
しかしながら、特許文献1は、性能的には優れているが、エアフィルターを構成するエアレイド不織布は、流体流入側が太い繊維、流体流出側が細い繊維から構成され、やや構造が複雑な面がある。また、特許文献1には、エアフィルターに剛性を付与するために、高融点かつ太繊度の合成繊維や、さらには非円形で異形断面の合成繊維を用いることについては、なんら記載も示唆もされていない。By the way, the nonwoven fabric air filter material used for these uses generally has a pleated shape, and the apparent density of the filter is low. In order to maintain the pleated shape, various air filters using binder fibers have been proposed (for example, Patent Documents 1 and 2).
However, Patent Document 1 is superior in performance, but the air laid nonwoven fabric constituting the air filter is composed of fibers having a thick fluid inflow side and fibers having a thin fluid outflow side, and has a slightly complicated structure. Patent Document 1 also describes and suggests the use of a synthetic fiber having a high melting point and a high fineness, or a synthetic fiber having a non-circular and irregular cross section in order to impart rigidity to the air filter. Not.
また、特許文献2には、繊維径の異なる熱可塑性繊維からなる異繊度混繊不織繊維集合体がひだ折り加工されたシートで、異繊度混繊不織繊維集合体シートが繊維交点で熱接着され、かつ表層部と裏層部で繊維径勾配を形成しているプリーツフィルターが提案されている。しかしながら、特許文献2も、構造が複雑な面があり、また、エアフィルターに剛性を付与するために、高融点かつ太繊度の合成繊維や、さらには非円形で異形断面の合成繊維を用いることについては、なんら記載も示唆もされていない。
本発明は、高融点・太繊度の合成繊維を主体とする、熱圧処理された剛性のあるエアレイド不織布そのものを用いるか、さらにはこれにメルトブロー不織布を組み合わせることにより、地合いの均一性がよく、ダスト集塵性に優れ、かつ圧損も少なく、さらに合成繊維100%の場合には接着剤を用いずにヒートシール法や超音波シール法のような効率的かつ副資材不要な方法で製袋できるという特徴や、同種繊維材料で形成すればリサイクル性をも有する、高剛性を有するエアフィルターを提供することにある。 The present invention uses a rigid airlaid nonwoven fabric itself, which is mainly composed of synthetic fibers having a high melting point and a high fineness, and has been subjected to heat pressure treatment, or by combining a melt-blown nonwoven fabric with this, and the uniformity of the texture is good. Excellent dust collection and low pressure loss. Furthermore, in the case of 100% synthetic fiber, bags can be made by an efficient method that does not require secondary materials, such as heat sealing and ultrasonic sealing, without using an adhesive. It is an object of the present invention to provide an air filter having high rigidity and also having recyclability if formed of the same kind of fiber material.
本発明は、(A)(a1)融点が160℃以上、単糸繊度が6〜40dtex、繊維長3〜15mmの合成繊維30〜70重量%と、(a2)熱接着性複合短繊維70〜30重量%[ただし、(a1)+(a2)=100重量%]を主体とするエアレイドウェブが熱圧処理され、JIS L1913に準拠して測定された剛性が10mm以下であるエアレイド不織布からなる高剛性を有するエアフィルターに関する。
ここで、(a1)合成繊維の単糸断面は、非円形で異形断面であることが好ましい。
また、(a1)合成繊維は、繊維形成性ポリエステルからなるものが好ましい。
さらに、(A)エアレイド不織布の目付けは、好ましくは50〜200g/m2である。
次に、本発明は、上記(A)エアレイド不織布の少なくとも一方の面に、(B)メルトブロー不織布が複合・一体化されてなる高剛性を有するエアフィルターに関する。
ここで、(B)メルトブロー不織布は、ポリプロピレンからなるものが好ましい。
また、(B)メルトブロー不織布の目付けは、好ましくは10〜50g/m2である。The present invention includes (A) (a1) a melting point of 160 ° C. or higher, a single yarn fineness of 6 to 40 dtex, a fiber length of 3 to 15 mm, 30 to 70% by weight of synthetic fiber, and (a2) a thermoadhesive composite short fiber 70 to 70%. An airlaid web mainly composed of 30% by weight [however, (a1) + (a2) = 100% by weight] is a high pressure made of an airlaid nonwoven fabric having a stiffness measured in accordance with JIS L1913 of 10 mm or less. The present invention relates to an air filter having rigidity.
Here, (a1) the single yarn cross section of the synthetic fiber is preferably a non-circular and irregular cross section.
The synthetic fiber (a1) is preferably made of a fiber-forming polyester.
Further, (A) the basis weight of the air laid nonwoven fabric is preferably 50 to 200 g / m 2 .
Next, the present invention relates to an air filter having high rigidity in which (B) a melt blown nonwoven fabric is combined and integrated on at least one surface of the (A) airlaid nonwoven fabric.
Here, (B) the melt blown nonwoven fabric is preferably made of polypropylene.
Moreover, the fabric weight of (B) melt blown nonwoven fabric becomes like this. Preferably it is 10-50 g / m < 2 >.
本発明のエアフィルターは、剛性に優れたエアレイド不織布そのもの、あるいはこれとメルトブロー不織布とを複合化することによって、次のような効果を奏する。
(1)本発明のエアフィルターを構成するエアレイド不織布は、高融点で太繊度の短繊維からなる(A)合成繊維と(B)熱接着複合短繊維を主体とするエアレイドウェブが熱圧処理されているので剛性があり、このもの単体で、プリーツ加工が容易で、低圧損で、粗な粉塵に対する濾過性能に優れる。
(2)エアレイド不織布は、通気性が良く、エアフィルターに適した構造体であり、さらにメルトブロー不織布の細繊度によるダスト集塵性を組み合わせることにより、優れた性能を発揮する。
(3)エアレイド不織布単独では、メルトブロー不織布のような微細繊度の繊維が適用できず、メルトブロー不織布の微細粉塵の高集塵性は期待できない。しかしながら、エアレイド不織布に、メルトブロー不織布を複合化して一体化すれば、プリーツ加工性、風圧に耐えるプリーツ剛性、粗塵と微細塵両方に有効な複合体を得ることができる。
(4)本発明のエアフィルターは、すべて合成繊維製の場合には、プリーツ加工が容易で、またヒートシール、超音波シールなどが可能で、ケミカル系接着剤を使用しないで済むので、モノマー、ホルマリンなどの微量残存の恐れが全くない。
(5)本発明に用いられるエアレイド不織布は、均一性が良いので、単なるスパンボンド不織布/メルトブロー不織布や、カード式不織布/メルトブロー不織布の組み合わせよりもフィルター性能が安定する。The air filter of the present invention has the following effects by combining the air-laid nonwoven fabric excellent in rigidity, or this and a melt blown nonwoven fabric.
(1) The airlaid nonwoven fabric constituting the air filter of the present invention is obtained by subjecting an airlaid web mainly composed of short fibers having a high melting point and a high fineness to (A) a synthetic fiber and (B) a heat-bonded composite short fiber. Therefore, it is rigid, and it can be easily pleated, has low pressure loss, and has excellent filtration performance against coarse dust.
(2) The air laid nonwoven fabric has good air permeability and is a structure suitable for an air filter, and further exhibits excellent performance by combining dust collecting properties due to fineness of the melt blown nonwoven fabric.
(3) The air-laid nonwoven fabric alone cannot be applied to fine fibers such as a meltblown nonwoven fabric, and high dust collection performance of the fine dust of the meltblown nonwoven fabric cannot be expected. However, if a melt-blown nonwoven fabric is compounded and integrated with an airlaid nonwoven fabric, a composite effective for pleatability, pleated rigidity that can withstand wind pressure, and both coarse and fine dust can be obtained.
(4) When all the air filters of the present invention are made of synthetic fibers, pleating is easy, heat sealing, ultrasonic sealing, etc. are possible, and it is not necessary to use chemical adhesives. There is no fear of remaining trace amounts of formalin.
(5) Since the air-laid nonwoven fabric used in the present invention has good uniformity, the filter performance is more stable than a simple spunbond nonwoven fabric / meltblown nonwoven fabric or a card-type nonwoven fabric / meltblown nonwoven fabric combination.
(A)エアレイド不織布
本発明に用いられる(A)エアレイド不織布は、低圧損であり、これは、シートの厚さ方向に空気を貫通させながらシート化するという製法上の特徴に起因する。結果的に、構成する繊維が面方向のみならず厚さ方向にも配列し、良好な通気性を示す。従って、使用する繊維の適正化をすれば、良好なダスト集塵性を有するエアフィルターとして有効である。
本発明は、特に高融点・太繊度の合成繊維と、低融点・中繊度の熱接着性複合短繊維とからなるエアレイドウェブを熱圧処理することによって、低圧損で高剛性を有する、粗な粉塵に対する濾過性能に優れたエアフィルターを提供するものである。また、他のフィルターの支持体としても極めて有用である。
また、(A)エアレイド不織布は、地合いが良好であり、メルトブロー不織布やスパンボンド不織布よりも地合いの均一性が良い。従って、品質の安定性につながる。 (A) Airlaid nonwoven fabric The (A) airlaid nonwoven fabric used in the present invention has a low-pressure loss, and this is due to the characteristics of the production method that the sheet is formed while allowing air to penetrate in the thickness direction of the sheet. As a result, the constituent fibers are arranged not only in the surface direction but also in the thickness direction, and exhibit good air permeability. Therefore, if the fiber to be used is optimized, it is effective as an air filter having good dust collection performance.
In particular, the present invention provides a high-rigidity and low-rigidity, high-rigidity coarsely-processed airlaid web composed of a synthetic fiber having a high melting point and a large fineness and a heat-adhesive composite short fiber having a low melting point and a medium fineness. The present invention provides an air filter excellent in filtration performance against dust. It is also extremely useful as a support for other filters.
Further, (A) the air-laid nonwoven fabric has a good texture, and the texture uniformity is better than that of a melt blown nonwoven fabric or a spunbonded nonwoven fabric. Therefore, it leads to quality stability.
以上の本発明に用いられる(A)エアレイド不織布は、エアレイド法によって形成する。すなわち、多孔質ネットコンベア上に位置する単台または多数台の噴き出し部から、上記(a1)合成繊維および(a2)熱接着性複合短繊維を噴出し、ネットコンベア下面に配置した空気サクション部で吸引しながらネットコンベア上に、エアレイドウェブを形成する。 The (A) air laid nonwoven fabric used in the present invention is formed by the air laid method. That is, in the air suction part which spouted the said (a1) synthetic fiber and the (a2) heat bondable composite short fiber from the single or many ejection part located on a porous net conveyor, and has arrange | positioned on the net conveyor lower surface. An airlaid web is formed on a net conveyor while sucking.
(a1)合成繊維:
ここで、(A)エアレイド不織布を構成する(a1)合成繊維の素材としては、融点160℃以上の繊維形成性ポリマーが用いられる。この繊維形成性ポリマーとしては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどの繊維形成性芳香族ポリエステル、ナイロン6、ナイロン6,6などのポリアミド、ポリプロピレン、芳香族ポリアミドなどが挙げられる。好ましくは、上記の繊維形成性芳香族ポリエステルである。
上記ポリマーの融点は、160℃以上、好ましくは180℃以上である。160℃未満では、エアレイドウェブを熱圧処理する際、熱処理で軟化しやすく、得られるエアレイド不織布の剛性が保てない。(A1) Synthetic fiber:
Here, (A) A fiber-forming polymer having a melting point of 160 ° C. or higher is used as a material for the synthetic fiber (a1) constituting the air-laid nonwoven fabric. Examples of the fiber-forming polymer include fiber-forming aromatic polyesters such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6 and nylon 6,6, polypropylene, and aromatic polyamides. . Preferably, the above fiber-forming aromatic polyester.
The melting point of the polymer is 160 ° C. or higher, preferably 180 ° C. or higher. If it is less than 160 degreeC, when carrying out the hot-pressure process of the airlaid web, it will be easy to soften with heat processing and the rigidity of the airlaid nonwoven fabric obtained cannot be maintained.
また、(a1)合成繊維の単糸繊度は、6〜40dtex、好ましくは10〜30dtexである。(a1)合成繊維として、6〜40dtexの単糸繊度を有する太繊度のタイプを使用することにより、得られるエアレイド不織布の通気性が向上するばかりか、剛性が向上し、プリーツ加工が容易となり、かつ高風圧でもプリーツの山倒れが起き難いという効果(耐風圧性)も得られる。この耐風圧性は、実用上重要な特性である。単糸繊度が6dtex未満では、剛性が低くなり、プリーツ加工などの成形性やプリーツ剛性が充分ではなく、一方、40dtexを超えると、構成繊維本数が小さくなり、実用上の強度が不充分なばかりか、粗い粉塵の濾過、集塵、除塵機能も低下してしまう。 The single yarn fineness of the synthetic fiber (a1) is 6 to 40 dtex, preferably 10 to 30 dtex. (A1) By using a thick fiber type having a single yarn fineness of 6 to 40 dtex as the synthetic fiber, not only the air permeability of the obtained airlaid nonwoven fabric is improved, but also the rigidity is improved, and the pleating process is facilitated. In addition, an effect (wind pressure resistance) that the pleats are unlikely to fall down even at high wind pressure can be obtained. This wind pressure resistance is a practically important characteristic. If the single yarn fineness is less than 6 dtex, the rigidity is low, and the moldability such as pleating and the pleat rigidity are not sufficient. On the other hand, if it exceeds 40 dtex, the number of constituent fibers becomes small and the practical strength is insufficient. Moreover, the filtration, dust collection and dust removal functions of coarse dust are also deteriorated.
また、(a1)合成繊維の繊維長は、3〜15mm、好ましくは5〜12mmである。3mm未満では、不織布強度が低下し、一方15mmを超えると、エアレイド工程で繊維どうしが絡まり易くなり、工程性や地合いの悪化につながりやすい。 Moreover, the fiber length of (a1) synthetic fiber is 3-15 mm, Preferably it is 5-12 mm. If the thickness is less than 3 mm, the strength of the nonwoven fabric is reduced. On the other hand, if the thickness exceeds 15 mm, the fibers tend to be entangled in the airlaid process, which tends to deteriorate the processability and texture.
なお、(a1)合成繊維の単糸断面は、円形でも、非円形で異形断面であってもよいが、特に好ましくは異形断面である。
ここで、異形断面とは、長円形状、楕円形状、多角形状(例えば、三角形状、台形状などの四角形状、5角形状、六角形状など)、Y型、W型などが挙げられる。
(a1)合成繊維の単糸断面が異形断面であると、得られるエアレイド不織布の剛性が円形に比べて向上するばかりか、繊維表面積が大きくなることによって、集塵、除塵、濾過の機能を向上させる効果も期待できる。好ましくは、多角形状であり、特に好ましくは三角形状である。
これらの非円形、異形断面の繊維は、異形紡糸口金を用いて直接紡糸する方法、分割型複合繊維を紡糸したのちに、水流などの流体流、リファイナー、パルパー、ミキサー、ビーターなどの外力を加えて発生させる方法などが挙げられる。また、これらの繊維は、中実でも中空でも良い。In addition, although the single yarn cross section of (a1) synthetic fiber may be circular or non-circular and an irregular cross section, it is particularly preferably an irregular cross section.
Here, examples of the irregular cross section include an oval shape, an elliptical shape, a polygonal shape (for example, a quadrangular shape such as a triangular shape and a trapezoidal shape, a pentagonal shape, a hexagonal shape, etc.), a Y shape, a W shape, and the like.
(A1) If the single yarn cross section of the synthetic fiber is an irregular cross section, not only the rigidity of the resulting air laid nonwoven fabric is improved compared to a circular shape, but also the functions of dust collection, dust removal and filtration are improved by increasing the fiber surface area. We can expect effect to make. A polygonal shape is preferable, and a triangular shape is particularly preferable.
These non-circular and irregular cross-section fibers are directly spun using a modified spinneret, and after spinning split-type composite fibers, fluid flow such as water flow, external force such as refiner, pulper, mixer and beater is applied. For example. These fibers may be solid or hollow.
(a2)熱接着性複合短繊維:
一方、(A)エアレイド不織布を構成する(a2)熱接着性複合短繊維としては、例えば、低融点成分を鞘成分とし、高融点成分を芯成分とする芯鞘型、一方が低融点、他方が高融点成分であるサイドバイサイド型などが挙げられる。これらの複合短繊維の両方の成分の組み合わせとしては、PP〔ポリプロピレン〕/PE(ポリエチレン)、PET(ポリエチレンテレフタレート)/PE、PP/低融点共重合PP、PET/低融点共重合ポリエステルなどが挙げられる。ここで、上記低融点共重合ポリエステルの例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどを基本骨格として、イソフタル酸、5−金属スルホイソフタル酸などの芳香族ジカルボン酸、アジピン酸、セバチン酸などの脂肪族ジカルボン酸、ジエチレングリコール、プロピレングリコール、1,4−ブタンジオールなどの脂肪族多価アルコールなどとの変性共重合などが挙げられる。(A2) Thermal adhesive composite short fiber:
On the other hand, the (a2) heat-adhesive composite short fiber constituting the air-laid nonwoven fabric (A) is, for example, a core-sheath type having a low melting point component as a sheath component and a high melting point component as a core component, one having a low melting point, the other And side-by-side type in which is a high melting point component. Examples of the combination of both components of these composite short fibers include PP [polypropylene] / PE (polyethylene), PET (polyethylene terephthalate) / PE, PP / low-melting copolymer PP, PET / low-melting copolymer polyester, and the like. It is done. Here, examples of the low-melting point copolyester include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, etc. as a basic skeleton, aromatic dicarboxylic acids such as isophthalic acid and 5-metal sulfoisophthalic acid, adipic acid, and sebacic acid. And a modified copolymer with an aliphatic polycarboxylic acid such as diethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol and the like.
低融点成分である熱接着成分の融点は、通常、80〜180℃、好ましくは90〜160℃である。80℃未満の場合、不織布としての耐熱性が低いので、複合化の加工やプリーツ加工などにおいてトラブルが生じやすく、また自動車や工場などで使用する場合、実用上の温度に耐えられない。一方、180℃を超えると、不織布製造工程における熱処理温度を高くする必要が生じ、生産性が落ち、実用的でないばかりか、後述する熱圧処理における接着効果も期待できなくなる。 The melting point of the thermal adhesive component which is a low melting point component is usually 80 to 180 ° C, preferably 90 to 160 ° C. When the temperature is less than 80 ° C., the heat resistance of the nonwoven fabric is low, so that troubles are likely to occur in the composite processing or pleating processing, and when used in automobiles or factories, it cannot withstand practical temperatures. On the other hand, when it exceeds 180 ° C., it is necessary to increase the heat treatment temperature in the nonwoven fabric production process, the productivity is lowered, and not only is not practical, but also the adhesive effect in the hot press treatment described later cannot be expected.
(a2)熱接着性複合短繊維の繊度は、好ましくは2〜15dtex、さらに好ましくは3〜10dtexである。2dtex未満の場合は、細すぎて、圧損が上昇する。一方、15dtexを超えると、構成繊維本数が減るので、熱結合点の数が減少して不織布強度が低下するばかりか、得られるエアレイド不織布の剛性が低下し、好ましくない。
なお、(A)エアレイド不織布の製法がエアレイド法であるので、(a2)熱接着性複合短繊維は、繊維長が3〜15mmであることが好ましく、さらに好ましくは3〜10mmである。繊維長が3mm未満の場合は、強度や剛性アップの効果が十分で無く、一方、15mmを超えると、繊維どうしが絡まり易くなり、工程性や地合いの悪化につながりやすい。(A2) The fineness of the heat-adhesive composite short fiber is preferably 2 to 15 dtex, more preferably 3 to 10 dtex. If it is less than 2 dtex, it is too thin and the pressure loss increases. On the other hand, if it exceeds 15 dtex, the number of constituent fibers decreases, so the number of thermal bonding points decreases and the strength of the nonwoven fabric decreases, and the rigidity of the resulting airlaid nonwoven fabric decreases, which is not preferable.
In addition, since the manufacturing method of (A) air laid nonwoven fabric is the air laid method, it is preferable that the fiber length of (a2) thermoadhesive composite short fiber is 3-15 mm, More preferably, it is 3-10 mm. When the fiber length is less than 3 mm, the effect of increasing the strength and rigidity is not sufficient. On the other hand, when the fiber length exceeds 15 mm, the fibers tend to be entangled with each other, leading to deterioration in processability and texture.
なお、以上の(a1)合成繊維や、(a2)熱接着性複合短繊維には、各種の添加物を付与していても良い。例えば、通常の艶消剤、熱安定剤、顔料、消臭剤、抗菌剤、防ダニ剤、防カビ剤、芳香剤などの剤を添加、あるいはコーティング、付着されていてもよい。 Various additives may be added to the above (a1) synthetic fiber and (a2) heat-bondable composite short fiber. For example, usual matting agents, heat stabilizers, pigments, deodorants, antibacterial agents, mite-proofing agents, fungicides, fragrances and the like may be added, or coated or adhered.
また、以上の(a1)合成繊維や(a2)熱接着性複合短繊維は、捲縮していても、していなくてもよく、またストランドチョップであってもよい。捲縮している場合、ジグザグ型の二次元捲縮繊維およびスパイラル型やオーム型などの三次元(立体)捲縮繊維の何れも使用できる。 The above (a1) synthetic fiber and (a2) heat-bondable composite short fiber may be crimped or not, and may be a strand chop. When crimped, both zigzag-type two-dimensional crimped fibers and spiral-type and ohmic-type three-dimensional (three-dimensional) crimped fibers can be used.
(a1)合成繊維と(a2)熱接着性複合短繊維の混合比:
(a1)と(a2)の混合比は、(a1)が30〜70重量%、好ましくは40〜60重量%、(a2)が70〜30重量%、好ましくは60〜40重量%[ただし、(a1)+(a2)=100重量%]である。
(a1)合成繊維が30重量%未満、あるいは(a2)熱接着性複合短繊維が70重量%を超えると、得られるエアレイド不織布の剛性が低くなり、さらに圧損が高くなる。一方、(a1)合成繊維が70重量%を超えると、バインダー繊維である(a2)熱接着性複合短繊維の構成繊維本数が減るので、熱結合点の数が減って、得られるエアレイド不織布の不織布強力が下がるばかりか、剛性も低下する。Mixing ratio of (a1) synthetic fiber and (a2) heat-adhesive composite short fiber:
The mixing ratio of (a1) and (a2) is such that (a1) is 30 to 70% by weight, preferably 40 to 60% by weight, and (a2) is 70 to 30% by weight, preferably 60 to 40% by weight [however, (A1) + (a2) = 100 wt%].
When (a1) the synthetic fiber is less than 30% by weight or (a2) the heat-adhesive composite short fiber is more than 70% by weight, the air-laid nonwoven fabric obtained has low rigidity and further increased pressure loss. On the other hand, if (a1) the synthetic fiber exceeds 70% by weight, the number of constituent fibers of the (a2) heat-adhesive composite short fiber, which is a binder fiber, decreases, so the number of thermal bonding points decreases, and the airlaid nonwoven fabric obtained Not only does the strength of the nonwoven fabric decrease, but the rigidity also decreases.
さらに、以上の(a1)合成繊維、(a2)熱接着性複合短繊維以外の繊維として、例えばビニロン繊維、合成パルプ(例えば、三井化学(株)製のSWPのような、PEやPPを素材とする多分岐フィブリル状繊維)、木材パルプ、麻、レーヨン、ビスコース繊維などを本発明の趣旨、効果を阻害しない範囲で混合しておいても良い。この場合、他の繊維の比率は30重量%未満に留めるのが好ましい。30重量%以上であると、不織布強力やヒートシール性に影響が出るばかりか、熱接着性のない繊維は実使用中に脱落し易くなる。 Further, as fibers other than the above (a1) synthetic fiber and (a2) heat-adhesive composite short fiber, for example, vinylon fiber, synthetic pulp (for example, PE or PP such as SWP manufactured by Mitsui Chemicals, Inc.) Multi-branched fibrillar fibers), wood pulp, hemp, rayon, viscose fibers and the like may be mixed within a range not impairing the gist and effect of the present invention. In this case, the proportion of other fibers is preferably kept below 30% by weight. If it is 30% by weight or more, not only the strength of the nonwoven fabric and heat sealability will be affected, but fibers without thermal adhesiveness will easily fall off during actual use.
なお、(A)エアレイド不織布は、(a1)合成繊維および(a2)熱接着性複合短繊維の割合や種類が上記の範囲内であれば、単層でも、複層でもよく、また、(a1)成分と(a2)成分の割合や種類が不織布の断面方向に異なるエアレイドウェブで構成されていてもよい。 The (A) air laid nonwoven fabric may be a single layer or multiple layers as long as the ratio and type of (a1) synthetic fiber and (a2) heat-adhesive composite short fiber are within the above ranges, and (a1 ) Component and (a2) component may be composed of air-laid webs having different ratios and types in the cross-sectional direction of the nonwoven fabric.
熱圧処理:
本発明の(A)エアレイド不織布は、多孔質ネットコンベア上に位置する単台または多数台の噴き出し部から、上記(a1)合成繊維および(a2)熱接着性複合短繊維を噴出し、ネットコンベア下面に配置した空気サクション部で吸引しながらネットコンベア上に、まずエアレイドウェブを形成する。
本発明の(A)エアレイド不織布は、以上のようにして得られるエアレイドウェブを熱圧処理して得られる。
なお、熱圧処理に先立ち、通常、熱風処理が行われる。
このうち、繊維間結合を形成するための熱風処理としては、(a2)熱接着性複合短繊維の低融点成分の融点+20℃以上、(a1)合成繊維の融点−30℃以下の温度が好ましい。熱風処理温度が低いと、繊維どうしの熱結合が不充分となり、得られるエアレイド不織布の剛性が下がる。しかしながら、上記低融点成分の融点よりも30℃以上高い場合、あるいは高融点成分(芯鞘型複合繊維の芯成分、あるいはサイドバイサイド型複合繊維の高融点成分)の融点以上の場合は、繊維の熱収縮が大きくなり易く、地合いの悪化を招いたり、はなはだしい場合は繊維の劣化を生じるので好ましくない。
熱風処理温度は、通常、110〜200℃、好ましくは120〜180℃である。Hot pressure treatment:
The (A) air laid nonwoven fabric of the present invention ejects the above-mentioned (a1) synthetic fiber and (a2) heat-adhesive composite short fiber from a single or a large number of ejection parts located on a porous net conveyor. First, an air laid web is formed on a net conveyor while sucking with an air suction portion arranged on the lower surface.
The (A) air laid nonwoven fabric of the present invention is obtained by subjecting the air laid web obtained as described above to a hot press treatment.
In addition, a hot-air process is normally performed prior to a hot-pressure process.
Among these, as the hot air treatment for forming an interfiber bond, a temperature of (a2) a melting point of the low melting point component of the heat-adhesive composite short fiber + 20 ° C. or higher and (a1) a melting point of the synthetic fiber of −30 ° C. or lower is preferable. . When the hot air treatment temperature is low, the thermal bonding between the fibers becomes insufficient, and the rigidity of the resulting airlaid nonwoven fabric decreases. However, if the melting point of the low melting point component is 30 ° C. or higher, or higher than the melting point of the high melting point component (core component of the core-sheath type composite fiber or high melting point component of the side-by-side type composite fiber), the heat of the fiber Shrinkage tends to be large, which leads to deterioration of the texture, and in extreme cases, it causes deterioration of the fiber, which is not preferable.
The hot air treatment temperature is usually 110 to 200 ° C, preferably 120 to 180 ° C.
また、熱風処理したのち熱圧処理は、具体的には熱圧カレンダー処理が好ましい。
カレンダー処理には、一対の金属ローラー、または金属ローラーと弾性ローラーの組み合わせなどを任意に選択できるし、多段ローラーであっても良いが、好ましくは一対の金属ローラーが用いられる。Further, the hot-pressure treatment after the hot air treatment is specifically preferably a hot-pressure calendar treatment.
For the calendar process, a pair of metal rollers or a combination of a metal roller and an elastic roller can be arbitrarily selected. A multi-stage roller may be used, but a pair of metal rollers is preferably used.
カレンダー処理の場合、圧力は希望する厚さになるよう適宜選択することができる。熱圧カレンダーにより繊維間の熱結合を強固にし、剛性、強度、表面耐摩耗性、層間剥離防止などを向上するため、ローラー表面の温度は、熱接着性複合繊維の低融点成分の融点以上の温度が必要である。しかしながら、低融点成分の融点よりも50℃を超えて高い場合、あるいは高融点成分(芯鞘型複合繊維の芯成分、あるいはサイドバイサイド型複合繊維の高融点成分)の融点以上の場合は、繊維の熱収縮が大きくなり易いばかりか、ローラー表面への粘着が発生し、工程性に欠ける。融点未満の場合は、当然のことながら繊維間結合が充分でなくなる。
ローラー表面温度は、(a2)繊維の融点+10℃〜+50℃であり、通常、100〜190℃、好ましくは120〜180℃である。この熱処理温度が低すぎると、得られるエアレイド不織布の剛性が低下し、一方、高すぎると、ローラー表面に不織布が粘着しやすくなり、工程安定性に欠ける。In the case of calendar processing, the pressure can be appropriately selected so as to have a desired thickness. The temperature of the roller surface is higher than the melting point of the low melting point component of the heat-adhesive conjugate fiber in order to strengthen the thermal bond between the fibers by the hot-pressure calender and improve the rigidity, strength, surface abrasion resistance, delamination prevention, etc. Temperature is needed. However, if the melting point is higher than the melting point of the low melting point component by 50 ° C. or higher than the melting point of the high melting point component (the core component of the core-sheath type composite fiber or the high melting point component of the side-by-side type composite fiber), Not only does heat shrinkage easily increase, but adhesion to the roller surface occurs, resulting in poor processability. When the temperature is lower than the melting point, it is a matter of course that the interfiber bonding is not sufficient.
The roller surface temperature is (a2) the melting point of the fiber + 10 ° C. to + 50 ° C., and is usually 100 to 190 ° C., preferably 120 to 180 ° C. If this heat treatment temperature is too low, the rigidity of the resulting airlaid nonwoven fabric will be reduced, while if it is too high, the nonwoven fabric will tend to stick to the roller surface, resulting in poor process stability.
また、カレンダー処理の線圧は、幅方向で均一な接圧になるよう設定すれば、任意の圧力を選択することができる。高圧の場合は密度・剛性・不織布強力・層間強力がアップし、厚さ・通気性がダウンする。低圧の場合は、もちろんこれに反する影響が出る。本発明の趣旨である高剛性や、不織布強力アップのためには、極力高圧のほうが好ましい。低圧損、高通気性を重視するのであれば、低圧の方が好ましい。カレンダー処理の線圧は、通常、10〜100kgf/cmの範囲で任意に選択できる。また、一対のローラー間に任意の隙間を設けても良い。金属ローラー表面は、フラットが好ましいが、凸凹形状のエンボス加工がされていても良い。 Moreover, if the linear pressure of the calendar process is set so as to be a uniform contact pressure in the width direction, an arbitrary pressure can be selected. In the case of high pressure, density, rigidity, nonwoven fabric strength and interlayer strength are increased, and thickness and air permeability are decreased. In the case of low pressure, of course, there is an adverse effect. In order to increase the rigidity and the strength of the nonwoven fabric, which are the gist of the present invention, a high pressure is preferable. If low pressure loss and high air permeability are important, low pressure is preferable. The linear pressure of the calendar process can usually be arbitrarily selected in the range of 10 to 100 kgf / cm. Moreover, you may provide arbitrary clearance gaps between a pair of rollers. The metal roller surface is preferably flat, but may be embossed with an uneven shape.
このようにして得られる本発明の(A)エアレイド不織布の厚さは、通常、0.3〜2mm、好ましくは0.5〜1.5mmであり、目付けは、50〜200g/m2、好ましくは60〜180g/m2程度である。(A)エアレイド不織布の目付が、50g/m2未満の場合は、剛性が不十分で、本発明の趣旨にそぐわない。さらに、フィルター性能が悪化するばかりか、不織布強力も低くなるので実使用で破壊などのトラブルを引き起こし易い。一方、200g/m2を超えると、通気性ダウン、圧損アップが生じ、粗塵フィルターとしての性能が不十分となり、好ましくない。The thickness of the (A) airlaid nonwoven fabric of the present invention thus obtained is usually 0.3 to 2 mm, preferably 0.5 to 1.5 mm, and the basis weight is 50 to 200 g / m 2 , preferably Is about 60 to 180 g / m 2 . (A) When the basis weight of the air laid nonwoven fabric is less than 50 g / m 2 , the rigidity is insufficient and it does not meet the spirit of the present invention. Furthermore, not only the filter performance is deteriorated, but also the strength of the nonwoven fabric is lowered, so troubles such as breakage are likely to occur in actual use. On the other hand, if it exceeds 200 g / m 2 , the air permeability decreases and the pressure loss increases, and the performance as a coarse dust filter becomes insufficient, which is not preferable.
以上の熱圧処理が施された(A)エアレイド不織布は、JIS L1913に準拠して測定された剛性が10mm以下、好ましくは9mm以下である。
ここで、上記「剛性」は、JIS L1913「一般短繊維不織布試験方法」 6.7剛軟度 a)41.5度カンチレバー法に準拠する器具を用いる。
すなわち、本発明における「剛性」は、以下の方法で試料先端部が自重によって垂れ下がった距離により表すものとする。すなわち、値が小さいほど高い剛性を表すものとする。
(1)試験片の大きさ;(幅25±1)×(長さ160±1)mm
(2)試験方法;
(i)試験片と鋼製定規を重ねてプラットフォームの上に載せ、プラットフォーム・試験片・鋼製定規の前端部が一致するように合わせる。
(ii)試験片と鋼製定規とをプラットフォームの前端から80mm押し出す。
(iii)鋼製定規の先端と、自重で垂れ下がった試験片先端部との距離(mm)を測定する。
(iv)測定する試験片の表裏を入れ替えて、再度、(i)、(ii)の試験を実施し、その平均値を1データとする。それを別々の試験片で繰り返し、n=5の平均値として表す。
以上のようにして測定された「剛性」が10mmを超えると、剛性が不足するのでプリーツ加工性やプリーツの耐風圧性が悪化し、好ましくない。The (A) air-laid nonwoven fabric subjected to the above-described heat and pressure treatment has a rigidity measured in accordance with JIS L1913 of 10 mm or less, preferably 9 mm or less.
Here, as the “stiffness”, JIS L1913 “General Short Fiber Nonwoven Fabric Test Method” 6.7 Flexibility a) An instrument conforming to the 41.5 degree cantilever method is used.
That is, the “rigidity” in the present invention is expressed by the distance by which the sample tip portion hangs down by its own weight in the following manner. That is, the smaller the value, the higher the rigidity.
(1) Size of test piece; (width 25 ± 1) × (length 160 ± 1) mm
(2) Test method;
(I) The test piece and the steel ruler are stacked and placed on the platform, and the front ends of the platform, the test piece and the steel ruler are aligned.
(Ii) A test piece and a steel ruler are extruded 80 mm from the front end of the platform.
(Iii) Measure the distance (mm) between the tip of the steel ruler and the tip of the test piece that hangs down under its own weight.
(Iv) The front and back of the test piece to be measured are exchanged, and the tests (i) and (ii) are performed again, and the average value is taken as one data. It is repeated on separate specimens and expressed as an average value of n = 5.
When the “rigidity” measured as described above exceeds 10 mm, the rigidity is insufficient, so that the pleatability and the wind pressure resistance of the pleat deteriorate, which is not preferable.
ところで、従来から知られている一般的な乾式不織布製造法、つまり短繊維のカーディング法、あるいは連続繊維のスパンボンド法などによる場合、層を構成する繊維はほぼ面状に配列していて、厚さ方向に配向させることは困難である。従って、既存の乾式不織布を本発明が意図するエアフィルター材に使用した場合、圧力損失が高いという欠点を有する。ニードルパンチやスパンレースのような機械的繊維交絡の方法を加えれば比較的に厚さ方向へ繊維を並び変えることができるものの、ニードルまたはスパンレースの水スジによる貫通孔が残るために微細なダストの捕捉作用に欠けるものとなってしまう。
これに対し、本発明に用いられる不織布は、短い繊維を使用したエアレイド不織布製造法によるものなので、単層のみならず、多層の場合でも、繊維は厚さ方向に配列しやすく、かつ層間において異なる繊維径の繊維どうしの混じり合いも生じ、繊維層間の繊維径勾配は比較的に連続傾斜になる。
従って、圧力損失が小さく、目詰まりも少なくなってライフ(ろ過可能時間)が長くなるうえ、圧損上昇が少ないというエアレイド不織布の特徴は、熱圧カレンダー処理しても傾向として変わらず発揮される。しかも、このような短繊維を原料繊維とするエアレイド不織布製造法によれば、極めて地合いの良好な、つまり均一性の良好なフィルターが得られるという大きな特徴を有する。均一性は、本発明が意図するエアフィルター材の用途において極めて重要であり、上記した既存の乾式不織布では得られ難い。
さらに、ニードルを使用していないので、ニードル跡による性能低下の問題も解消される。また、ケミカルバインダーを使用していないので、皮膜形成による圧力損失アップや捕集効率ダウンの弊害が無く、環境汚染の恐れも無い。By the way, in the case of the conventional dry nonwoven fabric manufacturing method known conventionally, that is, the short fiber carding method, or the continuous fiber spunbond method, the fibers constituting the layer are arranged in a substantially planar shape, It is difficult to align in the thickness direction. Therefore, when an existing dry nonwoven fabric is used for the air filter material intended by the present invention, there is a disadvantage that the pressure loss is high. By adding mechanical fiber entanglement methods such as needle punching and spunlace, the fibers can be rearranged relatively in the thickness direction, but fine dust is generated because the through-holes due to water streaks in the needle or spunlace remain. It will be lacking in the trapping action.
On the other hand, the nonwoven fabric used in the present invention is based on the airlaid nonwoven fabric manufacturing method using short fibers, so that the fibers are easy to arrange in the thickness direction, not only in a single layer but also in multiple layers, and differ between layers. Mixing of fibers having a fiber diameter also occurs, and the fiber diameter gradient between fiber layers is relatively continuous.
Therefore, the characteristics of the air-laid nonwoven fabric that the pressure loss is small, the clogging is reduced, the life (filterable time) is increased, and the increase in the pressure loss is small, even if the hot-pressure calender treatment is performed, the tendency is exhibited. Moreover, according to the air-laid nonwoven fabric production method using such short fibers as raw fibers, it has a great feature that a filter with extremely good texture, that is, good uniformity can be obtained. Uniformity is extremely important in the use of the air filter material intended by the present invention, and is difficult to obtain with the above-described existing dry nonwoven fabric.
Furthermore, since no needle is used, the problem of performance degradation due to needle marks is also eliminated. Moreover, since no chemical binder is used, there is no adverse effect of pressure loss and collection efficiency reduction due to film formation, and there is no risk of environmental pollution.
(B)メルトブロー不織布
本発明のエアフィルターは、上記(A)エアレイド不織布単独からなるもののほか、この(A)エアレイド不織布の少なくとも一方の面に、(B)メルトブロー不織布が複合・一体化された複合不織布からなるものであってもよい。(A)エアレイド不織布と(B)メルトブロー不織布との複合化のメリットは、(A)エアレイド不織布単体では得られにくい優れた集塵性が得られる。ここで、(B)メルトブロー不織布は、エアレイドに適用可能な合繊よりも一般的に細い極細繊維なので、微細粉塵の捕集に有効である。 (B) Melt blown non-woven fabric The air filter of the present invention is composed of the above (A) air-laid non-woven fabric alone, and (B) a composite in which (B) a melt-blown non-woven fabric is combined and integrated on at least one surface of the air-laid non-woven fabric. You may consist of a nonwoven fabric. (A) The merit of combining the air-laid nonwoven fabric and the (B) melt-blown nonwoven fabric provides excellent dust collection that is difficult to obtain with (A) the air-laid nonwoven fabric alone. Here, since the (B) melt blown nonwoven fabric is an extra fine fiber generally thinner than synthetic fibers applicable to airlaid, it is effective in collecting fine dust.
ここで、(B)メルトブロー不織布は、熱可塑性ポリマーを溶融して、口金より押し出し、高速加熱媒体で繊維を細化して、走行するネットコンベア上に捕集し不織布構造体として得られる。
本発明に用いられる(B)メルトブロー不織布は、本発明のエアフィルター用複合不織布において、数十μm以下の微細粒子の捕集の役目を果たすものである。
(B)メルトブロー不織布に用いられる熱可塑性ポリマーは、特に限定されることなく、用途に応じて、ポリオレフィン、ポリアミド、ポリエステル、ゴム弾性を有するポリウレタン、ポリエステルエーテル系エラストマー、ポリエステル系エラストマー、ポリオレフィン系エラストマーなどのメルトブロー法により不織布を形成できるものであれば任意に使用できる。しかしながら、汎用性に優れ、また、エレクトレット化が可能なことから、ポリプロピレン、ポリエチレンなどのポリオレフィン類が好ましい。特に好ましくは、ポリプロピレンである。これらのポリマーには、通常の艶消剤、熱安定剤、顔料、消臭剤、抗菌剤、防ダニ剤、防カビ剤、芳香剤などの剤が添加、あるいは付着されていてもよい。Here, the (B) melt blown nonwoven fabric is obtained as a nonwoven fabric structure by melting a thermoplastic polymer, extruding it from a die, thinning the fiber with a high-speed heating medium, and collecting it on a traveling net conveyor.
The (B) melt blown nonwoven fabric used in the present invention plays a role of collecting fine particles of several tens of μm or less in the composite nonwoven fabric for air filter of the present invention.
(B) The thermoplastic polymer used for the melt blown nonwoven fabric is not particularly limited, and may be polyolefin, polyamide, polyester, polyurethane having rubber elasticity, polyester ether elastomer, polyester elastomer, polyolefin elastomer, etc., depending on the application. Any nonwoven fabric can be used as long as it can form a nonwoven fabric by the melt blow method. However, polyolefins such as polypropylene and polyethylene are preferred because they are versatile and can be electretized. Particularly preferred is polypropylene. These polymers may be added with or attached to ordinary delustering agents, heat stabilizers, pigments, deodorants, antibacterial agents, acaricides, fungicides, fragrances and the like.
上記(B)メルトブロー不織布は、繊維の平均径は0.2〜25μm、好ましくは0.5〜15μm、目付が10〜60g/m2、好ましくは12〜50g/m2である。平均径が0.2μm未満の場合、メルトブロー法の生産性が悪化して高コストとなるので実用的でなくなり、かつ、繊維が平面配列となりやすいメルトブロー法不織布においては、特に極細化すると通気性が悪化しやすい傾向があるので、エアフィルターとして好ましくない。一方、25μmを超えると、太過ぎて微細粉塵の捕集性能が悪化する。(B)メルトブロー不織布を構成する繊維の平均径は、ポリマー粘度、紡糸口金のポリマー吐出口の口径、ポリマー吐出量、高速加熱媒体流の流量と流速、温度などの条件により、容易に調整することができる。
また、(B)メルトブロー不織布の目付けは、10g/m2未満では、強度が低過ぎて実用的でないばかりか、微細粉塵の捕集性能も悪化し、一方、60g/m2を超えると、通気性が悪化して好ましくない。
なお、(B)メルトブロー不織布は、芯鞘型複合繊維から形成されていても良い。The (B) melt blown nonwoven fabric has an average fiber diameter of 0.2 to 25 μm, preferably 0.5 to 15 μm, and a basis weight of 10 to 60 g / m 2 , preferably 12 to 50 g / m 2 . When the average diameter is less than 0.2 μm, the melt-blowing method is not practical because the productivity of the melt-blowing method deteriorates and the cost is high, and the breathability is particularly reduced when the fibers are extremely thinned. Since it tends to deteriorate, it is not preferable as an air filter. On the other hand, if it exceeds 25 μm, it is too thick and the performance of collecting fine dust is deteriorated. (B) The average diameter of the fibers constituting the meltblown nonwoven fabric can be easily adjusted according to conditions such as polymer viscosity, diameter of the polymer outlet of the spinneret, polymer discharge amount, flow rate and flow rate of the high-speed heating medium flow, temperature, etc. Can do.
Also, the basis weight of the (B) melt-blown nonwoven fabric is less than 10 g / m 2, not only the strength is not practical too low, even worse collecting performance of the fine dust, whereas when it exceeds 60 g / m 2, the vent It is not preferable because the properties deteriorate.
In addition, (B) melt blown nonwoven fabric may be formed from the core-sheath type composite fiber.
エレクトレット加工:
本発明の(B)メルトブロー不織布は、エレクトレット加工を施してもよい。
ここで、エレクトレット加工とは、例えば特開昭61−186568号公報に開示されている加工方法であり、公知の種々のエレクトレット化の方法、例えば、熱エレクトレット法、エレクトロエレクトレット法、ラジオエレクトレット法、メカノエレクトレット法などを適用することによって、シートなどを荷電状態にする加工方法である。
メルトブロー不織布は、通常、油剤などの処理はなされないが、油剤を含めたなんらかの剤で処理されている場合には、あらかじめ例えば50〜100℃の熱水浴に数秒〜数十分程度通して洗浄してから乾燥する方法、ウォータージェット処理して乾燥する方法などを加えておくことが必要となる。
エレクトレット加工の具体的な一例としての条件は、ポリプロピレン系メルトブロー不織布の場合、好ましくは80〜150℃、さらに好ましくは90℃〜120℃程度の加熱ローラー上にて、−30〜−5KVあるいは+5〜+30KV、さらに好ましくは−30〜−5KV程度の直流電圧を印加し、次に冷却ロール上にてさらに−30〜−5KVあるいは+5〜+30KV、さらに好ましくは−30〜−5KV程度の直流電圧を印加する方法などが挙げられる。生活空間に存在する微少塵埃の多くはプラス帯電しているものが比較的に多いので、印加電圧はマイナスとする方が好ましい。Electret processing:
The (B) melt blown nonwoven fabric of the present invention may be subjected to electret processing.
Here, the electret processing is a processing method disclosed in, for example, Japanese Patent Application Laid-Open No. 61-186568, and various known electret methods such as a thermal electret method, an electro electret method, a radio electret method, This is a processing method in which a sheet or the like is charged by applying a mechano-electret method or the like.
Melt blown nonwoven fabrics are usually not treated with oils, but if they are treated with any agent including oils, they are washed beforehand by passing them through a hot water bath at 50 to 100 ° C. for several seconds to several tens of minutes in advance. Then, it is necessary to add a method of drying and a method of drying by water jet treatment.
As a specific example of electret processing, in the case of a polypropylene-based meltblown nonwoven fabric, it is preferably 80 to 150 ° C., more preferably 90 ° C. to 120 ° C. on a heating roller of about −30 to −5 KV or +5 to Apply a DC voltage of +30 KV, more preferably about −30 to −5 KV, and then apply a DC voltage of about −30 to −5 KV or +5 to +30 KV, more preferably about −30 to −5 KV on the cooling roll. The method of doing is mentioned. Since most of the minute dust present in the living space is relatively positively charged, it is preferable that the applied voltage be negative.
(A)エアレイド不織布と(B)メルトブロー不織布の複合・一体化:
(A)エアレイド不織布と(B)メルトブロー不織布を積層・一体化して複合シートとするには、インラインでもアウトラインでも可能である。
複合・一体化の手段は、ポイントボンド(部分的に熱圧処理して熱接着する)、パウダーボンド(粉末状接着剤を使用する)、ホットメルト(熱可塑性ポリマーを溶融して、圧空とともに噴出させて、不織布上に細かい繊維状に噴出・スプレーする)などが挙げられる。接着剤の付与量は、圧損が増大しないように、少ない方が好ましいが、通常、固形分換算で、2〜20g/m2、好ましくは4〜10g/m2であり、圧損を上げずにしかも剥離を生じない範囲で決められる。
これらの一体化の過程で熱が加わる場合には、エレクトレット化の効果が減衰しやすいので、一体化したあとで再度エレクトレット加工を加える必要がある。ホットメルト法の場合は、メルトブロー不織布にほとんど熱が加わらないので、好ましい方法である。(A) Composite / integration of airlaid nonwoven fabric and (B) meltblown nonwoven fabric:
In order to laminate and integrate (A) air laid nonwoven fabric and (B) melt blown nonwoven fabric into a composite sheet, it can be inline or outline.
Combined and integrated means include point bond (partial hot-pressure treatment and thermal bonding), powder bond (using powdered adhesive), hot melt (melting thermoplastic polymer and jetting with compressed air And spray / spray into a fine fiber on the nonwoven fabric). The amount of adhesive applied is preferably as small as possible so that the pressure loss does not increase, but it is usually 2 to 20 g / m 2 , preferably 4 to 10 g / m 2 in terms of solid content, without increasing the pressure loss. Moreover, it is determined within a range where no peeling occurs.
When heat is applied during these integration processes, the effect of electretization tends to be attenuated, and thus it is necessary to apply electret processing again after integration. In the case of the hot melt method, since heat is hardly applied to the melt blown nonwoven fabric, it is a preferable method.
このようにして得られる本発明の複合エアレイド不織布の厚さは、通常、0.3〜2mm、好ましくは0.5〜1.5mmであり、複合不織布の総目付けは、通常、60〜260g/m2、好ましくは70〜200g/m2程度である。The thickness of the composite airlaid nonwoven fabric of the present invention thus obtained is usually 0.3 to 2 mm, preferably 0.5 to 1.5 mm, and the total basis weight of the composite nonwoven fabric is usually 60 to 260 g / m 2 , preferably about 70 to 200 g / m 2 .
プリーツ加工:
本発明のエアレイド不織布からなるエアフィルターは、以上の(A)エアレイド不織布単独、あるいは(A)エアレイド不織布と(B)メルトブロー不織布からなる複合不織布を用いて、プリーツ加工が施される。
この際、プリーツ加工機は、レシプロまたは、ロータリー式が好適に使用され、プリーツの高さは10〜100mm、プリーツ間隔は2〜10mmが好適である。Pleated processing:
The air filter made of the air laid nonwoven fabric of the present invention is subjected to pleating using the above-mentioned (A) air laid nonwoven fabric alone or a composite nonwoven fabric made of (A) air laid nonwoven fabric and (B) melt blown nonwoven fabric.
At this time, the pleating machine is preferably a reciprocating or rotary type, and the pleating height is preferably 10 to 100 mm and the pleating interval is preferably 2 to 10 mm.
本発明のエアフィルターは、(B)メルトブロー不織布側が空気流入の下流側で使用するのが好適であるが、あるいは、(A)エアレイド不織布側が空気流入の下流側でもよい。 In the air filter of the present invention, (B) the melt blown nonwoven fabric side is preferably used on the downstream side of air inflow, or (A) the airlaid nonwoven fabric side may be on the downstream side of air inflow.
なお、空気の流入側または流出側には、捕集性能の強化、強度の補強などを目的として、目付けが好ましくは10〜80g/m2、さらに好ましくは12〜60g/m2程度の乾式不織布(サーマルボンド不織布、エアスルー不織布、ケミカルボンド不織布、スパンレース不織布、ニードルパンチ不織布、スパンボンド不織布、エアレイド不織布など)や、湿式不織布などの他の合繊不織布を適宜、積層してもよい。これらの合繊不織布には、30重量%未満のセルロース系繊維、例えば木材パルプ、レーヨン、コットン、リンターパルプなどが含まれていても良い。A dry nonwoven fabric having a basis weight of preferably 10 to 80 g / m 2 , more preferably about 12 to 60 g / m 2 is provided on the air inflow side or the outflow side for the purpose of enhancing the collection performance and reinforcing the strength. (Thermal bond nonwoven fabric, air-through nonwoven fabric, chemical bond nonwoven fabric, spunlace nonwoven fabric, needle punched nonwoven fabric, spunbond nonwoven fabric, airlaid nonwoven fabric, etc.) and other synthetic nonwoven fabrics such as wet nonwoven fabric may be appropriately laminated. These synthetic nonwoven fabrics may contain less than 30% by weight of cellulosic fibers such as wood pulp, rayon, cotton, linter pulp and the like.
以下に、本発明の実施例を記載するが、以下の実施例に限定されるものではない。
なお、実施例中、剛性、通気性、捕集効率、プリーツ加工適性は、次のようにして測定した。
(1)剛性
前掲した。
(2)通気性
JIS L1096 フラジール型試験機を使用した。
(3)集塵効率
粉体として大気塵を用い、濾過面積が9.6cm2の試料(エアフィルター)を用い、空気流47リットル/分とし、パーティクルカウンターとして、リオン(株)製のKR12−Aを用いて、フィルター通過後の大気塵の0.3μm以上の粒径の数を計測した。試料なし(ブランク)のカウント数を(X)、試料(フィルター)を通した場合のカウント数を(Y)として、集塵効率は下式で表した。
集塵効率(%)=〔(X)−(Y)〕×100/(X)
(4)プリーツ加工適性
レシプロ式加工機を用い、山高さ40mmで加工したときの状態を、折れかた、折れ目の直線性、折れ癖のつき方、などについて観察した。
極めて良好:プリーツの山・谷部の折れ目は直線状にきれいに入った。
良好 :極く一部の折れ目に直線になっていない不揃いが見られるものの、実用上ほぼ支障はなかった。
不良 :山高さが不揃いで、しかも折れ目の直線がきれいに入らなかった。Examples of the present invention will be described below, but the present invention is not limited to the following examples.
In the examples, rigidity, air permeability, collection efficiency and suitability for pleating were measured as follows.
(1) Rigidity I mentioned above.
(2) Breathability A JIS L1096 Fragile type tester was used.
(3) Dust collection efficiency Atmospheric dust is used as the powder, a sample (air filter) with a filtration area of 9.6 cm 2 is used, the air flow is 47 liters / minute, and a particle counter KR12- manufactured by Rion Co., Ltd. is used. Using A, the number of particle diameters of 0.3 μm or more of the atmospheric dust after passing through the filter was measured. The dust collection efficiency was expressed by the following equation, where (X) was the count number without a sample (blank), and (Y) was the count number when the sample (filter) was passed.
Dust collection efficiency (%) = [(X) − (Y)] × 100 / (X)
(4) Pleated processing suitability Using a reciprocating processing machine, the state when processed at a peak height of 40 mm was observed with respect to how it was folded, the linearity of the fold, how the crease was attached, and the like.
Extremely good: The folds at the peaks and valleys of the pleats were straight and clean.
Good: Although there were irregularities that were not straight at some folds, there was almost no problem in practical use.
Defect: The heights of the mountains were not uniform, and the straight line of the crease did not enter cleanly.
実施例1
(a1)合成繊維として、三角断面のポリエチレンテレフタレート繊維(ユニチカファイバー(株)製、20dtex×10mm)、(a2)熱接着性複合短繊維として、鞘部がイソフタル酸との共重合ポリエチレンテレフタレート、芯部がポリエチレンテレフタレートからなる芯鞘型複合繊維(帝人ファイバー(株)、鞘部融点150℃、5.5dtex×5mm)を混合比率が50/50重量%で100g/m2となるように、エアレイド法により積層ウェブを作成した。次に、このウェブに熱オーブンで180℃の熱風を吹き付け、エアレイドウェブの繊維間を熱融着させ、引き続き、一対の金属ローラーを用いて、170℃、線圧25kgf/cmで熱圧処理して、厚さが0.6mm、目付100g/m2の(A)エアレイド不織布を作製した。
このエアレイド不織布を用いて山高さ40mmのプリーツ加工を施した。
このエアレイド不織布の剛性、通気性、集塵効率、プリーツ加工適性を表1に示す。
実施例1のエアレイド不織布からなるエアフィルターは、剛性、通気性が大で、プリーツ加工性も極めて良好で、山倒れも無く、捕集性能は低いものの、単独で粗塵フィルターとして有用である。Example 1
(A1) Polyethylene terephthalate fiber having a triangular cross section (manufactured by Unitika Fiber Co., Ltd., 20 dtex × 10 mm) as a synthetic fiber, (a2) Copolymer polyethylene terephthalate having a sheath portion with isophthalic acid as a heat-adhesive composite short fiber, core The core-sheath type composite fiber (Teijin Fibers Limited, sheath melting point 150 ° C., 5.5 dtex × 5 mm) made of polyethylene terephthalate is airlaid so that the mixing ratio is 100 g / m 2 at 50/50% by weight. A laminated web was prepared by the method. Next, hot air of 180 ° C. is blown onto the web in a heat oven to thermally fuse the fibers of the air laid web, and subsequently, hot pressure treatment is performed at 170 ° C. and a linear pressure of 25 kgf / cm using a pair of metal rollers. Thus, an (A) air laid nonwoven fabric having a thickness of 0.6 mm and a basis weight of 100 g / m 2 was produced.
Using this air laid nonwoven fabric, pleating with a height of 40 mm was performed.
Table 1 shows the rigidity, air permeability, dust collection efficiency, and pleatability of this airlaid nonwoven fabric.
The air filter made of the air-laid nonwoven fabric of Example 1 has high rigidity and air permeability, extremely good pleating workability, no hill collapse, and low collection performance, but is useful alone as a coarse dust filter.
実施例2
実施例1で得られた(A)エアレイド不織布の一方の面に、(B)メルトブロー不織布として、ポリプロピレンからなる目付けが40g/m2のメルトブロー不織布(タピルス(株)製)を、ホットメルトラミネート法でポリオレフィン系樹脂からなるホットメルト接着剤(松村石油研究所(株)製、モレスコメルト)を5g/m2用いて複合不織布を作製した。複合不織布の総目付けは、145g/m2で、厚さは1.0mmであった。
この複合不織布を用いて、実施例1と同様にして、剛性、通気性、集塵効率、プリーツ加工適性を測定した。結果を表1に示す。
実施例2の複合エアレイド不織布からなるエアフィルターは、通気性は低いものの、捕集効率が高く、剛性が大なので、プリーツ加工性が良好であり、工場空調用、自動車室内フィルターなどとして有用である。Example 2
On one surface of the (A) airlaid nonwoven fabric obtained in Example 1, (B) a meltblown nonwoven fabric (made by Tapirs Co., Ltd.) having a basis weight of 40 g / m 2 as a meltblown nonwoven fabric was hot melt laminated. A composite nonwoven fabric was prepared using 5 g / m 2 of a hot melt adhesive made of polyolefin resin (manufactured by Matsumura Oil Research Co., Ltd., Morescommelt). The total basis weight of the composite nonwoven fabric was 145 g / m 2 and the thickness was 1.0 mm.
Using this composite nonwoven fabric, the rigidity, air permeability, dust collection efficiency and suitability for pleating were measured in the same manner as in Example 1. The results are shown in Table 1.
Although the air filter made of the composite airlaid nonwoven fabric of Example 2 has low air permeability, it has high collection efficiency and high rigidity, so it has good pleatability and is useful for factory air conditioning, automobile interior filters, etc. .
実施例3
(a1)合成繊維として、丸断面のポリエチレンテレフタレート繊維(帝人ファイバー(株)製、18dtex×5mm)、(a2)熱接着性複合短繊維として、鞘部がイソフタル酸との共重合ポリエチレンテレフタレート、芯部がポリエチレンテレフタレートからなる芯鞘型複合繊維(帝人ファイバー(株)、鞘部融点150℃、5.5dtex×5mm)を混合比率が50/50重量%で100g/m2となるように、エアレイド法によりウェブを作成した。次に、このウェブに熱オーブンで170℃の熱風を吹き付け、エアレイドウェブの繊維間を熱融着させ、引き続き、一対の金属ローラー間で、170℃、線圧25kgf/cmで熱圧処理して、厚さが0.6mm、目付100g/m2の(A)エアレイド不織布を作製した。
この複合不織布を用いて、実施例1と同様にして、剛性、通気性、集塵効率、プリーツ加工適性を測定した。結果を表1に示す。
実施例3のエアレイド不織布からなるエアフィルターは、実施例1に較べてやや剛性が低いものの、実用上十分な剛性を有し、高通気性の特徴を有する粗塵フィルターとして有用であった。Example 3
(A1) As synthetic fiber, polyethylene terephthalate fiber having a round cross section (manufactured by Teijin Fibers Ltd., 18 dtex × 5 mm), (a2) As heat-adhesive composite short fiber, copolymerized polyethylene terephthalate whose core is isophthalic acid, core The core-sheath type composite fiber (Teijin Fibers Limited, sheath melting point 150 ° C., 5.5 dtex × 5 mm) made of polyethylene terephthalate is airlaid so that the mixing ratio is 100 g / m 2 at 50/50% by weight. The web was created by law. Next, hot air of 170 ° C. is blown onto the web in a heat oven to heat-seal the fibers of the air laid web, and subsequently subjected to heat pressure treatment between a pair of metal rollers at 170 ° C. and a linear pressure of 25 kgf / cm. A (A) airlaid nonwoven fabric having a thickness of 0.6 mm and a basis weight of 100 g / m 2 was produced.
Using this composite nonwoven fabric, the rigidity, air permeability, dust collection efficiency and suitability for pleating were measured in the same manner as in Example 1. The results are shown in Table 1.
The air filter made of the air-laid nonwoven fabric of Example 3 has a slightly lower rigidity than that of Example 1, but has a practically sufficient rigidity and is useful as a coarse dust filter having high air permeability characteristics.
比較例1
合成繊維として、三角断面のポリエチレンテレフタレート繊維(ユニチカファイバー(株)製、3.3dtex×5mm)、熱接着性複合短繊維として、鞘部がイソフタル酸との共重合ポリエチレンテレフタレート、芯部がポリエチレンテレフタレートからなる芯鞘型複合繊維(帝人ファイバー(株)製、鞘部融点150℃、4.4dtex×5mm)を混合比率が50/50重量%で100g/m2となるように、エアレイド法によりウェブを作成した。次に、このウェブに熱オーブンで180℃の熱風を吹き付け、エアレイドウェブ間を熱融着させ、引き続き、一対の金属ローラー間で、170℃、線圧25kgf/cmで熱圧処理して、厚さが0.4mm、目付100g/m2の(A)エアレイド不織布を作製した。
このようにして得られたエアレイド不織布の一方の面に、メルトブロー不織布として、ポリプロピレンからなる目付けが40g/m2のメルトブロー不織布(実施例2に同じ)を、ホットメルトラミネート法でポリオレフィン系樹脂からなるホットメルト接着剤(実施例2に同じ)を5g/m2用いて、積層して複合不織布を作製した。複合不織布の総目付けは、145g/m2であった。
この複合不織布を用いて、実施例1と同様にして、剛性、通気性、集塵効率、プリーツ加工適性を測定した。結果を表1に示す。
比較例1の複合不織布からなるエアフィルターは、捕集効率は高いものの、剛性が不充分でプリーツ加工性が不良であり、風圧によってプリーツ山倒れしやすいなど、実用上問題があった。Comparative Example 1
Synthetic fiber, polyethylene terephthalate fiber with triangular cross section (manufactured by Unitika Fiber Co., Ltd., 3.3 dtex × 5 mm), thermal adhesive composite short fiber, copolymerized polyethylene terephthalate with isophthalic acid in sheath, polyethylene terephthalate in core A core-sheath type composite fiber (made by Teijin Fibers Ltd., sheath part melting point 150 ° C., 4.4 dtex × 5 mm) is made into a web by an airlaid method so that the mixing ratio is 100 g / m 2 at 50/50% by weight. It was created. Next, hot air of 180 ° C. was blown onto the web in a hot oven to thermally fuse the air-laid web, and subsequently, hot pressure treatment was performed between a pair of metal rollers at 170 ° C. and a linear pressure of 25 kgf / cm. A (A) airlaid nonwoven fabric having a thickness of 0.4 mm and a basis weight of 100 g / m 2 was produced.
On one surface of the airlaid nonwoven fabric obtained in this way, a melt blown nonwoven fabric having the basis weight of 40 g / m 2 (same as in Example 2) made of polypropylene as a melt blown nonwoven fabric is made of a polyolefin resin by the hot melt lamination method. A hot-melt adhesive (same as in Example 2) was laminated using 5 g / m 2 to prepare a composite nonwoven fabric. The total weight of the composite nonwoven fabric was 145 g / m 2 .
Using this composite nonwoven fabric, the rigidity, air permeability, dust collection efficiency and suitability for pleating were measured in the same manner as in Example 1. The results are shown in Table 1.
Although the air filter made of the composite nonwoven fabric of Comparative Example 1 has high collection efficiency, it has practical problems such as insufficient rigidity and poor pleat workability, and the pleat mountain easily collapses due to wind pressure.
比較例2
合成繊維として、丸断面のポリエチレンテレフタレート繊維(帝人ファイバー(株)、3.3dt×5mm)、熱接着性複合短繊維として、比較例1と同じものを使用し、混合比率60/40重量%で90g/m2となるようにエアレイドウェブを形成し、実施例1、比較例1と同一の条件で熱風処理、熱圧処理を加え、厚さが0.4mm、目付90g/m2の(A)エアレイド不織布を作製した。
この不織布を用いて、剛性、通気性、集塵効率、プリーツ加工適性を測定した。結果を表1に示す。
比較例2のエアレイド不織布からなるエアフィルターは、(a1)合成繊維が太繊度ではないので通気性が低いうえに、剛性が低いので、製品に加工しにくいなど実用上の問題があり、フィルターとして不適であった。
Comparative Example 2
As synthetic fibers, polyethylene terephthalate fibers having a round cross section (Teijin Fibers Ltd., 3.3 dt × 5 mm) and the same heat-adhesive composite short fibers as in Comparative Example 1 were used, and the mixing ratio was 60/40 wt%. An air laid web was formed to 90 g / m 2 , hot air treatment and hot pressure treatment were applied under the same conditions as in Example 1 and Comparative Example 1, and the thickness was 0.4 mm and the basis weight was 90 g / m 2 (A ) Airlaid nonwoven fabric was produced.
Using this nonwoven fabric, rigidity, air permeability, dust collection efficiency and suitability for pleating were measured. The results are shown in Table 1.
The air filter made of the air-laid nonwoven fabric of Comparative Example 2 has a practical problem such as (a1) the synthetic fiber is not thick and has low air permeability and low rigidity and is difficult to process into a product. It was inappropriate.
本発明のエアフィルターは、家庭、工場、事務所などの空気清浄機器用濾材、自動車・列車・航空機などの外部空気取り入れ用、あるいは車内・機内空気清浄用のフィルターなどのほか、電気掃除機の集塵バッグやファイナルフィルターやマスクなどの用途に有用である。 The air filter of the present invention is a filter medium for air purification equipment in homes, factories, offices, etc., external air intake for automobiles, trains, airplanes, etc. Useful in applications such as dust collection bags, final filters, and masks.
Claims (7)
剛性:
「剛性」は、以下の方法で試料先端部が自重によって垂れ下がった距離により表すものとし、値が小さいほど高い剛性を表すものとする。
(1)試験片の大きさ;(幅25±1)×(長さ160±1)mm
(2)試験方法;
(i)試験片と鋼製定規を重ねてプラットフォームの上に載せ、プラットフォーム・試験片・鋼製定規の前端部が一致するように合わせる。
(ii)試験片と鋼製定規とをプラットフォームの前端から80mm押し出す。
(iii)鋼製定規の先端と、自重で垂れ下がった試験片先端部との距離(mm)を測定する。
(iv)測定する試験片の表裏を入れ替えて、再度、(i)、(ii)の試験を実施し、その平均値を1データとする。それを別々の試験片で繰り返し、n=5の平均値として表す。 (A) (a1) mp 180 ° C. or higher, the single yarn fineness is 6~40Dtex, and synthetic fibers 30 to 70% by weight of fiber-forming polyester of fiber length 3 to 15 mm, heat is (a2) a low melting point component A core-sheath type composite short fiber having a melting point of 90 to 160 ° C., a single yarn fineness of 2 to 15 dtex and a fiber length of 3 to 15 mm, a low melting point component as a sheath component, and a high melting point component as a core component, or These are composed of side-by-side composite short fibers, one of which is a low melting point component and the other is a high melting point component. The combination of both components of these composite short fibers is PP (polypropylene) / PE (polyethylene), PET (polyethylene terephthalate) / PE, PP / low melting copolymer PP, or PET / thermally adhesive composite short fibers 70 to 30 wt% low melting copolyester [However, (a1) + (a ) = 100 wt%] mainly to airlaid webs roller surface temperature (a2) heat-adhesive composite melting point + 10 ° C. of short fibers ~ + 50 ℃ and it is hot pressing calendering treatment at a linear pressure 10~100kgf / cm, An air filter having high rigidity made of an airlaid nonwoven fabric having a rigidity measured by the following method in accordance with JIS L1913 of 10 mm or less.
rigidity:
“Rigidity” is represented by the distance by which the tip of the sample hangs down due to its own weight by the following method. The smaller the value, the higher the rigidity.
(1) Size of test piece; (width 25 ± 1) × (length 160 ± 1) mm
(2) Test method;
(I) The test piece and the steel ruler are stacked and placed on the platform, and the front ends of the platform, the test piece and the steel ruler are aligned.
(Ii) A test piece and a steel ruler are extruded 80 mm from the front end of the platform.
(Iii) Measure the distance (mm) between the tip of the steel ruler and the tip of the test piece that hangs down under its own weight.
(Iv) The front and back of the test piece to be measured are exchanged, and the tests (i) and (ii) are performed again, and the average value is taken as one data. It is repeated on separate specimens and expressed as an average value of n = 5.
(B) The air filter having high rigidity according to claim 5 or 6, wherein the basis weight of the melt blown nonwoven fabric is 10 to 60 g / m 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008542053A JP5344465B2 (en) | 2006-10-30 | 2007-10-23 | Air filter with high rigidity |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006294089 | 2006-10-30 | ||
JP2006294089 | 2006-10-30 | ||
PCT/JP2007/070592 WO2008053741A1 (en) | 2006-10-30 | 2007-10-23 | Highly rigid air filters |
JP2008542053A JP5344465B2 (en) | 2006-10-30 | 2007-10-23 | Air filter with high rigidity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2008053741A1 JPWO2008053741A1 (en) | 2010-02-25 |
JP5344465B2 true JP5344465B2 (en) | 2013-11-20 |
Family
ID=39344084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008542053A Expired - Fee Related JP5344465B2 (en) | 2006-10-30 | 2007-10-23 | Air filter with high rigidity |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5344465B2 (en) |
WO (1) | WO2008053741A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5417783B2 (en) * | 2008-09-24 | 2014-02-19 | 東レ株式会社 | Manufacturing method of fiber structure |
JP5268709B2 (en) * | 2009-02-27 | 2013-08-21 | 日本無機株式会社 | Thermal bond nonwoven filter medium and air filter using the same |
US20110084017A1 (en) * | 2009-04-03 | 2011-04-14 | Delstar Technologies, Inc. | Reinforced, pleated filter structure |
MY183762A (en) * | 2010-10-14 | 2021-03-11 | Fairtech Investment Ltd | Nonwoven fabric, manufacturing method thereof and filters formed by it |
JP5647564B2 (en) * | 2011-05-17 | 2014-12-24 | 登 北田 | Filter material and method for producing the same |
JP5489084B2 (en) * | 2011-08-12 | 2014-05-14 | Jnc株式会社 | Mixed fiber non-woven fabric |
CN103422254B (en) * | 2012-05-23 | 2018-01-02 | 东丽纤维研究所(中国)有限公司 | One kind heat bonding non-woven fabrics and its production method and purposes |
JP6265612B2 (en) * | 2013-03-27 | 2018-01-24 | 日本バイリーン株式会社 | Electret filter |
JP2015209621A (en) * | 2014-04-30 | 2015-11-24 | 王子ホールディングス株式会社 | Nonwoven fabric and filter including nonwoven fabric |
JP6511289B2 (en) * | 2015-02-24 | 2019-05-15 | 呉羽テック株式会社 | Pre-air filter for internal combustion engine |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0445813A (en) * | 1990-06-08 | 1992-02-14 | Toray Ind Inc | Filter unit |
JPH063420U (en) * | 1992-06-19 | 1994-01-18 | 日本バイリーン株式会社 | Filter material |
JPH08257334A (en) * | 1995-03-24 | 1996-10-08 | Nippondenso Co Ltd | Filter and its manufacture |
JPH09228219A (en) * | 1996-02-20 | 1997-09-02 | Toray Ind Inc | Fiber formed product |
WO1997048846A1 (en) * | 1996-06-19 | 1997-12-24 | Chisso Corporation | Nonwoven short fibre fabric and absorbent article made by using same |
JPH101856A (en) * | 1996-03-12 | 1998-01-06 | Chisso Corp | Heat seal type nonwoven fabric |
JPH10251958A (en) * | 1997-03-12 | 1998-09-22 | Chisso Corp | Bulky nonwoven fabric |
JPH1161614A (en) * | 1997-08-12 | 1999-03-05 | Chisso Corp | Staple fiber non-woven fabric |
JP2002061060A (en) * | 2000-08-10 | 2002-02-28 | Chisso Corp | Nonwoven fabric and finished article of nonwoven fabric |
JP2003126628A (en) * | 2001-10-26 | 2003-05-07 | Unitica Fibers Ltd | Base material of air filter |
JP2004060115A (en) * | 2002-07-30 | 2004-02-26 | Chisso Corp | Rod-shaped fiber formed material |
JP2004301121A (en) * | 2003-03-20 | 2004-10-28 | Ambic Co Ltd | Nonwoven fabric air filter for internal combustion engine |
JP2005105203A (en) * | 2003-10-01 | 2005-04-21 | Chisso Corp | Functional fiber and formed fiber material made thereof |
WO2005107920A1 (en) * | 2004-05-12 | 2005-11-17 | Ambic Co., Ltd. | Material for air filter |
JP2006241642A (en) * | 2005-03-04 | 2006-09-14 | Solotex Corp | Bulky soft airlaid nonwoven fabric |
JP2007098356A (en) * | 2005-10-07 | 2007-04-19 | Ambic Co Ltd | Composite pleat filter |
JP2007146357A (en) * | 2005-10-28 | 2007-06-14 | Chisso Corp | Flame-resistant fiber, nonwoven fabric and nonwoven fabric using them |
-
2007
- 2007-10-23 WO PCT/JP2007/070592 patent/WO2008053741A1/en active Application Filing
- 2007-10-23 JP JP2008542053A patent/JP5344465B2/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0445813A (en) * | 1990-06-08 | 1992-02-14 | Toray Ind Inc | Filter unit |
JPH063420U (en) * | 1992-06-19 | 1994-01-18 | 日本バイリーン株式会社 | Filter material |
JPH08257334A (en) * | 1995-03-24 | 1996-10-08 | Nippondenso Co Ltd | Filter and its manufacture |
JPH09228219A (en) * | 1996-02-20 | 1997-09-02 | Toray Ind Inc | Fiber formed product |
JPH101856A (en) * | 1996-03-12 | 1998-01-06 | Chisso Corp | Heat seal type nonwoven fabric |
WO1997048846A1 (en) * | 1996-06-19 | 1997-12-24 | Chisso Corporation | Nonwoven short fibre fabric and absorbent article made by using same |
JPH10251958A (en) * | 1997-03-12 | 1998-09-22 | Chisso Corp | Bulky nonwoven fabric |
JPH1161614A (en) * | 1997-08-12 | 1999-03-05 | Chisso Corp | Staple fiber non-woven fabric |
JP2002061060A (en) * | 2000-08-10 | 2002-02-28 | Chisso Corp | Nonwoven fabric and finished article of nonwoven fabric |
JP2003126628A (en) * | 2001-10-26 | 2003-05-07 | Unitica Fibers Ltd | Base material of air filter |
JP2004060115A (en) * | 2002-07-30 | 2004-02-26 | Chisso Corp | Rod-shaped fiber formed material |
JP2004301121A (en) * | 2003-03-20 | 2004-10-28 | Ambic Co Ltd | Nonwoven fabric air filter for internal combustion engine |
JP2005105203A (en) * | 2003-10-01 | 2005-04-21 | Chisso Corp | Functional fiber and formed fiber material made thereof |
WO2005107920A1 (en) * | 2004-05-12 | 2005-11-17 | Ambic Co., Ltd. | Material for air filter |
JP2006241642A (en) * | 2005-03-04 | 2006-09-14 | Solotex Corp | Bulky soft airlaid nonwoven fabric |
JP2007098356A (en) * | 2005-10-07 | 2007-04-19 | Ambic Co Ltd | Composite pleat filter |
JP2007146357A (en) * | 2005-10-28 | 2007-06-14 | Chisso Corp | Flame-resistant fiber, nonwoven fabric and nonwoven fabric using them |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008053741A1 (en) | 2010-02-25 |
WO2008053741A1 (en) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5344465B2 (en) | Air filter with high rigidity | |
DE10221694B4 (en) | Multi-layer filter construction, use of such a multi-layer filter assembly, dust filter bag, bag filter bag, pleated filter, surface exhaust filter and air filter for motor vehicles | |
CN102917769B (en) | There is the filter medium of sandwich construction | |
EP1276548B1 (en) | Filter media | |
JP4919254B2 (en) | Composite pleated filter | |
RU2240856C2 (en) | Filter made out of a composite material and a method of its manufacture | |
JP2981533B2 (en) | Molded filter | |
JP4745815B2 (en) | Air filter material for internal combustion engines | |
JP5033842B2 (en) | Charged nonwoven fabric for air filter and method for producing the same | |
JP3802839B2 (en) | Nonwoven fabric for filters and filters for engines | |
WO2004082805A1 (en) | Nonwoven fabric air filter for internal combustion engine | |
HU224280B1 (en) | Filter, especially for vacuum cleaner bag | |
CN101983097A (en) | Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment | |
JP2009006298A (en) | Adsorptive air laid nonwoven fabric and its manufacturing method | |
KR20160106087A (en) | Multilayer filtration material for filter, method for manufacturing same, and air filter | |
CN112888492A (en) | Air filtration media including a re-fluff spunbond web and methods of making and using | |
EP1498170A1 (en) | Two-layers synthetic-filter element | |
JP4900675B2 (en) | Composite nonwoven fabric for air filter | |
WO2018178180A1 (en) | Spun-bonded fabric material, object comprising a spun-bonded fabric material, filter medium, filter element, and use thereof | |
JP4737039B2 (en) | Filter nonwoven fabric for air intake | |
JP5586408B2 (en) | Non-woven filter medium for filter, method for producing the same, and air filter | |
JPH0671122A (en) | Filter cloth and preparation of the same | |
DE202010009671U1 (en) | Meltblown filter material, associated uses and uses | |
JP4800598B2 (en) | Manufacturing method of electret filter material made of pleated folded nonwoven fabric and filter material using the same | |
JP6681160B2 (en) | Filter material for automobile engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5344465 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |